MILESTONES TOWARD 50% EFFICIENT SOLAR CELL MODULES

Allen Barnett1, Douglas Kirkpatrick2, Christiana Honsberg1, Duncan Moore6, Mark Wanlass3, Keith Emery3, Richard Schwartz2, Dave Carlson5, Stuart Bowden1a, Dan Aiken1, Allen Gray1, Sarah Kurtz3, Larry Kazmerski3, Tom Moriarty3, Myles Steiner1, Jeffery Gray2, Tom Davenport5, Roger Buelow5, Laszlo Takacs10, Narkis Shatz10, John Bortz10, Omkar Jani11, Keith Goossen1, Fouad Kiamilev1, Alan Doolittle11, Ian Ferguson11,2, Blair Unger6, Greg Schmidt6, Eric Christensen11, David Salzman12

1University of Delaware, Electrical and Computer Engineering, 201 Evans Hall, Newark, DE, USA 19716-3130
2IEC, University of Delaware, 3Defense Advanced Research Projects Agency (DARPA), 4National Renewable Energy Laboratory (NREL), 5University of Rochester, 6Purdue University, 6BP Solar, 7Emcore Corporation, 8Optical Research Associates, 9Energy Focus, 10Science Applications International Corporation (SAIC), 11Georgia Institute of Technology, 12LightSpin Technologies

ABSTRACT: The Very High Efficiency Solar Cell (VHESC) program is developing integrated optical system - PV modules for portable applications that operate at greater than 50 percent efficiency. We are integrating the optical design with the solar cell design, and have entered previously unoccupied design space. Our approach is driven by proven quantitative models for the solar cell design, the optical design and the integration of these designs. Optical systems efficiency with an optical efficiency of 93% and solar cell device results summing to 42.9% are described.

Keywords: High performance, module architecture, solar cell efficiency

1 INTRODUCTION

High efficiency modules are being developed based on the co-design of the optics, interconnects and solar cells. This architecture significantly increases the design space for high performance photovoltaic modules in terms of materials, device structures and manufacturing technology. It allows multiple benefits, including increased theoretical efficiency, new architectures which circumvent existing material/cost trade-offs, improved performance from non-ideal materials, device designs that can more closely approach ideal performance limits, reduced spectral mismatch losses and increased flexibility in material choices. An integrated optical/solar cell allows efficiency improvements while retaining low area costs, and hence expands the applications for photovoltaics. It allows a design approach which focuses first on performance, enabling the use of existing state-of-the-art photovoltaic technology to design high performance, low cost multiple junction III-Vs for the high and low energy photons and a new silicon solar cell for the mid-energy photons, all while circumventing existing cost drivers through novel solar cell and module level. The optical system consists of a tiled nonimaging concentrating system, coupled with a spectral splitter that divides the solar spectrum into a given number of bands.

![Figure 1: Schematic showing the optical elements in the lateral optics, including a static concentrator and spectral splitting.](image)

2 PHOTOVOLTAIC SYSTEM ARCHITECTURE

The new system architecture is based on a “parallel” or lateral optical concentrating system, which splits the incident solar spectrum into several bands, and allows different optical and photovoltaic elements in each band. The optics and the cells are co-designed to achieve the maximum conversion efficiency of the module. An example of the photovoltaic system architecture is shown in Fig.1. The new architecture integrates optical and solar cell design, allowing a much broader choice of materials and circumventing of many existing cost drivers. This architecture enables the inclusion of multiple other innovations and leads to higher efficiency, both at solar cells and module level. The optical system consists of a tiled nonimaging concentrating system, coupled with a
Report Documentation Page

1. **REPORT DATE**
 SEP 2007

2. **REPORT TYPE**

3. **DATES COVERED**
 00-00-2007 to 00-00-2007

4. **TITLE AND SUBTITLE**
 Milestones Toward 50% Efficient Solar Cell Modules

5a. **CONTRACT NUMBER**

5b. **GRANT NUMBER**

5c. **PROGRAM ELEMENT NUMBER**

5d. **PROJECT NUMBER**

5e. **TASK NUMBER**

5f. **WORK UNIT NUMBER**

6. **AUTHOR(S)**

7. **PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)**
 University of Delaware, Department of Electrical and Computer Engineering, Newark, DE, 19716

8. **PERFORMING ORGANIZATION REPORT NUMBER**

9. **SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)**

10. **SPONSOR/MONITOR’S ACRONYM(S)**

11. **SPONSOR/MONITOR’S REPORT NUMBER(S)**

12. **DISTRIBUTION/AVAILABILITY STATEMENT**
 Approved for public release; distribution unlimited

13. **SUPPLEMENTARY NOTES**

14. **ABSTRACT**
 see report

15. **SUBJECT TERMS**

16. **SECURITY CLASSIFICATION OF:**
 - a. **REPORT** unclassified
 - b. **ABSTRACT** unclassified
 - c. **THIS PAGE** unclassified

17. **LIMITATION OF ABSTRACT**
 Same as Report (SAR)

18. **NUMBER OF PAGES**
 6

19a. **NAME OF RESPONSIBLE PERSON**

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18
are tiled, with the overall optical module being an affordable and manufacturable optical element, which incorporates both static concentration and a dichroic element for spectral splitting as shown in Figure 2.

Figure 2: Schematic of the solar system architecture, which combines new optical elements.

The unique features of the optical system are an emphasis on high system optical efficiency, the use of dichroic mirrors for spectral splitting and the design of the system to be thin enough to allow integration with other products. For example, previous approaches of static concentrators have not been practical because the thickness of the optical elements is too large for conventional modules. Further, previous optical systems, particularly spectral splitters, have suffered from reduced optical efficiencies. The use of an integrated system and small area dichroic mirrors allows both the efficiency and cost issues to be overcome. The optical system does not require tracking and has no moving parts.

The critical metric for the module development is module efficiency. Module efficiency consists of two terms: (1) optical efficiency which is the amount of sunlight that is directed to the solar cells – weighted by the energy in each band of sunlight and (2) the sum of the power from each solar cell.

3 OPTICS DESIGN AND RESULTS

The optical design is based on non-symmetric, nonimaging optics, tiled into an array. The central issues in the optical system are the optical efficiency and the amount of time over which the sunlight remains focused on the solar cells (tracking time). Because the modules are designed for portable electronics, the concentrators are designed to accept light for several hours, rather than over the course of an entire day.

In order to make a system which has no moving parts and can work with maximum pointing error and maximum tracking time, proof of concept (POC) designs were created that consist of four components, as shown in Figure 3. These are: (1) a front lens array using non-spherical lenses (toroids or crossed cylinders); (2) a hollow pyramidal reflective concentrator array which increases the performance of the system for light which is not normal to the module; (3) a nonimaging solid concentrator on the solar cell converting photon energies between 2.4 eV and 1.4 eV (called mid-energy solar cells); and (4) a dichroic prism which reflects the light above 1.4 eV and passes light below this energy.

The fabricated POC has four unit cells arranged in a 2 x 2 array. In addition to the optical elements, the module contains a motherboard that holds the silicon chips, two daughterboards that hold the mid-E chips and a pair of aluminum spacers acting as heat sinks.

The front lens array sits on top of the pyramid concentrator array. Each of two dichroic prisms sit on top of two adjacent silicon chips, attached by means of an optical cement. The secondary concentrators are attached with optical cement to each of the mid-E chips. The aluminum spacers are then used to connect and align the pyramid concentrator array with the circuit board with the appropriate distance between the two components. The total thickness from the refractive lens to the motherboard is 11mm. The front lens array is made by diamond-turning plastic. The pyramid concentrator array and the secondary concentrators are molded plastic pieces. The dichroic prisms are made of BK7 glass. Fig. 4 is a picture of the assembled prototype.

Figure 3: Schematic of the fabricated POC.

Figure 4: Assembled Crossed Cylinders POC

The transmission efficiency of the optical system was determined by measuring the reflectivity and transmission for all AR coatings, the material absorption for the optical elements and dichroic coatings. Using this data in a commercial optical design software shows that the optical transmission under weighted average AM1.5G spectrum is greater than 93%. Further, since the manufacturing tolerances of the optical components are an order of magnitude lower than for other optical systems, the dominant loss is the reflectivity and transmission. Thus overall, the optical system has a weighted average efficiency of >93% under AM1.5G. The results are shown in Figure 5.
Since the module is designed for portable battery charging applications, the time in which the module is stationary is relatively short. The tracking time or field of view is limited by the size of the photovoltaic cells and “beam walk” or the tendency of the spot of energy on the detector to move as the angle of the sun changes. Experiments were performed to measure the efficiency of the POC prototype as a function of the pointing error, i.e., the efficiency of the system when it is not aimed directly at the sun. These measurements were made in the lab using the solar simulator with an 18.3 mm diameter aperture in front of the focusing element. Figure 6 shows the efficiency of the total system for off-axis pointing in the East/West direction.

Figure 6: Performance of the POC with East/West tracking angle.

5 SOLAR CELL DESIGNS AND RESULTS

The central approach in choosing among the expanded material design space allowed by the optical elements is to first design for performance, eliminating only those aspects fundamentally incompatible with ultimately achieving low cost and then design for low cost manufacture. This approach involves parallel approaches in the initial phases, such that success in no case depends on a single approach. The increased design space provides a path to circumventing lattice and current matching constraints imposed by monolithic, series connected tandems. For lattice-matched (or close to lattice-matched metamorphic) tandems, only a limited number of materials are available. However, in the lateral optical approach, the materials can be chosen for their performance potential. This is particularly important for the very high energy band gaps required for the 5 and 6 junction tandems. The design emphasis on high performance leads to a core approach based on using materials that have demonstrated the highest performance for the wavelength range close to their band gap. For the solar cells with band gaps in the range of 1.4 and 1.9 eV, the highest performance materials are ternary compounds from the GaInAsP materials system with silicon being the highest performing material for the photons with energy near 1.0 eV. The optimum band gaps, and in some cases materials for the proposed solar cell, are shown in Fig. 7. Included are de-rating factors to account for unavoidable losses such as parasitic resistances and reflection. The proposed six junction solar cell, including the de-rating factors, can achieve and efficiency of 54% at 20X. When coupled with an optical system in excess of 93%, the system shows an overall system efficiency,
5.1 InGaN Solar Cells

The III-nitride material system has several features that allow both high performance multi-junction solar cells and low cost. These features include: an existing industry centered around the nitrides; high radiative efficiency even with high dislocation densities [10]; high mobilities, allowing good collection; a large piezoelectric constant, allowing control of surface recombination [11,12]; and the availability of direct high band gap materials, with band gaps above 2.4 eV. Such high band gaps are not available in other established material systems, but are necessary for multiple junction solar cells with a large number of cells. Coupled with these advantages are also substantial challenges. These include the difficulty in achieving p-type conduction in material with band gaps below 2.4 eV or lower [13]), and phase separation in material with higher concentrations of indium leading to increased recombination.

We experimentally demonstrated the III-V nitrides as a high-performance photovoltaic material with a Voc of 2.4V and an IQE as high as 60%. GaN and high-band gap InGaN solar cells are designed using modified PC1D software [14], grown by standard industrial MOCVD, fabricated into devices of variable sizes and contact configurations and characterized for material quality and performance. The material is primarily characterized by X-ray diffraction and photoluminescence to understand the implications of crystalline imperfections on photovoltaic performance. Phase separation within the material and high-contact resistances are identified as the two major efficiency loss mechanisms.

The design of the III-nitride solar cell consists of a lower-band gap InGaN region sandwiched between the top p- and the supporting n-type GaN junctions. A typical I-V curve of a high band gap solar cell (~3.0 eV or greater) is shown in Figure 8. The light source used is modified from a typical one-sun spectrum by increasing its UV content to amplify the response of the solar cell. The open-circuit voltage (Voc) of the solar cell is dominated by the lower band gap phase separated InGaN. A central challenge in these devices is the formation of a Schottky barrier at the non-optimal p-GaN – Ni metal contact interface, which opposes the light-generated current so that the current asymptotically approaches zero prior to the device reaching its Voc. This Schottky effect is also confirmed through PC1D simulation. These effects mean that existing devices have a semi-transparent current spreading layer consisting of full metal coverage on the top of the solar cell. In spite of the relatively lower short-circuit currents (Jsc) due to light absorption by the top current spreading layer, the full-metal contacts with p-GaN yield lower series resistance around 30-50Ω. These solar cells demonstrate Voc’s as high as 2.4V and fill factors (FF) about 78%.

5.2 GaInP/GaAs Solar Cells

A viable path to increased efficiency for multi-junction monolithic solar cells is to independently optimize the voltage and current production of each cell to the solar spectrum. Solar cell modeling has shown that the independently interconnected or multi-terminal design is not constrained by minimum cell current and is less sensitive to bandgap as compared to series connected solar cell designs. However, it is more complex with respect to fabrication of the solar cell, and in terms of power delivery. The I-V curve of the best GaInP/GaAs tandem solar cell is shown in Figure 9.

5.3 Silicon Solar Cell filtered by GaAs

A central feature of our proposed approach is to leverage the cost/performance benefits of existing solar cell technology to achieve both high performance and low risk. While laboratory silicon solar cells have
demonstrated high performance, a central challenge is to incorporate the high performance features in a low cost solar cell. Several innovations in solar cell design make this possible, including the move to thinner silicon junctions, the passivation of Si surfaces by means other than insulators [15], the use of an optically transparent substrate and recently demonstrated high minority carrier lifetimes in n-type silicon. Silicon solar cells were fabricated using the deposition of the wide-band gap semiconductor, amorphous silicon to passivate the surfaces and achieve higher voltages and efficiencies.

The device structure is a heterojunction between crystalline silicon and amorphous silicon, thereby utilizing the excellent passivation by the amorphous silicon to reduce recombination and maximize efficiency. Silicon heterojunction solar cells are ideally suited to the VHESC program since the III-V based top cell removes short wavelength light where the absorption in the amorphous silicon window layer is otherwise a problem, and the effective concentration of 5 – 6 suns shifts the operating point away from the high ideality factor region experienced by the one sun cells [16].

The cell design is pictured in Fig. 10. The center section in blue is the active area (8 mm x 2 mm) of the cell and is transparent to below bandgap infrared light. The outer section in red is the metallization for the contacts. The cell dimensions are small enough to allow conduction along the TCO, and through the cell bulk, with minimal resistance losses. The best filtered results at 20X are shown in Fig 11.

Figure 10: Cell design in mm. Metallization masks have been fabricated to these dimensions.

5.3 GaInAsP/GaInAs bottom tandem cells.

The low band gap solar cells consist of two independently connected (3 terminals) GaInAsP/GaInAs solar cells. The 3-terminal approach for the monolithic bottom tandem solar cell allowed measurement of the performance of each subcell in the tandem structure independently, substantially simplifying the performance characterization. Since the subcells are not serially connected, a tunnel junction is not included in the tandem structure, which simplifies the growth procedure. The increased flexibility, better characterization and simplified structure allow a high efficiency subcell. This in turn allows an increase of efficiency by lowering the band gap of the lowest energy subcell. A tandem device with subcell band gaps of 0.92 eV and 0.69 eV has been demonstrated with an efficiency of 6.2% at 20 suns under an idealized Si filter (1100 nm cutoff), global spectrum at 25 °C.

5.5 Sum of the solar cell efficiencies

The sum of the solar cell efficiencies, as described in Section 4 Efficiency Measurement method, gives the overall efficiency of the PV devices. These efficiencies are summarized below:

- GaInP/GaAs = 31.7%
- Silicon (filtered by GaAs) = 5%
- GaInAsP/GaInAs (filtered by Si) = 6.2%

TOTAL = 42.9%

These results demonstrate the potential of the integrated optical approach, which allows a greater range of materials, and hence a larger number of band gaps. These devices represent a substantial increase in efficiency over existing tandem approaches [17,18] particularly given that the results are measured at 20X
rather than at high concentration typical of tandem devices.

6. CONCLUSIONS AND NEXT STEPS

The results of 93% optical efficiency combined with the 42.9% sum of the solar cell efficiencies are a good indication of the power of the new PV architecture. The next steps are to combine them into a module, improve the performance of the module, implement power conversion circuitry and transfer to production. The Watt-hours delivered to the battery need to be optimized.

The power of the collaborative approach is demonstrated by the number and breadth of organizations that contributed to the new architectural design and implementation. The optics designs included contributions from government, universities and industrial participants. The system reported here features three types of solar cells (5 junctions) — one made by industry, one by a Government Lab and one by a University. The continued development of this co-design approach to the optics interconnects and solar cells will lead to 50% efficient modules.

Acknowledgements

The research reported in this document was prepared through participation in an Agreement sponsored by the Government under DARPA/ARO Agreement W911NF-05-9-0005. James Kiehl, NREL also did some of the measurements. Dr. Dan Laubacher, DuPont, provided valuable assistance.

REFERENCES

