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ABSTRACT 

Unmanned ground vehicles (UGVs) will play an important role in the nation’s next-generation ground force.  Advances 
in sensing, control, and computing have enabled a new generation of technologies that bridge the gap between manual 
UGV teleoperation and full autonomy.  In this paper, we present current research on a unique command and control 
system for UGVs named PointCom (Point-and-Go Command).  PointCom is a semi-autonomous command system for 
one or multiple UGVs.  The system, when complete, will be easy to operate and will enable significant reduction in 
operator workload by utilizing an intuitive image-based control framework for UGV navigation and allowing a single 
operator to command multiple UGVs.  The project leverages new image processing algorithms for monocular visual 
servoing and odometry to yield a unique, high-performance fused navigation system.  Human Computer Interface (HCI) 
techniques from the entertainment software industry are being used to develop video-game style interfaces that require 
little training and build upon the navigation capabilities.  By combining an advanced navigation system with an intuitive 
interface, a semi-autonomous control and navigation system is being created that is robust, user friendly, and less 
burdensome than many current generation systems.   
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1. INTRODUCTION 
Unmanned ground vehicles (UGVs) will play an important role in the nation’s next-generation ground forces.  Current 
plans call for unmanned systems to perform a wide variety of roles, including robotic mule applications, unarmed/armed 
reconnaissance, and EOD/IED (improvised explosive device) inspection and disposal.  Deployment of mobile robotic 
systems (such as the Foster Miller TALON and iRobot PackBot systems) in Bosnia, Ground Zero, Afghanistan and Iraq 
have served as proofs-of-concept of the effectiveness of these types of systems. 

Control of UGVs is accomplished remotely, through a command system that allows an operator(s) to receive sensor data 
from the UGV (or attendant sensors) and send motion commands to the vehicle.  One way to classify these command 
systems is by the level of supervision required by the human operator, ranging from fully autonomous (i.e. very little or 
no supervision required) to fully teleoperated (i.e. the operator manually controls every aspect of robot motion). 

Fully autonomous control approaches have attracted a significant amount of academic and government research during 
the past 15 years [1][2][3][4].  These methods are attractive due to their potential to reduce or eliminate operator 
workload.  However, robust real-world implementations of these systems have been elusive.  One major problem lies in 
reliably and accurately gathering and interpreting perceptual information, to distinguish traversable areas from hazardous 
areas [5][6].  Another problem lies in developing navigation algorithms that can combine situational awareness with 
complex, non-quantitative factors such as high-level mission goals, to allow a UGV to maneuver in an intelligent and 
strategic fashion.  As a result, many current UGVs have substantial difficulty in navigating through terrain that a human 
operator would navigate through with ease.  Despite continued intense research effort, it is unlikely that a fully 
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autonomous solution to UGV control that exhibits comparable effectiveness as a human-controlled system will be 
developed within the next several years. 

In contrast, fully teleoperated control is considered a mature technology.  A significant advantage of full teleoperation is 
that it exploits a human operator’s planning and reasoning skills.  However, full teleoperation does not leverage a UGV’s 
ability to perform relatively simple tasks such as path tracking, health monitoring, etc.  In addition, teleoperating a multi 
degree-of-freedom UGV is often challenging and burdensome for an operator due to poor command interface designs 
that have little regard for human factors issues.  As a result, command systems developed for full teleoperation are often 
difficult to use, complex, and non-intuitive.  In fact, instead of resulting in a reduction in workload, some UGV systems 
require more than one operator to control, partly defeating one purpose of unmanned system development. 

A desirable “middle ground” solution to UGV control is semi-autonomy, which leverages the planning, reasoning, and 
situational awareness skills of a human operator while taking advantage of a UGV’s ability to reliably perform low-level 
control tasks.  Ideally, such a system would allow a single operator to easily command multiple UGVs.  However, there 
are significant challenges in developing an effective semi-autonomous UGV command system.  Primary areas of 
difficulty lie in 1) operator interface design, and 2) robust robotic navigation algorithm development. 

Challenges in operator interface design stem from the difficultly in translating an operator’s intended action into robot 
motion.  This is in large part a function of human factors issues.  Most current robot command interfaces seem to have 
evolved from awkward, complex industrial automation controllers, rather than from more modern and intuitive 
paradigms such as PDAs and video games.  In addition, most interfaces do not allow a single operator to command 
multiple robots while maintaining adequate situational awareness.  Again, this is partly due to the difficulty in 
developing an operator interface that is simple and intuitive. 

Challenges in semi-autonomous UGV navigation derive from classical robotic problems related to detecting and 
avoiding obstacles, maintaining a record of UGV position (i.e. the localization problem), and accurately navigating along 
a desired path.  All of these problems are complicated by the fact that the environment may be harsh and hazard-rich, 
and the operator may be unskilled and inexperienced.  In addition, it has been demonstrated repeatedly in the robotics 
community that even the current state-of-the art UGV navigation technology is somewhat non-robust when exposed to 
real-world scenarios (refer to archival results from the DARPA PerceptOR and LAGR (Learning Applied to Ground 
Vehicles) programs) [6][7].  Further, the most heavily relied upon sensing methods for navigation - global positioning 
systems (GPS) – can be intentionally or unintentionally jammed or unavailable in urban or semi-urban environments, 
rendering many GPS-centric navigation methods useless. 

This paper presents an overview of our current research in developing a semi-autonomous control system that addresses 
these challenges and thus provides robust semi-autonomous control of UGVs with reduced operator workload in the near 
future.   

2. METHODOLOGY 
To adequately address the issues discussed above, a hybrid of multiple technologies and approaches are required.   The 
three main activities pursued are: 

• Development of a highly-intuitive user interface based on gaming techniques; 

• Implementation of intelligent algorithms for monocular obstacle detection and avoidance; 

• Fused sensor integration into advanced low-level navigation/control techniques to carry out semi-autonomous 
tasks. 

These activities are described below. 

2.1.1 PointCom Interface 

The navigation system currently under development is termed PointCom (Point-and-Go Command), an illustration of 
which is presented in Figure 1.  PointCom is a semi-autonomous command system that leverages advanced vision 
technology and interface design.  The system will enable significant reduction in operator workload by: 

• Developing an innovative, intuitive image-based control framework for UGV navigation; 

• Allowing a single operator to command formations of multiple UGVs. 



 
 

 
 

Human computer interface is an important aspect of any robotic control system, particularly those that must be used in 
time-critical environments.   It is suggested that an “ideal interface” would have the following properties: 

 - Allows an operator to easily command a UGV to travel to a specific location(s); 

 - Has few controls yet possesses complex functionality; 

 - Exhibits low cognitive complexity for operation (i.e. it is “usable by children”); 

 - Employs an intuitive and familiar hardware interface; 

 - Employs an intuitive and familiar software interface. 

Market competition in the video game industry over the past 20 years has led to the evolution of interface designs that 
meet the above specifications.  These interfaces allow complex, flexible character/vehicle control in a manner that is 
comprehensible by children/teens with little instruction.  While a number of UGV manufacturers are recognizing this 
and thus have adapted inexpensive gaming hardware (“PS2” or “Xbox” style controllers) for use with their vehicle, this 
represents only a minor leveraging of the technology and expertise.  How and why buttons and controls are mapped to 
functions, along with aspects of the correlated onscreen user interface/display, are key to building an interface that 
reaches beyond the simple “remote control toy” paradigm.  Drawing from this paradigm, PointCom leverages the 
technology and expertise employed in the design of these gaming interfaces to create substantially more intuitive and 
flexible interfaces for semi-autonomous UGV control than currently exist.   

The approach utilizes a PDA, tablet, or other mobile computing device with a touch screen operator interface.  The 
operator is presented with visual information gathered from a wide field-of-view monocular grayscale camera(s) 
mounted on the UGV, overlaid with relevant controls and vehicle state information.  The command interface GUI and 
overlays leverage innovative visualization techniques from the entertainment software (e.g. video game) industry.  The 
interface would receive data from the UGV via a low-power, secure communication link at an update rate dependant on 
UGV velocity and available communications bandwidth. 

The operator interface would allow rapid switching between two distinct command modes: “Manual Mode” and “Point 
and Go.”  In manual mode, teleoperation of the UGV is essentially just that: the visual scene would be overlaid with 
buttons to command the UGV to turn left or right, move forward or reverse, and stop (see Figure 1).  UGV speed is 
modulated by tapping a button multiple times.  Such a mode is useful to easily command both gross and fine adjustment 
of UGV position.  A single operator can control formations of multiple UGVs in manual mode by choosing a formation 
geometry (i.e. column, wedge, diamond, etc) then command the motion of a designated “leader” UGV.  Other UGVs in 
the formation will then follow the leader UGV, maintaining formation geometry while autonomously avoiding hazards.  
This mode would allow for significant reduction in workload while maintaining a high degree of operator supervision.  
The conceptual design of this control framework again derives from the entertainment software industry, where this type 
“formation keeping” control is common. 

In “Point and Go” mode, an operator designates waypoints or sketches a path on the visual scene by tapping regions on 
the interface screen, and the UGV navigates to these waypoints using a combination of robotic visual servoing and 
odometric techniques.  This element of the system relies on advanced image processing and feature tracking algorithms 
under development at Quantum Signal along with robust mobile robot navigation algorithms developed at MIT.  Point-
and-go mode can also leverage the formation keeping control described above.  

Point and Go is the functional focus of the current research, since it will be/is useful in reducing operator workload while 
relaxing several notoriously difficult challenges of full UGV autonomy.  In particular, it leverages the human’s ability to 
perform complex scene interpretation and path planning, and tasks the UGV with relatively simple path 
planning/following and local hazard avoidance.  

The PointCom system architecture is designed to be plug-and-play applicable to a range of systems, from man-portable 
to moderate size (e.g. R-GATOR sized) to large vehicles.  The primary UGV sensor is a wide field-of-view monocular 
camera (or camera array), which can be grayscale and/or IR for nighttime operation.  The use of a small number of 
simple sensors will lead to a robust, reliable system even in challenging environments.  System operation does not rely 
on GPS (which can be denied and is often unavailable in indoor or urban scenarios), stereo vision (which can be 
sensitive to lighting and weather conditions), or emissive LADAR technology.  Also, it does not require the UGV to 
solve the localization or autonomous path planning problems.   



 
 

 
 

 

 
Figure 1: Overview of Proposed PointCom Semi-Autonomous UGV Command System 

 

2.1.2 Image Processing 

2.1.3 Implementation of intelligent algorithms for monocular and obstacle avoidance 

Most traditional approaches to vision-based outdoor UGV navigation rely upon the use of dense 3-D range data [5][6] 
derived from stereo.  An approach to semi-autonomous UGV navigation based on stereo range data might be divided 
into four general steps:  

1) An operator selects a point (pixel) on the touch-screen interface;  

2) The disparity between matching pixels in each stereo image is used to calculate the range to the selected pixel;  

3) A path planning algorithm computes a desired path through a local 3-D terrain model from the current UGV 
position to the selected position;  

4) A UGV navigates along the desired path, continuously estimating its pose and position to evaluate its progress. 

There are numerous potential pitfalls in this approach.  Most notably, the ability to gather dense, accurate range data 
from stereo is difficult in shadowed regions, direct sunlight, dust, fog, or rain.  In addition, range data cannot be 
collected in visually occluded areas.  This often occurs near obstacles (i.e. rocks, trees, etc.) or in regions where the 
terrain is uneven.  (In fact, for a UGV with a 2 m sensor height from the ground, terrain becomes “self-occluded” if it 
possesses slopes steeper than 65 degrees at 1m range, 12 degrees at 10m range, and only 3 degrees at 30m range.)  In 
general, the reliable collection of range data usually requires a complex and expensive multi-sensor suite [6]. 

Monocular vision, on the other hand, enjoys the positive aspects of non-emissive, content rich vision sensing while 
avoiding some of the drawbacks of stereo.  In particular, this approach avoids computationally expensive construction of 
dense 2.5D or 3-D models based on range data.  Arguments for the validity of a monocular approach can be found in 
nature: A dog’s narrow eye spacing results in poor stereo vision capabilities, however they can easily move at high speed 
through complex environments.  Instead of performing detailed 3-D geometric analyses, animals clearly perform a 
significant amount of 2-D scene interpretation.  Additionally, humans with strabismus (wandering eye) have limited or 
no stereo vision yet can perform 3-D tasks (such as driving vehicles) without overwhelming difficulty.   



 
 

 
 

A second potential pitfall to the traditional approach is that it requires a UGV maintain an accurate estimate of its 
location.  This localization problem represents a frontier problem in robotics [8][9][10].  In military scenarios, GPS may 
not always be available during urban operation or due to enemy countermeasures, and thus the localization problem 
becomes nearly intractable.  Stereo vision-based approaches to GPS-deprived localization (i.e. visual odometry methods) 
have recently been developed, but these approaches are sensitive to the adverse lighting conditions described above [11]. 

The PointCom system employs a monocular vision approach that enables UGVs to operate in harsh, real-world 
conditions without GPS.  In this approach, information gained from the motion of the camera is used to simultaneously 
estimate this motion and the 3D-structure of the environment. Assuming that the terrain surrounding the UGV is 
relatively flat enables computationally efficient and robust solution of this estimation problem under any type of motion. 
In the case of rough or sloped terrain, we expect that the inclusion of UGV pitch and roll information (measured by an 
on-board inclinometer) would improve performance.  Such an approach has been successfully employed in rough-terrain 
environments [12]. 

2.1.4 Monocular Visual Odometry 

Visual odometry is the process of estimating location based on analysis of data from vision sensors.  In monocular visual 
odometry, data from a single camera is used for analysis.  While the details of our VO algorithm are beyond the scope of 
this publication, it is relevant to provide a general overview of the methods. 

In a typical robot-eye view, the image can be roughly divided in two distinct regions (Figure 2): near-field (the lower 
part of the image) and far-field (the upper part). Assuming there are no obstacles, the near-field region represents the 
ground surface within a few feet in front of the robot, while the far-field region contains the objects that are much further 
away. As the robot moves, frame-to-frame change (optical flow) of the scene follows two distinct patterns in these two 
regions (Figure 2, right). The far-field, with the distances to objects much larger than the displacements (physical 
movements) of the robot, shifts approximately rigidly, almost exclusively due to robot orientation change (translation 
due to pitch and yaw changes and in-plane rotation due to roll). The near-field, in addition to the same movement as the 
far-field, exhibits more complex perspective flow patterns due to longitudinal and transverse camera translation. The 
visual odometry methodology detects and de-couples these flow patterns and thus reconstructs the movement of the 
robot. 

 

 
Figure 2: Left: far-field (orange) and near-field (yellow) regions in the camera FOV. Right: typical optical flow patterns in 

the far-field and near-field areas.  

 

The key component of this system is a novel set of proprietary algorithms developed by QS and termed the “Fast Scene 
Comparison Framework” (Figure 3). The framework is able to compare any two video frames (not necessarily 
consecutive) and find the common scene elements independent of their positions (and scale) in their respective frames. 
Compact representations (~1-3 kB per frame) are computed for each frame, which can be stored and compared quickly 
(i.e. thousands of comparisons per second). Each new frame is reduced and compared to multiple frames efficiently 
selected from the recent history. This allows all the scene elements that persist in the FOV be used for robot localization 
obviating the common problems of standard feature tracking schemes (corrupted frames, lost tracks, mis-tracking, etc). 
If an object disappears (occlusion, motion blur) in some frames, the system can recover it as soon as it reappears. By 



 
 

 
 

optimizing the selection of frames for comparison, as well as maximizing the number of comparisons attainable in real-
time, robust performance on every time step and minimal long-term drift is achieved. 

 

 
Figure 3: Fast scene comparison framework. Rather than tracking particular objects, the entire common region between 2 

frames (separated by a few seconds of robot propagation) is identified. 

 

The QS fast scene comparison framework acts on the far-field regions of FOV and effectively serves as a highly robust 
angular odometry (i.e. pitch and yaw estimation) module. The angular resolution is determined by video resolution and 
camera view-angle, and is typically 0.1o-0.2o. for 360x240 video. As with any dead reckoning system, the error 
accumulates with time or, more precisely, with distance traveled (or with scene changes seen by the robot). The 
demonstrated rate of uncertainty accumulation is approximately 1o-5o. per minute (depending on surface conditions and 
robot speeds), similar or lower than published vision-based (including stereo) systems [14],[15] (of course, direct 
comparisons are not possible as each system was designed for and tested under different set of conditions and 
constraints) and drastically lower than can be achieved through wheel/track odometry.  Furthermore, the described 
framework has a built-in capability for scene recognition and certainty recovery.  If the robot passes the same location 
twice, it has the ability to recognize the scene as previously observed, and thus reduce orientation uncertainty to that of 
the previous pass.  

Once the robot has precise knowledge of its orientation, near-field optical flow analysis is used to estimate robot 
displacement and generate its trajectory. As with the angular odometry, at each new frame the current position is 
referenced not from the immediately preceding frame, but rather from a buffered recent frame, optimally chosen based 
on the expected displacement between the two frames. This approach enables substantial reduction in the error 
accumulation rates, as well as provides robustness with respect to blurred or otherwise corrupted frames. Distance error 
rates typically fall below 3-5% of distance traveled.  

In some operating scenarios, far-field information might not be available or simply be insufficient (e.g. indoor scenes 
with plain walls or outdoor scenes with featureless horizon and sky) for reliable angular odometry. In these cases the 
scene comparison framework generates low confidence score and the odometry system switches to purely near-field 
estimation mode (for both rotation and displacement of robot). Under flat-surface assumption (i.e. given that a sufficient 
fraction of the near-field part of FOV shows the ground surface, as opposed to obstacles, in front of the robot), the whole 
estimation problem is solved with precision comparable to when far-field information is available.  Of course, the 
uncertainty accumulation rate is increased because the near-field elements of the scene generally remain in the FOV for 
shorter times than those in the far-field.  

2.1.5 Obstacle Detection 

A significant challenge in outdoor navigation is the detection and avoidance of obstacles.  Though there are many 
approaches to this based on LIDAR or stereo vision, PointCom exploits feedback from low-cost cameras and intelligent 
monocular vision algorithms.  A monocular camera projects the three-dimensional (3D) world onto a two-dimensional 
(2D) image by sacrificing range information required to understand the structure of the scene—or, in case of robot 
navigation, detect obstacles. The only way to recover this information from a single image is to use precise domain 



 
 

 
 

knowledge. One example of such domain knowledge is the “flat surface” assumption mentioned earlier. This 
assumption, however, has rather limited applicability and, by its own definition, cannot describe obstacles.  

There has been recent interest in the research community on more general reconstruction of 3D-scenes or, more 
narrowly, obstacle detection from single images using machine learning techniques [17],[18] . The ability of such 
methods, however, to handle scenes that differ substantially from those used in training remains uncertain. More to the 
point, for a camera mounted on a moving platform, multiple images taken from different locations are readily available, 
enabling much more promising approach based on structure from motion (SFM).  

In its basic form, SFM reconstructs 3D scenes from two 2D images in a way similar to stereo vision. Given the exact 
relative positions and orientations of the camera when images were gathered, common features in two images are 
identified and their 3D-positions are found through triangulation. In more sophisticated systems, the exact camera 
positions and orientations are not known a priori, but are found along with the feature locations, constructing a self-
consistent model of the scene. Such approaches often require more than two images at a time, have much higher 
computational cost, which precludes their real-time implementation, or are subject to degeneracy in 3D feature 
configurations (e.g. if most features are close to the ground plane, the estimation problem becomes ill-conditioned) [13]). 
Furthermore, the geometry of the scene can only be determined up to a scale factor, and one still needs some domain 
information to estimate it. In this work, we approach the problem of obstacle detection via a combination of the 
techniques described above. Given the imprecision of wheel odometry, especially in describing robot orientation, the 
relative positions and orientations of the camera when collecting images to be used in SFM are not known in advance, 
but rather have to be determined from the same images that will be used to reconstruct the 3D-scene (constituting a key 
step of the visual odometry process). However, to make this problem computationally tractable, the odometry step is de-
coupled from the SFM step using domain knowledge, namely a relaxed flat surface assumption. Under this assumption 
the robot pitch and roll are not required to be zero, but rather small (less than ~1-2°). Also, substantial fraction (i.e. 
~25%) of the near-field part of the view must correspond to more or less flat surface in front of the robot, so that 
consistent optical flow can be computed. Effectively, this means that the robot should not approach obstacles too closely. 
Calibrated distance from camera to flat surface provides scale information. Once the epipolar geometry estimates are 
obtained with high confidence (which is also estimated in the process), obstacle detection is performed through the 
pseudo-stereo SFM analysis. 

The main drawback of the monocular system compared to standard stereo vision is the need for precise estimates of the 
camera shift between the images. Even small errors in these estimates, particularly orientation errors, can result in very 
noisy obstacle readings. We have employed a two-prong approach to alleviate this problem: a) a comprehensive iterative 
shift estimation module, and b) accumulation of detection data over time, with signal-to-noise ratio roughly proportional 
to the number of video frames in which the obstacle is seen. The SFM approach, on the other hand, offers a potential 
advantage over stereo through the possibility of much longer baselines (typically, just few centimeters for stereo) and 
hence longer detection range. This advantage could not be realized on the current experimental robot platform, with 
camera mounted at ~20 inches above ground, because reliable and precise shift estimates could only be achieved at 
distances ~10 cm (corresponding to detection range ~1-1.5 meters). However, this possibility remains open for larger 
robotic vehicles with camera mounted higher above ground. 

The obstacle detection algorithm, briefly, is a combination of a visual odometry stage (described earlier) and SFM stage. 
For each current video frame, the optimal reference frame is chosen from a buffer based on the expected relative position 
considerations. The actual relative positions (translation and rotation) between the current and reference frames are then 
estimated and passed to the pseudo-stereo obstacle detection module. There the feature points are selected whose shifts 
along their corresponding epipolar lines could be reliably estimated. By estimating those shifts and triangulating, each 
feature point is classified as obstacle or not based on its estimated elevation above ground. For obstacle points, the 
occupancy map scores (see below) are incremented for all cells within the triangulation uncertainty range. The odometry 
module proceeds with Kalman filtering of the coordinate estimates and fusion of the vision data with the wheel 
odometry data. The resulting rectified coordinate estimates are used for building the occupancy grid and for robot 
navigation. Notice, however, that the obstacle detection stage uses only unfiltered data, which is more precise over a 
single time step. Indeed, pseudo-stereo detection produces meaningful results only with very precise epipolar geometry 
estimates (with our robot-camera setup, 0.1° orientation error corresponds roughly to 10% distance error, while 0.5° 
would incur 50% error), achievable only with vision module when reporting high degree of confidence. 



 
 

 
 

2.1.6 Navigation 

The “Point and Go” command mode of the PointCom system allows an operator to select a desired waypoint(s) location 
or path in an image.  The UGV then navigates autonomously toward the waypoint using a path tracking algorithm that 
relies on a combination (fusion) of visual and wheel odometry information for local position estimation.  Here it is 
implicitly assumed that the operator-designated path will be relatively obstacle-free; however, as discussed above, an 
obstacle detection module based on analysis of monocular imagery is present to detect hazards that the operator might 
have ignored or that may appear during motion. The navigation algorithm employed in PointCom is summarized as 
follows: 

• At each time step with high confidence score on robot motion estimation, the monocular camera field of view is 
scanned for obstacles, and detected obstacles are placed in a locally-referenced occupancy map, where each 
cell’s occupancy is incremented or decremented based on the number of cell “hits”; 

• An obstacle map is generated by thresholding the occupancy scores and dilating to accommodate for finite 
robot size. 

• For the case of designated waypoints (rather than a path), optimal path from the robot’s current position to the 
waypoint(s) is derived via an efficient graph search algorithm (equivalent to D* [16]);  

The robot tracks the desired path via a simple pure pursuit-like path tracking algorithm [19].  In the current 
implementation, the occupancy map covers the area 15x15 meters with cell size 3x3cm. At this resolution, the 
computational cost of the navigation module is small compared to that of visual odometry, and the system operates 
smoothly in real time. 

3. RESULTS 
An initial prototype PointCom system was created and demonstrated in June, 2006, and has been evolving since that 
time.  Different system components and the complete system were tested in several indoor (carpet surface, no far-field 
features) and outdoor environments (asphalt or grass surface, with or without far-field). The UGV platform used in the 
experiments is approximately 60 x 60cm in width and length, with the camera mounted 50 cm above ground. The robot 
was moving at speeds 35-50 cm/sec and turning at 10°/sec. There were two major factors limiting operation to these 
speeds: 

• A relatively low-end camera lens and sensor resulting in image blurring when moving faster (particularly, over 
bumpy surface) or faster turning. 

• The experimental architecture in which the video was transmitted wirelessly from robot to a remote laptop 
computer where all the vision processing was performed. This resulted in large number of frame drops (often 
multiple at a time). While the system is relatively robust to occasional dropped frames, moving at faster speeds 
and multiple consecutive lost frames may result in some performance degradation. 

These problems are being addressed in the next version of the system (with better camera, and on-board processing), and 
it is expected that the equivalent performance at multiples of current speeds will be achieved. 

The precision of robot positioning in Point-and-Go mode is largely determined by the precision of the visual odometry 
module. To measure it accurately would require rather substantial additional hardware or setup to track the movement of 
the UGV with respect to the outside reference frame [14][15]. In this project a number of ad hoc measurements were 
performed instead, over a limited number of movement patterns/trajectories for which the ground truth is relatively 
simple to establish. These include moving along a straight line, circular and square loops, and turning on a spot. On flat 
surface (e.g. asphalt), the relative distance errors (as percentage of total distance travelled) were in the range ~1-3% for 
shorter runs (few meters) and somewhat lower ~0.5-1% for longer runs (tens of meters). This is because the errors on 
each step are independent and tend to average out over longer distances (given there is no systematic error due to 
miscalibration). On rougher grass surface the errors were approximately double of those above. The heading errors 
depend on availability of far-field features. In feature-rich outdoor environment the uncertainty accumulation rate is 
determined by the rate of scene changes and was estimated at ~3°-5° per minute (with actual errors probably lower) for 
different unconstrained trajectory runs. In such environments, when turning 360° on a square or circular trajectory, the 
system recognizes the original scene thus avoiding error accumulation. In the opposite case, when the feature-rich far-



 
 

 
 

field was not available (or simply was not used), the average heading error was ~4° (standard deviation from 360°, 
measured over multiple runs). 

The performance of obstacle detection and avoidance sub-systems is even more difficult to quantify. In general, the more 
visual features the obstacle has, the faster it is detected and mapped. For feature-poor obstacles the data from multiple 
video frames has to be accumulated to get high enough occupancy scores. For example, a plain wall with a single 
horizontal molding line required ~10 frames to be detected. The obstacles without any visual features (e.g. plain wall 
without molding) would not be detected at all. With the current UGV platform, the maximal distance at which reliable 
feature triangulation is achievable is ~1.25 m, while the minimal distance is limited by the camera FOV at ~0.8 m (these 
distances will scale with the size of the platform, in particular with the height of the camera above ground). In our tests, 
most obstacles (from feature-poor to feature-rich) were detected as expected at distances ~0.8-1.2 meters away.  

Obstacle avoidance based on optimal path planning algorithm also performed as expected in our experiments. Generally, 
the UGV was able to find its way around obstacles to the target pointed by the operator. One limitation, however, has 
emerged due to the limited detection range of our monocular vision system. In particular, it cannot detect obstacles that 
are too close to the camera. When the UGV follows the shortest path around an obstacle, it is aware only of the front 
surface of the obstacle, not of its extents in depth. Accordingly, if the target point is right behind the obstacle, the UGV 
might start turning into the obstacle’s side, which is too close to be detected. A number of approaches to alleviate this 
problem can be considered: a) constraining path planning algorithm so that only the nearby cells that have been scanned 
by obstacle detector are allowed; b) modifying the SFM algorithm so it does not require to see ground surface thus 
reducing the lower bound of the detection range; c) adding some simple additional sensors for short range detection. 
These possibilities will be investigated in the near future. 

4. CONCLUSIONS 

 
In this paper, an overview of PointCom and its components has been presented.   A combination of monocular visual 
odometry and obstacle avoidance, navigation algorithms, and unique interface design has been fused to form a unique 
semi-autonomous control architecture.  Laboratory testing of the system has shown promise, and additional testing in 
field environments is ongoing. 
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