
Performance Analysis of
Live-Virtual-Constructive and Distributed Virtual

Simulations: Defining Requirements in Terms
Of Temporal Consistency

DISSERTATION

Douglas D. Hodson, Civilian, USAF

AFIT/DCE/ENG/09-25

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this dissertation are those of the author and do not reflect the
official policy or position of the United States Air Force, the Department of Defense,
or the United States Government.

AFIT/DCE/ENG/09-25

Performance Analysis of

Live-Virtual-Constructive and Distributed Virtual

Simulations: Defining Requirements in Terms

Of Temporal Consistency

DISSERTATION

Presented to the Faculty

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy

Douglas D. Hodson, B.S. Physics, M.S. Electro-Optics, MBA

Civilian, USAF

December 2009

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT/DCE/ENG/09-25

Abstract

In a live-virtual-constructive (LVC) environment, people and real system hard-

ware interact with simulated systems. Introducing these real-world elements into the

simulation environment imposes timing constraints which, from a software standpoint,

places the design of LVCs into the class of real-time systems.

A distinguishing characteristic of LVCs is the relaxation of data consistency

to improve the interactive performance and geographic scalability of the simulation.

Relaxing consistency improves interactive performance since the simulation continues

executing and responding to inputs without waiting for the most current shared data

values. Scalability improves since live and simulated entities from distant geographic

locations can be interconnected through relatively high latency networks.

LVCs are characterized as a set of asynchronous simulation applications each

serving as both producers and consumers of shared state data. In terms of data aging,

an LVC system is a first order linear system and the rate a consumer uses state data is

irrelevant to the aging itself. Because of this, simple analytic models to estimate data

aging based upon system architecture can be derived. An algorithm to compute, in

real-time, the temporal consistency of state data for an LVC in operation is developed

and the relationship between validity intervals and an LVC’s systems parameters is

defined.

To develop simulations that reliably execute in real-time and accurately model

hierarchical systems, two real-time design patterns are developed: a tailored version

of the model-view-controller architecture pattern along with a companion Component

pattern. Together they provide a basis for hierarchical simulation models, graphical

displays, and network I/O in a real-time environment.

iv

Finally, the relationship between consistency and interactivity is established by

mapping threads created by a simulation application to factors that control both

interactivity and shared state consistency throughout the distributed environment.

This research extends the knowledge of LVCs and distributed virtual simulations

(DVS) through detailed analysis and the characterization of the underlying computing

architecture’s effect on shared state consistency and interactive performance. System

performance is quantified via two opposing factors; the consistency of the distributed

state space, and the response time or interaction quality of the autonomous simula-

tion applications. A framework is developed that defines temporal data consistency

requirements such that the objectives of the simulation are satisfied.

v

Table of Contents
Page

Abstract . iv

List of Figures . ix

List of Tables . xi

I. Introduction . 1
1.1 State Space Consistency 3

1.2 Interaction Quality . 3

1.3 Summary . 4

II. Background . 5

2.1 Terminology . 5

2.2 Parallel and Distributed Systems 7

2.3 Analytic and Virtual Simulations 7

2.4 Distributed Virtual Simulation 8
2.5 Real-Time Systems . 10

2.5.1 Real-Time Communication 11
2.6 Consistency Models . 12

2.6.1 Temporal Consistency 13

2.7 Performance Analysis 15

2.7.1 Models . 16
2.8 Petri Nets . 17

2.8.1 Colored Petri Nets 19
2.8.2 Simulation . 20

2.9 Related Work . 20
2.9.1 CAVE Automatic Virtual Environment 20
2.9.2 Narrative Immersive Collaborative Environment 23
2.9.3 Soft Real-Time Database Systems 25

2.9.4 Analysis of a Simulated Computer Network . . 28

2.9.5 Consistency in DVS Applications 30

2.10 Summary . 31

vi

Page

III. LVC/DVS System Characterization 33

3.1 Modeling Time . 33

3.2 Time Flow Mechanisms 34
3.3 System Under Study . 36

3.3.1 Interaction with the Real World 37
3.3.2 Inputs and Outputs 38

3.4 Distributed Simulation 38
3.5 Dynamic Shared State 40

3.6 Performance vs Consistency 42

3.7 Sources of Inconsistency 44

3.7.1 Simulation Applications 44

3.7.2 Interoperability Communication 45

3.8 Temporal Consistency Model 47

3.8.1 Derived Data Objects 48

3.9 Classifying State Data 48

3.10 Summary . 49

IV. State Space Consistency Model 50

4.1 Startup Dynamics . 53

4.2 Analysis and Results . 54

4.3 Analytic Model . 57

4.4 Measuring Consistency 60

4.5 Generalized System Model 62

4.6 Relationship to Validity Interval 64

4.7 Application . 64

4.8 Aerial Combat Example 66

4.8.1 Candidate System Design 66

4.8.2 Evaluation . 66
4.9 Summary . 67

V. Real-Time Design Patterns . 69

5.1 Real-Time Concepts . 69

5.1.1 Jobs . 70
5.1.2 Periodic Task Model 71
5.1.3 Reliability . 72

5.1.4 Utilization . 72
5.1.5 Foreground/Background Systems 73

5.1.6 Rate Monotonic Analysis 73

5.1.7 Threads as Tasks 74

vii

Page

5.2 Model-View-Controller Pattern 75
5.3 Multi-Threading . 77

5.4 Component Pattern . 78

5.4.1 Hierarchical Modeling 78

5.4.2 Partitioning Code 80

5.4.3 Scheduling Jobs 82

5.4.4 Modeling a Player 84

5.4.5 Graphics and Input/Output 84

5.5 System Abstraction . 85

5.6 Estimating Performance 86

5.7 Consistency and Utilization 88

5.8 Summary . 89

VI. Conclusion . 90
6.1 Future Research . 92

6.1.1 Determination of Validity Intervals 92

6.1.2 Data Consistency Monitoring 92

Appendix A. Petri Net Simulator . 95

A.1 General Features . 95
A.2 Software Organization 96

A.3 Execution and Analysis 97

Appendix B. Application of Design Patterns 99

B.1 Frameworks, Toolkits and Applications 100

B.2 An Object-Oriented Real-Time Framework 101

B.2.1 Object . 102

B.2.2 Component . 103

B.3 Simulation Architecture 104
B.4 Graphics Architecture 108

B.5 Device I/O Architecture 110

B.6 Fighter Cockpit . 111

B.7 MQ-9 Ground Control Station 113

B.8 Group Command Post 114

B.9 Summary . 115

Bibliography . 116

viii

List of Figures
Figure Page

1.1. Simulation Classification Framework 2

2.1. Classes of Parallel and Distributed Computers 6

2.2. Simple Graph . 17

2.3. Petri Net Example . 18

2.4. CAVE Automatic Virtual Environment 21

2.5. A Real-Time Database System 26

2.6. Absolute and Relative Consistency 27

2.7. Simulated Computer Network 29

3.1. Time Flow Mechanisms . 34

3.2. Time-Stepped State Space (adapted from Fujimoto [Fuj00]) . . 35

3.3. Event-Stepped State Space (adapted from Fujimoto [Fuj00]) . . 35

3.4. Distributed Synchronous State Space Diagram 38

3.5. Synchronous Distributed Simulation 39

3.6. Asynchronous Distributed State Space Diagram 39

3.7. Distributed State Space . 43

3.8. Multi-Threaded MVC Pattern 45

4.1. LVC Model . 50

4.2. Producer Model . 51

4.3. Network Model . 51

4.4. Consumer Model . 52

4.5. Mean Worst-Case Age (ms) (T1=50Hz) 59

4.6. Standard Deviation (ms) (T1=100Hz, T3=5ms) 60

4.7. Distributed State Space Data 60

4.8. Latency Classification & OSI Model 63

4.9. HLA-based Communication . 63

ix

Figure Page

4.10. Computing System Latency . 65

5.1. Release Time and Deadline Relationships 70

5.2. A Periodic Task with 3 Jobs 71

5.3. Example Usefulness Function 72

5.4. Model-View-Controller Pattern 75

5.5. Simulation Pattern . 76

5.6. Hierarchical Player Model . 79

5.7. Structural Composite Pattern [GHJV95] 80

5.8. Component With Partitioning Support 81

5.9. Example Component Models 81

5.10. Cyclic Scheduler Structure . 82

5.11. Component with Scheduling Support 83

5.12. Graphic and Network Classes 84

6.1. Experiment Planning Flowchart (adapted from [BCE+06]) . . . 93

A.1. PT Workbench . 96

A.2. Petri Net Editor . 97

A.3. Software Organization . 98

B.1. OpenEaagles Packages . 100

B.2. Component Tree . 104

B.3. Simulation Pattern . 105

B.4. Player Pattern . 106

B.5. Interoperability Pattern . 107

B.6. Graphics Class Hierarchy . 108

B.7. Device Class Hierarchy . 110

B.8. Generic Heads Down Display 111

B.9. MQ-9 Ground Control Station 112

B.10. Group Command Post . 113

x

List of Tables
Table Page

2.1. Analytic and Virtual Simulations 8

4.1. 4-Factor, 2-Level Design . 54

4.2. 4-Factor, 2-Level Results . 55

4.3. 4-Factor, 2-Level ANOVA . 56

4.4. 3-Factor, 3-Level Design . 57

4.5. 3-Factor, 3-Level ANOVA . 57

4.6. Computing System Worst-Case Analysis 67

xi

Performance Analysis of

Live-Virtual-Constructive and Distributed Virtual

Simulations: Defining Requirements in Terms

Of Temporal Consistency

I. Introduction

Live-virtual-constructive (LVC) simulations and distributed virtual simulations

(DVS) are software systems that create an environment where multiple users interact

with each other in real-time, even though they may be located around the world. In

this context, real-time means time with respect to the simulation’s progress and is

synchronized with “wall clock” time. “Distributed” in this context refers to a number

of heterogeneous computers located in different geographic locations connected by a

network.

Participants interacting with the simulated environment could include pilots

flying fighter aircraft, operators controlling an early warning radar system in an Inte-

grated Air Defense System (IADS), or even a person playing the game HALO where

the objective of the simulation (game) is less about representing an accurate picture

of the real world and more about providing an exciting “virtual world” for enter-

tainment. For simulations that include live assets, participants can also include real

system hardware.

LVC and DVS systems include assets or entities from three distinct classes of

military simulations: live, virtual, and constructive. In a live simulation, real people

operate real systems. For example, a pilot launching weapons from a real aircraft at

real targets for the purpose of training, testing, or assessing operational capability

is a live simulation. In a virtual simulation, real people operate simulated systems

or simulated people operate real systems. For example, a pilot flying a simulated

1

System
Real Simulated

Real

SimulatedH
um
an Live

Virtual

Virtual

Constructive

Figure 1.1: Simulation Classification Framework

aircraft, launching simulated weapons at simulated targets is a virtual simulation. In

a constructive simulation, simulated people operate simulated systems.

Figure 1.1 provides a conceptual framework to classify these simulations based

upon the types of entities they include. Entities in a live simulation include real people

and real systems. Entities in a virtual simulation include simulated systems operated

by real people. The entities in a constructive simulation are completely simulated by

computer models and are often referred to as “computer generated forces.”

While categorizing simulations into three distinct classes is useful, in practice

it is problematic because there is no clear division between these categories – the

degree of human participation in the simulation is variable, as is the degree of sys-

tem realism [DoD97]. Because of this, many simulations are actually hybrid systems

that contain a mix of entity types. This is particularly true for virtual simulations

which routinely include both virtual and constructive entities. LVC simulations are

typically assumed to include a broader scope of entities than DVS systems by directly

incorporating live assets into the interactive environment.

To create a context for the environment, a hybrid simulation is assembled from

a collection of autonomous distributed simulation applications which we refer to as

an “LVC” or an “LVC simulation.” Within the LVC, individual entities, vehicles

and weapon systems are generated by specific simulation applications responsible for

sharing current state information through a network.

In an LVC, the “system under study” is often a “system of systems” which

includes humans and/or operational system hardware. Because these real-world el-

ements are present, timing constraints are imposed on the simulation environment

2

which, from a software standpoint, places the simulation into the class of real-time

systems.

1.1 State Space Consistency

LVCs operate by passing state data between distributed simulation applications.

As a result, a fundamental conflict arises in LVCs; simulation applications require state

data that is not locally managed to produce correct outputs. A conflict arises because,

in many situations, the application cannot wait for the most current data and still

meet real-time interactive response time constraints. If the distributed processes are

connected via a network infrastructure with a relatively high latency, data transmitted

by one application might be considered inconsistent or “too old” by the time it is

received. This inconsistency in state data is a distinguishing characteristic of LVCs

which not only must be recognized but also managed to harness the realism and power

LVCs can provide. This research characterizes the consistency of the distributed state

space and provides a framework to define consistency requirements relative to the

objectives of the system.

1.2 Interaction Quality

Both LVC and DVS systems include people or real system hardware interact-

ing with a simulated system. In either case, the software system (the simulation)

interfaces and interacts with driving functions (input signals) [CK06] generated by

a person or hardware component and responds by producing outputs. For a typical

flight simulator, interaction includes input from stick and throttle devices and output

in the form of graphical displays.

Because of this, the performance characteristics and requirements of LVC and

DVS systems differ from discrete-event and parallel discrete-event simulations as the

former places a much greater emphasis on interaction. As a result, each have different

performance parameters and metrics to gauge efficiency. Each also provides an effi-

cient solution for different kinds of simulation and modeling objectives. For virtual

3

simulations, it is not sufficient to simply consider performance characteristics such as

speedup and throughput; rather, emphasis is placed on response time or interaction

latency. Interaction latency is the time delay between a user providing input to the

system and experiencing the result of that input. In virtual simulations, the response

time is a hard constraint due to the modeling requirements and the characteristics of

the system under study. This stands in stark contrast to non-real-time constructive

simulations, where response time is not an issue as there are no human or hardware

interactions. Software systems designed to meet latency requirements due to real-

world interactions fall into the class of real-time systems which has several accepted

software organization paradigms.

1.3 Summary

This research quantifies the performance of LVC and DVS systems in terms of

two opposing factors; the consistency of the distributed state space, and secondly, the

response time or interaction quality of the autonomous simulation applications. Fur-

thermore, the performance of individual autonomous distributed simulation applica-

tions is considered by abstracting the essential architectural features of the distributed

applications into well-defined object-oriented design patterns. The design patterns are

then used as a basis to estimate performance using rate-monotonic principles.

4

II. Background

Designing and building reliable high quality LVC and DVS systems is challenging

due to the number of disciplines a simulation engineer needs to understand. This

includes programming, operating systems, networks, real-time system development

and simulation. The following sections cover the domains relevant to this discipline

followed by a section on related work.

2.1 Terminology

The terminology associated with simulation systems can be confusing as there

are subtle differences between the use of certain terms. This section defines terms as

they are used throughout this document.

• Model - a physical, mathematical, or otherwise logical representation of a sys-

tem, entity, phenomenon, or process [DoD97].

• Simulation - a method for implementing a model over time [DoD97].

• Live Simulation - a simulation involving real people operating real systems [DoD95].

• Virtual Simulation - a simulation involving real people operating simulated sys-

tems. Virtual simulations inject human-in-the-loop in a central role by exercis-

ing motor control skills (e.g., flying an airplane), decision skills (e.g., committing

fire control resources to action), or communication skills (e.g., as members of a

C4I team) [DoD95].

• Constructive Model or Simulation - models and simulations that use simulated

people operating simulated systems. Real people provide inputs to such simu-

lations, but are not involved in determining outcomes [DoD95].

• Networked Virtual Environment (net-VE) - a software system in which multiple

users interact with each other in real-time, even though those users may be

located around the world [SZ99].

• Distributed Interactive Simulation - a time and space coherent synthetic repre-

sentation of world environments designed for linking the interactive, free-play

5

Shared Memory SIMD Machines

Hardware Platforms

Parallel Computers Distributed Computers

Networked
Workstations

Distributed Memory
(Multicomputers)

Figure 2.1: Classes of Parallel and Distributed Computers

activities of people in operational exercises. The synthetic environment is cre-

ated through real-time exchange of data units between distributed, computa-

tionally autonomous simulation applications in the form of simulations, simu-

lators, and instrumented equipment interconnected through standard computer

communicative services. The computational simulation entities may be present

in one location or may be distributed geographically [IEE95].

• Collaborative Environment - a space in which multiple users share and modify

the state of a set of common objects (information) in real-time [Kol03].

The difference between virtual simulations, networked virtual environments and

distributed interactive simulation is subtle. Each consists of people interacting with

a real-time system that provides a context in which to participate. The term Dis-

tributed Interactive Simulation can be used generically, but it usually associated with

simulations built using the Distributed Interactive Standard (DIS) standard.

The term “constructive” implies a simulation without interactive participation

by a human. These systems might be designed to run in real-time or designed to

run “as fast as possible” and generate output results from a set of input files. This

research considers the execution of distributed simulation systems in real-time.

Collaborative environments often are not simulations at all. The term can mean

a system designed for multiple users to interact using a common set of data.

6

2.2 Parallel and Distributed Systems

There is a distinction between parallel and distributed systems. As the taxon-

omy in Figure 2.1 suggests, distributed simulation typically involves a set of hetero-

geneous workstations connected through a network, interacting to create a simulation

system. The workstations are heterogeneous because they may be using different

operating systems and computing platforms. Parallel computers are typically more

homogeneous in design and are usually connected through higher speed, lower latency

networks. Whereas parallel computers are typically located together in the same room

or building, distributed computers are often located at different geographic locations

around the world. This research is primarily concerned with distributed computers

connected through a network.

2.3 Analytic and Virtual Simulations

Historically, two classes of simulation applications have received the most at-

tention: analytic simulations and virtual environments [Fuj00]. Characteristics that

distinguish these different domains are summarized in Table 2.1.

While the central goal of analytic simulations is to capture detailed quantitative

data concerning the system being simulated, the goal in most virtual-environment

simulations to date has been to give users the look and feel of being embedded in the

system being modeled [Fuj00].

Analytic simulations are intended to study the system being simulated. Human

interaction, in any form, ranges from limited to none.

Virtual simulations have typically been oriented towards studying the interac-

tions of the operators with the system. In some cases, however, the purpose of the

simulation is to train the operator to perform some task using simulation as a means

of interacting with a virtual environment or to make the simulation look and feel

real [Ney97]. As such, it is not always essential for these simulations to exactly emu-

7

Table 2.1: Analytic and Virtual Simulations [Fuj00]

Analytic Simulations Virtual Environments
Execution pacing Typically as-fast-as-possible Real-time
Typical objective Quantitative analysis of com-

plex systems
Create a realistic and/or enter-
taining representation of an en-
vironment

Human interaction If included, a person is an ex-
ternal observer to the model

People integral to controlling
the behavior of entities within
the model

late the actual system. If the differences between the simulated world and the actual

world are not perceptible to human participants, this is usually acceptable.

2.4 Distributed Virtual Simulation

The origins of DVSs can be traced back to 1983 and the development of SIMNET

(SIMulator NETworking) [MT95]. Originally developed for the Defense Advanced

Research Projects Agency (DARPA), SIMNET was delivered to the U.S. Army in

March 1990. At that time, the SIMNET network software architecture was proved

scalable with some 850 objects (mostly semi-automated forces) at five sites [SZ99].

It’s architecture has three basic components [SZ99]:

• An object-event architecture

• A notion of autonomous simulation nodes

• An embedded set of predictive modeling algorithms called “dead reckoning”

SIMNET served an important role in the development of distributed virtual

simulations, but needed further refinement. For example, the packet formats and

network software architecture was not documented sufficiently so others could use it.

It also lacked generality.

These shortfalls were addressed by the creation of the Institute of Electrical

and Electronics Engineers (IEEE) Distributed Interactive Simulation (DIS) network

8

software architecture standard. The standard provides all the information needed to

build DIS-compliant simulations.

The DIS standard defines the Protocol Data Units (PDU) or the data messages

passed between cooperating simulations. For example, a typical message in a DIS

compliant simulation transmits an entity state PDU containing position, orientation,

and entity velocity changes. With the advances in network bandwidth, latency, and

computing power, it is not uncommon to implement large scale distributed simulations

that involve thousands of entities using DIS protocols.

The principle goal in most DVSs is to achieve a “sufficiently realistic” represen-

tation of an actual or imagined system as perceived by the participants embedded in

the environment [Fuj00]. What “sufficiently realistic” means depends on the under-

lying requirements of the system.

In many cases, requirements focus on the training activities of the participants.

To improve the performance of the system, the “state” (i.e., data) of the simulation

is replicated in a way that limits network activity thereby reducing the consistency

of the data. Purposely allowing inconsistencies to enhance scalability is sometimes

called a “dynamic shared state” [SZ99]. This inconsistency allows the system to scale

so a larger number of entities can be represented and included within the simulation

itself.

Consider, for example, two flight simulators each being flown by a pilot con-

nected through a network. Further, assume an aerodynamics model samples pilot

inputs and computes a new aircraft position and orientation at 50Hz. According to

the DIS standard, calculated aircraft position would not have to be transmitted to the

other simulator at 50Hz. In fact, it might be much less depending upon what maneu-

vers the pilot is engaging in, for example, if one pilot is flying without maneuvering,

a new position need only be transmitted every few seconds.

One of the responsibilities of each simulator is to represent the environment

in a manner sufficient to satisfy the requirements of the operator. So in the case

9

above, each simulation might estimate the other’s position using “dead reckoning” al-

gorithms. This calculated position might not be perfect (or even consistent with the

true state), but it is likely accurate enough depending upon the underlying require-

ments of the system. This loosening of consistency allows more entities to interact

over the same network.

It is useful to distinguish between analytic and virtual simulations because they

have different objectives which leads to different requirements and constraints. Hav-

ing stated this clear distinction does not account for the fact that simulation engineers

routinely use systems designed for one domain in another to conduct simulation stud-

ies. For example, the best behavioral model of a pilot is a real pilot — no computer

algorithm can match the real thing. So for some analytical studies in which the system

under test involves a person, the constructs used to build virtual simulations might

be interleaved with constructs used to build purely analytic simulations.

2.5 Real-Time Systems

Real-time systems have been studied extensively [Liu00,Lap04]. These systems

differentiate themselves from other systems by not only completing tasks correctly, but

also completing them within a certain time. In other words, they have the additional

burden of ensuring tasks are executed in a manner that produces both correct results

and meets timing deadlines.

Consider a pilot immersed in a virtual environment flying an aircraft. As the

pilot is controlling the aircraft through stick and throttle inputs, the simulator must

process those inputs, update the simulation state and possibly update visual displays

within 100ms [IEE95]. If the simulator took, on average, considerably longer to

respond to pilot inputs, the quality of the simulation would degrade, and certainly

not “feel” like the real system. If the average response time of the system was 100ms,

it would probably be considered acceptable. This means that on occasion, the system

might take more time to respond to input changes, say 115ms. Timing requirements

10

in this form, where average response time is considered acceptable are said to be

“soft”.

Requirements in which a violation of a timing constraint is considered unaccept-

able, are considered “hard.” For example, consider the release of a “dumb” bomb. A

timing requirement might be specified such that the bomb must be released within,

say 80ms, of button press. If it should release later than that a catastrophic event

might result.

A central issue in the design of real-time systems is the scheduling of software

tasks to ensure each task is executed in a manner such that timing constraints of

all the tasks are met. To do this, tasks are classified into categories. A well-known

deterministic workload model is the periodic task model [Liu00]. In this model, tasks

are classified as:

• Periodic - a task where a computation or data transmission is executed at reg-

ular or semi-regular time intervals on a continuing basis. Periodic task timing

deadlines are usually considered hard.

• Aperiodic - a task generated in response to unscheduled events. Work associated

with aperiodic tasks have the same statistical behavior and the same timing

requirements. The timing deadlines are soft.

• Sporadic - similar to aperiodic tasks except the timing deadlines are hard.

Recall that distributed virtual simulations are real-time systems because the

human operator imposes timing requirements on the design of such systems as the

example above illustrates. Fortunately, timing requirements associated with a human-

in-the-loop tend to be soft.

2.5.1 Real-Time Communication. Communications in real-time distributed

systems is different from communications in other distributed systems. While per-

formance is always welcome, predictability and determinism are the real measures of

success [Tan95]. LAN protocols whose performance is inherently stochastic, such as

11

Ethernet, are unacceptable because they do not have a fixed upper bound on trans-

mission time [Tan95].

Since their advent, the transport protocols TCP and UDP, and the Internet

protocol IP have served non-real-time applications well [Com06]. Yet these protocols

are unsuitable for real-time applications for many reasons [Liu00]. The primary issue

is the determination of an upper bound for data transmission. This requirement

is met by using networks designed to provide these bounds such as token ring, or

the use of protocols such as Time Division Multiple Access (TDMA) that inherently

avoid collisions [Tan95] (i.e., they avoid what gives rise to the stochastic behavior

of some networks). In addition, much work has also been done to generalize or

extend rate monotonic scheduling theory to distributed systems that utilize these

networks [SS93,SS95].

Despite the stochastic nature of Ethernet and the non-real-time characteristics

of TCP and UDP, it is very common to implement distributed virtual simulations us-

ing them. In fact, the DIS standard assumes UDP is used to pass messages throughout

the network. In many cases, the timeliness and reliability of UDP is considered “good

enough” to meet requirements.

For example, the DIS standard specifies if a entity state packet arrival exceeds

300ms the receiving simulation should disregard it. As long as this does not occur

frequently, the quality of the simulation is considered acceptable. More stringent

consistency requirements for correct operation might demand other network structures

for implementing a system design.

2.6 Consistency Models

One of the first steps in characterizing a distributed virtual simulation is the

identification of the proper consistency model. A consistency model is a contract

between software and memory [Tan95]. A wide spectrum of contracts have been

defined, each with a different level of consistency.

12

In a single CPU system, the contract is inherently strict. In fact, a single CPU

system implements “strict consistency”. Formally this means that any read to memory

location x returns the value stored by the most recent write operation to x [Tan95].

This ideal programming model is problematic to implement in multiprocessor systems,

and strict consistency is virtually impossible to implement in a distributed system.

To achieve it would imply a perfectly synchronized global clock and instantaneous

updates to memory for all read and write operations.

A slightly weaker memory model than strict is “sequential” consistency. This

form of consistency relaxes the notion of a global clock and simply states the result of

any execution must be in some arbitrary but agreed upon sequential order [Tan95].

An even weaker memory model is called “causal” consistency. In this model,

writes that are potentially causally related must be seen by all processes in the

same order. Concurrent writes may be seen in a different order on different ma-

chines [Tan95].

Implementing stronger forms of consistency involves considerable overhead due

to the complexities of managing and coordinating access to shared memory or dis-

tributed shared memory. However, weaker consistency models increase the perfor-

mance of parallel shared memory machines and the benefits increase as memory

latency increases [Mos93]. In loosely-coupled systems, such as distributed com-

puters connected through a network, intermachine message latency is considered

large [Tan95]. This is why distributed virtual simulations implement what appears

to be very weak forms of data consistency. Consistency models and their perfor-

mance have been formally analyzed for distributed shared memories [Yan05] using

read/write operations. Distributed virtual and collaborative environments often only

update distributed data [Kol03]. This notion of consistency is little studied [Kol03].

2.6.1 Temporal Consistency. Temporal consistency models [SL92, SL95,

KLA+03] have been used to evaluate the performance of soft real-time database sys-

tems. They offer a promising framework to characterize LVC and DVS systems.

13

Temporal consistency is defined in terms of the “age” and “dispersion” of

data [SL95]. That is, the timing characteristics of data objects being read and written

to by tasks. As such, it is an extension of the periodic task model presented earlier.

In this extended model, each periodic task is either a read-only, write-only or update

(read and write) transaction.

Consider a write-only transaction that models the periodic reading of a sensor

(or the external environment) along with the updating of sensor values. The sen-

sor values themselves are called “image” objects. These are also sometimes referred

to as “base” data. Another example is the reading of stick and throttle inputs as

commanded by a pilot.

An update transaction reads a set of data objects (which could include image

or base data), computes, and writes to “derived” objects. A read-only transaction

retrieves the values of a set of data objects but does not write to any data object.

As inputs are sampled, a sample time is associated with the image data. As a

new value of an image is written, the older value of the image read by other transac-

tions “ages”. To capture the effect of aging, an image is viewed as having multiple

“versions”. Naturally, the faster the sampling, or the higher the sampling rate, the

faster the image ages.

The age of data item x can be characterized by an aging function at(x). The

dispersion of two data objects is the difference between their ages. For example, if

at(x) and at(y) are the ages of the objects x and y at time t, then the dispersion

dt(x, y) would be dt(x, y) = |at(x)− at(y)|.

Given a set Q of images and derived objects, Q is absolutely temporally con-

sistent at time t if at(x) ≤ A where A ≥ 0 for every x in Q, where A is an absolute

threshold [SL95]. Q is relatively temporally consistent at time t if dt(x, y) ≤ R where

R ≥ 0 for every two objects x and y in Q, where R is a relative threshold [SL95]. A

set of data objects is temporally inconsistent if the objects are either absolutely or

relatively inconsistent.

14

The thresholds A and R reflect the temporal requirements of the application,

that is, how current and close in age the data must be for the results of computations

based on them to be considered correct [SL95].

2.7 Performance Analysis

Assuming temporal model threshold requirements A and R meet different re-

quirements of the system, there needs to be a way to evaluate the overall performance

of a system design. Performance in this context quantifies how well a system meets

its temporal requirements. In other words, given temporal thresholds or bounds, to

what extent does the dynamic system stay within those bounds?

There are three ways to evaluate the performance of a system: measurement,

simulation, and analytic modeling [Jai91]. Direct measurement could be done, but in

this domain it would be rather expensive depending upon a number of factors and

requirements. Even for a completely new system design it would be expensive to

design and partition the software system into logical processes, and to assemble the

necessary networks and hardware systems for a test. In other cases, direct measure-

ments using simple tools like “ping” might be sufficient to estimate the performance

of an existing network infrastructure. For example, if the temporal requirement is

such that 300ms delays can be tolerated across a network connection (this is the DIS

standard for “loosely coupled” interactions between entities [IEE95]), and a ping test

on an existing network with a representative workload shows a maximum latency of

40ms, no further investigation might be deemed necessary. This is often the case

for DVS systems designed for operator training. In fact, during the course of a sim-

ulation exercise, “ping” as well as other tools are routinely used to assess network

performance.

Analytic modeling is another approach. Certainly “back of the envelope” es-

timates can be calculated, using network bandwidth and latency values, message

transmission rates, and so on. But analytic models, of necessity, simplify the system.

Thus, important characteristics of the system might be abstracted away such as the

15

asynchronous nature of LVC and DVS systems. In fact, asynchronous real-time sys-

tems are quite difficult to analyze [Liu00]. It has been said that analytical modeling of

complex systems requires so many simplifications and assumptions that if the results

turn out to be accurate, even the analysts are surprised [Jai91]. Since simulations

can incorporate more details and require fewer assumptions than analytical modeling

they are often closer to reality [Jai91].

This research uses simulation to estimate the performance of a new system de-

sign. That is, a system design in which no predetermined partitioning of software into

autonomous applications has taken place. While simulation might be the preferred

approach in a number of situations, it should not be used to the exclusion of direct

measurement or analytical models. Each approach to evaluating performance has its

merits. Depending upon requirements, one approach or another might be the most

convenient or efficient at solving the problem. The use of multiple methods facilitates

validation of performance estimates.

2.7.1 Models. To simulate a system design, a model of the system must be

built. The model itself is a physical, mathematical, or otherwise logical representation

of a system, entity, phenomenon, or process. The construction and validation of

a system model offers a number of benefits including, insight into the design and

operation of the system, a better understanding of the system under study, and it

also reveals errors and ambiguities in the system design [Uni07].

After a model has been built, properties of the system can be evaluated. These

properties tend to fall into the categories of functionality or performance. Functional

properties include characteristics such as the absence of system deadlocks, whereas

performance properties characterize some aspect of a system in operation.

Models themselves are described using particular languages. Most modeling

languages can only be used to analyze either functional/logical properties or the per-

formance properties of a model. To evaluate the performance properties, simulation

16

n1 n2

n3n4

e2

e1 e3

Figure 2.2: Simple Graph

is typically used. A simulation is a dynamic representation of a system model and

models the execution of a system over time.

Simulations rarely provides exact answers, but it is possible to calculate how

precise the estimates are. Simulation-based performance analysis of a model includes

a statistical investigation of output data, the exploration of large data sets, the ap-

propriate visualization, and the verification and validation of simulation experiments.

2.8 Petri Nets

Petri nets are a graphical and mathematical tool to model, analyze and simulate

discrete-event systems and discrete distributed systems [Pet77]. They originated from

the doctoral dissertation of Carl Adam Petri in 1962 [Pet62]. In a relatively short

period of time, Petri nets were used extensively in practice as well as seeing continuing

theoretic development.

A Petri net is a graph. That is, it is a set of nodes, edges and rules associating

edges and nodes. Formally, a graph is defined as a triple G = (N,E, ϕ) consisting

of a set N of nodes, a set E of edges and a mapping ϕ of the elements of E to a

pair of elements in N . Figure 2.2 shows a simple graph where N = {n1, n2, n3, n4},

E = {e1, e2, e3} and a mapping function ϕ where

e1→ (n1, n3),

e2→ (n1, n4),

e3→ (n2, n4).

17

Place: p1 Transition: t2

Transition: t1

Place: p2

Place: p3

Figure 2.3: Petri Net Example

An undirected graph models symmetric relationships while a “directed” graph

or digraph models asymmetric relationships. For a directed graph, the first node of the

ordered pair is the tail of the edge, and the second is the head; together they constitute

endpoints. We say that an edge is an edge “from” its tail “to” its head [Wes01]. The

terms “head” and “tail” come from the arrows used to draw digraphs.

A Petri net has two types of nodes: places and transitions. Places are graphically

represented by ellipses and transitions by rectangles. Petri net edges are referred to

as arcs and are always directed (i.e., they have a head and tail and are drawn as an

arrow). Formally, a Petri net is a 4–tuple PN = {P, T, I, O}, where P is the set

of places, T is the set of transitions, I(p, t) is mappings from P × T and O(t, p) is

mappings from T × P . The element I(p1, t1) is 1 if the Petri net has an arc from p1

to t1 and 0 otherwise. Likewise, the element O(t1, p1) is 1 if the Petri net has an arc

from t1 to p1 and 0 otherwise.

Figure 2.3 is a Petri net illustrating these definitions. In Figure 2.3, P =

{p1, p2, p3}, T = {t1, t2} and the elements of I and O are

I(p1, t1) = 0 I(p2, t1) = 0 I(p3, t1) = 0

I(p1, t2) = 1 I(p2, t2) = 0 I(p3, t2) = 0

O(t1, p1) = 0 O(t2, p1) = 0

O(t1, p2) = 0 O(t2, p2) = 1

O(t1, p3) = 1 O(t2, p3) = 1.

18

The marking of the Petri net is a specification of how many tokens there are at

each P . Formally, it is a mapping of P → {0, 1, 2, ...}. Markings represent the state

of a Petri net. A transition associated with inputs Pi is enabled if there is at least one

token in each Pi. When a transition fires, one token is removed from each Pi and one

token is added to each output place, Po. That is, state changes are produced by the

firing of transitions. Representing a system as a Petri net is a straightforward way

of analyzing system properties using formal mathematics without becoming “bogged

down” in the details of what the places and transitions represent [WCPW05].

2.8.1 Colored Petri Nets. Colored Petri nets (CP-nets or CPN) provide a

complete language for the design, specification, simulation, validation and implemen-

tation of large software systems [Jen97b]. It is, in particular, well suited for systems in

which communication, synchronization and resource sharing are important. Typical

application areas include communication protocols, distributed systems, embedded

systems, automated production systems, work flow analysis and VLSI chips [Jen97b].

The development of CP-nets has been driven by the desire to develop a modeling

language – at once theoretically well-founded yet versatile enough to be of practical use

in systems of the size and complexity found in typical industrial projects. To achieve

this, CP-nets combine the strength of Petri nets with the strength of programming

languages. Petri nets provide primitives for the description of the synchronization of

concurrent processes, while programming languages provide primitives for the defini-

tion of data types and the manipulation of data values [Jen97b].

CP-nets were introduced by Jensen [Jen97a, Jen97b, Jen97c, Jen97d] as an ex-

tension to the basic Petri net definition. They broaden the range of problems that

can be described and analyzed graphically. Petri net places contain tokens that are

indistinguishable, and it is only the number of tokens in a place that is important.

Colored Petri nets introduce distinguishable (colored) tokens which reduces the size

of the model by reducing redundant Petri net structures to distinguishable tokens in

a common structure.

19

CP-net places have a data type (color set) and all of the tokens in a place have

the data type of the place. The values (colors) of the data type distinguish one token

from another. A place has a multi-set of tokens, which means the tokens in a place

do not have to have different values. Arc expressions dictate the number and values

of the tokens removed from the input places and the number and values of the tokens

created in the output places. There is no requirement that tokens be conserved,

although in many cases tokens represent physical objects so conservation of tokens

is modeled. It is also clear that the input and output places for a transition may be

different, and so the output tokens may differ from the input tokens in both data type

and color.

What is crucially important is that CP-nets are a type of graph, that they have

a formal definition and that an architecture described as a CPN can be analyzed using

graph theory [WCPW05]. As such, the CPN modeling language can investigate both

functional/logical properties and performance properties of a model [Uni07].

2.8.2 Simulation. A large body of performance analysis research uses a

variety of Petri net and Petri net-related formalisms [Wel02]. Most of this research

solves analytical models that are automatically generated from the Petri net models.

However, the size and complexity of CP-nets make the generation and solution of

analytical models from CPN models prohibitive [Wel02]. Therefore, performance

analysis of CP-nets uses simulation to determine performance.

2.9 Related Work

The first part of this chapter presented an overview of the domains relevant

LVC and DVS systems. This section presents related work from published papers

and dissertations.

2.9.1 CAVE Automatic Virtual Environment. The CAVE Automatic Vir-

tual Environment (better known by the recursive acronym CAVE), shown in Fig-

20

Figure 2.4: CAVE Automatic Virtual Environment [Wik07]

ure 2.4, is a surround screen, projection-based virtual reality environment system [Wik09].

The actual environment is a 10x10x10 foot cube, where images are rear-projected in

stereo on 3 walls (front wall, left wall, and right wall), and down-projected onto the

floor. (The floor can be considered a floor wall for a total of 4 walls.) The 4 walls

display computer generated stereo images of the virtual world in real-time based on

the position and orientation of the users head and hand in the CAVE. The viewer

wears LCD shutter glasses to mediate the stereo images. The viewers head and hand

position and orientation are tracked through sensors on the shutter glasses and on the

CAVE input device. The viewer can grab and move objects in the virtual world with

the wand [ZMD99].

The CAVE system is composed of multiple hardware and software components

that operate asynchronously, such as sensors, image computation and rendering pro-

cesses, and analog-to-digital converters. Mascarenhas [MKBK98] used a timed exten-

21

sion of Petri nets to model and analyze the CAVE virtual environment. At the time

(1998), numerous techniques using Petri nets for the automatic analysis of general

concurrent and real-time systems were in use. However, these techniques and tools

had not been applied to modeling and analysis of virtual reality systems [MKBK98].

Mascarenhas wanted to gauge the usefulness of Petri nets for modeling concur-

rency and the real-time performance of virtual environments. Time was modeled by

adding a static delay interval τ = [a, b] to each transition t ∈ T . A static delay is

bounded by two numeric constants, a, and b, with 0 ≤ a < +∞ and a ≤ b ≤ +∞.

State changes occur by firing “fireable” transitions. A transition is said to be “en-

abled” when all its input places have at least one token. A transition with delay

interval τ = [a, b] is fireable if it is continuously enabled for at least a, but not more

than b, time units.

Of the 48 places and 35 transitions used to model CAVE as a Petri net, only a

few of the transitions included a non-zero delay to account for time. These transitions

modeled the time to determine a persons head and wand position. Head and wand

position were determined by a system that pulsed receivers mounted on the head

tracker and wand and communicated results via a 33.6 Kbaud serial line. Time to

compute the images to be projected on the screens was also modeled with non-zero

transition delays.

After the CAVE model was built, simulation and automatic verification ex-

periments were performed. Using automatic verification, deadlock avoidance was

established. However, this automatic verification result could only be performed for

experiments of 40ms or less. Automatic verification of the model beyond 40ms be-

came problematic due to “state space explosion.” State space explosion occurs when

trying to evaluate concurrent asynchronous systems. As time advances, the potential

number of system states increases rapidly, thus making it difficult to evaluate all pos-

sible states in a timely manner. This is the principle reason for resorting to simulation

and statistical analysis to evaluate modeled systems.

22

A series of experiments in which the delay associated with different transitions

(for example, the delay associated with reading the head tracker or the time it takes

to render a new image) was modified and simulated to observe the effect on system

performance. These experiments uncovered a flaw in the way a particular shared

buffer was used by CAVE processes. One of the main conclusions drawn from this

work is that Petri net-based tools can effectively support the development of reliable

virtual environments. Another result is the realization that automatic verification of

models that incorporate time might not be possible due to the state space explosion

problem.

2.9.2 Narrative Immersive Collaborative Environment. The Narrative Im-

mersive Constructionist/Collaborative Environments (NICE) project at the Elec-

tronic Visualization Laboratory at the University of Illinois at Chicago, is a col-

laborative learning environment: a virtual garden, where children learn and garden

cooperatively. In NICE, children located in distributed virtual environments (e.g.,

CAVEs), can take care of a virtual garden together in the center of a virtual island.

The children, represented by avatars, collaboratively plant, grow, and pick vegeta-

bles and flowers. They make sure plants have sufficient water, sunlight, and space to

grow, and they keep hungry animals away from sneaking in the garden and eating the

plants [ZMD99,RJL+97].

NICE is a network of CAVE systems [YZD00] using a central server to simulate

the garden and maintain consistency across the participating virtual environments,

and a repeater to broadcast avatar state information. Each virtual environment (VE)

sends local avatar information (the local tracker data) to the repeater via UDP, as

well as the information about the local childs world-changing activities to the central

garden via TCP. The central server receives the world-changing messages from each

client, updates the world state and sends the new world information (the information

about the garden) to each client via TCP so that all clients have the same world

information [ZMD99].

23

Petri nets have been used as a formal modeling and analysis technique to eval-

uate the NICE system. Standard practice for net-VEs design is basically trial and

error, empirical, and lacks any formal foundation [YZD00, ZMD99]. By applying

formal modeling techniques such as Petri nets, design principles for net-VEs could

be established, and the usefulness of formal validation and verification techniques

demonstrated.

To model and analyze real-time systems, various timed extensions of Petri nets

have been proposed. However, many real-time systems have temporal uncertainty.

For example, the time to render an image in a VE system varies based on the

complexity of the geometric objects in the image and network delays in net-VEs

vary widely [YZD00]. To model temporal uncertainties in real-time systems, Mu-

rata [Mur96] proposed Fuzzy-Timing High-Level Petri nets (FTHNs) using fuzzy set

theory. FTHNs model temporal uncertainties in real-time systems, and provides pos-

sibility distributions of events. Thus, FTHNs can capture all temporal uncertainties

in CVEs and would be suitable models for CVEs.

Using this time model, a model of the CAVE system was built which improves

on earlier work. A model of the NICE system, a network of two CAVEs connected

through several UDP and TCP channels was also built. The UDP protocol was

modeled as a single transition associated with a fuzzy time. TCP had a more detailed

model. This protocol evaluated the response time for an avatar’s movement in one

client to show up on the other client’s display. Other simulation tests changed the

frequency of updates being sent through TCP channels to update the central server.

This work validated Petri nets usefulness for studying real-time behavior, net-

work effects, and performance (latency and jitter) of net-VEs. Furthermore, the TCP

protocol, while reliable, greatly increases the average network latency and jitter. This

research recommended the design of a new transport layer protocol, which transmits

shared state information with less latency and jitter than TCP. This is not surprising,

24

as much research was found proposing real-time protocols more suitable for CVEs (or

distributed virtual simulations).

2.9.3 Soft Real-Time Database Systems. A real-time database system

(RTDB) is often used in a dynamic environment to monitor the status of real-world

objects and discover “interesting” events [KLA+03]. For example, a program trading

application monitors the prices of various stocks, financial instruments, and curren-

cies, looking for trading opportunities. A typical transaction might compare the price

of Euros in London to the price in New York and, if there is a significant difference,

rapidly executes a trade.

The state of a dynamic environment is often modeled and captured by a set

of base data items within the system. Changes to the environment are represented

by updates to the base data. In a dynamic environment, an entity changes its state

in either a continuous or a discrete fashion. Changes to an entity are continuous

if the state of the entity is constantly changing. Base items that model continuous

entities must be periodically updated. On the other hand, changes to an entity are

discrete if the changes occur at distinct instants of time. Maintaining the temporal

consistency of discrete objects in soft real-time database systems has been studied by

Kao [KLA+03].

Figure 2.5 shows the relationship between the dynamic environment and updates

to a set of base items. When a base data item is updated to reflect external activity,

the related views need to be updated or recomputed as well. Application transactions

generate the ultimate actions taken by the system. These transactions read the base

data and views to make their decisions [KLA+03].

Temporal consistency refers to how well data in a RTDB models the actual state

of the environment. Temporal consistency consists of two components: absolute (or

external) consistency and relative consistency. A data item is absolutely consistent

(fresh) if it accurately reflects the state of an external object that the data item

models.

25

Figure 2.5: A Real-Time Database System [KLA+03]

Data items are relatively consistent if they are temporally correlated to each

other. A data object is temporal if its value changes with time. Based on how

the value changes, we can classify temporal data objects as continuous or discrete

objects. Most previous work on temporal consistency maintenance concentrates on

systems with continuous objects [KLA+03].

With discrete objects, the value of an entity remains unchanged until the next

update arrives. The update arrives at a discrete point in time and the arrival pattern

is sporadic. Unlike continuous objects, it is difficult to suitably define aging for a

discrete object since the object changes its state at an unpredictable rate. In other

words, it is difficult to define an aging function at(x) because the value of the data

might not in fact be old.

To formally define a notion of temporal consistency, Kao [KLA+03] introduced

the concepts of the “version” and “validity” interval which are defined below.

Definition 1 (Version). A version x of a data item d is a value of the external

object that d models. Every time the external object changes its value, a new version

of d is generated. Each version x is thus associated with a time interval that specifies

when the version is valid. This time interval is the validity interval of x denoted by

V I(x). V I(x) has a lower bound LTB(x) and an upper bound UTB(x). LTB(x)

26

0 5 10 15

x

y

8

7

Figure 2.6: Absolute and Relative Consistency [KLA+03]

is the instant an update of d with x′s value arrives. UTB(x) is the instant the next

update of d arrives.

Definition 2 (Current version). The current version of an item is a version xi

such that its validity interval contains the current time instant tc, i.e., tc is in V I(xi).

Definition 3 (Absolute consistency). A discrete data item d is absolutely con-

sistent if, at any time instant, a current version for d can be found in the system.

Definition 4 (Relative consistency). Given a set of item versions R, the versions

in R are said to be relatively consistent if
⋂
{V I(xi) |xi ∈ R} 6= ∅.

To clarify this terminology, consider two discrete data objects x and y shown

in Figure 2.6. Data item x arrives at t = 0 and y at t = 6. Data items x and y

become stale at times 8 and 13 respectively. Using the notation of validity intervals,

assume the current version of x is xm and the current version of y is ym. Then, if

V I(xm) = [0, 8] and V I(ym) = [6, 13], then x is absolutely consistent during [0, 8] and

y is absolutely consistent during [6, 13]. Also notice that xm and ym are relatively

consistent in the time interval [0, 8]
⋂

[6, 13] = [6, 8].

The reason for defining discrete data objects and their temporal correctness

criteria is that the entities in Kao’s research could not be represented by continu-

ous objects since he needed to maintain a particular level of consistency in real-time

databases and considered the scheduling and efficiency of executing update transac-

tions (so called “application transactions”) and their impact on the database.

27

This is relevant to LCS and DVS systems because some of the data passed

between applications is discrete or sporadic in nature. For example a DIS “fire” or

“detonation” event. This data is not transmitted on even a quasi-periodic basis such

as DIS entity state PDUs, but rather, is transmitted in a sporadic manner. Thus, the

temporal requirements of discrete events need to be considered.

2.9.4 Analysis of a Simulated Computer Network. In 2002, the U.S. Army

Simulation, Training and Instrumentation Command (STRICOM) and the Com-

puter Engineering Department of the School of Electrical Engineering and Com-

puter Science at the University of Central Florida (UCF) began a joint project to

assess the “Bandwidth and Latency Implications of Integrated Training and Tacti-

cal Communication Networks.” The research evaluated the network requirements for

conducting mission planning and rehearsal while enroute to deployment [VDGG04].

OMNeT++ [OMN09] was used to evaluate network bandwidth and latency charac-

teristics for different system designs and to quantify the amount of traffic that could

be expected in a rehearsal mission. DIS PDU data was generated and captured by

running a predefined “vignette” with the OneSAF Testbed Baseline (OTB).

The vignette consisted of a network that linked 8 airplanes, a ground station,

a satellite, and 3 wireless channels as shown in Figure 2.7. The first wireless link

connects the routers in all the planes to each other. A second wireless link connects

the routers in the planes to the satellite, and the third connects the satellite to the

ground station. In this way, each router is connected to three different links, and

the satellite is connected to two. During an actual mission rehearsal, the airplanes,

satellite and ground station are not simulated, but real physical assets are used.

Input data for the OMNet++ [OMN09] simulation comes from the data col-

lected by the OneSAF logger (i.e., the expected network data generated during a real

rehearsal). Timestamps on each DIS PDU is the time the entity generated the PDU

and put it into the output queue for transmission.

28

Figure 2.7: Simulated Computer Network

To estimate bandwidth requirements, a separate program calculates the min-

imum instantaneous bandwidths by dividing the total simulation time into smaller

time intervals of 2 seconds each and computes the ratio of volume of data transmitted

in each interval to the length of the interval. In this static analysis, overhead due to

retransmissions, packet losses, or collisions is not considered. Therefore, the resulting

bandwidth estimates can be interpreted as an absolute lower bound for the actual

required bandwidth. This approach is a simple yet effective method for estimating

bandwidth requirements.

Slack time analysis determines if the channel bandwidth is enough to transmit

the required PDUs without delay. The slack time for each node generator is defined

as the difference between the timestamp of each PDU and the current simulator time

the instant the PDU is read from the input file. If the difference is positive, the

generator is ahead of the planned schedule, otherwise it is behind. Thus, a negative

29

slack time indicates channel bandwidth is insufficient to transmit the required PDUs

without delay [VDGG04]. Results for this study indicated that the 64 Kbps wireless

channel connecting the ground station to the satellite was in fact insufficient.

Travel time analysis looks at the total latency to transmit a PDU from a source

to a sink node. Travel time is the difference between the sending time of a PDU

from a node generator and the arrival time at a node sink. All the transmission

times, propagation times and waiting times in router queues are part of the travel

time. The travel times of most of the PDUs on the 64 Kbps channel were completely

unacceptable. Some PDUs took more than 100 seconds to arrive.

A queue length analysis determines the number of messages waiting to be trans-

mitted. As expected, the size of the queues associated with transmission across the

64 Kbps channel was unacceptable, with as many as 3000 messages awaiting service.

Also expected was the unacceptable number of collisions from nodes attempting to

gain access to the 64 Kbps channel.

This research is important from a number of perspectives. The use of a simulator

to generate expected traffic for an estimate of bandwidth requirements is practical and

useful. This directly relates to tradeoffs on how a software system could be partitioned.

Performing “first-order” estimates of the bandwidth requirements using the expected

traffic could be applied in the domain of LVC and/or DVS simulations. Using either

OMNeT++ or Petri nets to evaluate more precisely the latency characteristics of

a particular design also confirms a later recommendation about the design of LVC

simulations that indicate which system designs should be considered “candidates” for

further analysis before deployment.

2.9.5 Consistency in DVS Applications. The issue of consistency in dis-

tributed interactive applications and its effect on entity position has been stud-

ied [ZCLT04, ZCLT01]. Zhou’s work defines a metric to measure the time-space in-

consistency of entities within a distributed virtual environment (DVE). The metric

evaluates the time-space consistency property of a DVE considering clock asynchrony,

30

message transmission delay, the accuracy of a dead reckoning algorithm, the kinetics

of the moving entity, and human factors. The quality or goodness of the DVE is based

upon a human characteristic related to visual perception time for spatial information.

While this work is important and the analysis impressive, it’s limited to a single met-

ric concerning spatial entity position consistency and its impact on the DVE relative

to human response traits.

Improving consistency by delaying or purposely degrading the response time

of individual simulation applications in a DVE has also been studied [Qin02]. A

new consistency model named the “delayed consistency model” provides a frame-

work to evaluate the tradeoff between consistency and response time. An acceptable

compromise between consistency and response time is hard to determine – poor re-

sponsiveness with few inconsistencies or a large number of inconsistencies with a short

response time [Qin02].

The preceding work was leveraged to develop a conceptual model for consistency

maintenance in DVE/DVS/LVC environments [Hl04]. This conceptual model is based

upon the human nature of the participants (i.e., human perceptual limitations, area

of interest management, and visual and temporal perception).

2.10 Summary

The architecture for LVC and DVS systems can be traced back to 1983 and

the development of SIMNET. While there are more options now in terms of interop-

erability protocols, fundamental limits of sharing data between a set of autonomous

simulation nodes remains the same. How to improve the consistency of shared entity

state data using predictive modeling dead reckoning algorithms and other techniques

has been studied. No general underlying framework to specify consistency require-

ments was found.

In the domain of real-time databases, methodologies to evaluate the performance

of soft real-time database systems using temporal consistency of stored data has

31

been studied. The fundamental notion that the performance of these systems can

be improved by relaxing the consistency of the stored data has application in the

domain of real-time distributed simulation. This work provides a basis for a general

framework to describe LVC and DVS data requirements.

Petri nets provide a means of studying the temporal properties of CAVE and

NICE environments and a sound methodology to study the temporal properties

of LVC and DVS systems more generally. The essential architectural features of

LVC/DVS systems that affect shared state consistency are modeled so that system

properties and factors can be studied.

32

III. LVC/DVS System Characterization

Many characteristics about “what” a LVC is, and “how” LVCs operate are known;

however, no research was found that provides a formal characterization of these sys-

tems. This is likely the result of the application domain of interest, namely, training

systems where the quality of the the simulated environment is judged by more sub-

jective measures such as a “good enough” look and feel. Human factors provides

measures of “look and feel” that are derived from experimental data. This chapter

provides a detailed characterization of important properties of an LVC.

3.1 Modeling Time

Simulations have several notions of time. Fujimoto [Fuj00] provides the following

useful definitions.

• Physical time - time with respect to the physical system being simulated. For

example, consider a simulation of a battle that took place during the Civil War

in 1864. The time associated with a specific scenario as executed in this case,

the year 1864, is the physical time.

• Wallclock time - refers to time during the execution of the simulation program.

In other words, this is the actual time the simulation is executing, for example,

from 4 pm on May 5th to 5 pm on May 5th or precisely 3600 seconds.

• Simulation time - an abstraction used by the simulation to model physical time.

It represents the total elapsed time since the simulation started. For example,

a double floating-point variable could be used to measure time where 0.0 cor-

responds to the start of simulation execution and 1.0 represents one second of

simulation time. One “second” of simulation time does not necessarily corre-

spond to one second of wallclock time.

From the perspective of real-time system theory, wallclock time is real-time. It is

continuous and advances at a constant rate. In a virtual (or real-time) simulation, the

goal is to ensure that simulation time advances and stays in sync with the wallclock.

33

Figure 3.1: Time Flow Mechanisms

Additionally, a virtual simulation must respond to inputs within prescribed response

times. Levying these time constraints on the simulation system effectively places the

software design of virtual simulations into the class of real-time system design.

3.2 Time Flow Mechanisms

Modeled systems can be viewed as the collection of variables necessary to de-

scribe the system state at a particular time relative to the objectives of a study [LK00].

As simulation time advances, state variables change depending upon the time advance

mechanism used. State variable change can be represented by a state space diagram.

There are several different time advancement mechanisms used in simulations, com-

monly referred to as the time flow mechanism. The general relationship between time

advancement mechanisms is shown in Figure 3.1.

In a continuous simulation, the simulation is executed on an analog computer

and the state space changes continuously. A discrete simulation can be executed on a

digital computer and its state space changes at discrete points. The two most common

types of discrete simulations are time-stepped and event-stepped (or event-driven).

In a time-stepped simulation, state space variables are updated at fixed intervals

as shown in Figure 3.2. Not every state variable is modified at each time step, but

when a state variable is modified, it occurs at a fixed interval. As the figure shows,

some variables are updated every other step, or even every fourth step depending

upon modeling requirements. The duration of the step size, as shown in Figure 3.2, is

based on the nature of the specific activity or activities a system developer considers

important [GL00].

34

S
ta

te
 V

ar
ia

bl
es

Simulation Time

Step Size

a
b
c
i
j
k
x
y
z

Figure 3.2: Time-Stepped State Space (adapted from Fujimoto [Fuj00])

Figure 3.3: Event-Stepped State Space (adapted from Fujimoto [Fuj00])

In an event-stepped simulation, state space variables are updated only when

“something interesting” occurs as defined by a model developer. This is sometimes

referred to as an asynchronous update and is depicted in Figure 3.3. For a discrete-

event simulation, events for a given process or system are based on the activities the

model developer deems important [GL00]. See Narayanan [NSP+97] for additional

simulation types defined on the basis of state space and timing considerations.

Both event-stepped and time-stepped simulations are used extensively. The

choice of which time advance mechanism to use, and which is most efficient, is deter-

mined by the system under study.

The computational overhead associated with discrete-event simulations arises

from detecting and recording events that determine the next time step. However, this

overhead is more than compensated for by not having to execute the model at every

35

timestep [GL00]. Time-stepped simulations, on the other hand, have computational

overhead whether state variables are modified or not.

In general, a time-stepped simulation constitutes the logical choice for processes

with activity distributed over every timestep; discrete-event simulation is most effi-

cient for activity that is sparsely distributed over time [GL00]. More information can

be found in [GL00].

3.3 System Under Study

Understanding the nature of the system under study frames the modeling re-

quirements and the challenges virtual simulations must address. Specifically, it de-

termines the most efficient choice between implementing an event-stepped or a time-

stepped simulation. Information on this topic, however, is widely scattered in litera-

ture and thus, not available in a concise and consistent location [CK06]. Below, we

focus on key system characteristics that contrast the usefulness of both time advance

mechanisms.

Consider an example that expands upon Fujimoto’s [Fuj00] simulation of an

aircraft flying from New York to Los Angeles. Suppose the arrival of the aircraft at

Los Angeles is part of the system under study. For this requirement, a discrete-event

simulation might compute the total flight time of the aircraft, and advances the air-

craft’s position and simulation time immediately to the time the aircraft reaches Los

Angeles since this is where “something interesting” occurs. Computing intermediate

aircraft positions are not needed (i.e., they are deemed uninteresting and irrelevant).

Modeling this system using a discrete-event paradigm is quite efficient because the

simulation itself can make relatively large jumps in simulation time to the next “in-

teresting” event.

Now consider a virtual simulation in which a pilot is inserted into the simulated

aircraft flying from New York to Los Angeles. In this case, the system under study

might include not only the arrival at Los Angeles, but also an evaluation of how well

36

the pilot flies the route from New York to Los Angeles. In this case, the pilot is part

of the system under study.

Inserting a pilot in the loop creates several additional requirements: the simu-

lation must execute synchronously with wallclock time (i.e., in real-time) and must

respond to pilot inputs in a timely manner. To complicate matters further, the sim-

ulation will likely be required to simulate the flight dynamics of the aircraft so the

simulation feels correct to the pilot. This, in turn, requires real-time flight dynamics

calculations be performed at a relatively high frequency, with a bounded deterministic

execution time.

3.3.1 Interaction with the Real World. A key characteristic of any virtual

simulation is its interaction with the real-world. In the above example, the pilot is

part of the system under study. There are a variety of reasons to insert an operator

or pilot into the simulation. The most common is operator training. Another is to

conduct human factor studies, such as an evaluation of an aircraft instrument display.

In other instances, the insertion of a well-trained pilot adds fidelity to the simulation

rather than a computerized, possibly simplistic behavioral model of a pilot.

In virtual simulations, placing a person or hardware into the system under study

puts an additional burden on the simulation as it must respond to inputs and generate

outputs in a timely manner. An important attribute that describes this relationship

is the response time. Response time is the time between the presentation of a set of

inputs to a system (release) and the realization of the required behavior (completion).

Inputs are generated by a wide variety of devices including control stick changes,

keyboards, touch screen displays and even the reception of data via a network in-

terface. Responses come in the form of generating audio, video, or motion cues.

Responses that affect hardware assets come in many forms.

It can not be over-emphasized that if these response times are not adequately

satisfied, the person or hardware included in the system under study might not respond

correctly, thus degrading the validity of the simulation itself.

37

S
ta

te
 V

ar
ia

bl
es

Simulation Time

x

y

z

a

b

c

i

j

k

Sim0

Sim1

Sim2

Delta Time

Figure 3.4: Distributed Synchronous State Space Diagram

3.3.2 Inputs and Outputs. Responding to simulation inputs by generating

correct outputs in a timely manner is specified by the response time parameter. For

example, the Federal Aviation Administration (FAA) requires a response time of less

than 125 ms for flight simulators. If this requirement is not met, the simulator will

feel sluggish to the operator. Additionally, a response time greater than 125 ms may

contribute to pilot induced oscillation (PIO) effects in aircraft performance.

To meet this requirement, real-time systems sample inputs and generate out-

puts. The process of sampling itself fits with the organization of time-stepped sim-

ulations. The rate at which sampling takes place is application dependent. Because

a human is in-the-loop controlling the vehicle as simulation time advances, the forces

affecting position, velocity and acceleration are not, indeed cannot, be known in ad-

vance. In other words, where the vehicle will be in the future is unknown. Because of

this, the modeled activity is distributed over time which provides a solid rationale for

advancing time in a time-stepped manner as most LVC simulators and simulations

do.

3.4 Distributed Simulation

Distributing a time-stepped simulation across multiple computers involves di-

viding and partitioning the state space into several individual simulation applications

that communicate and share information. Each application is responsible for main-

38

Sim0 : {a,b,c}

Network

Sim1 : {i,j,k}

Sim2 : {x,y,z}

Figure 3.5: Synchronous Distributed Simulation

S
ta

te
 V

ar
ia

bl
es

Simulation Time

x

y

z

a

b

c

i

j

k

Sim0

Sim1

Sim2

Figure 3.6: Asynchronous Distributed State Space Diagram

taining its own partitioned state variables. If a synchronization mechanism advances

time in a coordinated manner, the resulting state space of the entire distributed sim-

ulation state space can be viewed as shown in Figure 3.4. In this diagram, the three

simulation applications (Sim0, Sim1, Sim2) individually maintain three state space

variables of interest.

Physically, the simulations themselves are hosted on different computers and

communicate via a network infrastructure like that shown in Figure 3.5. In reality,

most LVC simulations do not execute synchronously as shown in Figure 3.4, rather,

they run asynchronously with respect to each other as notionally shown in Figure 3.6.

Each simulation in Figure 3.6 is executing a time-stepped simulation with its

own state space. Typically these simulations are “loosely coupled” so they can execute

as autonomously as possible (which also improves the performance and scalability of

39

the system). Some degree of interaction will always take place in the form of sharing

state space information. If this were not the case, the simulation would no longer

be considered distributed, it would simply degenerate into a stand-alone independent

simulation. This sharing of state space information is achieved by each process by

sending messages relevant to other processes through the network as needed. The

message transmission delays are non-deterministic and can be on the order of hun-

dreds of milliseconds. Because of this large delay, the totally distributed architecture

used in LVC simulations is considered a good architectural choice to increase scalabil-

ity [DG99]. Unfortunately, this choice also increases the chance of inconsistent states

being shared between simulation nodes.

3.5 Dynamic Shared State

Distributing a time-stepped simulation across multiple computers can be viewed

as a partitioning of the state space among two or more autonomous simulation ap-

plications, where each application is responsible for maintaining its own local state

and replicating state space data required by and managed by other applications. This

“dynamic shared state” [SZ99] constitutes the information that multiple simulation

applications must maintain about the distributed environment. This sharing of lo-

cally managed state space information is achieved via messages sent through a network

infrastructure.

Communication between applications is facilitated by a number of interoper-

ability protocols and Application Programming Interface (API) standards to so-called

“middleware.” Middleware is connectivity software with a set of enabling services that

allow multiple simulation applications to interact across a network. The Distributed

Interactive Simulation (DIS) [IEE98] is a good example of a well established protocol,

whereas, the Data Distribution Service (DDS) [OMG09], the High-Level Architecture

(HLA) [IEE00] and the Test and Training Enabling Architecture (TENA) [DoD02]

are representative middleware solutions.

40

Communication is facilitated by a number of defined protocols or standards.

Two well defined standards are listed with a short description below.

• Distributed Interactive Simulation (DIS) - In DIS, simulation state information

is encoded in formatted messages known as Protocol Data Units (PDUs) and

exchanged between hosts using existing transport layer protocols. Normally

broadcast UDP is used. The current version of the DIS application protocol

defines 67 PDU types arranged into 12 families. Frequently used PDU types

are listed below for each family.

– Entity information/interaction family - Entity State, Collision, Collision-

Elastic, Entity State Update

– Warfare family - Fire, Detonation

– Logistics family - Service Request, Resupply Offer, Resupply Received,

Resupply Cancel, Repair Complete, Repair Response

– Simulation management family - Start/Resume, Stop/Freeze, Acknowledge

– Distributed emission regeneration family - Designator, Electromagnetic

Emission, IFF/ATC/NAVAIDS, Underwater Acoustic, Supplemental Emis-

sion/Entity State (SEES)

– Radio communications family - Transmitter, Signal, Receiver, Intercom

Signal, Intercom Control

– Entity management family

– Minefield family

– Synthetic environment family

– Simulation management with reliability family

– Live entity family

– Non-real time family

41

• High Level Architecture (HLA) - HLA is a general purpose architecture for

distributed computer simulation systems. Communication between simulations

is managed by a runtime infrastructure (RTI). HLA consists of the following

components:

– Interface specification. The interface specification document defines how

HLA compliant simulators interact with the RTI. The RTI provides a pro-

gramming library and an application programming interface (API) com-

pliant to the interface specification.

– Object Model Template (OMT). The OMT specifies what information is

communicated between simulations and how it is documented.

– HLA Rules. Rules that simulations must obey to be compliant to the

standard.

Regardless of the standard used, state information from logical processes are

replicated throughout the simulation system, and that state data usually is inconsis-

tent compared to the true system state.

3.6 Performance vs Consistency

A fundamental conflict arises in LVCs when executing simulation applications

require state data not locally managed, yet must also respond to inputs and produce

correct outputs in real-time based, in part, on that data. The conflict arises because

of network latency. If the network has a relatively high latency, data transmitted by

an application might be inconsistent or “too old” when received.

Even so, to improve the performance and scalability of such systems, the state

space of simulation applications is purposely allowed to become inconsistent. Per-

formance is improved because each application continues executing and responding

to local inputs without waiting for “consistent” data to arrive. As data consistency

is relaxed, scalability improves since, in general, this allows more applications from

more distant geographic locations to be interconnected. Thus, portions of the state

42

Sim0 : {a,b,c,i’,j’,k’}

Network

Sim1 : {i,j,k,x’,y’,z’}

Sim2 : {x,y,z,a’,b’,c’,i’’,j’’,k’’}

Figure 3.7: Distributed State Space

space within any particular simulation, at a given point in time, will not necessarily

be consistent with the true state.

Figure 3.7 shows an LVC composed of three simulation applications where Sim0

locally manages state space variables {a,b,c} and replicates the state space variables

managed by Sim1, namely {i,j,k} as data is received from the network. Simulation

Sim2 manages its own state space {x,y,z} and replicates the state space of both of

the other applications.

Because the system is executing in real-time and synchronized to the wall clock,

replicated state spaces often contain data that is older or “aged” compared to the

most current value. For example, since Sim0 is receiving updates via a network, its

perception of Sim1’s state space is inconsistent with Sim1’s true state (i.e., it lags

behind) because simulation time advances in lock step with the wall clock and cannot

be stopped or paused to wait for an update to ensure consistency. As the local state

variables of Sim1 change, it takes a finite amount of time to update Sim0.

Depending upon modeling and simulation requirements, this inconsistency might

be acceptable. In fact, a DIS compliant simulation almost always works with aged

data. As an example, the position of dynamic entities moving in the simulation rarely

corresponds with the true position. The DIS standard specifies that for “loosely” cou-

pled interactions, entity position (state) updates received within 300ms of when they

are sent are acceptable. To reduce network traffic, updates are not sent on a regular

basis; they are only sent when certain error thresholds are exceeded. The “old” or

43

aged data is considered good enough for the receiving application to estimate the true

state values.

The level of inconsistency tolerated is based upon the accuracy of the estimation

that can be made with older data, and secondly, the underlying requirements of the

simulation itself.

3.7 Sources of Inconsistency

For a typical LVC simulation, sources of data inconsistency are introduced by

the architecture of the distributed simulation applications and the interconnecting

network infrastructure. The combination of the simulation architecture and the com-

munication architecture is called the system design. The architectural characteristics

of both the simulation applications and the communication mechanism to quantify

and estimate their effect on data aging.

3.7.1 Simulation Applications. The model-view-controller (MVC) architec-

tural pattern is a well established structure representative of the design of a typical

simulation application. A central feature of the design pattern is the separation of

user interface logic from the “domain logic” which performs calculations and stores

data.

In the context of virtual and constructive simulation applications, the domain

logic are the simulated systems and state variables, while the graphical displays and

I/O functionality represent the view and controller components as shown in Figure 3.8.

For live simulations, the domain logic often represents the periodic sampling of state

information from live assets for the distributed environment.

The controller in the MVC pattern is typically associated with processing and

responding to events that induce state changes in the model. Using this approach, the

construction of a simulation application would, ideally, consist of a loop that, for each

frame, sequentially reads inputs, executes system models, and generates outputs (i.e.,

updates graphics and processes network activities). In other words, this pattern is

44

Model

Controller

View

(Simulated Systems)

Figure 3.8: Multi-Threaded MVC Pattern

typically implemented as a single-threaded application whereby only the model (i.e.,

domain logic) makes state changes in response to controller events.

Doing this in real-time, however, is limited by processing power. This limit

becomes ever more problematic as frame rates increase, thus reducing the amount

of time available to complete all tasks (i.e., model updates, graphic drawing and the

processing of network activity). To further complicate matters, in the domain of an

LVC, the latency associated with state data moving through the network imposes

an upper bound on frame rates if data is to have some level of consistency across

applications.

To resolve this fundamental conflict, a multi-threaded variant of the MVC pat-

tern is often used [RHJ+09] whereby the processing of models, graphics, and network

I/O is done in separate threads, either synchronized with each other, or purposely

allowed to execute asynchronously at assigned priorities. Typically, system state is

executed by a high priority thread, while graphics and network threads are set to a

lower priority. This multi-threaded variant MVC pattern improves system response

time with respect to a human participant, but at the cost of data consistency.

3.7.2 Interoperability Communication. LVC simulations are often imple-

mented using dedicated networks to control utilization and provide enhanced data

security. Controlling utilization is an important aspect of characterizing LVCs be-

cause it is assumed network utilization has little or no effect on network latency. This

45

is true as long as the network is not operating at high utilization rates exceeding

50–60%.

Since LVCs are time-sensitive applications, they often transmit state data using

connectionless, efficient, transmission protocols, such as the User Datagram Proto-

col (UDP). Because state space data updates are broadcast regularly, reliability is

sacrificed to reduce overall latency. Furthermore, UDP and other connectionless pro-

tocols support the simultaneous distribution of state data using unicast, multicast or

broadcast addressing schemes.

Because the interaction of LVCs is affected by network latency, and communi-

cation latency is increased by software complexity, middleware is often not the best

solution to share state data in these environments [Hl04]. Therefore we initially re-

strict our attention to LVCs that share state data through well-defined protocols such

as DIS. This restriction is relaxed later.

The DIS standard specifies a number of factors and performance requirements

to minimize both network delay and network delay variance [IEE98]. For example,

simulation state data is encoded into formatted messages, known as Protocol Data

Units (PDUs) and exchanged using existing transport layer protocols; normally broad-

cast or multicast UDP. The size of DIS PDUs range from 80 to 200 bytes which is

significantly smaller than the Maximum Transmission Unit (MTU) of 1,500 bytes for

Ethernet and prevents packet fragmentation at the link layer as well.

Given these network environment characteristics, we model a dedicated LVC

network as transporting state data according to well defined latency distributions

with adjustable mean and shape parameters. Specifically, the message transmission

delay between two nodes in the network may be modeled as a random variable which

obeys the exponential distribution. Though the worst case transmission delay may

be very large, it occurs with little probability, and the average delay is generally very

close to the minimum delay between the two nodes [BG92,KSG99].

46

3.8 Temporal Consistency Model

Because LVC simulations often execute with inconsistent data, it is useful to

characterize consistency in terms of correctness since any notion of data quality or

correctness depends on the actual use of the data. In other words, data sufficient or

accurate enough for one application might be insufficient for another.

We first define absolute consistency, then apply temporal consistency concepts

developed by [KLA+03], [KS97], [Ram93] and [XLLG06] to the domain of LVCs as

they provide a useful framework for defining system requirements in terms of correct-

ness.

Definition (Absolute Consistency) Given a shared data object, θ, the state is abso-

lutely consistent at any time t, if and only if ∀i, j, 1 ≤ i, j ≤ n, θi(t) = θj(t), where n

is the number of nodes (i.e., simulation applications) in the LVC.

We say that the LVC is absolutely consistent if and only if every θ is consistent.

In other words, an LVC is absolutely consistent if and only if the value of the replicated

data objects as managed by each simulation application within the distributed system

is consistent at all times.

Temporal consistency relaxes absolute consistency by defining the correctness

of a shared data object, θ, as replicated by autonomous simulation applications as a

function of a time interval. That is, the value of a shared data object is accurate or

valid for a period of time after being updated.

Definition (Temporal Consistency) A shared data object, θ, is temporally consistent

if its creation timestamp, θTS, plus the validity interval, θV I , of the data object is

greater than or equal to current time t, i.e., θTS + θV I ≥ t.

This notion of consistency is generalized for a distributed simulation consisting

of n nodes, where each node defines a specific validity interval, θi,V I , so that ∀i,

1 ≤ i ≤ n, θTS + θi,V I ≥ t. Because LVCs are connected via non-deterministic

47

networks, validity intervals include an acceptable reliability statistic (e.g., 95% of the

time).

3.8.1 Derived Data Objects. Another notion of temporal consistency is

“relative consistency.” It defines the accuracy or validity of derived data in terms of

the relative creation times of the set of data used to produce it.

Definition (Relative Consistency) The set of data objects used to derive a new data

object, θ, form a relative consistency set, R. Each set R has a positive validity

interval, denoted by RV I . A derived data object, θ, is relatively consistent if ∀ θ ∈

R, |θx − θk| ≤ RV I where k is the cardinality of R.

Thus, temporal consistency is viewed as a freshness constraint and relative

consistency is a correlation constraint [GHS95].

By defining LVC correctness requirements in terms of validity intervals for the

shared data objects, we address the inconsistency in shared state data directly. Since

the inconsistency in shared state data is the distinguishing characteristic of LVCs

affecting performance and scalability, the validity intervals of state data directly relate

to system performance. Furthermore, relaxing data consistency by increasing validity

intervals improve both performance and scalability.

3.9 Classifying State Data

To define validity intervals, it is useful to classify state data as either “continu-

ous” or “discrete.” This classification is based upon what the data represents or what

is being modeled, not the mechanics of how it is updated or processed by a digital

computer. For example, the state describing the position of an aircraft in Cartesian

coordinates would be considered continuous data, even though it is updated by a

producer at some fixed frequency. The state data describing the position of a light

switch would be considered discrete. After classifying state data, the determination

of an appropriate validity interval defining LVC correctness is made.

48

For continuous objects, validity intervals establish correctness by bounding the

difference (or accuracy) between a producers value and a consumers value [Ram07].

For discrete objects, validity intervals establish correctness based on timeliness; the

interval specifies that a consumer may never be out of sync with the producer by

more than a validity interval time [Ram07]. In other words, if the modeled system

changes state, a consumer will receive the change no later than the time specified

by the validity interval. Until that time, the replicated state within the consumer is

simply incorrect. The impact of temporally incorrect discrete state data is especially

important and should be carefully considered as the specified validity establishes “how

long” incorrectness can be tolerated.

3.10 Summary

This chapter provided a detailed characterization of an LVCs important prop-

erties. While most of the material is known, it tends to be scattered throughout

the literature. The definition of temporal consistency as applied to LVC and DVS

systems is new and offers a promising approach for describing and evaluating system

requirements.

49

IV. State Space Consistency Model

To understand the properties of an LVC, a conceptual model is built abstracting es-

sential architectural features of simulation applications and networks that affect state

space data timeliness. These effects are captured in a colored Petri net, which is par-

ticularly well suited for modeling systems in which communication, synchronization,

and resource sharing are important. Jensen provides a comprehensive discussion of

the theoretical foundations, analysis methods and the practical uses of colored Petri

nets [Jen97a].

For the LVC architectural model, “colored” tokens include attributes to repre-

sent simulation state data and the timeliness of that data; “places” contain tokens,

and “transitions” model the temporal properties of a particular system design. Time

associated with transitions is specified by fixed or stochastic distributions. A “snap-

shot” of all places in the model constitutes the state of the system at a particular

point in time.

When a transition creates a token, the token’s “creation time” attribute is set.

When a token is moved to a place, a second time-stamp attribute called “arrival

time” is set. Time stamping tokens with both a creation and arrival time captures

the temporal dynamics of a particular system design. The temporal properties of

transitions constitute fundamental limits in a system design and their effect on data

timeliness are of great interest.

Figure 4.1 is an abstract model of an LVC with a producer application distribut-

ing state data θ to other applications or consumers of that data. For both producer

and consumer (i.e., simulation applications within the LVC), we assume the archi-

Producer : {θ} Network

Consumer : {θi}

Consumer : {θj}

Figure 4.1: LVC Model

50

State
Space

Sampling
Thread

Model
Thread

Output
Queue

A
T1

T2

Figure 4.2: Producer Model

Enter
Network

Exit
NetworkIn-Transit

A B

T3 T4

Figure 4.3: Network Model

tectural organization and execution of the simulation architecture is mapped to the

multi-threaded MVC pattern.

Figure 4.2 is a Petri net model of the producer, where the simulated systems

component from the MVC pattern periodically updates θ while a thread servicing the

network periodically transmits updates to consumers. Threads periodically updating

and transmitting the various θ’s to consumers are asynchronous with respect to each

other.

The Model Thread is represented by transition T1 that updates θ by replacing

old state data (represented by a token) with new state data. The creation time

attribute for this new token is set to the current simulation time. The State Space

place holds state tokens. It represents local computer memory that stores θ. The

Sampling Thread is represented by transition T2 which models the asynchronous

reading of θ for transmission to other applications. This transition copies tokens

from computer memory to the Output Queue. The Output Queue holds data to be

transmitted by the network infrastructure. This queue could also represent a graphical

display in the multi-threaded MVC pattern. The frequencies assigned to transitions

T1 and T2 are the factors of most interest in the system design.

51

State
Space

Receiving
Thread

Model
Thread

Input
Queue

B
T5

T6

Figure 4.4: Consumer Model

Figure 4.3 models the network which moves θ from producer to consumer with

a particular latency. Transition T3 captures the temporal characteristics of a network

infrastructure in terms of a distribution, such as exponential or Pareto with location

and shape parameters. The location represents the mean latency of moving the data

from a producer to a consumer. Each data packet is assumed to be the same size and

the latency includes sender overhead to submit and transmit the message, the time of

flight (propagation time), the transmission time (message size divided by bandwidth),

and receiver overhead.

The Enter Network transition time records the time tokens entering the network

will arrive at their destination. This time is stochastically drawn from the above

mentioned distribution and added to current simulation time. The Exit Network

transition fires as soon as its enabling condition is satisfied – the moment simulation

time advances to the earliest arrival time of any token at In-Transit. The distribution

assigned to T3 is also a factor of interest in the system design.

Figure 4.4 models a consumer receiving θ and captures the essential feature of

the Receiving Thread – the update mechanism for the dynamic shared state.

The Input Queue stores tokens arriving from the network. The Receiving

Thread is represented by transition T5 which is enabled when the Input Queue has

tokens. In this model, “old” state data already located in State Space place is replaced

with “newer” data from the Input Queue the instant it arrives. In practice, transition

T5 is implemented as a blocked thread waiting for data. The State Space place is

a combination of data received from other producers and data locally managed by

52

the consumer. The consumer’s Model Thread is represented by transition T6 which

executes periodically.

Since T5 is enabled and fires immediately when tokens arrive for processing, it

is not a factor of interest. Transition T6 on the other hand, determines when state

data is available for consumer calculations, and is therefore a factor of interest.

4.1 Startup Dynamics

The temporal characteristics of transitions T1, T2, T3 and T6 affect the con-

sumers replicated state space data timeliness and consistency. Since producers, con-

sumers and their respective threads do not synchronize, but are executed on a periodic

basis, there is a phase relationship between each periodically-executed transition. To

capture this property of an LVC, phases φ1, φ2, and φ6 are associated with transitions

T1, T2, and T6, respectively and are modeled as random variables in the system. Be-

cause the phase relationship is relative, the model is simplified by arbitrarily selecting

one phase, and setting it to zero. After some analysis φ2 was chosen as the baseline

phase since this led to clearer insight and intuition into the roles and relationship each

factor contributes to data aging.

Preliminary exploration of the LVC system model with randomly assigned phases

yielded important insight that produced a simpler model for simulation and analysis.

For example, the sampling of the producer’s state space data by T2 for distribution to

consumers is equivalent to the periodic creation of a new token in the Output Queue

whose age is drawn from a uniform distribution ranging from zero to the period of

the producer’s Model Thread T1. Also, the randomly assigned phase associated with

transition T6 can be simplified by using a uniform distribution to determine when

the consumer’s Model Thread uses State Space data. The time associated with using

state space data ranges from zero to the period of the consumer’s Model Thread T6.

53

Table 4.1: 4-Factor, 2-Level Design

Factor Levels
Producer Model Thread (T1) 50, 100 Hz
Producer Sampling Thread (T2) 5, 20 Hz
Network Latency (T3) 5, 100 ms
Consumer Model Thread (T6) 50, 100 Hz

4.2 Analysis and Results

A simulation of the Petri net-based LVC system model was used to study the

factors that affect the temporal properties. This includes the frequency of the pro-

ducer’s Model and Sampling Threads, network latency characteristics as defined by a

representative distribution, and the frequency of the consumer’s Model Thread.

Exploration of the system model leads to the following two hypotheses concern-

ing system dynamics. The first is that the period of the consumer’s Model Thread,

T6, does not influence data aging. In other words, the frequency at which the con-

sumer uses replicated state data has no effect on the mean age and variance of that

data. The second is, the mean age of the data used by a consumer in an LVC system

can be estimated by adding each factor’s individual contribution to aging. In other

words, each factor’s contribution to aging is independent, and there are no interaction

effects.

To validate these hypotheses, a preliminary two-level full factorial screening ex-

periment, as shown in Table 4.1, was performed to determine each of the four identified

factor’s influence on data aging including any second-, third- and/or fourth-order in-

teraction effects. A two-parameter exponential distribution modeled network latency

characteristics. For T3, Table 4.1 lists the location parameter for the distribution

with a fixed standard deviation of ±1ms.

For each simulation run, the mean age and standard deviation of the replicated

state data as used by the consumer’s Model Thread was computed. The simulation

terminating condition was reached when the mean age was within ±1ms of its true

54

Table 4.2: 4-Factor, 2-Level Results

T1 T2 T3 T6 x s
Number (Hz) (Hz) (ms) (Hz) (ms) (ms)

1 100 20 5 100 35 15
2 100 20 5 50 35 15
3 100 20 100 100 130 15
4 100 20 100 50 130 15
5 100 5 5 100 110 58
6 100 5 5 50 110 58
7 100 5 100 100 205 58
8 100 5 100 50 205 58
9 50 20 5 100 40 16
10 50 20 5 50 40 16
11 50 20 100 100 135 16
12 50 20 100 50 135 16
13 50 5 5 100 115 58
14 50 5 5 50 115 58
15 50 5 100 100 210 58
16 50 5 100 50 210 58

age with 95% confidence. Table 4.2 contains the results of the screening design for

three replications of the experiment.

Comparing the mean and standard deviation for each pair of runs (e.g., 1 & 2,

3 & 4, ...) in the table indicates the consumer’s Model Thread (T6) might not play

a role in state space aging. This is confirmed by the analysis of variance (ANOVA)

results shown in Table 4.3 for mean data aging. Factors T1, T2, and T3 accounted for

nearly all variation in aging with each having statistically significant p-values of zero.

Factor T6, and just as importantly, all second-, third- and fourth-order interaction

terms played no role in explaining variance.

This validates the first hypothesis and highlights an important characteristic

of an LVC. From the standpoint of the consumer, the aging characteristics of the

replicated state data is not influenced by the rate at which data is used. In other

words, the frequency of the consumer’s Model Thread (T6) does not play a role in

the temporal characteristics of an LVC.

55

Table 4.3: 4-Factor, 2-Level ANOVA

Source DOF SS MS F P
T1 1 303 303 2477.86 0.000
T2 1 67376 67376 550909.95 0.000
T3 1 108094 108094 883847.66 0.000
T6 1 0 0 0.16 0.695
T1*T2 1 0 0 0.11 0.747
T1*T3 1 0 0 1.44 0.239
T1*T6 1 0 0 0.88 0.356
T2*T3 1 0 0 0.13 0.725
T2*T6 1 0 0 0.14 0.710
T3*T6 1 0 0 0.22 0.645
T1*T2*T3 1 0 0 0.87 0.358
T1*T2*T6 1 0 0 0.19 0.669
T1*T3*T6 1 0 0 2.27 0.141
T2*T3*T6 1 0 0 0.00 0.950
T1*T2*T3*T4 1 0 0 0.87 0.357
Error 32 4 0
Total 47 175778

This somewhat counterintuitive result can be explained. Since there is no syn-

chronization between the consumer’s Model Thread and the rest of the system, a

relative phase, φ, results. This mimics the actual startup conditions of an LVC. The

random assignment is then, in effect, a sampling of the state space. Capturing this

behavior was intentional, as it mimics a real-world distributed simulation where mul-

tiple asynchronous simulation applications are using the same state data, each at

potentially different points in time.

After eliminating the consumer’s Model Thread (T6) as a factor from the ex-

periment, a second three factor, three-level experiment, as shown in Table 4.4, was

conducted to provide additional detailed data on each of the remaining factors con-

tribution to aging including any second- and/or third-order interaction effects.

ANOVA results shown in Table 4.5 indicated that factors T1, T2 and T3 ex-

plain all of the variance in the LVC system model, and are statistically significant,

each having a p-value of zero to three significant digits. Furthermore, each factor’s

56

Table 4.4: 3-Factor, 3-Level Design

Factor Levels
Producer Model Thread (T1) 50, 80, 100 Hz
Producer Sampling Thread (T2) 5, 10, 20 Hz
Network Latency (T3) 5, 50, 100 ms

Table 4.5: 3-Factor, 3-Level ANOVA

Source DOF SS MS F P
T1 2 974 487 170161.47 0.000
T2 2 210038 105019 36696883.44 0.000
T3 2 325093 162547 56798898.05 0.000
T1*T2 4 0 0 0.42 0.796
T1*T3 4 0 0 1.99 0.098
T2*T3 4 0 0 2.02 0.093
T1*T2*T3 8 0 0 1.31 0.238
Error 189 1 0
Total 215 536105

contribution to state space aging is independent; there are no significant second- or

third-order interaction effects. This validates the second LVC hypothesis; with re-

spect to data aging characteristics, each factor’s contribution to aging is independent,

and there are no interaction effects.

Furthermore, because the age of data as seen from the perpective of a consumer

is the sum of each factors contribution to age, and because each factor is linearly

related to either the modeling or sampling thread periods or network latency, the

system satifies both properties of additivity and homogeneity. This implies that in

terms of the data aging, an LVC is a first-order linear system.

4.3 Analytic Model

Using the results in Section 4.2, an analytic model to estimate the mean worst-

case aging and variance of a system design is developed. That is, an analytic model

considers all the identified factors affecting data aging, including the initial startup

dynamics described in Section 4.1, as well as the network latency characteristics.

57

Because LVCs are linear systems with respect to data aging, estimates can be made

by adding each factor’s contribution to age as follows.

A uniform distribution models the contribution to state space aging by Model

Thread transition T1. The mean of this distribution is

µModel =
pModel

2
(4.1)

where pModel is the period of the Model Thread. State space age variance is

σ2
Model =

p2Model

12
. (4.2)

In a similar manner, the uniform distribution also characterizes the contribution

to state space aging by the Sampling Thread, T2. The mean of this distribution is

µSampling =
pSampling

2
(4.3)

where pSampling is the period of the Sampling Thread. The contribution to age variance

is

σ2
Sampling =

p2Sampling

12
. (4.4)

Using (4.1) and (4.3), the contribution of the producer’s architecture to mean

aging is

µProducer = µModel + µSampling. (4.5)

Using (4.2) and (4.4), the contribution of the producer’s architecture to variance is

σ2
Producer = σ2

Model + σ2
Sampling. (4.6)

The mean age of the replicated state space as seen by the consumer is

µSS = µProducer + µNetwork (4.7)

58

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 5 10 15 20

M
ea

n
A

ge
 (

m
s)

Sampling Thread T2 (Hz)

T3=100ms
Analytic

T3=50ms
Analytic
T3=5ms
Analytic

Figure 4.5: Mean Worst-Case Age (ms) (T1=50Hz)

where µNetwork is the mean age due to network latency.

The variance associated with replicated state data aging is

σ2
SS = σ2

Producer + σ2
Network. (4.8)

Mean network latency, µNetwork, and variance, σ2
Network, can be estimated using em-

pirical data collected by tools such as ping, or the characteristics of a representative

distribution. A network modeled as by a two-parameter exponential distribution for

example, would have a mean and variance contribution to aging of

µNetwork = γ +
1

λ
(4.9)

and

σ2
Network =

1

λ2
(4.10)

respectively, where γ and λ are the location and scale parameters of the distribution.

Figures 4.5 and 4.6 compare the analytic model and simulation results for the

mean worst-case and standard deviation of aging for several experimental design cases.

59

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 5 10 15 20

S
ta

nd
ar

d
D

ev
ia

tio
n

(m
s)

Sampling Thread T2 (Hz)

T1=100Hz
Analytic

Figure 4.6: Standard Deviation (ms) (T1=100Hz, T3=5ms)

A
ge

Wallclock Time
t0 t1 t2 tN-1 tN

1
0

Figure 4.7: Distributed State Space Data

For each design, the analytical model’s mean is within ±1ms of the simulation result

with 95% confidence.

4.4 Measuring Consistency

These simulation results lead to the development of an effective and efficient

algorithm to calculate the mean age and variance as seen by the consumer. Data

generated by the producer and placed into the consumer’s State Space can be viewed

as shown in Figure 4.7.

That is, as a consumer receives data, its value is updated, but not necessarily

with the most current value calculated by a producer’s Model Thread (T1). The

value received will, most likely, have aged due to the asynchronous sampling of the

60

producer’s Sampling Thread (T2) and network latency. Because of this and the char-

acteristics of stochastic non-deterministic networks, arriving data might be younger

or in some cases older, than the current value. Whatever the case, after its arrival,

the state space ages linearly with wallclock time until the next update. Deriving the

mean age and variance of state space data from the perspective of a consumers Model

Thread is of most interest.

The mean of a function is the average value of the function over its domain.

The mean µ of f(t) over the interval (t0, t1) is

µ =
1

t1 − t0

∫ t1

t0

f(t)dt (4.11)

where f(t) is the aging function associated with state space data and α is its age upon

arrival. As shown in Figure 4.7, f(t) increases linearly from αi to αi + λi+1, where λ

is the update interval. In other words, data ages at the same rate as wallclock time

advances. Therefore, the aging function is

f(t) = t+ αi (4.12)

and the mean age can be calculated as a summation over all discrete intervals (i.e.,

the intervals defined by the interrarrival time between received updates) divided by

total elapsed time. Thus, the mean age of the state space is

µSS =
1

tN

[∫ t1

0

f(t)dt+

∫ t2

t1

f(t)dt+ ...+

∫ tN

tN−1

f(t)dt

]
(4.13)

which after integration and simplification is

µSS =
1

tN

N∑
i=1

(
λ2i
2

+ αi−1λi

)
(4.14)

where λi is the interrarrival time of the data, and tN is total elapsed wallclock time

over N intervals.

61

The variance of state space aging is the mean square error minus the square of

the mean. The mean squared error is

mse =
1

t1 − t0

∫ t1

t0

[f(t)]2 dt. (4.15)

Using (4.12), (4.15) can be integrated and reduced to

mse =
1

tN

N∑
i=1

(
λ3i
3

+ αi−1λ
2
i + α2

i−1λi

)
. (4.16)

Finally the variance of the state space age is

σ2
SS = mse− µ2

SS. (4.17)

The continuous integration of data age as it is received is a practical way to

compute data aging characteristics in the Petri net simulation. It is also a useful

algorithm to compute, in real-time, the temporal consistency of state data for an

LVC.

4.5 Generalized System Model

Because an LVC is a linear system, sources or generators of latency can be

classified into general categories such as “computing system,” “network,” and “mid-

dleware.” For the producer model, factors T1 and T2 define the characteristics of a

simulation applications computing system latency component while factor T3 defines

the latency properties of the network modeled by an exponential distribution. This

general concept is extended to include other potential sources of latency including

middleware software such as HLA, DDS and TENA.

Figure 4.8 shows how computing system and network latency is classified with

respect to the Open Systems Interconnection (OSI) Reference Model. For this model,

the network infrastructure latency includes time consumed by all media, bridges,

62

Network
Infrastructure

Computing
System

Network

Consumer

Transport

Link

Physical

Network

Producer

Transport

Link

Physical

Figure 4.8: Latency Classification & OSI Model

Network

HLA RTI

Transport

Link

Physical

Network

Producer

Transport

Link

Physical

(+HLA API)

Network

Consumer

Transport

Link

Physical

(+HLA API)(Middleware)

Figure 4.9: HLA-based Communication

routers, gateways, encryption/decryption devices and intervening networks. This is

representative of a DIS-based simulation.

Figure 4.9 shows the software architecture of an HLA-based distributed simu-

lation with respect to the OSI model. Because HLA is an interface specification, the

various implementations do not necessarily include a separate HLA Run-Time Infras-

tructure (RTI) application. In this case, HLA API interfaces within the producers

and consumers establish and manage all the communication between the nodes. In

others, the HLA API communicates with a separate RTI which manages all shared

state data within the distributed simulation.

An estimate of data aging for an LVC system design that includes all of these

sources is

µSS = µComputing + µMiddleware + µNetwork (4.18)

and the age variance of a system design is

σ2
SS = σ2

Computing + σ2
Middleware + σ2

Network. (4.19)

63

4.6 Relationship to Validity Interval

In Section 3.8, we defined a system design to be temporally consistent if each

shared data object is received by the n nodes (i.e., consumers) in the distributed

simulation so that ∀i, 1 ≤ i ≤ n, θTS + θi,V I ≥ t.

To tune the system to meet this requirement, the relationship between a data

object’s validity interval and a system designs adjustable parameters is used or

θV I ≥
1

fModel

+
1

fSampling

+ network delay (4.20)

where fModel and fSampling are the model update and sampling frequencies respectively,

and “network delay” is specified given an acceptable reliability statistic (e.g., 95% of

the time).

Often, network delay is the least adjustable parameter in the system. If that is

the case, an effective validity interval can be written as

θ
′

V I ≡ θV I − network delay ≥ 1

fModel

+
1

fSampling

(4.21)

In order for the system to be temporally consistent, the computing system la-

tency must be less than or equal to the effective validity interval θ
′
V I . Using Figure 4.10

which shows the influence of Model and Sampling Thread frequencies on computing

latency, system parameters can be adjusted to meet this requirement. As long as

computing system latency is less than θ
′
V I , the LVC will be temporally consistent.

4.7 Application

Given managing LVC data consistency adds complexity to a system design,

the motivation to interconnect geographically dispersed simulation applications can

reasonably be questioned. To this point, we have considered a LVC system to be

a set or collection of autonomous simulation applications, each designed to fulfill

a specific role in the system design. While this might be ideal, more commonly,

64

 10

 20

 30

 40

 50

 60

 70

 80

 10 20 30 40 50 60 70 80

S
am

pl
in

g
F

re
qu

en
cy

 T
2

(H
z)

Model Frequency T1 (Hz)

50ms
80ms

100ms
150ms

Figure 4.10: Computing System Latency

LVC systems are assembled by interconnecting a collection of existing independent

simulation applications or by sampling real operational system hardware (live entities)

which are often located at different geographic locations.

From an LVC development perspective, this is appealing, as much of the effort

to create functional applications is complete. Unfortunately, this strategy limits the

system architects ability to partition and tailor the set of dynamic shared states for

maximum performance and scalability. An ideal partitioning scheme would involve

sharing states with relatively large validity intervals.

Any proposed LVC system design should be considered a “candidate” to evaluate

against defined consistency requirements based upon intended use and purpose. If the

candidate system does not meet requirements, a new candidate should be derived that

satisfies the consistency requirements.

65

4.8 Aerial Combat Example

As a practical example, consider an LVC system to train fighter pilots for close

range aerial combat (i.e., dogfighting). The objective of the training is to learn tactical

maneuvers which provide an advantage over an adversary. The LVC design connects

two high fidelity motion-based flight simulators located at different geographic loca-

tions.

Considering the positional accuracy requirements to conduct this training and

the quality of dead reckoning algorithms to estimate aircraft position, the system is

said to be temporally consistent (i.e., correct) if shared data is no older than 140ms,

98% of the time. As a point of reference, the DIS standard specifies a transport-

to-transport (i.e., network infrastructure) latency value of 100ms with an acceptable

reliability of 98% for “tightly” coupled interactions [IEE95].

4.8.1 Candidate System Design. The specifications for the candidate LVC

system are

• Two high fidelity motion-based flight simulators connected across a dedicated

network with a mean latency of 50ms and a standard deviation of ±5ms.

• The dynamic shared state consists of continuous data objects that specify the

position of each fighter.

• The local state space managed by each simulation application is updated at

50Hz which conforms to the producer system model.

• Simulation applications transmit shared state updates at 10Hz.

4.8.2 Evaluation. This candidate system design is evaluated by considering

each source or latency generators contribution to aging as presented in Section 4.5.

As shown in Table 4.6, computing system latency is determined considering the

startup dynamics (relative phasing relationship) between the modeling and sampling

threads for the producer as described in Section 4.1. For this scenario, worst-case

66

Table 4.6: Computing System Worst-Case Analysis

Factor Upper Limit Maximum (ms)
Model Thread Bounded 20
Sampling Thread Bounded 100
Total Bounded 120

aging occurs when the relative phase between the threads is such that the sampling

and periodic transmission of updates uses data from the producers state space already

aged 20ms. Because the next periodic transmission does not occur for another 100ms,

a consumer might receive data at least 120ms old. After including network latency

component of 50ms ±5ms, an estimated mean for data aging, µSS, is 170ms. Thus,

this candidate design does not meet requirements.

This is resolved by increasing the periodic rate at which state space updates are

transmitted to 20Hz which reduces the worst-case computing system latency to 70ms

and results an in overall estimate for µSS of 120ms to 139ms with 98% reliablity. At

this new rate, the LVC is now within bounds of the consistency requirements.

4.9 Summary

This chapter characterized LVCs as a set of asynchronous simulation applica-

tions each serving as both producers and consumers of shared state data. Owing

to the asynchronous execution and the non-deterministic characteristics of the inter-

connecting networks, state data used by a consumer is often inconsistent with the

most recent value produced. Because of this, the consistency requirements of dy-

namic shared state data must be described in terms of accuracy and timeliness – each

mapping to a validity interval for each node in the system.

In terms of data aging, an LVC system can be viewed as a first order linear

system and the rate at which the consumer uses state data is irrelevant to the aging

itself. Owing to this, simple analytic models to estimate data aging based upon system

architecture are derived. A useful algorithm to compute, in real-time, the temporal

consistency of state data for an LVC in operation is provided. Finally, the relationship

67

between a data object’s validity interval and an LVC’s system parameters is defined

so a temporally consistent system can be designed.

68

V. Real-Time Design Patterns

In software engineering, a design pattern is a general reusable solution to a commonly

occurring problem in software design [GHJV95]. It is a description or template for

how to solve a problem in many different situations. The Model-View-Controller

(MVC) and Component design patterns are particularly interesting and are adapted

herein to the domain of virtual simulation. The MVC pattern provides a high-level

architectural structure of an application and classifies objects according to the roles

they play. The Component pattern is used as a basis to implement those specific

objects.

Accepted real-time software organization paradigms are incorporated into these

patterns so rate monotonic quantitative methods can be used to estimate the perfor-

mance of virtual simulation applications. Incorporated paradigms include the sepa-

ration of software code into foreground and background tasks while the scheduling of

individual jobs (i.e., software code) mimics a fixed cyclic scheduler. The patterns also

incorporate hierarchical modeling concepts to define modeled systems.

For each pattern, an implementation that leverages modern object-oriented soft-

ware techniques is assumed. This provides the flexibility to use the concepts of “selec-

tive abstraction” and “focused fidelity” to prune object trees, thus improving system

performance.

5.1 Real-Time Concepts

This section highlights key concepts associated with software timing constraints

during execution including how software systems with temporal requirements are

organized. For additional information Liu [Liu00] provides a comprehensive discussion

of the theoretical foundations of real-time systems while Laplante [Lap04] focuses more

attention on implementation issues.

A real-time system is a system whose specification includes both logical and

temporal correctness requirements.

69

Figure 5.1: Release Time and Deadline Relationships

• Logical correctness produces correct outputs.

• Temporal correctness produces outputs at the right time.

Software systems that respond to external inputs and generate outputs that

affect the real-world fall into this category. Real-time software systems interact with

an external environment such as a person or a piece of hardware. Thus, any timing

constraints due to the external environment impose requirements on the software

system.

5.1.1 Jobs. Computer software is executed by scheduling code (units of

work) on an operating system. These scheduled units of work are called jobs. The

temporal characteristics of an individual job are defined by parameters such as release

time, absolute and relative deadlines, and response time as follows:

• Release time - the instant the job becomes ready to execute. The job can be

scheduled and executed any time at or after its release time if data and control

dependency conditions are met.

• Absolute deadline - the instant of time when the job must complete execution.

• Relative deadline - the difference between the absolute deadline and release time.

• Response time - the difference between the time the job completed and release

time.

Figure 5.1 graphically shows the execution of several jobs instances (J1, J2 and

J3), each with its own release time and deadline. J1 starts after its release time and

70

J J J

Release
Time

Release
Time

Release
Time

i1 i2 i3

pi

Figure 5.2: A Periodic Task with 3 Jobs

completes before its deadline. J2 completes its execution at the specified deadline,

and J3 starts its execution at the point of release.

It is clear from Figure 5.1 that J2 has the worst response time as it completes

just before its deadline and J3 has the best response time.

5.1.2 Periodic Task Model. Scheduled units of work are called jobs, while

a task is defined as a set of related jobs. This association between tasks and jobs is

very general as there is no rigid “structure” implied by associating other than that

provided by the periodic task model [LL73]. In the periodic task model, a task is a

sequence of jobs executed at regular intervals. This interval defines when jobs are

released by a task.

The periodic task model is a well known deterministic workload model in real-

time system theory. In Figure 5.2, the period pi of a periodic task Ti is the time

interval between release times of consecutive jobs, Ji1, Ji2, Ji3, in Ti. As Figure 5.2

graphically depicts, a job can execute any time after its release. The execution time,

ei, for the ith task, Ti, is the sum of the maximum execution times of each job in the

ith task set.

Typically it is assumed jobs complete their execution by the next release time.

In other words, the job deadline Di is equal to the period pi for all tasks in the system

T1, T2, ..., Tn. This assumption bounds the response time for a task. If the response

time needs to be shortened, a deadline that is shorter than the task period can be

specified.

71

Figure 5.3: Example Usefulness Function

5.1.3 Reliability. The reliability of a system meeting its timing constraints

divides real-time systems into two classes, hard or soft. Hard real-time systems must

satisfy explicit (bounded) response-time constraints or risk severe consequences, in-

cluding failure [Lap04]. Relaxing reliability such that some deadlines can be missed

results in a soft real-time system. That is, the system has degraded performance but

does not fail if it misses a response-time constraint [Lap04].

5.1.3.1 Usefulness Function. Two approaches capture the quality of

a soft real-time system where timing constraints are occasionally violated. The first

uses probabilistic values to define how often deadlines will be met. For example, 99%

of deadlines will be met.

The second approach defines a “usefulness” function for each job as shown in

Figure 5.3. This function characterizes how the system is affected or degraded as a

result of completing a job after its deadline. For a hard real-time system, the value

of the usefulness function is zero for jobs completing after their deadline.

5.1.4 Utilization. The ratio ui = ei/pi is the utilization of a task, where pi

is the task period and ei is the maximum execution time associated with the task.

That is, the utilization is the fraction of time a periodic task keeps a processor busy.

The total utilization U is

U =
n∑

i=1

ei/pi

where n is the number of tasks in the system.

72

While utilization is a unitless quantity, a common unit of measure in practice is

the number of milliseconds (ms) per second a task consumes. For example, consider a

task defined by a single job executed at 50 Hz or every 20ms. Assume the maximum

execution time for the job is 2 ms. The utilization can be specified as 0.1, 10% of cpu

time, or simply as 100 ms/s.

5.1.5 Foreground/Background Systems. An important requirement of the

periodic task model is the maximum execution time, ei, for each periodic task. With-

out knowing the maximum execution time, guaranteeing the timely completion of

tasks is impossible. To meet these bounds, software is partitioned into real-time and

non-real-time tasks. Real-time system research literature calls this a foreground/back-

ground system in which the foreground and background are:

• Foreground - the set of real-time tasks or processes.

• Background - the set of tasks or processes that are not time critical.

Organization of the code into a foreground/background design is a very common

software architecture for embedded applications. In fact, all real-time implementa-

tions are special cases of that design [Lap04].

5.1.6 Rate Monotonic Analysis. Rate Monotonic Analysis (RMA) is a

collection of quantitative methods and algorithms to specify, understand, analyze,

and predict the timing behavior of real-time software systems. RMA grew out of

the theory of fixed-priority scheduling. A fixed-priority scheduling policy assigns

a priority to each periodic task relative to other tasks. The term rate monotonic

derives from assigning priorities to tasks based upon a monotonic function of their

rates. A system is said to be schedulable if all tasks meet their deadlines. Thus, RMA

provides a mathematical and scientific model for reasoning about the schedulability

of independent tasks.

A very influential fixed-priority scheduling paradigm is the rate-monotonic (RM)

algorithm [LL73]. It is an optimal static priority algorithm for a task model in which

73

tasks with a shorter period are given a higher priority than tasks with longer periods.

The rate-monotonic theorem (described below) is the most important and useful result

of this theory [Lap04]. Another important result is the identification of an upper

bound on processor utilization such that all foreground tasks will meet their deadlines.

In other words, the algorithm identifies both an optimal (rate monotonic) schedule

and a bound that places a limit on processor utilization for given real-time tasks.

Both theorems can be stated as follows:

Rate Monotonic Theorem [LL73] Given a set of periodic tasks and a preemptive

priority scheduling discipline, then assigning priorities such that the tasks with shorter

periods have higher priorities yields an optimal schedule.

Rate Monotonic Analysis Bound [LL73] Any set of n periodic tasks is rate mono-

tonic schedulable if the processor utilization, U , is no greater than n(21/n − 1).

5.1.7 Threads as Tasks. A thread in computer science is short for a thread

of execution. Threads are a way for a program to split itself into two or more simul-

taneous (or pseudo-simultaneous) computational jobs and is the basic unit of work

handled by a scheduler. Most commercial operating systems do not support peri-

odic threads, but a periodic task at the user level can be implemented as a thread

that alternately executes jobs and is then suspended until the beginning of the next

period [Liu00].

To differentiate between real-time foreground threads (implemented as periodic

tasks) and non-real-time background threads, background threads are assigned the

lowest priority in the system; they can be preempted by any higher priority foreground

thread. A system in which a higher-priority task is always able to preempt a lower-

priority task is called a preemptive-priority system.

Mapping tasks to threads that can be assigned a priority allows the application

of rate monotonic theorems as long as the assumptions used to derive the bounds

are met. In particular, schedulability and the impact of specific implementations in

relation to rate monotonic bounds can be determined.

74

Model

Controller

View

(Simulated Systems)

Figure 5.4: Model-View-Controller Pattern

5.2 Model-View-Controller Pattern

In the MVC pattern, there are three types of objects: model objects, view ob-

jects, and controller objects. Figure 5.4 shows the roles these objects play in the

application and their lines of communication. When designing an application, choos-

ing or creating custom classes for objects that fall into one of these three groups is

a major step since it determines object boundaries and communication with other

types of objects occurs across those boundaries [Inc07].

For a particular application domain, Model objects represent special knowledge

and expertise; they hold an applications data and define the logic that manipulates

that data. A well-designed MVC application has all its important data encapsulated

in model objects and, ideally, a model object has no explicit connection to the user

interface [Inc07]. For a virtual simulation application, the model object is the simula-

tion itself. It contains all simulation state data, behaviors in the form of hierarchical

system models, and management of simulation time. The model object as defined in

the MVC pattern should not be confused with simulation model. For example, the

model object in the MVC pattern is the domain-specific representation of the data

on which the application operates (i.e., simulation state data); a simulation model is

an abstract representation of a real or imagined system such as an aircraft.

A view object knows how to display or present data to an external viewer.

The view is not responsible for storing the data it is displaying and comes in many

different varieties. For a virtual simulation, the view includes the drawing of graphical

displays such as GUI interfaces and operator displays. In the case of distributed virtual

75

Player

System

*

*

Simulation

Simulation Time

Cycles, Frames
Phases

Environments

Station

Real-time
Functions

Controls & Displays
Interface

1

*

*

Network I/O

*Graphics

Device I/O

TENADIS HLA

Figure 5.5: Simulation Pattern

simulations (DVS), a view is also responsible for sharing simulation state data across

a network.

The controller object acts as the intermediary between the application’s view

objects and its model objects. Ideally, it is the sole source of user inputs and connects

the simulation to its graphical displays. Practically, one often merges the roles played

by an object. For example, an object that fulfills the roles of both controller and view

would be called a “view-controller” [Inc07].

A view-controller is view layer centric. It “owns” the views, while still manag-

ing the interface and communications with the model. Combining roles like this is

common [Inc07] and reflects the tailored MVC simulation design pattern shown in

Figure 5.5.

The simulation pattern in Figure 5.5 has a top-level “Station” object contain-

ing one simulation object (i.e., the model in the MVC pattern) and multiple view-

controllers. This top-level object is called a Station to reflect its close association

between the management of I/O functions and visual displays with a real physical

76

operator station. The Station object also manages high-level functions that create

threads associated with each of the view-controllers as needed.

The simulation object consists of a list of players organized as a set of hierarchical-

based system models consisting of systems with sub-systems. The simulation object

manages simulation time and provides attributes needed to implement a fixed cyclic

scheduler as described in Section 5.4. View-controllers have handlers that read and/or

write to I/O devices, interactive graphical displays and interoperability network in-

terfaces. The network interoperability interface for sharing simulation state data im-

plements a variety of standards such as the Distributed Interactive Simulation (DIS),

the High-Level Architecture (HLA), and the Test and Training Enabling Architecture

(TENA) specifications.

5.3 Multi-Threading

Ideally, the execution of a simulation application based upon the MVC simula-

tion pattern would consist of a loop that sequentially reads inputs, executes the system

models, and generates outputs (i.e., update graphics and process network activities)

once per frame. This is a typical execution strategy for constructive simulations where

the requirement to execute in real-time is often relaxed since everything is simulated

by models. A virtual simulation that performs all of these tasks in real-time, however,

is limited by processing power, so this approach becomes problematic as frame rates

increase, thereby reducing the amount of time to complete all tasks.

To resolve this fundamental problem, the processing time associated with in-

put devices, graphic display(s) and interoperability network management functions

(i.e., the view-controllers) are partitioned into separate periodic tasks, each executed

asynchronously with respect to each other, at particular frequencies. For example,

the update rate associated with graphical displays might be much less than the rate

simulation advances time. Furthermore, the division of software code into foreground

and background tasks, as discussed in Section 5.1.5, reduces the workload associated

with processing time-critical tasks. In other words, separating time critical code from

77

code that can be executed in the background decreases the maximum execution time,

ei, of a task.

The challenge is to organize software code to promote this separation of work,

thereby enabling the use of RM quantitative methods to estimate performance. At a

high-level, RM assumptions translate into software coding rules (or constraints) which

are promoted in these design patterns. One such RM assumption is that periodic tasks

(i.e., threads) execute independently of each other. Thus, the execution of one thread

should never be blocked waiting for data produced by another. This assumption

precludes the use of semaphore locks to control access to data available to two or

more independent threads.

5.4 Component Pattern

The MVC simulation pattern, as shown in Figure 5.5, is the first step in sep-

arating a virtual simulation application into high-level objects that can be executed

independently. Further improvement can be made by partitioning the real-time and

non-real-time jobs defined by those independent objects (i.e., the simulation and view-

controller objects) into foreground and background tasks. The Component design pat-

tern facilitates this separation while simultaneously supporting hierarchical modeling

concepts.

5.4.1 Hierarchical Modeling. Most systems selected for simulation-based

analysis are complex [Rao03]. Because managing the complexity of models is a chal-

lenging task, large systems are seldom modeled in a monolithic fashion. In fact, they

are usually divided into smaller, interacting subsystems. The subsystems themselves

are further divided into smaller sub-subsystems until a manageable level of complex-

ity is reached. In other words, the system under study can be viewed as a “system

of systems.” These divisions results in a hierarchical structure in the system under

study itself.

78

Player

RF EOIR Aero Propulsion

Sensor Dynamics

Figure 5.6: Hierarchical Player Model

An example of this hierarchy is shown in Figure 5.6, where the top level model

is a “player” or “entity” within the simulation. The player is composed of both a

dynamics and a sensor model. The sensor model is a composite of several sensors,

namely, radio frequency (RF), infrared (IR), and electro-optical (EO) models. Dy-

namics is composed of an aerodynamics and propulsion model.

Hierarchical models from a software engineering point of view are software “com-

ponents.” Conceptually, a component is an entity, a real-world object, viewed as a

“black box.” Its interface, behavior, and functionality are visible but its implementa-

tion is not [RHJ+09]. These components naturally map to object-oriented implemen-

tation paradigms supported by languages such as C++.

Gamma [GHJV95] contains a catalog of commonly used design patterns in soft-

ware development and provides solutions developed and evolved over time. Structural

design patterns provide classes and objects that form larger structures. Of partic-

ular interest for hierarchical modeling is the composite pattern in Figure 5.7 which

implement hierarchical models in object-oriented programming languages.

The composite pattern uses a tree structure where components can have chil-

dren, i.e., subsystems and sub-subsystems. The Component class declares the in-

terface for objects in the composition and implements default behaviors for all the

classes. The Leaf class has no children while the Composite class defines behavior

for components that have children. The operation method is a placeholder for the

functionality of the model. Using this structure, modeled systems can be divided into

sub-systems and defined as Components via inheritance.

79

Figure 5.7: Structural Composite Pattern [GHJV95]

When implementing a composite pattern there are trade-offs related to software

design safety and transparency. Gamma [GHJV95] provides an extensive discussion

that considers several implementation approaches. For example, the component class

declares the add and remove methods to provide a transparent interface for all com-

ponents, but these do not make sense for a leaf. These trade-offs are considered as

this pattern is adapted to the domain of system modeling and real-time processing.

5.4.2 Partitioning Code. The hierarchical-based approach addresses model

complexity, but does not address the temporal performance of code execution, specifi-

cally, the reliable completion of jobs at or before their deadline. Partitioning code into

real-time foreground and non-real-time background tasks as discussed in Section 5.1.5

is recommended.

Given hierarchy models with the structural composite patterns shown in Fig-

ure 5.7, software partitioning can be incorporated by replacing the single operation

method by two methods, updateTC, and updateData as shown in Figure 5.8. The

updateTC method (where TC means time critical) is a placeholder to implement a

real-time task which includes calculations associated with updating model state space.

80

Figure 5.8: Component With Partitioning Support

Figure 5.9: Example Component Models

Less time-critical jobs, such as saving or logging data to a hard drive is placed within

the updateData method.

We add and explicitly pass the simulation step-size (sometimes referred to as

delta-time) as a parameter. Step-size is used by mathematical calculations associated

with system models. Since updateTC automatically calls all of its children’s updateTC

methods, executing a complete hierarchical model (implemented as a component tree)

occurs with a single method call to the root component.

Our component design pattern considers all components to be composites. In

other words, when modeling systems, sub-system, and sub-sub systems, there are no

leaves, as each model is an abstraction at some level.

Consider, for example, the player model in Figure 5.6. To implement this sys-

tem, several models are created by subclassing from the Component class as shown

in Figure 5.9. Component models whose functionality is described by a set of differ-

ential equations might include a numerical solver in the updateTC method. Other

background, less time critical jobs, such as saving vehicle position data at each sim-

ulation step for analysis, is in the updateData method. After each component model

is built, the complete flight control system is assembled into a component tree that

81

F F F F F F F F F F F F F F F F

Cycle

Phase 1

Phase 2

Phase 3

Phase X

Time

Figure 5.10: Cyclic Scheduler Structure

is the complete modeled system. Subsequent execution or simulation of the modeled

system occurs by calling the updateTC method of the root component.

5.4.3 Scheduling Jobs. Designing a software system to meet temporal re-

quirements is a scheduling problem. More formally, to meet a program’s temporal

requirements in real-time systems, a strategy is needed for ordering the use of system

resources [Lap04]. This strategy results in a schedule for executing jobs. Of particular

interest is how to schedule jobs to maintain a consistent simulation state space.

To accomplish this, a cyclic scheduler specifies when jobs are executed. The

schedule is static, which may not be optimal, but is highly predictable and simple

to implement. A cyclic scheduler makes decisions periodically. The time interval

between scheduling decision points are called frames. Scheduling decisions are made

at the beginning of every frame and there is no preemption within a frame.

A notional structure for a scheduler is shown in Figure 5.10. Frames are grouped

into a “cycle,” and subdivided into an arbitrary number of phases. Frames are di-

vided into phases to resolve data and control dependencies among jobs and specify

an execution order.

Adding features to support static scheduling in a Component class is as simple

as adding attributes, specifically, cycle, frame and phase attributes in the form of class

variables as shown in Figure 5.11. Subclasses of Component can be built that not

only partition model code (i.e., jobs) for execution in the foreground and background,

but explicitly define which frames and phases jobs should be processed. Providing

82

Figure 5.11: Component with Scheduling Support

direct access to scheduling attributes allows the developer to design a model or set of

models that balances execution load across frames.

Consider a system model derived from the Component class with the updateTC

method coded below:

updateTC(dt) {

switch (phase) {

case 0:

// system model code A

break;

case 1:

// system model code B

break;

}

}

The phase attribute is used to impose an execution order within each frame for

modeling systems. Conditional code before the switch statement limits processing

to selected frames within a cycle. A very common technique conditionally selects a

single frame, all even or odd frames, or all frames within a cycle for execution. The

parameter “dt” (delta time) is the simulation time advance step-size and is passed

to the updateTC method and made available for system model calculations. For this

design pattern, determining the maximum execution time, ei, for the task defined by

the periodic execution of the updateTC method is a matter of computing the total

execution time for each individual frame in the cycle, and selecting the maximum.

83

Figure 5.12: Graphic and Network Classes

5.4.4 Modeling a Player. Consider a player or entity defined by an ob-

ject tree specified by the set of Component instances {C1, C2, C3, ..., Ck}. The cyclic

scheduler for the object tree has p phases, and f frames per cycle. The maximum

execution time for the task defined by this single hierarchical system model can be

determined by computing the execution time in each frame,

ef =
c∑

comp

p∑
phase

ef,c,p, (5.1)

where comp is the set of components, followed by selecting the maximum frame exe-

cution time in the cycle,

ePlayer = max
1≤f≤cycle

{ef}. (5.2)

For a virtual simulation, this is the execution time of a single instance of a player

managed by the simulation object shown in Figure 5.5.

5.4.5 Graphics and Input/Output. To support unique features of view-

controller objects, specialized Components can be created with additional methods.

For example, just as the single operation method in Component was replaced with

updateTC and updateData to partition jobs, additional methods can be added to

support the execution of specific jobs unique to a particular view-controller. Effec-

tively, each new method defines an independent execution path through a hierarchical

system model or object tree.

As shown in Figure 5.12, specialized Component classes to support graphics and

interoperability networks are defined. Analogous to the updateTC method provided

84

by Component, the Graphic class provides a draw method for specifying graphic

operations. In a similar vein, the NetworkIO class provides two methods for re-

ceiving and transmitting state data across a network, inputFrame and outputFrame.

The NetworkIO class also serves as an abstract interface to support a wide range of

interoperability protocols providing a clear separation between models and specific

interoperability implementations.

Since the Graphic and NetworkIO classes are specialized Components, they can

use updateTC for real-time model execution and updateData for background process-

ing. For example, Graphic-based components can use updateTC, graphic operations

in draw, and non-real-time background processing in updateData. Strictly speaking,

this violates the spirit of the MVC pattern as the model would be closely coupled

with the view and controller, but is acceptable to meet temporal constraints.

5.5 System Abstraction

Implementing hierarchical, component-based models using the Component de-

sign pattern efficiently implements “selective abstraction.” Selective abstraction [SF98]

reduces the complexity of models by identifying and discarding details of the model

which have minimal impact on the overall results. This allows the developer to prune

the object tree at selected points to reduce the level of complexity to improve runtime

performance.

Another approach starts with highly abstract system representations and adds

fidelity as needed. The term “focused fidelity” is introduced to capture this concept.

“Focused fidelity” provides the appropriate level of detail (resolution) to the system

under study to provide the required accuracy while eliminating undesirable system

inputs. This is important because complex models that are not directly under study

often affect independent variables which are inputs into the system under study, and

can therefore confound the study results. Additionally, it is inefficient and often

counter-productive to develop more complex models than needed for the simulation.

85

For example, in Section 3.3 a pilot was inserted into Fujimoto’s [Fuj00] simula-

tion of an aircraft flying from New York to Los Angeles to highlight the challenges

virtual simulations must address. While the pilot adds fidelity, inserting him into

the simulation environment might, depending on the focus of the study, introduce a

source of extraneous inputs which can confound results. By focusing on the system

under study, analyzing both the required fidelity of the system models and the re-

quired control over the system’s inputs determines whether or not the pilot is relevant

and needs to be inserted.

The Component class provides the means to implement selective abstraction and

focused fidelity concepts. Applying them reduces simulation development time and

cost, while simultaneously improving runtime performance and validity of simulation

results.

5.6 Estimating Performance

The performance of a simulation design based upon the MVC simulation, as

shown in Figure 5.5, and the Component pattern, as shown in Figure 5.11, can now

be estimated. Object trees created with Component, Graphic and NetworkIO classes,

the root methods updateTC, draw, inputFrame, outputFrame, and updateData can be

viewed as independent execution paths that can be sequentially processed or associ-

ated with individual threads.

As mentioned in Section 5.2, virtual simulations are limited by computational

processing power. This forces a developer to associate execution paths to independent

threads and assign relative priorities. Typically, the thread associated with the simu-

lation object that sequentially processes the players in the player list has the highest

priority to ensure state space updates occur in sync with the wallclock. Assigning the

highest priority also avoids the possibility of preemption. Assigning a thread to draw

graphics is a function of requirements. The same is true of transmitting network data

through outputFrame. Receiving network data occurs in inputFrame, and is usually

assigned to a thread that is blocked until data arrives. The thread assigned to pro-

86

cess the updateData method is always assigned the lowest priority as it remains in the

background.

To determine the maximum simulation execution time, esim, the time to sequen-

tially process all of the players in the player list for each frame in a cycle is computed,

followed by the selection of the maximum. At first glance it might appear that this

maximum can be computed for each player independently, without regard to other

players in the player list. Computing the maximum in this fashion, however, does not

account for the execution time associated with player interactions. For example, con-

sider the player shown in Figure 5.6. While the execution time of aircraft dynamics is

independent of other players in the simulation player list, this is not the case for the

RF sensor model. For this reason, the maximum simulation execution time should

also be computed considering all the players in the player list and any execution time

associated with player interactions.

Determining the maximum execution time for draw, edraw, and outputFrame,

enet, is simpler because each frame is treated the same, or in other words, not grouped

into a cycle. Each thread has an associated period, psim, pdraw, and pnet, respectively.

By definition, the background thread does not have a period, it simply executes

as often as possible. Assuming the three foreground threads just mentioned, the

utilization for the system is

U =
esim
psim

+
edraw
pdraw

+
enet
pnet

. (5.3)

If this computed utilization is not greater than the RMA bound, n(21/n − 1),

or 780 ms/s for n = 3, then the system is schedulable. If the bound is not satisfied,

abstracting system models (cf. Section 5.5) to reduce complexity and improve runtime

performance should be considered.

As another example, consider a virtual simulation in which simulation models

are updated by a high priority thread, and graphics are updated by a lower priority

thread. Assume task utilizations of 200 and 300 ms/s, respectively. Consider all disk

87

I/O and any other non-real-time tasks to be assigned the lowest priority thread (i.e.,

background). Calculating an RMA bound for 2 real-time tasks yields a utilization

of 828 ms/s and since the total utilization for the system is 500 ms/s, the system is

schedulable. Thus, each job will meet its deadline.

It is reasonable to assume the simulation object which contains the system

models are updated at a rate equal to, or higher than, graphical views derived from

the data itself. In other words, graphical views typically display information either

directly or indirectly derived from state space variables. Updating graphical views at

a rate faster than the rate in which data changes is inefficient. This same argument

can be applied to transmitting state data across a network.

Often in distributed virtual simulations, player or entity state data can be es-

timated for vehicle position using dead reckoning. In this case, a usefulness function

(cf. Section 5.1.3.1) indicates the value of the data if it is tardy. Thus, the quality of

the simulation system degrades slowly and background processing of network activity

might be sufficient.

5.7 Consistency and Utilization

The association between consistency and utilization is made clear by writing

(5.3) as

U = fsimesim + fdrawedraw + fnetenet (5.4)

where fsim, fdraw, and fnet are the frequencies of the threads being executed by the

simulation application. In this form, fsim corresponds to the model frequency fModel,

and fnet corresponds to the sampling frequency fSampling of (4.20).

The frequency of the simulation and the drawing of displays is determined con-

sidering modeling objectives and local interaction requirements. The frequency of the

network thread should be set to distribute shared state data so that LVC and DVS

consistency requirements are met. Because of this additional consideration for con-

88

sistency throughout the distributed simulation, the frequency of the network thread

plays an important role in determining overall application utilization.

5.8 Summary

A flight simulator is useless if it does not reflect the performance of a real

aircraft, helicopter, or spacecraft with sufficient accuracy. To meet the challenging

task of developing simulations that reliably execute in real-time, two real-time design

patterns were developed; a tailored version of the model-view-controller architecture

pattern along with a companion Component pattern. Together they facilitate the

development of hierarchical simulation models, graphical displays, and network I/O

that incorporate real-time system paradigms.

The patterns presented have not been developed in isolation. In fact, they have

been carefully crafted and used for many years by simulation engineers. They are

also heavily used in the open-source OpenEaagles [RHJ+09] simulation framework

as discussed in Appendix B. These design patterns promote software designs that

consider real-time requirements and allow performance estimates to be calculated us-

ing rate monotonic analysis techniques. Furthermore, the association between thread

frequencies and its affect on LVC/DVS consistency and application utilization was

discussed.

89

VI. Conclusion

Since the first simulation networks of the early 1980s to the current state-of-the-art

in high-performance distributed computing and gaming, a common vision held by re-

searchers, technologists, and practitioners has been to seamlessly network live, virtual

and constructive entities into a common environment. Excluding multi-player gaming,

the Department of Defense (DoD) is the largest developer of these systems [SZ99] and

invests a significant amount of money into them. LVC and DVS systems are used for

training, test and evaluation, experimentation and strategy evaluation. An example

is the Air Force-Integrated Collaborative Environment (AF-ICE) [BM06].

Unfortunately, these environments are notoriously difficult to design, implement,

and test due to their concurrency, real-time and networking characteristics [YZD00].

System designs are complicated by the conflicting requirement to simultaneously con-

nect geographically distributed simulation applications, while each executes and re-

sponds to operator and/or hardware inputs in real-time. This conflict can only be

resolved by relaxing the consistency of shared data. Requirements associated with

these system have, in the past, been principally driven by operator interaction re-

quirements at the expense of LVC/DVS consistency.

Because of this, it is important to understand the relationship between con-

sistency and interaction quality of these environments which are at odds with each

other due to the underlying design and architecture of these distributed simulation

systems. It is especially important to understand this relationship from the stand-

point of verification, validation and the potential accreditation of these simulations

for their intended use.

LVCs are characterized as a set of asynchronous simulation applications each

serving as both producers and consumers of shared state data. Because of the asyn-

chronous execution and the non-deterministic characteristics of the interconnecting

networks, state data used by a consumer is often inconsistent with the most recent

value produced, therefore, consistency requirements of dynamic shared state data

must be described in terms of accuracy and timeliness – each mapping to a validity

90

interval for each node in the system. Temporal consistency theory from the domain

of soft real-time database theory is adopted as a basis and framework to describe

requirements.

In terms of data aging, an LVC system is a first-order linear system and the rate

a consumer uses state data is irrelevant to the aging itself. Because of this, simple

analytic models to estimate data aging based upon system architecture can be derived.

An algorithm to compute, in real-time, the temporal consistency of state data for an

LVC in operation is developed and the relationship between validity intervals and an

LVC’s systems parameters is defined.

Furthermore, to meet the challenging task of developing simulations that reliably

execute in real-time and provide the facility to model hierarchical systems, two real-

time design patterns are developed; a tailored version of the model-view-controller

architecture pattern along with a companion Component pattern. Together they

provide a basis for hierarchical simulation models, graphical displays, and network

I/O in a real-time environment. Appendix B provides additional information that

shows how these patterns have been leveraged by real simulation applications.

Finally, the relationship between consistency and interactivity was established

in Chapter V by mapping threads created by a simulation application to factors that

control both interactivity and shared state consistency throughout the distributed

environment. These factors are the frequencies or rates at which various system com-

ponents operate. The utilization of simulation applications can then be computed

considering both requirements and compared with rate monotonic principles to de-

termine if a system design is feasible.

In summary, this research defines a fundamental framework to describe LVC/DVS

simulation data consistency requirements and provides the means to evaluate system

designs that consider both interaction and consistency requirements.

91

6.1 Future Research

The Technical Cooperation Program [BCE+06] flowchart shown in Figure 7.1

outlines the activities to conduct a valid simulation experiment. The arrows on the

side of the chart indicate the added activities of “determining validity intervals” and

“data consistency monitoring” in the Experimental Development and Experiment

Execution phases respectively. Both of these activities are important for LVC and

DVS experiments and are topics for future research.

6.1.1 Determination of Validity Intervals. Accuracy requirements and thus

validity intervals flow from modeling and fidelity requirements defined during the

Experiment Development phase. For continuous data with a bounded rate of change,

error thresholds are the basis for defining such an interval. For discrete data, the

timeliness of the data and its impact on models serves the same purpose.

Consider the interaction of a missile launched at an aircraft. Furthermore,

consider an LVC designed such that the dynamics of missile position are updated by

a simulation different than the one managing the position of the aircraft. Because

of the inconsistency in shared data between the simulations, the relative positions

between the missile and aircraft in both simulations are in error. This error needs to

be quantified so that appropriate validity intervals for both missile and aircraft state

data can represent the interaction correctly. If determining whether the detonation

of the missile destroys the aircraft is the goal, the validity interval for the transmitted

discrete state data representing the detonation must also be carefully specified.

A rigorous methodology for defining validity intervals will no doubt be heavily

dependent on specific experiment objectives, but establishing methods to translate or

compute the interval from modeling, fidelity and interaction requirements is essential.

6.1.2 Data Consistency Monitoring. The historical approach for detecting

problems in a distributed network environment is to monitor the network hardware

and computer applications over time and note the occurrence of abnormal events. Ge-

92

Problem Formulation
•Define the problem
•Identify proposed solutions
•Determine appropriate metrics, measures and
key performance parameters

Experiment Design
•Decompose problem
•Select hypotheses
•Determine structure and nature of experiment
treatment groups
•Work through scenarios
•Determine technical requirements

Experiment Development
•Determine required fidelity of representations
•Determine validity intervals
•Allocate responsibilities
•Source data and technical details
•Develop models and system representations
•Conduct pilot testing
•Train subjects and undertake rehearsals

Experiment Execution
•Data Consistency Monitoring

Analysis
•Identify findings
•Check for rival explanations of findings

Figure 6.1: Experiment Planning Flowchart (adapted from [BCE+06])

93

ographically dispersed groups of network engineers and application developers assess

whether the network or application is “healthy” enough to support the experiment.

Health assessments are usually determined by observing whether the current behavior

of the network or applications is within its “normal” pattern of behavior.

Measuring real-time infrastructure performance and assessing its health without

adversely impacting the primary mission (connecting and interchanging data between

players) of the infrastructure is challenging. The brute force approach of simulta-

neously measuring all network paths’ performance, from each end-host to all other

end-hosts in a large distributed network system can add an untenable load on com-

puting nodes and the network infrastructure.

When executing an LVC/DVS, message transmission delays are non-deterministic

and unpredictable because of the network protocols and infrastructure used. There-

fore, some means of monitoring the quality of the data while an LVC/DVS is in

operation is required to ensure the experiment being conducted is valid. Ideally, data

monitoring would take place in real-time and non-intrusively so experiments executing

outside consistency bounds can be corrected as quickly as possible.

The development of techniques and tools to monitor data validity of an LVC/DVS

simulation without introducing additional traffic is important to avoid additional net-

work congestion, thus potentially altering the delay of the state data itself.

94

Appendix A. Petri Net Simulator

For the simulation and performance analysis of DVS and LVC systems, a modeling

and simulation tool was developed. The development of the tool leveraged the open-

source interactive stochastic timed Petri nets modeling and simulation tool called

STPNPlay developed by Čapek [Cap01]. To support his research, the STPNPlay

Petri net simulator was developed to investigate the throughput of non-deterministic

Media Access Control (MAC) layers of computer networks.

STPNPlay is suitable for discrete-event token player analysis of stochastic timed

Petri net models. It is written in C++, well designed, and compiles on the Windows

platform. Because of this, it was deemed a useful starting point for the design of a flex-

ible analysis framework tailored to support this research. As this research progressed,

STPNPlay was significantly rewritten and reorganized to support the modeling of

LVC and DVS systems by extending and incorporating the concept of colored tokens,

places with token queues, transitions with embedded algorithms to facilitate color

type transformations, and batch processing modes to support scalability estimates.

Token color (datatype) transition transformations capture the temporal characteris-

tics of tokens.

As an example of the new features, a DIS-based DVS system model can be

modeled with the graphics-based Petri net editor where “colored” tokens represent

“data messages” or PDUs, representative traffic generation is specified by specialized

transitions associated with a stochastic distribution, and specialized places are used

for data collection and statistical calculations. These new features allow for the direct

examination of data aging as PDUs are propagated throughout a system model.

A.1 General Features

To facilitate a variety of system models, simulations, and flexible batch ex-

ecution, the original STPNPlay codebase was transformed into a general purpose

discrete-event Petri net software framework. The framework was then used as a basis

to build custom tools including, for example, exploratory data analysis applications

95

Figure A.1: PT Workbench

useful for investigating LVC and DVS properties. Several of these tools have been

grouped together into a general purpose application called PT Workbench as shown

in Figure A.1.

To create a system model, the Petri net editor as shown in Figure A.2 is used to

create and connect places to transitions with arcs. The design can then be saved into

a text-based format which can be edited to set specialized token, place and transition

object attributes. This is where stochastic temporal transition characteristics are set.

The model can then be read into the simulation for execution.

A.2 Software Organization

The software is organized into a set of libraries as shown in Figure A.3. The

“basic” library provides a C++ system object and a parser that can read a simple

context free language. This language is used to describe the Petri nets. The “gfx”

library provides a few classes that draw places, transition and arcs within the graphical

96

Figure A.2: Petri Net Editor

editor. The “simulation” library defines the discrete-event engine and the Petri net

primitives for places, transitions and tokens. These primitives do not implement any

“color” features or temporal dynamics; they are often referred to as “black” in the

literature. The “model” library contains specific stochastic distributions to model

time such as fixed, uniform, lognormal, exponential, and Pareto. It also contains

specific transitions to model a variety of components, such as, threads, samplers,

sources, logical processes (i.e., LVC and DVS simulation nodes), and networks.

A.3 Execution and Analysis

While PT Workbench is useful to for exploratory data activities, simple custom

simulation applications were written to support a single or batch set of runs and

specific data collection. Data was then imported into the Minitab R© statistical package

for analysis.

97

<ptworkbench >

+ basic : object system and parser

+ gfx : graphics classes

+ simulation : discrete -event engine

- Place

- Transition

- Token

- Rng

+ models : specific models

+ distribution : stochastics

- Fixed

- Uniform

- Exponential

- Parero

- Lognormal

+ place : data collection and statistics

- DataPlace

+ transition : temporal dynamics

- Thread

- Sampler

+ token : tokens with data ‘‘color ’’

- DataToken

Figure A.3: Software Organization

98

Appendix B. Application of Design Patterns

The Simulation and Analysis Facility (SIMAF) located at Wright Patterson AFB

(WPAFB), Ohio participates in a number of distributed simulation activities each

year that include live, virtual (human-in-the-loop) and constructive entities. The

majority of the simulation applications have been developed using the Extensible Ar-

chitecture for the Analysis and Generation of Linked Simulations (Eaagles) software

package which extends and is based upon the open-source OpenEaagles [Ope09a]

framework.

The framework supports the development of robust, scalable, virtual, construc-

tive, stand-alone, and distributed simulation applications and implements the design

patterns presented in Chapter V. It leverages modern object-oriented software de-

sign principles while incorporating fundamental real-time system design techniques

to meet human interaction requirements.

By providing abstract representations of system components (that the object-

oriented design philosophy promotes), multiple levels of fidelity can be easily inter-

mixed and selected to tune runtime performance. Abstract representations of systems

allow a developer to design an application that runs efficiently so that human-in-the-

loop interaction latency deadlines can be met. On the flip side, constructive-only

simulation applications that do not need to meet time-critical deadlines can use mod-

els with even higher levels of fidelity.

The framework embraces the Model-View-Controller (MVC) software design

pattern by partitioning functional components into the packages shown in Figure B.1.

This concept is taken a step further by providing an abstract network interface so

custom protocols can be implemented without affecting system models. Examples

include the Distributed Interactive Simulation (DIS) protocol and the High Level

Architecture (HLA) interfaces.

Specific applications using the framework to support simulation activities in-

clude representative fighter cockpits, an Unmanned Aerial Vehicle (UAV) ground

99

Basic Foundation Classes

Device I/O

3rd Party

DIS

HLA

TENA

N
E
T
W
O
R
K

BasicGLSimulation DAFIF Terrain

Moving Map

InstrumentsSensors

Vehicles

Figure B.1: OpenEaagles Packages

control station (Predator MQ-9), Integrated Air Defense Systems (IADS) and a fu-

turistic battle manager.

B.1 Frameworks, Toolkits and Applications

A framework is a set of cooperating classes that make up a reusable design for

a specific class of software [Deu89, JF88]. A framework is customized to a partic-

ular application by creating application-specific subclasses of abstract classes from

the framework [GHJV95]. A toolkit is a set of related and reusable classes that pro-

vides useful, general-purpose functionality. They are the object-oriented equivalent

of subroutine libraries [GHJV95].

The OpenEaagles framework itself is not an application. Applications are

stand-alone executable software programs like Microsoft Word designed to satisfy

a particular need. OpenEaagles is an object-oriented modeling and simulation

framework coded in C++. It is partitioned into packages that serve as functional

toolkits for a software developer. An example is the graphics toolkit, which facilitates

the development of operator/vehicle interfaces and displays.

The framework enables the creation of a diverse set of simulation applications.

Derived simulation applications using the framework can be run stand-alone or dis-

100

tributed. Distributed applications interoperate with other systems and simulations

through DIS and/or HLA interfaces. The application might include software agents

that represent human participation (constructive) or interact with a real human par-

ticipant (virtual).

Software execution is partitioned into a foreground/background system, but

instead of managing a jump-list (or a list of functions to process), scheduling is in-

terwoven into the object hierarchy as presented in Chapter V. It is specifically de-

signed to take advantage of low-cost multi-core PCs which support the creation of

a time-critical foreground thread. Because multiple processors are available, reliable

execution of a time-critical thread is assured with general purpose operating systems

such as Windows and Linux.

The framework implements a cycle or frame-based systems and is not a discrete-

event simulator. This approach satisfies the requirements for which it is designed;

namely, support for models of varying levels of fidelity including higher level “physics-

based” models, digital signal processing models and the ability to meet real-time

performance requirements. Model state can be captured with state machines and

state transitions can use the message passing mechanisms provided by the framework.

B.2 An Object-Oriented Real-Time Framework

OpenEaagles is an object-oriented simulation framework implemented in C++.

C++ was chosen since:

• Most real-time systems are developed in C for performance reasons [Lap04].

Object-oriented languages tend to be viewed with skepticism as overall system

performance often outweighs flexibility. But for the modeling and simulation

domain, the advantages afforded by an object-oriented language outweighs this

performance penalty.

101

• C++ is portable and compilers exist on virtually every platform. This allows

developers to build applications on any of the major popular operating systems

(Windows, Linux, IRIX, Solaris, etc).

• C++ is flexible.

• It is desirable to define memory management so it does not interfere with the

overall performance of the application. Therefore, the use of the new/delete

operators is preferable to garbage collection.

It is beyond the scope of this chapter to cover each and every class defined in

the framework, but a few key classes deserve attention thereby gaining insight into

the structure of the framework.

B.2.1 Object. The Object class is the C++ system object for the framework.

Unlike other object oriented languages (for example Java or Ruby), the C++ language

does not provide a system object. C++ also does not provide native garbage collec-

tion. The absence of these two features could be viewed as a negative when comparing

the native features of various languages, it is a positive when the domain consists of

applications that need to meet real-time requirements.

C++ provides the flexibility to define how these mechanisms work for different

application domains. For example, if the developer is writing an application in which

“control” over potentially time-consuming memory management operations is of little

concern, the framework provides smart pointers to automatically manage the creation

and deletion of objects. If, on the other hand, the application has time constraints to

meet (i.e., a real-time system), the “uncontrolled” creation and destruction of objects

will lead to performance problems. One of Objects capabilities is to provide a simple

reference counting system for the memory management of all framework objects.

Thus, a developer can manually control and tune performance-oriented applications

when they arise for example in the real-time processing of modeled radio frequency

(RF) emission packets or infrared radiation (IR) geometry information.

102

The other subtle but important aspect of providing a system object is type-

checking. The presence of a system object, and the derivation of all classes from it,

enables the dynamic casting of objects. It also avoids the pitfalls associated with un-

typed functions and classes. The OpenEaagles coding standard explicitly prohibits

the use of void pointers for this very reason.

B.2.2 Component. In object-oriented programming, a container class is

a class of objects that contain other objects. The OpenEaagles component class

implements the Component pattern discussed in Chapter V and much more. Not only

does Component serve as a container for other components, it also includes a basic

messaging system used throughout the framework.

From the outset, the framework is designed to facilitate the creation of simula-

tion applications that execute in real-time and/or interact with a human participant.

Applications with time constraints and latency/response deadlines typically separate

time-critical tasks and non-time-critical tasks; for example, the execution of an aero-

dynamic model at a specific frequency as opposed to writing data to a hard disk, or

printing a document.

This separation is facilitated by two methods in the component class as discussed

in Chapter V. When designing a model in the framework, code that needs to execute in

a time-critical manner (usually mathematical calculations) is placed in an overridden

virtual updateTC (update time-critical) method. Code that can be run in a non-time-

critical manner is placed in the overridden virtual updateData method.

This organization of code has a number of advantages:

• Since time-critical code is clearly separated from background code, applications

can be designed to meet performance requirements.

• All the code (time-critical and background) associated with a model is contained

within the same class (i.e., usually within the same physical text file).

103

C1

C2 C3 C4

C5 C6 C7

C8 C9

Figure B.2: Component Tree

One can view an instance of a simulation application as a tree of Components

as shown in Figure B.2. A call to the top (or root) of the tree’s updateTC method,

automatically executes every subcomponent’s updateTC. In other words, every com-

ponent will execute the code of its children. This process continues until the entire

tree has been processed. The same process takes place for the background code.

The OpenEaagles coding standard spells out basic rules to follow when writ-

ing code in updateTC (e.g., no blocking I/O calls). These rules parallel many of the

rules used when designing real-time systems.

B.3 Simulation Architecture

A developer using the framework as a basis for a simulation typically builds an

application by either using existing classes (or models) or extends them to add new

functionality. Then the developer writes the mainline (main()) for the application.

The mainline usually has the following structure:

• Read an input file that describes the class/object hierarchy and associated at-

tributes. OpenEaagles provides a parser (written with Flex and Bison) that

can read a simple context-free scheme-like input language.

104

Player

System

*

*

Simulation

Simulation Time

Cycles, Frames
Phases

Environments

Station

Real-time
Functions

Controls & Displays
Interface

1

*

*

Network I/O

*Graphics

Device I/O

TENADIS HLA

Figure B.3: Simulation Pattern

• Setup the threads as desired. For applications without real-time requirements

(e.g., a constructive-only application that processes a series of batch runs) a

single thread is all that is needed. For a virtual simulation with time-critical

code, a time critical (or high priority) thread should be created.

• Start the simulation by calling updateTC and updateData as required. If it is

a virtual simulation or a simulation where real-time performance is important,

the time-critical thread will call the updateTC method of the root node.

Full control of the mainline is in the hands of the developer for maximum flexi-

bility. The framework does not even provide a main() function! Furthermore, appli-

cation mainlines tend to be short. Most of the work is in the design and extension of

new classes.

Simulation applications are organized like the structure as shown in Figure B.3

which is identical to the simulation pattern presented in Chapter V. Thinking in

terms of a tree of components, the class Station resides at the top, or the root node.

Every other component is a subcomponent of Station.

105

Player

(Auto) Pilot Model

Datalink

Onboard Computer

Radio

Gimbal / Antenna

Sensor

Stores Manager

RF Signature

Navigation System

Route*

*
Dynamics Model

JSBSim

0..1

0..1

0..1

0..1

0..1

0..1

0..1

0..1

0..1

0..1

Steerpoint*

*
*

*
*
*
*

Store*

Figure B.4: Player Pattern

The role of Station is to connect models to views (or graphical displays) and

controls. It owns an instance of the Simulation object which manages a list of players

(entities), keeps track of simulation time, which includes the cycle, frame and phase

that is currently being processed.

Being a frame-based system (not a discrete-event simulator), delta time is passed

as an argument to updateTC so proper calculations involving time can be performed.

Having models rely on delta time for calculation means the frequency of the entire

system can change without having to change each and every model (so long as Nyquist

rates are met). Additional time related information is recorded in terms of cycles

(typically 16 frames) and phases. Phases sequence the flow of data throughout a

model. Four phases are currently defined:

106

Simulation

Nib

Station

Network I/O

Ntm

Player

System

Player

System

Ntm = Network Type Mapper
Nib = Network Interface Block

*

*

*
* *

*

*

1 1

1

1

1

1

1

0..1 1

Outgoing
List

Incoming
List

Template
Players

Player List
Local - No NIB
Remote - NIB

Figure B.5: Interoperability Pattern

• Dynamics – update player or system dynamics including aerodynamic, propul-

sion, and sensor positions (e.g., antennas, IR seekers).

• Transmit – propagate emission packets, which may contain datalink messages,

are sent during this phase. The parameters set in the emission packet include

transmitter power, antenna gains and losses.

• Receive – incoming emissions are processed and filtered, and the detection re-

ports or datalink messages are queued for processing.

• Process – used to process datalink messages, sensor detection reports and tracks,

and to update state machines, on-board computers, shoot lists, guidance com-

puters, autopilots or any other player or system decision logic.

A Player is a subclass of component that adds dynamics and other unique

behaviors. Some components that can be “attached” include signatures, antennas,

sensors and stores as shown in Figure B.4. Derived air and ground players are included

within the framework.

107

Object

Component

Graphic

Page

Display

GlutDisplay FoxDisplay

Figure B.6: Graphics Class Hierarchy

An abstract interoperability network interface, as shown in Figure B.5 is defined

so specific protocols can be incorporated, such as DIS, for interacting with other

distributed simulation applications. This network interface automatically creates new

players in the player list. As far as the simulation is concerned, these players are like

any other.

B.4 Graphics Architecture

The framework defines several graphic toolkits for the development of opera-

tor/vehicle interface displays. The toolkits are based on OpenGL [Ope09b] for all

primitive drawing, thus making the framework compatible with virtually any com-

puter platform.

The foundation for graphics drawing is contained in the basicGL package. It

contains classes for drawing graphic objects such as bitmaps, input/output fields,

fonts, polygons, readouts, textures, and others.

The graphics architecture has key fundamental relationships between the Graphic,

Page and Display classes (see Figure B.6). The Graphic class encapsulates attributes

108

associated with a graphic such as color, line width, flash rate (for a graphic that

flashes), coordinate transformations, vertices and texture coordinates, select names

and scissor box information. Since Graphic is a component, it can contain other

graphics. Page is a “page” of graphics that facilitates the creation of Multi-Function

Displays (MFD) where specific page transition events need to be defined. The Dis-

play class defines all the resources available for drawing such as fonts, the color table

and both the physical and logical dimensions of the display viewport. Finally, open

source GUI toolkits (such as Glut [GLU09], Fox [FOX09], FLTK [FLT09], wxWid-

gets [wxW09] and Qt [Qt09]) are leveraged by the framework through their respective

display classes.

OpenEaagles graphic classes ease the development of operator/vehicle dis-

plays and leverage open-source GUI toolkits, but they do not replace visual scenegraph

displays (such as heads up displays). The overarching philosophy of the framework is

to avoid reinventing the graphics “wheel.”

Higher level toolkits that use this structure include the instrument library which

includes dials, buttons, gauges, meters, pointers, and countless other fully functional

instruments, along with simple maps. The moving map library is another such library.

All of the graphical toolkits are independent of the simulation modeling environ-

ment. Models don’t have any knowledge of graphics and graphics have no knowledge

of models. The code that connects the two resides within the application and is

typically associated with the Station class.

Through an ownship pointer in the Station class, the controls and displays of

any player can be switched at anytime. Switching from player to player is useful for

observing simulation interactions from different perspectives.

All of the graphics classes are derived from Graphic which is derived from Com-

ponent. Being a component, all time-critical code can be written into the updateTC

method and background processing can be written into the updateData method.

Sometimes, in real-time system development, it is desirable to set graphic drawing to

109

Object

IODevice

Joystick USB

Figure B.7: Device Class Hierarchy

an even lower priority than other background processing. Therefore, another method

within the Graphic class is defined that serves as a placeholder to do actual OpenGL

graphics drawing.

A sample application included in an OpenEaagles distribution illustrates ba-

sic graphics by drawing a “worm” that moves around the screen and “bounces” off the

walls. Code for this example is organized as follows. All mathematical calculations

for the position, speed and direction of the worm are performed in updateTC. All the

work to setup what to draw is done in updateData. The actual drawing of the graphic

is performed by Graphic’s draw function.

Organizing code this way enables the application developer to determine how

to execute the code and to define threads to meet requirements. For this example,

a thread is set up to execute time-critical mathematical calculations associated with

the worm in “real-time”, and in a non-time-critical manner the operating system (or

Glut in this case) draws the worm during idle times.

B.5 Device I/O Architecture

The framework abstracts I/O devices so each hardware interface appears to

the application developer as nothing more than a device with a number of analog

(axis) and digital (button) values as shown in Figure B.7. This deviceIO package has

interface code for several platforms that support joysticks, USB devices, BG System

serial boxes and Keithley PCI digital acquisition cards.

110

Figure B.8: Generic Heads Down Display

Once the device is initialized, a call to the virtual receive method, defined in the

IODevice class, obtains the latest values from the device. Information about button

transitions can also be determined as well as the definition of deadbands for analog

inputs.

The Station class defines how axes and buttons are connected or “mapped” to

the models and views of the simulation application.

B.6 Fighter Cockpit

One of the first Eaagles-based applications developed at the SIMAF facility

was a generic fighter cockpit with a heads down display. The heads-down display

was developed using the graphics toolkit as a foundation (see Figure B.8). Window

111

Figure B.9: MQ-9 Ground Control Station

management is controlled by Glut which is a Display that contains other Graphic

objects and Displays as highlighted in the figure. The Displays have multiple pages

of graphics. This work effectively jump started the creation of the instrument library

which continues to mature and expand in scope as well as across application domains.

To the casual observer, the fighter application might appear to be nothing more

than a pretty cockpit, but it is actually much more. The application driving the

cockpit is an entire simulation ready to be connected into a distributed virtual sim-

ulation via DIS or HLA. The cockpit itself is set up through the Station class where

the heads-down display and controls are associated with one of the players in the

simulation player list via ownship pointer. In other words, the fighter cockpit is re-

ally a simulation entity that is being flown by a human operator. Since the controls

and displays are logically separate from the player model, switching and controlling

different players during a run can be as simple as moving the ownship pointer.

112

Figure B.10: Group Command Post

This application is used in almost every distributed simulation activity SIMAF

participates in or sponsors. It is also used by a number of facilities throughout the

different military services.

B.7 MQ-9 Ground Control Station

Compared to the fighter cockpit, the Predator MQ-9 Ground Control Station

(GCS) in Figure B.9 appears as a completely different simulation application although

it is also built upon the Eaagles framework. It is a good example of leveraging

different frameworks and toolkits to their fullest potential to build an application.

113

For example, the real GCS controls a Predator with two sets of control sticks.

One set controls or flies the Predator directly, and the other controls the sensor ball

attached to the UAV. Four displays are presented to the operators: a tracker display

in which the operator defines and uploads routes for the Predator to follow; a visual

of what the sensor ball is looking at; and two lower displays with multiple pages of

textual status information.

The ground control station is simulated with a few Eaagles-based applications

and the Fox GUI toolkit which is a windows based application with menus and dialog

boxes used to build the tracker application. OpenEaagles-based OpenGL graphics

draws the tracker map for planning routes.

SubrScene, an open-source Image Generation System (IGS), generates a visual

scene of what the sensor ball is viewing and is controlled by another Eaagles-based

application. All control sticks and inputs use the DeviceIO library. This application

is routinely used by SIMAF in the Air Forces Virtual Flag event conducted several

times each year.

B.8 Group Command Post

The Group Command Post (GCP) is a key component of an overall Integrated

Air Defense System (IADS). The GCP receives tracks formed from early warning

radar posts and filter centers under its control and develops a sector air picture. It

determines which tracks are hostile and assigns the appropriate weapons system to

counter the threat directly by assigning the threat to a surface-to-air missile, anti-

aircraft artillery, airborne interceptor or indirectly assigning the threat to a weapons

post responsible for assigning the appropriate weapon system (see Figure B.10).

This application, along with two other Eaagles-based applications (Early

Warning Radar Post and SAM site), forms the core of the IADS infrastructure. This

infrastructure is used in a number of distributed simulation events including Airborne

Electronic Attack (AEA) which examines the impacts of various electronic warfare

114

techniques upon both an enemy’s integrated air defense system and blue force capa-

bilities.

B.9 Summary

The Eaagles software package and the open-source OpenEaagles framework

upon which it is based provide a mature infrastructure to build simulation applications

designed to work in LVC simulations. At the lowest level, the framework implements

the design patterns presented in Chapter V. There are other “patterns” used through-

out the framework for RF and IR modeling, but the essential partitioning of software

code (i.e., jobs) is accomplished with the Component class.

The framework is routinely compiled with Microsoft Visual Studio for the Win-

dows environment and GCC for Linux. Applications perform best when executed on

multi-core CPU systems because of the priority based threading in these systems.

Windows and Linux are both designed for general purpose processing, not real-time

processing, thus, one CPU can be dedicated to the operating system kernel which

reduces the possibility of interfering with a time-critical task.

EAAGLES is government-owned and not proprietary. It is managed by the

SIMAF facility located at WPAFB, OH.

115

Bibliography

BCE+06. Dean Bowley, Paul Comeau, Roland Edwards, Paul J. Hiniker, Geoff
Howes, Richard A. Kass, Paul Labbé, Chris Morris, Rick Nunes-Vaz, Jon
Vaughan, Sophie Villeneuve, Mike Wahl, Kendall Wheaton, and Mike
Wilmer. Guide for Understanding and Implementing Defense Experimen-
tation (GUIDEx) - Version 1.1. The Technical Cooperation Program
(TTCP), 2006.

BG92. Dimitri P. Bertsekas and Robert Gallager. Data Networks - Second Edi-
tion. Prentice Hall, New Jersey, 1992.

BM06. Col Eileen Bjorkman and Timothy Menke. Air Force-Integrated Collab-
orative Environment (AF-ICE) development philosophy. International
Test and Evaluation Association (ITEA), March/April, 2006.

Cap01. Josef Capek. Petri Net Simulation of Non-deterministic MAC Layers of
Computer Communication Networks. PhD thesis, Czech Technical Uni-
versity, Department of Control Engineering, 2001.

CK06. François E. Cellier and Ernesto Kofman. Continuous System Simulation.
Springer, New York, NY, 2006.

Com06. Douglas E. Comer. Internetworking with TCP/IP - Principles, Protocols,
and Architecture – Vol 1, Fifth Edition. Prentice Hall, 2006.

Deu89. L. Peter Deutsch. Design Reuse and Frameworks in the Smalltalk-80
System. In Software Reusability Volume II: Applications and Experience,
pages 57–71. Addison Wesley, 1989.

DG99. Christophe Diot and Laurent Gautier. A distributed architecture for mul-
tiplayer interactive applications on the Internet. IEEE Network, July/Au-
gust 1999.

DoD95. DoD. Department of Defense Modeling and Simulation Master Plan,
5000.59-P. Defense Modeling and Simulaton Office (DMSO), October
1995.

DoD97. DoD. Department of Defense Modeling and Simulation Glossary, 5000.59-
M. Defense Modeling and Simulaton Office (DMSO), December 1997.

DoD02. DoD. Foundation Initiative 2010: The Test and Training
Enabling Architecture – Architecture Reference Document, 2002.
https://www.tena-sda.org.

FLT09. FLTK. A cross-platform C++ graphical user interface toolkit, July 2009.
http://www.fltk.org.

116

FOX09. FOX. A cross-platform C++ graphical user interface toolkit, July 2009.
http://www.fox-toolkit.org.

Fuj00. Richard M. Fujimoto. Parallel and Distributed Simulation Systems.
Wiley-Interscience, New York, NY, 2000.

GHJV95. Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns: Elements of Reusable Design. Addison-Wesley, Upper Saddle
River, NJ, 1995.

GHS95. Richard Gerber, Seongsoo Hong, and Manas Saksena. Guaranteeing real-
time requirements with resource-based calibration of periodic processes.
IEEE Transactions on Software Engineering, 21(7):579–592, July 1995.

GL00. Sumit Ghosh and Tony S. Lee. Modeling and Asychronous Distributed
Simulation – Analyzing Complex Systems. IEEE Press, 2000.

GLU09. GLUT. The OpenGL utility toolkit, a window system independent toolkit
for writing OpenGL programs, July 2009. http://www.opengl.org.

Hl04. Felix George Hamza-lup. Dynamic Shared State Maintenance in Dis-
tributed Virtual Environments. PhD thesis, University of Central Florida,
2004.

IEE95. IEEE. Standard for Distributed Interactive Simulation – Communication
Services and Profiles, Standard 1278.2, 1995.

IEE98. IEEE. Standard for Distributed Interactive Simulation, Standard 1278,
1998.

IEE00. IEEE. Standard for Modeling and Simulation High Level Architecture,
Standard 1516, 2000.

Inc07. Apple Incorporated. Cocoa Fundamentals Guide. The Model-View-
Controller Design Pattern, 2007.

Jai91. Raj Jain. The Art of Computer Systems Performance Analysis: Tech-
niques for Experimental Design, Measurement, Simulation, and Modeling.
Wiley and Sons, Inc, 1991.

Jen97a. Kurt Jensen. A brief introduction to coloured petri nets. In TACAS ’97:
Proceedings of the Third International Workshop on Tools and Algorithms
for Construction and Analysis of Systems, pages 203–208, London, UK,
1997. Springer-Verlag.

Jen97b. Kurt Jensen. Coloured Petri Nets – Basic Concepts, Analysis Methods
and Practical Use. Volume 1, Basic Concepts. Springer-Verlag, 1997.

Jen97c. Kurt Jensen. Coloured Petri Nets – Basic Concepts, Analysis Methods
and Practical Use. Volume 2, Analysis Methods. Springer-Verlag, 1997.

117

Jen97d. Kurt Jensen. Coloured Petri Nets – Basic Concepts, Analysis Methods
and Practical Use. Volume 3, Practical Use. Springer-Verlag, 1997.

JF88. Ralph E. Johnson and Brian Foote. Designing reusable classes. Journal
of Object-Oriented Programming, 1(2):22–35, June/July 1988.

KLA+03. Ben Kao, Kam-Yiu Lam, Brad Adelberg, Reynold Cheng, and Tony
Lee. Maintaining temporal consistency of discrete objects in soft real-
time database systems. IEEE Transactions on Computers, 52(3):373–389,
2003.

Kol03. Boris Koldehofe. Collaborative Environments: Aspects in Communica-
tion and Educational Visualisation. PhD thesis, Chalmers University of
Technology and Göteborg University, Sweden, March 2003.

KS97. C.M. Krishna and K.G. Shin. Real-Time Databases. McGraw-Hill, 1997.

KSG99. J. Kato, A. Shimizu, and S. Goto. Active measurement and analysis of
delay time in the Internet. IEEE Proceedings of the 1999 International
Workshops on Parallel Processing, pages 254–259, 1999.

Lap04. Phillip A. Laplante. Real-Time Systems Design - Third Edition. IEEE
Press/Wiley Interscience, Piscataway, NJ, 2004.

Liu00. Jane W. S. Liu. Real-Time Systems. Prentice Hall, Upper Saddle River,
NJ, 2000.

LK00. Averill M. Law and W. David Kelton. Simulation Modeling and Analysis,
Third Edition. McGraw Hill, New York, NY, 2000.

LL73. C. L. Lui and James W. Layland. Scheduling algorithms for multipro-
gramming in a hard real-time environment. Journal of the Association
for Computing Machinery, 20(1):46–61, 1973.

MKBK98. Rajesh Mascarenhas, Dinkar Karumuri, Ugo Buy, and Robert Kenyon.
Modeling and analysis of a virtual reality system with time petri nets. In
ICSE ’98: Proceedings of the 20th international conference on Software
engineering, pages 33–42, Washington, DC, USA, 1998. IEEE Computer
Society.

Mos93. David Mosberger. Memory consistency models - tech report that is an
update of paper published in ACM SIGOPS. Operating Systems Review,
27, 1993.

MT95. Duncan C. Miller and Jack A. Thorpe. SIMNET : The advent of simulator
networking. Proceedings of the IEEE, 83(8), August 1995.

Mur96. Tadao Murata. Temporal uncertainty and fuzzy-timing high-level petri
nets. In Proceedings of the 17th International Conference on Application
and Theory of Petri Nets, pages 11–28, London, UK, 1996. Springer-
Verlag.

118

Ney97. David L. Neyland. Virtual Combat - A Guide to Distributed Interactive
Simulation. Stackpole Books, 1997.

NSP+97. S. Narayanan, Nicole L. Schneider, Chetan Patel, Todd M. Carrico, John
DiPasquale, and Nagesh Reddy. An object-based architecture for develop-
ing interactive simulations using Java. Simulation, 69(3):153–171, 1997.

OMG09. OMG. The Data Distribution Service (DDS) for real-time systems is a
specification of a publish/subscribe middleware for distributed systems,
June 2009. http://www.omg.org.

OMN09. OMNet++. An extensible, modular, component-based C++ simula-
tion library and framework for building network simulations, June 2009.
http://www.omnetpp.org.

Ope09a. OpenEaagles. The Open Extensible Architecture for the Analy-
sis and Generation of LinkEd Simulations framework, June 2009.
http://www.openeaagles.org.

Ope09b. OpenGL. The Open Graphics Library is a standard specification defining
a cross-language, cross-platform api for writing applications that produce
2d and 3d computer graphics, July 2009. http://www.opengl.org.

Pet62. Carl Adam Petri. Kommunikation mit Automaten. PhD thesis, University
of Bonn, Fed. Rep of Germany, 1962.

Pet77. James L. Peterson. Petri nets. ACM Computing Surveys, 9(3):223–252,
1977.

Qin02. Xiao Qin. Delayed consistency model for distributed interaction systems
with real-time continuous media. Journal of Software, 13(6):1029–1039,
2002.

Qt09. Qt. A cross-platform C++ graphical user interface toolkit, July 2009.
http://www.qtsoftware.org.

Ram93. Krithi Ramamritham. Real-time databases. ACM International Journal
of Distributed and Parallel Database, 1(2):199–226, 1993.

Ram07. Krithi Ramamritham. Taming the dynamics of distributed data. In ACM
Proceedings of the Eighteenth Conference on Australasian Database, 2007.

Rao03. Dhananjai M. Rao. A Study of Dynamic Component Substitutions. Ph.D.
dissertation, University of Cincinnati, 2003.

RHJ+09. Dhananjai M. Rao, Douglas D. Hodson, Martin Stieger Jr, Carissa B.
Johnson, Phani Kidambi, and Sundaram Narayanan. Design & Imple-
mentation of Virtual and Constructive Simulations Using OpenEaagles.
Linus Publications, 2009.

119

RJL+97. Maria Roussos, Andrew E. Johnson, Jason Leigh, Craig R. Barnes,
Christina A. Vasilakis, and Thomas G. Moher. The NICE project: Nar-
rative, immersive, constructionist/collaborative environments for learning
in virtual reality. In ED-MEDIA/ED-TELECOM, 1997.

SF98. Alex F Sisti and Steven D. Farr. Model abstraction techniques: An intu-
itive overview. Aerospace and Electronics Conference, NAECON, IEEE
National, 1998.

SL92. Xiaohui (Carol) Song and Jane W.E. Liu. How well can data tempo-
ral consistency be maintained? IEEE Symposium on Computer-Aided
Control System Design (CACSD), pages 275–284, 1992.

SL95. Xiaohui (Carol) Song and Jane W. S. Liu. Maintaining temporal consis-
tency: Pessimistic vs. optimistic concurrency control. IEEE Transactions
on Knowledge and Data Engineering, 7(5):786–796, 1995.

SS93. Lui Sha and Shirish S. Sathaye. Distributed real-time system design: The-
oretical concepts and applications. Technical report, Software Engineering
Institute - Carnegie Mellon University, 1993.

SS95. Lui Sha and Shirish S. Sathaye. Distributed system design using general-
ized rate monotonic theory. Technical report, Carneigie Mellon University,
1995.

SZ99. S. Singhal and M. Zyda. Networked Virtual Environments – Design and
Implementation. Addison Wesley, 1999.

Tan95. Andrew S. Tanenbaum. Distributed Operating Systems. Prentice Hall,
1995.

Uni07. University of Aarhus, Denmark. Coloured Petri Nets 1 and 2 - Model-
ing and Validation of Concurrent Systems Course Notes, University of
Aarhus, Denmark, January 2007.

VDGG04. Juan J. Vargas, Ronald F. DeMara, Avelino J. Gonzalez, and Michael
Georgiopoulos. Bandwidth analysis of a simulated computer network run-
ning OTB. Swedish American Workshop on M&S Conference Proceedings,
2004.

WCPW05. John W. Woodring, John B. Comiskey, Orlin M. Petrov, and Brian L.
Woodring. Creating executable architectures using visual simulation ob-
jects (VSO). Proceeding of the Society for Optical Engineering (SPIE),
5805:165–176, 2005.

Wel02. Lisa Wells. Performance Analysis Using Coloured Petri Nets. PhD thesis,
University of Aarhus, 2002.

Wes01. Douglas B. West. Introduction to Graph Theory – Second Edition. Pren-
tice Hall, 2001.

120

Wik07. Wikipedia. Picture copyright 1997, Center for Innovative Com-
puter Applications – referenced by Wikipedia, February 2007.
http://inkido.indiana.edu/a100/handouts/Image116.gif.

Wik09. Wikipedia. CAVE Automatic Virtual Environment, June 2009.
http://en.wikipedia.org/wiki/Cave Automatic Virtual Environment.

wxW09. wxWidgets. A cross-platform C++ graphical user interface toolkit, July
2009. http://www.wxwidgets.org.

XLLG06. Ming Xiong, Biyu Liang, Kam-Yiu Lam, and Yang Guo. Quality of service
guarantee for temporal consistency of real-time transactions. IEEE Trans-
actions on Knowledge and Data Engineering, 18(8):1097–1110, 2006.

Yan05. Yue Yang. Formalizing Shared Memory Consistency Models for Program
Analysis. PhD thesis, The University of Utah, 2005.

YZD00. Tadao Murata Yi Zhou and Thomas A. DeFanti. Modeling and per-
formance analysis using extended fuzzy-timing petri nets for networked
virtual environments. IEEE Transactions on Systems, Man, and Cyber-
netics - Part B: Cybernetics, 30(5):737–756, 2000.

ZCLT01. Suiping Zhou, Wentong Cai, Francis B.S. Lee, and Stephen J. Turner.
Consistency in distributed interactive simulation 01E-SIW-003. European
Simulation Interoperability Workshop, 2001.

ZCLT04. Suiping Zhou, Wentong Cai, Bu-Sung Lee, and Stephen J. Turner.
Time-space consistency in large scale distributed virtual environments.
ACM Transactions on Modeling and Computer Simulation (TOMACS),
14(1):31–47, 2004.

ZMD99. Y. Zhou, T. Murata, and T. DeFanti. Modeling and analysis of collab-
orative virtual environments by extended fuzzy-timing petri nets. The
Institute of Electronics, Information and Communication Engineers (IE-
ICE) Transactions on Fundamentals of Electronics, Communications and
Computer Sciences, 1999.

121

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 074-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of the collection of
information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188),
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to an penalty
for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)
12-2009

2. REPORT TYPE
Doctoral Dissertation

3. DATES COVERED (From – To)
June 2009-October 2009

4. TITLE AND SUBTITLE

Performance Analysis of Live-Virtual-Constructive and Distributed Virtual
Simulations: Defining Requirements in Terms of Temporal Consistency

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Hodson, Douglas D., YF-02, ASC/XRA - SIMAF

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S)
Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way, WPAFB, OH 45433-7765

8. PERFORMING ORGANIZATION
 REPORT NUMBER
AFIT/DCE/ENG/09-25

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Intentionally left blank

10. SPONSOR/MONITOR’S
ACRONYM(S)

11. SPONSOR/MONITOR’S
REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
 Approved For Public Release; Distributed is Unlimited

13. SUPPLEMENTARY NOTES
This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States
14. ABSTRACT
This research extends the knowledge of live-virtual-constructive (LVC) and distributed virtual simulations (DVS) through a
detailed analysis and characterization of their underlying computing architecture. LVCs are characterized as a set of
asynchronous simulation applications each serving as both producers and consumers of shared state data. In terms of data
aging characteristics, LVCs are found to be first-order linear systems. System performance is quantified via two opposing
factors; the consistency of the distributed state space, and the response time or interaction quality of the autonomous
simulation applications. A framework is developed that defines temporal data consistency requirements such that the
objectives of the simulation are satisfied. Additionally, to develop simulations that reliably execute in real-time and accurately
model hierarchical systems, two real-time design patterns are developed: a tailored version of the model-view-controller
architecture pattern along with a companion Component pattern. Together they provide a basis for hierarchical simulation
models, graphical displays, and network I/O in a real-time environment. For both LVCs and DVSs the relationship between
consistency and interactivity is established by mapping threads created by a simulation application to factors that control both
interactivity and shared state consistency throughout a distributed environment.
15. SUBJECT TERMS
simulation, distributed, real-time, temporal, consistency

16. SECURITY CLASSIFICATION
OF:

17. LIMITATION OF
 ABSTRACT

UU

18. NUMBER
 OF
 PAGES
 134

19a. NAME OF RESPONSIBLE PERSON
Rusty O. Baldwin, (ENG)

REPORT

U
ABSTRACT

U
c. THIS PAGE

U
19b. TELEPHONE NUMBER (Include area code)
937-255-6565 x4445
(email: rusty.baldwin@afit.edu)

Standard Form 298 (Rev: 8-98)
Prescribed by ANSI Std. Z39-18

	main
	SF298-Hodson

