Manufacturing Readiness Levels (MRLs) and Manufacturing Readiness Assessments (MRAs)

Jim Morgan
Manufacturing Technology Division
Phone # 937-904-4600
Jim.Morgan@wpafb.af.mil

Integrity - Service - Excellence
Manufacturing Readiness Levels (MRLs) and Manufacturing Readiness Assessments (MRAs)

Author(s):

AFRL/RXMT, 2977 Hobson Way, Wright Patterson AFB, OH, 45433

Performing Organization Name(s) and Address(es):

AFRL/RXMT, 2977 Hobson Way, Wright Patterson AFB, OH, 45433

Sponsoring/Monitoring Agency Name(s) and Address(es):

AFRL/RXMT, 2977 Hobson Way, Wright Patterson AFB, OH, 45433

Report Number:

ADM002183

Notes:

Presented at the Technology Maturity Conference held in Virginia Beach, Virginia on 9-12 September 2008.

Abstract:

Manufacturing Readiness Levels (MRLs) and Manufacturing Readiness Assessments (MRAs) are critical components of technology development and acquisition. MRLs are used to measure the readiness of a technology or system to be acquired and deployed. MRAs are used to assess the readiness of a technology or system to be acquired and deployed. MRLs and MRAs are used to ensure that technology and systems are acquired and deployed in a timely and cost-effective manner. MRLs and MRAs are used to ensure that technology and systems are acquired and deployed in a timely and cost-effective manner.
Outline

• Why Manufacturing Readiness?
• Manufacturing Readiness Levels & Assessments
• Implementation of MRLs
• MRA Tools
• Example results
• Policy Status
• Closing Thoughts
Why Manufacturing Readiness?
Manufacturing & Industrial Base Challenge

• Consensus among Congress, OSD, CSAF, GAO:
 “Advanced weapon systems cost too much, take too long to field, and are too expensive to sustain”

• GAO study of 54 weapons programs:
 – Core set of 26 programs: RDT&E costs up by 42% ($42.7B total) and schedule slipped by 20% (2.5 years on average)
 – Characteristics of successful programs (GAO):
 • Mature technologies, stable designs, production processes in control
 • S&T organization responsible for maturing technologies, rather than program or product development manager

• Products made by immature manufacturing processes generally:
 - Cost more
 - Are prone to quality problems
 - Experience schedule delays
 - May not perform the same
 - Are less reliable in service
Today’s Air Force Reality

• Diminishing manufacturing infrastructure
 – People, policy, programs gutted
 – Lost recipe on how to manage manufacturing risk
 – Won’t get infrastructure back, but still need to manage and mitigate manufacturing risk

• Utilize MRL/MRA as a tool
 – Supports knowledge-based acquisition
 – Integral to Systems Engineering Plan
 – Essential for effective and efficient transition of capability to the warfighter
Technology Readiness Levels (TRLs) and Manufacturing Readiness Levels (MRLs)

- TRLs provide a common language & widely-understood standard for:
 - Assessing the *performance maturity* of a technology and plans for its future maturation
 - Understanding the level of *performance risk* in trying to transition the technology into a weapon system application

TRLs leave major transition questions unanswered:
- Is the technology producible?
- What will these cost in production?
- Can these be made in a production environment?
- Are key materials and components available?

MRLs assist in answering these questions

- MRLs provide a common language and standard for
 - Assessing the *manufacturing maturity* of a technology or product and plans for its future maturation
 - Understanding the level of *manufacturing risk* in trying to produce a weapon system or transition the technology into a weapon system application
MRL Relationships

Relationship to System Acquisition Milestones

<table>
<thead>
<tr>
<th>Pre-Concept Refinement</th>
<th>Concept Refinement</th>
<th>Technology Development</th>
<th>System Development & Demonstration</th>
<th>Production & Deployment</th>
</tr>
</thead>
<tbody>
<tr>
<td>MRL 1</td>
<td>MRL 2</td>
<td>MRL 3</td>
<td>MRL 4</td>
<td>MRL 5</td>
</tr>
<tr>
<td>Mfg Feasibility Assessed</td>
<td>Mfg Concepts Defined</td>
<td>Mfg Concepts Developed</td>
<td>Manufacturing Processes In Lab Environment</td>
<td>Components In Production Relevant Environment</td>
</tr>
<tr>
<td>MRL 6</td>
<td>MRL 7</td>
<td>MRL 8</td>
<td>MRL 9</td>
<td>MRL 10</td>
</tr>
<tr>
<td>System or Subsystem In Production Relevant Environment</td>
<td>System or Subsystem In Production Representative Environment</td>
<td>Pilot Line Demonstrated Ready for LRIP</td>
<td>LRIP Demonstrated Ready for FRP</td>
<td>FRP Demonstrated Lean Production Practices in place</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TRL 1</th>
<th>TRL 2</th>
<th>TRL 3</th>
<th>TRL 4</th>
<th>TRL 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic Principles Observed</td>
<td>Concept Formulation</td>
<td>Proof of Concept</td>
<td>Breadboard in Lab</td>
<td>Breadboard in Rep Environment</td>
</tr>
<tr>
<td>TRL 6</td>
<td>TRL 7</td>
<td>TRL 8</td>
<td>TRL 9</td>
<td>TRL 10</td>
</tr>
<tr>
<td>Prototype in Rep Environment</td>
<td>Prototype in Ops Environment</td>
<td>System Qual</td>
<td>Mission Proven</td>
<td></td>
</tr>
</tbody>
</table>

Relationship to Technology Readiness Levels
Nine MRL Evaluation Criteria ("Threads")

1. Technology and Industrial Base
 – Technology maturity, technology transition to production, ManTech development

2. Design
 – Producibility program, design maturity

3. Cost and Funding
 – Production cost knowledge (cost modeling), cost analysis, mfg investment budget

4. Materials (raw matls, components, subassys, subsystems)
 – Maturity, availability, supply chain management, special handling

5. Process Capability and Control
 – Modeling & Simulation (product & process), mfg process maturity, process yields/rates

6. Quality Management, to include supplier quality

7. Manufacturing Personnel, to include specialization, training, & certification

8. Facilities, to include capacity and plant layout & design

9. Manufacturing Management
 – Manufacturing planning and scheduling
 – Materials planning
 – Tooling and special test equipment
What is a Manufacturing Readiness Assessment?

• An Assessment of a Program’s Readiness to Manufacture and Produce its Intended Design

• A Tool to Develop and Implement -
 • Manufacturing Risk Mitigation Plans
 • Business Strategies
 – Effects of Design Changes (Planned Upgrades, Spiral)
 – Pricing Agreements (Long Term vs. Single Lot)
 – Capital Investment Plans (Contractor and/or Government)

• Results in an Assignment of MRLs to Key System Components and Development of a Manufacturing Maturation Plan as Required
MRA Deliverables

Provide briefing and/or written report

• Identify current MRL/target MRL
• Identify key factors where manufacturing readiness falls short of target MRL
 – Define driving issues
• Identify programs and plans to reach target MRL
• Assess type and significance of risk to cost, schedule or performance
• Next step: Stay engaged to assist in implementing and executing the Manufacturing Maturity Plan
Implementing MRLs: Who is Using Them?

- Mandated by AFRL for all Category 1 hardware ATDs and certain high-visibility programs
- Selected Air Force acquisition programs, including all at AAC
- Army using on Future Combat Systems development efforts
- Missile Defense Agency
- Industry has adopted and is using MRLs within their gated processes

And the list is growing......
MRL Implementation Approach

• Conduct pilot MRAs on various programs
 – Hardware-intensive Category 1 ATDs
 – Weapon system acquisition programs

• Conduct tailored training for key program personnel
 – Category 1 ATD IPTs, ACAT pilot program, and Air Force Product Centers
 – Transition training
 • DAU for awareness and policy
 • AFIT for in-depth MRA and manufacturing instruction

• Put MRLs into policy documents
 – AFRL, AFMC, AF, OSD

• Socialize MRLs whenever possible

• Develop and deploy Manufacturing Readiness products
 – Continuously refine products based on feedback, need
MRL/MRA Products/Tools

- Most of our MRL products/tools have been developed with other Services and industry
 - MRL definitions, entry/exit criteria
 - MRL training blocks (2-hr, 4-hr, multi-day)
 - MRA Deskbook (modeled after TRA Deskbook)
 - Pre-MRA self-assessment questionnaire
 - Excel-based MRA tool
 - Draft DoD and AF policy
 - Defense Acquisition Guidebook language
 - MRA “frequently asked questions” repository
MRA Results Examples

- Focused Lethality Munition - ready for LRIP
 - Eglin High Explosive Research Development facility originally assessed at MRL 5 (May 07); now at MRL 8
 - Aerojet composite warhead case originally assessed at MRL 5 (March 07); now at MRL 8
- AMRAAM C-7 - production rate increased from <10 to 28+ per month
- F135 Propulsion Persistent Strike - accelerated F135 thrust improvement by ~4 yrs w/plan to mature advanced casting producibility from MRL 3 to 5
- MQ-9 Reaper
Goal: Establish manufacturing risk management as a tenet of acquisition management

- Recommended levels
 - MS A – MRL 4
 - MS B – MRL 6
 - MS C – MRL 8
 - FRP – MRL 9

- Not designed to be a ‘go/no-go’ criteria

OSD (AT&L) recently sent a draft policy memo to the Services

- Services and OSD Systems Engineering nonconcurred; suggested MRL use at MS C only
- Expect AT&L to press forward with revised language in coming weeks
Some MRA Lessons Learned

• Process is more effective if company and program office are actively engaged in the assessment
• System integration and test operations are often ripe for maturation efforts
• With few exceptions, requires ‘feet on the (shop) floor’
• Resources required to conduct an MRA will vary significantly
 – Not all programs are equal
• Subject matter expertise is needed to ‘do it right’
• Templates and guidelines developed
 – Not a ‘one size fits all’ solution
 – Engineering skills/judgment still needed
 – Must avoid a checklist mentality
Closing Thoughts

• Feedback from those who have applied MRLs thus far has been positive
• Expectations management is important; MRLs will not solve world hunger
• Congress, National Defense Industry Association and other industry consortia have been vocally supportive
• Policy implementation pending, but many are using as a best practice and DAU is including MRLs in courses
• Fits well within Defense Systems Engineering construct, but should not be diluted to the point of becoming ineffective (e.g. PRRs)