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Multimode regimes in quantum cascade
lasers: from coherent instabilities to
spatial hole burning
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Introduction

Many physical mechanisms can drive a laser from a single-mode to a multi-mode
regime. Common examples are spatial and spectral hole burning (SHB), saturable
absorption, and self-phase modulation [1,2,3]. Understanding these mechanisms is of
key importance to laser science and technology, whether one is interested in
single-mode behavior or in a particular multi-mode operation such as mode locking.
The multimode regimes listed above are well understood and documented both
theoretically and experimentally, in many types of lasers. However the understanding
of multimode regimes in quantum cascade lasers (QCLS) is still in its infancy, as these
lasers were only demonstrated in 1994 [4], and studies of their multimode regimes
commenced even more recently [5,6,7,8].

As it was shown recently [9] that multimode dynamics in QCLs are different from that
of more common lasers. This is mainly due to the unusually fast gain recovery of QCLs,
which occurs on a picosecond scale. While a saturable absorber triggers mode locking
in lasers with slow gain recovery (relative to the roundtrip time), in lasers with fast gain
recovery a saturable absorber triggers a mechanism similar to the
Risken-Nummedal-Graham-Haken (RNGH) instability [10,11]. While in standard
semiconductor lasers carrier diffusion eliminates spatial hole burning, in QCLs the gain
recovery process is faster than carrier diffusion, and spatial hole burning is dominant.
In this report we present a detailed study of multimode regimes in QCLSs. The results of
Ref. [9] are substantiated and extended. The first part of the paper is theoretical and the
second one is experimental. In the theoretical section, the laser Maxwell-Bloch
equations are introduced and analyzed for a Fabry-Perot cavity. This way one can
study the interplay of coherent phenomena and spatial hole burning. A saturable
absorber is added to the model as well. The model is studied analytically and
numerically. The stability region of a continuous wave (CW) solution is found. It is
shown that in a ring cavity, the presence of a saturable absorber lowers the threshold of
the RNGH instability from about nine times above laser threshold to arbitrarily low
above laser threshold, depending on the strength of the absorber. However, the nature
of the instability remains the same: the population inversion begins to oscillate at the
Rabi frequency, modulating the gain in the laser. The result is sidebands around the
original CW mode, separated from it by roughly the Rabi frequency. A Rabi splitting in
the spectrum is the primary signature of the RNGH instability.

It is then shown that the ring-cavity Maxwell-Bloch model with a saturable absorber
can explain the Rabi splitting and the lowering of the threshold, but cannot explain a



key feature in the experimental spectra. The latter exhibit two relatively equal groups of
modes with a gap in between, whereas the ring-cavity Maxwell-Bloch model predicts a
large central mode in the spectrum with two sidebands. In view of this discrepancy, the
Maxwell-Bloch equations were extended to include coupling between
counter-propagating modes in a Fabry-Perot cavity, which is of course a more adequate
model for QCLs. This model takes into account the development of SHB. The inclusion
of SHB generates theoretical spectra with a Rabi splitting and without a central peak in
the spectrum, in agreement with experiments.

After presenting the theoretical results, a thorough study of the experimental
phenomenology is presented. It is shown that QCLs with narrower active regions tend
to exhibit a more pronounced Rabi splitting than lasers with wider active regions.
Lasers with a wider active region tend to exhibit multimode spectra that are governed
by SHB. The explanation we propose to this behavior is that narrow QCLs have a
stronger saturable absorption effect than wider ones as a result of a Kerr-lensing effect
[3,5]. In this case a nonlinear index enhancement in the waveguide core gives rise to an
increased overlap of the transverse laser mode with an active region and a reduced
overlap with lossy sidewalls, leading to an additional enhancement of the saturable
absorption. The idea of saturable absorption by Kerr-lensing is further supported by the
fact that QCLs with metal coating on the sides of the ridge have a stronger RNGH
behavior than lasers without metal coating: The metal coating enhances saturable losses
originated from Kerr-lensing.

In the last part of the paper, the temperature dependence of the multimode behavior in
QCLs is studied experimentally. It is found that at higher temperature the multimode
behavior tends to be governed by the RNGH instability, whereas at lower temperatures
it is governed by SHB. This behavior can be explained by the fact that at higher
temperatures hot carriers populate more states in the injector superlattice, creating
aditional quasi-resonant absorption transitions between ground and excited minibands.
This leads to an additional saturable absorption of laser radiation.

This paper is organized as follows: Section 2 gives a brief survey of prior work on
multimode regimes in QCLs, Sections 3 study theoretically the Maxwell-Bloch
equations in a Fabry-Perot cavity, Sections 4-6 summarize the experimental study, and
Section 7 is a brief summary.

2. Prior work on multimode regimes in QCLs

Multimode regimes in QCLs were observed in a series of recent works [5,6,7,8]. In
Ref. [5], for example, it was observed that at a certain pumping current above lasing
threshold, QCLs cease to operate in CW and develop a multimode regime. This
multimode regime was characterized by a broadband optical spectrum and a narrow
(less than 100 kHz) radio frequency (RF) beat note in the power spectrum.

The narrow beatnote, whose width is 1/10° of the central frequency, shows that the
waveform of the electric field circulating in the laser cavity was stable over
approximately 10° roundtrips. In other words, the phase relationships between the
longitudinal modes were stable for about 10° roundtrips. The modes were therefore
locked. However in order to characterize the waveform which is circulating in the laser
and to see if it is indeed an isolated pulse, as in traditional mode locking, one has to
apply pulse characterization techniques, such as second order autocorrelation.

At the time when the experiment in Ref. [5] was performed, no second-order
autocorrelation apparatus was available. However second harmonic generation from
QCLs [6] provide some information for pulse characterization. This measurement



shows an increase by more than a factor of 5 in the second harmonic signal as the
multimode behavior sets in. This increase indicates that the duty cycle of the pulses was
roughly 5. Since the number of modes in the spectrum is more than 5, we conclude that
not all the modes were locked into a pulse. Without better pulse characterization data,
one can infer that the laser could have had more than one pulse per roundtrip.

It should also be noted that traditional mode locking, with a single pulse per roundtrip,
requires that the gain recovery time be longer than the cavity roundtrip [3]. In QCLs
this condition is violated, and therefore according to the existing theory one cannot
expect mode locking with a single pulse per roundtrip in QCLs. One can expect
multiple pulses per roundtrip.

In view of the above, one can see that the nature of various multimode regimes in QCLs
requires further elucidation. This is the main goal of the present work.

3. Maxwell-Bloch equations in a Fabry-Perot cavity

Theory

Numerical studies based on the master equation of mode locking [2, 3] with a 1.5 ps
gain recovery time (which represents the relaxation time of electrons between the states
of the laser transition) did not lead to stable self modelocking. Physically for the latter
to occur the gain recovery time must be greater than the roundtrip time to prevent the
formation of pulses at intervals smaller than the latter The mechanism responsible for
the partial mode locking observed in the experiments was therefore yet to be
understood.

During the past year, we have developed various phenomenological models that might
explain the currently observed multimode dynamics and hopefully give guidance on
how to achieve complete mode locking of QCLs. The most consistent picture comes
from a model which includes a saturable absorber and which is based on the
Maxwell-Bloch equations for a two-level active medium. Although the QCL gain
medium should be described by a more complicated set of equations, the main physics
can already be understood from this theory.

The Maxwell-Bloch equations are well known to exhibit a modulation instability first
reported by Risken and Nummedal and independently Graham and Haken [4, 5]. The
mechanism responsible for the onset of the Risken-Nummedal-Graham-Haken (RNGH)
instability is related to coherent Rabi oscillations of population inversion on the laser
transition that give rise to sidebands separated by the Rabi frequency from the initial
single-frequency cw emission. The instability develops only when the laser power is
high enough so that the Rabi frequency exceeds the relaxation rate of the population
inversion. For lower frequencies the Rabi oscillations of inversion are overdamped and
do not lead to the instability. The appearance of sidebands in the spectrum is manifested
by high-frequency pulsations in the time domain. The dynamics far above the
instability threshold can be very complicated and rich — from regular mode-locking to
completely chaotic pulsations.

This mechanism can explain the main features of the measurements described in the
experimental part. The RNGH instability requires in principle very high pumping
powers, typically 9 to 10 times above threshold. In our model however, the threshold



for the instability can be lower by more than a factor of four, because of the presence of
the saturable absorber. This result can be established analytically by linear stability
analysis, as well as by numerical simulations. The threshold for the instability is thus
easily reachable in the experiment. Saturable absorption in our devices is due to the
presence of metal on the side of the laser ridge (see Fig. 1 (b)). It is the source of
non-negligible waveguide losses, which decrease at large intensities thanks to Kerr
lensing [1]. Our future plans include the design of a intra-cavity saturable absorber due
to resonant intersubband absorption, which may be easier to control than the losses in
sidewalls.

Note that since short time scales comparable to the ultrashort gain recovery time are
important, taking into account the full phase relationship between the medium
polarization and the optical field is crucial. Indeed the master equation of mode locking,
in which the polarization is adiabatically eliminated, gave no pulses at all for the same
set of parameters.

Figure 5 (a) shows that above a certain threshold power, trains of pulses as short as the
gain recovery time (1.5 ps) are obtained in our simulations. The periodicity in the time
domain translates into a corresponding modulation that can be seen in the spectrum
shown in Fig. 5 (b). This periodicity can be identified with oscillations of the
population inversion at the Rabi frequency. As the laser field becomes stronger, the
separation between the different groups of modes in the optical spectra grows.

The parameters used in the simulations displayed in Fig. 5 correspond to the laser
characteristics and the experimental conditions of Fig. 2 (a). All the parameters were
measured independently, apart from the saturable absorber coefficient. The latter was
calculated from the measured instability threshold. The spectral separation between the
two groups of modes in Fig. 2 (a) is fairly close (within a factor of 1.5) to the separation
in the simulated spectra. Although a few parameters such as the saturation intensity of
the saturable absorber can only be guessed, our model is consistent with our
experimental data to a very good extent.

Another evidence comes from the direct comparison between the experimental splitting
and the Rabi frequency, which can be calculated from the measured field intensity and
the dipole matrix element. For an output power of 100mW, corresponding to the trace
at a current of 700 mA in Fig. 2 (a) the Rabi frequency is 0.7 THz, which is in excellent
agreement with the experimental separation between the group of two modes (0.8THz).
The corresponding Rabi angular frequency (2r times the Rabi frequency) is
considerably greater than the inverse of the gain recovery time, thus satisfying the
instability criterion.

There is however an important qualitative difference between experiment and theory:
the latter always has a large central peak in the spectrum with sidebands (groups of
modes) of similar intensity, while the former is not visible in the experiment
consistently shows only two groups of modes with similar intensity. Our numerical
studies of the Maxwell-Bloch equations shows that such solutions do not occur. It is
therefore yet to be understood which additional physical mechanism should be included
in the theoretical model in order to eliminate this discrepancy.



Note that the emission of the pulses becomes increasingly chaotic as a function of the
pumping power. Our simulations also predict a modulation of the laser intensity at the
cavity round-trip time as observed experimentally with a fast QWIP and a spectrum
analyzer. This modulation shows that there is a non-trivial phase relation between the
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Figure 5: Results of the simulations, gain recovery time 1.5 ps. (a) shows the intensity as
function of time during 10 roundtrips, and (b) shows the optical spectrum. The number
on the left of each subplot is the pumping current divided by the lasing threshold current.
The intensity of the peak at zero frequency is normalized to 1because it is much stronger
than the sidebands.

longitudinal modes, or equivalently between the pulses. This aspect of the simulations
is is important as it may help to understand the shape of the autocorrelation trace.

4. Experimental results: ridge lasers

We first study the multimode regimes in standard ridge QCLSs, in which the sidewalls of
the laser ridges are covered by a thick layer of electrically plated gold contact. This acts
as a Kerr-lens type saturable absorber; see Fig. 8 for a typical laser cross section. The



active region of the samples tested is based on a three-quantum-well design emitting at
a wavelength A~8um [31]. The wafer was grown by metalorganic vapor phase epitaxy
(MOVPE). Fig.9 a shows the voltage-current (V-1) and light-current (L-I)
characteristics of a 10 um wide laser operated in CW at 200K, and b shows the
corresponding optical spectra. The laser was cleaved into a 2 mm long bar and soldered
with Indium onto a copper heat sink. The optical power was measured by an OPHIR
thermal head powermeter with a collection efficiency of nearly 100%. The spectra were
measured by a Nicolet Fourier transform infrared spectrometer (FTIR) equipped with a
deuterated triglycine sulphate (DTGS) detector.

R | HH

8. Scanning electron microscope (SEM) image of the cross section of a 10 [Trial mode]m wide
ridge QC laser.
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FIG. 9: {a) V-1 & L-I curves and (b) optical spectra vs. pumping ratio (j/jwm) above threshold obtained in CW at 200K of
a 10 pm wide ridge laser emitting at 8 uym (wafer # 2721) (¢) Spectral splitting and twice the Rabi frequency Qgavi/(27) vs.
square root of output power collected from a single laser facet. The different quantities reported on the graph were deduced
from the experimental data shown in 9 (b). The dashed line is a least-square linear fit of the data.

As shown in Fig. 9 b, the laser spectrum is single mode close to laser threshold. It
broadens and splits into two separated humps as the pumping current increases. The
separation between the two peaks of the two humps increases linearly with the square



root of the collected output power from one facet, as shown in Fig. 9 c. The Rabi
angular frequency can be calculated from the collected output power, using the formula
Qrai = HEH, where P is the electron charge times the matrix element of the laser

transition (=1.9 nm for this particular device). la is the average intracavity intensity in
the gain region, which can be derived from the measured output power [32]. For all
values of intensity corresponding to the spectra reported in Fig. 9 b, Q.,,; /27 was

calculated, multiplied by a factor of two and then added to Fig.9 c (solid line).
Reasonably good agreement is found between the experimental splitting and twice the
estimated Rabi frequency. The error bars of the spectrum splittings come from the
uncertainty in determining the exact position of the peaks, which is the
full-width-at-half-maximum (FWHM) of the humps. As mentioned previously in the
theoretical section, the RNGH instability predicts that large intracavity intensity will
result in parametric gain at frequencies detuned from the maximum of the gain curve by
the Rabi frequency. The measured spectra thus show strong indication of the RNGH
instability in ridge QCLs.
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FIG. 10: (a) The V-1 & L-I curve and (b) the optical spectra vs. pumping ratio (j/jm) above threshold obtained from a 10

mum wide ridge QCL operated in CW at 77K emitting at 8gan (wafer # 2743). Note that mode hopping oceurs while there is
a jump in the L-1 curve.

The lowering of the RNGH instability threshold in our QCLSs is due to the presence of a
saturable absorber. This phenomenon is demonstrated analytically in the theoretical
section. Such a saturable absorption mechanism in our experiments is likely to come
from Kerr-lensing, caused by a nonlinear (i.e. intensity dependent) refractive index nal
in the active region [5]. As the light intensity increases, the mode becomes more
confined in the plane transverse to the propagation direction, and the net gain it
undergoes also increases. The reason is twofold: First, the mode overlaps more with the
active region, leading to a larger modal gain (this mechanism is often called "soft
Kerr-lensing™). Second, the overlap with the metal contacts is reduced, leading to
smaller losses.
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11. The experimental setup of a two-photon autocorrelation measurement. (Inset) Conduction
band diagram of the two-photon QWIP showing three equidistant energy levels.

The same RNGH splitting in spectra is observed in many different devices, from wafers
grown by both molecular beam epitaxy (MBE) and MOVPE. Fig. 10 shows the spectra
of a laser fabricated from a MBE-grown wafer with the same active region design as in
Fig. 7, taken in continuous wave at 77K. The spectrum starts from single mode close to
the laser threshold, and the mode hops at a pumping ratio of j/j;, =1.66, where there is a
correponding kink in the L-1 curve at 330mA. At 590mA, there is another kink in the
L-1 curve, relating to the broadening of the spectrum and a hop in the mode center.
Mode-hopping and its relationship to kinks in the L-1 curves are common phenomena in
semiconductor lasers [33,34,35], but its cause in QC lasers is not yet studied and is
beyond the focus of this paper. After the spectrum broadens, it forms two separated
humps whose peaks shift apart with increased optical power, similar to the
MOVPE-grown case.

Characterization of our ultra-short pulses was done using the standard method of
second-harmonic interferometric autocorrelation. The setup is based on a Michelson
interferometer in which the input beam is split into two and one of them is delayed by
7.0nce recombined, the two pulses are sent colinearly first into a nonlinear crystal, and
then a filter, which allows only the second-harmonic generation (SHG) component to
be detected. One can test if it is an isolated pulse from the ratio between the interference
maximum and the background. The pulse duration can also be determined. However,
due to the extremely low SHG conversion efficiency of mid-IR in nonlinear crystals,
the conventional setup is not feasible. To overcome this problem, we use a two-photon
quantum well infrared photodetector (QWIP) which converts the second-harmonic
signal electrically [36,37] instead of using a nonlinear crystal plus a linear detector. The
energy diagram of one period of the multi quantum well detector under bias is shown in
the inset of Fig. 11. The first three electronic states are nearly equidistant in energy.
When electrons in the doped quantum wells absorb two photons simultaneously and the
detector is biased (1-3 V), a photocurrent is generated and the signal can be detected by
use of a pre-amplifier and a lock-in amplifier. This experimental setup is diagramed in
Fig. 11. The second-order autocorrelation trace of the MBE-grown device mentioned
above is shown in Fig. 12. Interference fringes are observed when the delay time from
one arm of the autocorrelator is equal to the multiples of the cavity roundtrip time. The
ratio between the maximum of the interference fringes and the background is smaller



than 8, and the autocorrelation trace has some features between the cavity roundtrip
times, indicating that the multimode regime observed in this device is not stable mode
locking with a single pulse per roundtrip.

12. A second-order autocorrelation trace of a 8 lm wavelength ridge QC laser (wafer # 2743)
under the condition of RNGH instability. (Inset) Microwave spectrum of photocurrent generated
by a similar laser (wafer # 2721) under the condition of RNGH instability (measured with a 68 kHz

resolution bandwidth).

In addition to second-order autocorrelation, the microwave spectrum of the laser output
was also measured with an ultrafast QWIP [38] whose bandwidth is 52 GHz. The laser
output is sent directly to the ultrafast QWIP, and the resulting photocurrentis displayed
in a spectrum analyzer. Fig. 12 shows the beat note signal of the MOVPE-grown
sample at pump current 800 mA at 77K. A steady peak with FWHM of 13 MHz at
22.01 GHz, which corresponds to the cavity round trip frequency of the 2 mm long
laser (background refractive index n=3), is observed on the spectrum analyzer. It
indicates a modulation of the laser output at the cavity roundtrip frequency, and thus at
least partial phase locking between the longitudinal modes: The phase relationships
between the modes are stable for about 10° roundtrips.

13. Optical spectra vs. pumping ratio ([ Trial mode]) above threshold obtained in CW at 77K
with a 15 Jm wide ridge laser emitting at 8 [Am (wafer# 2721).



As the ridge width is increased, the RNGH instability and the Rabi splitting in the
spectrum are suppressed. Fig. 13 shows the spectra of a device processed from the same
wafer as the one in Fig. 9, with the difference of its ridge width being increased to 15
pm. The spectra do not broaden much even at very high pumping current, and do not
show the Rabi splitting. The effect of Kerr-lensing decreases significantly when the
active region width is increased. Thus, this is a strong evidence that the saturable
absorption needed for lowering the RNGH threshold is provided by the Kerr-lensing
mechanism.

5. Experimental results: Buried heterostructure lasers

The second type of lasers we have tested are the so-called buried heterostructure lasers,
in which an insulating Fe-doped InP layer is regrown after etching of the ridges. A thick
layer of electrically plated gold is deposited on top of the ridges as top contact layer
after the InP regrowth . Figure 14 shows the cross section of such a laser.

Plated Au N InGaiAs

14. SEM image of the cross section of a buried heterostructure QC laser.

The active region of the buried heterostructure lasers tested is based on the
four-quantum-well design, which relies on a double phonon resonance to achieve
population inversion [39]. Fig. 15 a shows the V-1 and L-1 characteristics of a laser with
active region width of 3 um and wavelength 8.38 um operated in CW at room
temperature, and b shows its optical spectra. The spectra show Rabi splitting similar to
the ridge laser case, indicating the RNGH instability in this narrow buried
heterostructure laser. The spectral splitting and twice the Rabi frequency are plotted
against the square root of the collected output power in Fig. 15 b. A good agreement is
found between the experimental splitting and twice the calculated Rabi frequency.
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square root of output power collected from a single laser facet. The dashed line is a least-square linear fit of the data.

The second-order autocorrelation trace of the device when it is pumped five times
above threshold at 80K is shown in Fig. 16. The ratio between the maximum of the
interference fringes and the background is close to 8 to 3, similar to the ridge laser case.
In addition, there are smaller interference fringes within one cavity roundtrip period.
Both features indicate no stable pulsation from the laser. The microwave spectrum of
the laser output shows a steady peak with FWHM of 700 kHz at 15.018 GHz. This is
shown in the inset of Fig. 16.

16. A second-order autocorrelation trace of a 8 lm wavelength buried heterostructure QC laser
(wafer # 3251) under the condition of RNGH instability. (Inset) Microwave spectrum of the
photocurrent generated by the same laser (measured with a 68 kHz resolution bandwidth).

As in the ridge laser case, the lowering of the threshold of RNGH instability can also be
attributed to the Kerr-lens type saturable absorption. In order to better support this idea



experimentally, the spectra from another device processed from the same wafer as in
Fig. 15 but with a wider active region (7.5 pum) are measured. Two-dimensional
waveguide simulations indicate a much weaker Kerr-lensing effect in these QCLS, due
to the much larger ratio of active region width to wavelength. The measured optical
spectra obtained at 300K in CW mode are shown in Fig. 17 a. The envelopes of the
spectra consist of multiple peaks whose separation is independent of the pumping
current. The spectral signatures qualitatively agree with the numerical simulations in a
Fabry-Perot cavity without a saturable absorber (y =0) (Fig. 6).

Further increasing the active region width tends to suppress both the instabilities caused
by RNGH and spatial hole burning. Fig. 17 b shows the spectra of a device also
processed from the same wafer but with an even wider active region (10 pum) at 77K.
The spectra do not broaden much even at very high pumping currents, as in the ridge
laser case. Since both RNGH instability and SHB stem from nonlinear effects, they are
suppressed when the intensity of the field in the cavity is lower. Moreover, when the
active region width increases, higher transverse modes are excited. Different transverse
modes have different propagation constants 3, and thus form different gain gratings
which tend to wash out the effect of spatial hole burning.



6. Temperature effects

Temperature also plays an important role in the shape of the spectrum. To illustrate this
point, we now present the spectra at different temperatures for the A=8.38 um buried
heterostructure laser with 3 um active region width (the same as in Fig. 15).

From the spectra in Fig. 18, it is clear that at lower temperatures the spectra are
dominated by spatial hole burning, showing multiple peaks independent of pumping
and no significant Rabi splitting. As the temperature increases, the Rabi splitting
becomes more evident and finally the RNGH instability takes over.

Intuitively, the effect of the temperature on the nature of the multimode regime in QCLs
seems to come from carrier diffusion. The lifetime of the gain grating T is defined as

T,' =T," +4k’D. The diffusion coefficient D of the gain grating is proportional to the

temperature, D = 1k, T /q, where [ here is the carrier mobility, kg is the Boltzmann’s

constant, T is the temperature and q is the carrier charge. Therefore at higher
temperature carrier diffusion would reduce spatial hole burning and thus reveal the
RNGH instability. However, with a mobility of 16000 cm?/sec/V and k=2.25*10* cm™
(which corresonds to a vacuum wavelength of 8.38pm), 4k’D ~ 0.2 THz at 77K and
4k*D = 0.8 THz at 300K, both significantly smaller than T, ~ 0.6 THz at 77K and T,
~ 2 THz at 300K. Thus, carrier diffusion is unlikely to be the reason for the temperature
dependence. Although the temperature effect is not entirely understood to us at this
point, one possiblity is temperature-dependent saturable absorption. The QCL injector
consists of many energy levels which can be thermally populated. It is not surprising
that if any two higher levels in the injector are closely resonant with the laser transition,
and that they will form a two-level saturable absorber.Therefore in this case saturable
absorption is stronger at higher temperature and makes the RNGH more easily



observable.

7. Conclusion

This paper provides a thorough account of different multimode regimes in QCLs. It was
found that two key mechanisms which govern the multimode regimes in QCLs are a
coherent instability similar to the RNGH instability, and spatial hole burning. Both
mechanisms are enhanced due to the large dipole moment p of the laser transition,
which results in the unusually fast gain recovery in QCLs: The RNGH instability is
enhanced because the Rabi frequency scales as |, and therefore the Rabi splitting can
be resolved by the comb of modes supported by the cavity. SHB is enhanced because
carrier diffusion is slower than the gain recovery, and thus leaves the gain grating
intact.

Due to the fast gain recovery, conventional mode locking, with one pulse per roundtrip,
is suppressed. In order to achieve conventional mode locking in QCLsS, one needs to
design a QCL with a slower gain recovery, such that T; becomes longer than or
comparable to the cavity roundtrip. Efforts in this direction are currently underway.
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A theoretical and experimental study of multimode operation regimes in quantum cascade lasers (QCLs) is
presented. It is shown that the fast gain recovery of QCLs promotes two multimode regimes: One is spatial
hole burning (SHB) and the other one is related to the Risken-Nummedal-Graham-Haken instability predicted
in the 1960s. A model that can account for coherent phenomena, a saturable absorber, and SHB is developed
and studied in detail both analytically and numerically. A wide variety of experimental data on multimode
regimes is presented. Lasers with a narrow active region and/or with metal coating on the sides tend to develop
a splitting in the spectrum, approximately equal to twice the Rabi frequency. It is proposed that this behavior
stems from the presence of a saturable absorber, which can result from a Kerr lensing effect in the cavity.
Lasers with a wide active region, which have a weaker saturable absorber, do not exhibit a Rabi splitting and
their multimode regime is governed by SHB. This experimental phenomenology is well-explained by our

theoretical model. The temperature dependence of the multimode regime is also presented.

DOI: 10.1103/PhysRevA.77.053804

I. INTRODUCTION

Many physical mechanisms can drive a laser from a
single-mode to a multimode regime. Common examples are
spatial and spectral hole burning (SHB), saturable absorp-
tion, and self-phase modulation [1-3]. Understanding these
mechanisms is of key importance to laser science and tech-
nology, whether one is interested in single-mode behavior or
in a particular multimode operation such as mode locking.

The multimode regimes listed above are well-understood
and documented both theoretically and experimentally in
many types of lasers. However, the understanding of multi-
mode regimes in quantum cascade lasers (QCLs) is still in its
infancy, as these lasers were only demonstrated in 1994 [4],
and studies of their multimode regimes commenced even
more recently [5-8].

As it was shown recently [9] multimode dynamics in
QCLs is different from that of more common lasers. This is
mainly due to the unusually fast gain recovery of QCLs,
which occurs on a picosecond scale. While a saturable ab-
sorber triggers mode locking in lasers with slow gain recov-
ery (relative to the round-trip time), in lasers with fast gain
recovery a saturable absorber triggers a mechanism [9] simi-
lar to the Risken-Nummedal-Graham-Haken (RNGH) insta-
bility [10,11]. While in standard semiconductor lasers carrier
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diffusion eliminates spatial hole burning, in QCLs the gain
recovery process is faster than carrier diffusion, and spatial
hole burning is dominant, favoring multimode operation.

This paper presents a detailed study of multimode regimes
in QCLs. The results of Ref. [10,11] are substantiated and
extended. The first part of the paper is theoretical and the
second one is experimental. In the theoretical section, the
laser Maxwell-Bloch equations are introduced and analyzed
for both a ring laser cavity and a Fabry-Perot cavity. This
way one can study the interplay of coherent phenomena and
spatial hole burning. A saturable absorber is added to the
model as well. The model is studied analytically and numeri-
cally. The stability region of a continuous wave (cw) solution
is found. It is shown that in a ring cavity, the presence of a
saturable absorber lowers the threshold of the RNGH insta-
bility from about nine times above laser threshold [10,11] to
arbitrarily low above laser threshold, depending on the
strength of the absorber. However, the nature of the instabil-
ity remains the same: the population inversion begins to os-
cillate at the Rabi frequency, modulating the gain in the laser.
The result is sidebands around the original cw mode, sepa-
rated from it by roughly the Rabi frequency. A Rabi splitting
in the spectrum is the primary signature of the RNGH insta-
bility.

It is then shown that the ring-cavity Maxwell-Bloch
model with a saturable absorber can explain the Rabi split-
ting and the lowering of the threshold, but cannot explain a
key feature in the experimental spectra. The latter exhibit
two relatively equal groups of modes with a gap in between,

©2008 The American Physical Society
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whereas the ring-cavity Maxwell-Bloch model predicts a
large central mode in the spectrum with two sidebands. In
view of this discrepancy, the Maxwell-Bloch equations were
extended to include coupling between counterpropagating
modes in a Fabry-Perot cavity, which is of course a more
adequate model for QCLs. This model takes into account the
development of SHB. The inclusion of SHB generates theo-
retical spectra with a Rabi splitting and without a central
peak in the spectrum, in agreement with experiments.

After presenting the theoretical results, a thorough study
of the experimental phenomenology is presented. It is shown
that QCLs with narrower active regions tend to exhibit a
more pronounced Rabi splitting than lasers with wider active
regions. Lasers with a wider active region tend to exhibit
multimode spectra that are governed by SHB. The explana-
tion we propose to this behavior is that narrow QCLSs have a
stronger saturable absorption effect than wider ones because
the optical intensity (and thus any nonlinear effect) is en-
hanced, and as a result of an enhanced Kerr-lensing effect
[3,5]. In this case a nonlinear index enhancement in the
waveguide core gives rise to an increased overlap of the
transverse laser mode with an active region and a reduced
overlap with lossy sidewalls, leading to an additional en-
hancement of the saturable absorption. The idea of saturable
absorption by Kerr lensing is further supported by the fact
that QCLs with metal coating on the sides of the ridge have
a stronger RNGH behavior than lasers without metal coating:
The metal coating enhances saturable losses that originated
from Kerr lensing.

In the last part of the paper, the temperature dependence
of the multimode behavior in QCLs is studied experimen-
tally. It is found that at higher temperature the multimode
behavior tends to be governed by the RNGH instability,
whereas at lower temperatures it is governed by SHB. This
behavior may be explained by the fact that at higher tem-
peratures hot carriers populate more states in the injector
superlattice, creating additional quasiresonant absorption
transitions between ground and excited minibands. This
leads to an additional saturable absorption of laser radiation.

This paper is organized as follows: Section Il gives a brief
survey of prior work on multimode regimes in QCLsS, Secs.
I11-V study theoretically the Maxwell-Bloch equations in a
ring cavity and a Fabry-Perot cavity, Secs. VI-VIII summa-
rize the experimental study, and Sec. I1X is a brief summary.

Il. PRIOR WORK ON MULTIMODE REGIMES
IN QCLS

Multimode regimes in QCLs were observed in a series of
recent works [5-8]. In Ref. [5], for example, it was observed
that at a certain pumping current above lasing threshold,
QCLs cease to operate in cw and develop a multimode re-
gime. This multimode regime was characterized by a broad-
band optical spectrum and a narrow (less than 100 kHz) ra-
dio frequency (rf) beat note in the power spectrum at the
cavity round-trip frequency.

The narrow beat note, whose width is 1/10° of the central
frequency, shows that the wave form of the electric field
circulating in the laser cavity was stable over approximately
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10° round-trips. In other words, the phase relationships be-
tween the longitudinal modes were stable for about 10°
round-trips. The modes were therefore locked. However, in
order to characterize the wave form which is circulating in
the laser and to see if it is indeed an isolated pulse, as in
traditional mode locking, one has to apply pulse character-
ization techniques, such as second order autocorrelation.

At the time when the experiment in Ref. [5] was per-
formed, no second-order autocorrelation apparatus was avail-
able. However, second harmonic generation from QCLs [6]
provided some information for pulse characterization. This
measurement showed an increase by more than a factor of 5
in the second harmonic signal as the multimode behavior set
in. This increase indicates that the duty cycle of the pulses
was roughly 5. Since the number of modes in the spectrum is
more than 5, we conclude that not all the modes were locked
into a pulse. Without better pulse characterization data, one
can infer that the laser could have had more than one pulse
per round-trip.

It should also be noted that traditional mode locking, with
a single pulse per round-trip, requires that the gain recovery
time be longer than the cavity round-trip [3]. In QCLs this
condition is violated, and therefore according to the existing
theory one cannot expect mode locking with a single pulse
per round-trip in QCLs. One can expect multiple pulses per
round-trip.

In view of the above, one can see that the nature of vari-
ous multimode regimes in QCLs requires further elucidation.
This is the main goal of the present work.

1. MAXWELL-BLOCH EQUATIONS IN A FABRY-PEROT
CAVITY

In this section we derive the Maxwell-Bloch equations in
a Fabry-Perot cavity. We model the gain medium of QCLs as
a two level system, described by the Bloch equations

) . .MmE p

pabzlwpab+l7A_Ti2b’ (1)
. _ /*LE * A _A &ZA
A——2|7(pab-pab)——"—Tl *D—3. (2)

where p,, is the off-diagonal element of the density matrix,
A= p,,—paa IS the population inversion, w and w are the
resonant frequency and the dipole matrix element of the las-
ing transition, T, and T, are the longitudinal and transverse
relaxation times, and A, is the steady-state inversion at E
=0, which characterizes the pumping rate. The last term in
Eqg. (2) is added phenomenologically and accounts for spatial
diffusion of the inversion due to carrier diffusion. D is the
diffusion coefficient. E is the electric field, which is assumed
to satisfy the wave equation

n? NI w .
ﬁfE - ?U‘%E = 6002 atZ(Pab + Pap) - 3)

N is the number of two-level systems per unit volume, which
equals the average doping density in the active regions. I' is
the overlap factor between the optical mode and the active
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region, and n is the background refractive index.

Equations (1) and (2) describe an open two-level system
[12]: The total number of electrons in the system is not con-
served, but rather can flow in and out, and vary depending on
the bias conditions. In general the two levels, the upper one
b and the lower one a, can have different relaxation times. In
this situation Eq. (2) should be replaced by two equations,
each with its own relaxation times. In QCLs indeed the upper
and lower levels have different relaxation times. However,
we neglect this difference for simplicity’s sake and assign to
them the same value T;. The generalization of the model (1)
and (2) to a model with two different relaxation times is
straightforward, as is also the generalization to a model with
more than two levels.

We now make the following set of ansatzs:

1 . ,
E(z,t) = E[Ei(Z,t)e_(""t_kZ) + E+(Z,t)e'(“’t_kz>]
Lgs ~(iwt+kz) i(wt+kz)
+ E[E-(Z,t)e otk E_(z,t)el @] (4)

Pap(z,D) = 7:(2,0€' ) + 7 (z,0)e! ), (®)

A(z,1) = Ag(z,t) + Ay(z,1)e?™ + Aj(z,t)e 722, (6)

where k=wn/c. E., %, Ay, and A, are assumed to vary
slowly in time and space, on the scale defined by w and Kk,
respectively. The quantities with a + (=) subscript represent
waves traveling to the positive (negative) z direction. Equa-
tion (6) allows taking SHB into account, A, being the enve-
lope of the inversion grating. Note that Eq. (6) can be ex-
tended by adding terms proportional to ek efikz et
Neglecting these terms means that higher spatial frequencies
on the inversion are neglected. Due to the nonlinearity of the
gain medium such frequencies can appear if the gain is
heavily saturated, but they are neglected in our analysis for
simplicity’s sake and since the pumping in our system is
never much higher than the laser threshold.

Substituting Egs. (4)—(6) into Egs. (1)—(3) and making the
slowly varying envelope approximation, we obtain the fol-
lowing set of equations:

n KN I 1
_(?E+:_(?E+_i +__€E+,E—E+, 7
ct, + o+ 260n277,2( JE- (7)
i * /A
0 +:_A E++A_E— -, 8
17+ Zﬁ(o_ 2 =) T, (8)
Ay—Ay i
Ghg= =0+ B v E Ty —cc), (9)
T, h
+ _ E *® &3 A; 2 +
GA; = £ iS(Eig.- 7E)) - == - 4k?DAS,  (10)
h T,

where we have introduced the notation A;=A,, A;=AJ, in
order that Egs. (7)—(10) can be written more compactly. The
last term in Eq. (7) has been added, and represents loss. The
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loss ¢ is allowed to depend on the field to represent phenom-
ena such as optical saturation.

In QCLs the laser cavity is formed by the two cleaved
facets, one located at z=0 and the other one at z=L. At each
facet the Fresnel reflection law dictates the following rela-
tions:

EL(Lt)= EE,L(L,U, (11)

n-1

E.(0,t) o 1E_(O,t). (12)
In what follows we study analytically and numerically the
model introduced in this section. We begin with a simplified
case, namely the standard Maxwell-Bloch equation in a ring
cavity. In addition to briefly reviewing known results about
the RNGH instability, we study the effect of a saturable ab-
sorber on the latter.

IV. RING CAVITY

In this section we consider a ring cavity, where SHB does
not exist because standing waves cannot form. The aim is to
understand the interplay of coherent effects and a saturable
absorber alone, while avoiding complications due to SHB.
We shall see that without SHB, the qualitative agreement
between theory and the experiments on QCLs is not com-
plete. After introducing SHB in the next section, the agree-
ment is much more satisfactory.

A. RNGH instability with a saturable absorber

Dropping all the quantities with a “=" subscript from Egs.
(7)-(10), one arrives at the standard Maxwell-Bloch equa-
tions, with a saturable absorber added.

n iuy 1 )
—E=-09,E- - (4o - v|EPE, 13
ot 4 oAy, 2( 0 7’| |) (13)
% Ui
am=—AE - —, 14
t7 2% T, (14)
A-A i
GA==E=+ f(E*n— c.c.). (15)

1

The saturable absorber is approximated to the lowest order in
E, and is characterized by v, which is often referred to as the
self-amplitude modulation coefficient [3]. €, is the linear
loss. Ay, is the lasing threshold value of A, for y=0, given by
(see Appendix A)

-1 kN,LLZFTZ
Ath = 2
Zheofon
Linear stability analysis of Egs. (13)-(15) is carried out in
detail in Appendix A. The gain of a perturbation at the fre-

quency () (relative to the resonance frequency w) is approxi-
mately given by

(16)
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0.005

Parametric gain (THz)

Q/(2m) (THz)

FIG. 1. (Color online) g(Q) for p=2 and the parameters in Table
I, apart from . The latter is y=0 (solid), y=10"° c¢m/V? (dashed),
and y=2x10"% cm/V? (dotted).

__Cc QT +1)QT,-2(p-1)
9() = 2n Re 50(91.1 +D)(QT,+i)-(p-1)
yh2(p-1) (QT, +)(BQT,+2i) —4(p-1)
T T, QT +D)(QT,+i)-p+1

(17)

The approximations made in the derivation of Eq. (17) are
discussed in detail in Appendix A and mainly include assum-
ing that the photon lifetime in the empty cavity is much
longer than T, and T,. This approximation is excellent for
QCLs. p is the pumping above lasing threshold (for y=0):

A

=t 18

p Ay (18)

Figure 1 shows g({2) for different values of y at p=2. The
parameters used in all examples in this paper, unless speci-
fied otherwise, are given in Table I. The effect of vy is to
increase g({2) more or less uniformly across the frequency
domain. In particular, it can bring g({)) above zero, thereby
triggering an instability, even when the laser is not pumped
as high above threshold. The reason why a saturable absorber
lowers the RNGH threshold is that a saturable absorber itself
always favors a multimode regime to a single mode one. It
introduces a frequency-independent parametric gain. The lat-
ter is added to the RNGH parametric gain from Fig. 1, bring-
ing it above threshold. Note, however, that the instability still

TABLE |. The parameters used in all calculations and simula-
tions in this paper, unless indicated otherwise.

Quantity Symbol Value
Gain recovery time T, 0.5 ps
Dephasing time T, 0.067 ps
Linear cavity loss €y 5 cm™!
Transition dipole element )% 2.54 nmXe
Background refractive index n 3.3
Cavity length L 3 mm
Saturable absorber coefficient y 1078 cm/V?
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Instability / lasing threshold

y ( 0° cmNz)

FIG. 2. (Color online) The pumping ratio p at which the RNGH
instability sets in as a function of the saturable absorber coefficient
v. Solid line: exact result from linear stability analysis. Dashed line:
approximate result [Eq. (21)]. The parameters, apart from v, are
given in Table I.

starts by developing Rabi sidebands around the cw lasing
frequency. In this sense, it can be interpreted as a modified
version of the original RNGH instability, rather than as a
modulation instability caused by the saturable absorber
alone.

The dependence of the threshold for instability on vy is
shown in Fig. 2. For y=0 we recover the standard RNGH
instability, which occurs when pumping of slightly above 9
times the lasing threshold. For y— oo, the instability thresh-
old approaches the lasing threshold.

The results in Figs. 1 and 2 were obtained from numerical
solutions of the algebraic equations involved in the stability
analysis (see Appendix A). Since even the approximate ex-
pression of g(Q) [Eqg. (17)] is not very simple, it is useful to
derive some approximate simple expressions for the proper-
ties of the instability. This is done in detail in Appendix A,
and here we only give the results.

g(Q) (e.g., in Fig. 1) has a local minimum at 1=0, and
peaks at approximately

4

2
|Qmax| = ORabi P

—. 19
1 (19)
The Rabi frequency Qgapi=mE/A, where w is the electron
charge times the matrix element of the laser transition. The
position of the peak depends weakly on +y within the param-
eter range of interest to our system. Note that for y=0 one
has

p-1
T,T,

ORapi = (20)

The dependence of | Q.| on p is shown in Fig. 3.
The instability threshold is approximately given by

ﬁZ 2 ﬁz -1
pm=1+8{4<—2 Y ) +12—-1- +1] @1
Tt Tt

Figure 2 shows that Eq. (21) fairly well approximates the
exact threshold condition.
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FIG. 3. (Color online) O, as a function of the pumping. Thick
line: exact, and dotted line: Eq. (19). The parameters are from Table
I with the only difference that y=0.

B. Numerical results

The linear stability analysis given above can only find the
threshold condition, and does not describe the behavior of
the laser above the point of instability. Here we therefore
present the results of a numerical solution of Egs. (13)—(15).

According to Ref. [13], the energy in the Rabi sidebands
can change either discontinuously or continuously at the
RNGH instability threshold. In the language of phase transi-
tions, this would be a first- or second-order phase transition,
respectively. The criterion that determines the order of the
transition involves the laser cavity length, but has not been
given explicitly in the literature known to us.

According to the numerical simulations, for the param-
eters corresponding to our QCLs, including the saturable ab-
sorber, the transition is continuous (second order). Below the
instability threshold the lasing is cw, and as the threshold is
crossed, the Rabi sidebands around the central cw mode
grow continuously. This behavior is demonstrated in Fig. 4.
Note that standard mode locking, with a saturable absorber
and slow gain recovery, is a discontinuous (first-order) tran-
sition [14,15].

1
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The spectra in Fig. 4 have two groups of modes separated
by roughly twice the Rabi frequency. In this respect they
resemble the experimental spectra. However, they have a
strong cw peak in between, a feature which is not shared by
the experimental spectra. As we show in the next section, in
a Fabry-Perot cavity with SHB, the central cw peak disap-
pears.

V. FABRY-PEROT CAVITY

Spatial hole burning is associated with A, in Eq. (10).
Intuitively, A, is the amplitude of the grating that couples the
two propagation directions in the laser. The parameter that
controls the strength of SHB is D: in the limit of D —x, A,
approaches zero. In order to better understand the interplay
between SHB and the RNGH instability, we present now the
results of analytical and numerical studies of Egs. (7)—(10).
We start with linear stability analysis. The calculation is
shown in detail in Appendix A, and here we only give the
results.

Before proceeding, from Eq. (10) we define the lifetime
of the gain grating Ty as

Toh=T1 +4k%D. (22)

Ty is the parameter that determines the strength of spatial
hole burning. T, can therefore range from zero (no SHB) to
T, (strongest of SHB). The diffusion coefficient D can be
estimated from the Einstein relation. With an electron mobil-
ity of 7000 (cm?/s)/V at room temperature, one has D
=180 cm?/s, k=3.7xX10* cm™, which roughly corresponds
to a vacuum wavelength of 5 um, and we obtain 4k’D
~1 THz. With T;'~2 THz we find that T;~0.3 ps. Note
that the mobility used here was relatively high, and the
wavelength was on the short side of the scale. Therefore in
reality T, is closer to T,. It therefore follows that due to the
fast gain recovery of QCLs, carrier diffusion does not elimi-
nate spatial hole burning. This is in contrast with diode lasers
[16,17].

In single mode operation, the standing wave associated
with the lasing mode imprints a grating in the medium which

p=5
0.5)
= 0 14 L .‘ FIG. 4. (Color online) Spectra
£ 2 0 2 4 -4 -2 2 4 obtained from a numerical solu-
2 503 10° tion of the Maxwell-Bloch equa-
& tions [Egs. (13)—(15)]. The param-
F 07 eters are given in Table I, with the
S following  exceptions: y=1
€ 1o X107 ecm/V?, L=6 mm (to give
94 -2 0 2 4 -4 -2 0 2 4 the same round-trip time as in a
: 10° Fabry-Perot 3 mm long cavity),
p=25 and ¢,=7 cm™ (to account for
, the mirror losses t00).
0.5t 10
0 10°
—4 -2 0 2 4 -4 -2 0 2 4
Q/(2m) (THz)
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FIG. 5. (Color online) g(2) of the perturbation, associated with
spatial hole burning. p and Ty corresponding to every curve are
denoted in the legend.

has, to first approximation, a sinusoidal profile. This grating
causes the lasing mode to experience heavier gain saturation
than any other mode would experience. When the gain grat-
ing becomes strong enough, the single mode regime becomes
unfavorable, and additional modes are excited.

A. Linear stability analysis

Linear stability analysis of Egs. (7)—(10) gives two fami-
lies of unstable modes. One is associated with the RNGH
instability, and the other one with spatial hole burning. The
first family is very similar to the case of a ring cavity studied
earlier, with small differences that are discussed in Appendix
A. The second one is derived in Appendix A, and the result is
shown in Fig. 5.

Figure 5 shows the gain of a perturbation around a cw
solution. The shorter is T4 and the smaller is the pumping,
the smaller is the gain of the instability. For parameters typi-
cal to our QCLs, the SHB instability occurs a few percents
above lasing threshold.

The gain curve in Fig. 5 exhibits two peaks and a dip at
Q=0. For T,<T; and p—1<1, the location of the peaks is
given by (see Appendix A)

02, ~ Ti % (23)
1 112
Note that Eq. (23) gives a smaller frequency than Eq. (19). In
addition, the splitting in Fig. 5 scales like the square root of
the Rabi frequency. The cw solution is destabilized when the
cavity admits a mode for which g({2) in Fig. 5 is positive.

B. Numerical results

The moment the cw solution is destabilized, studying Egs.
(7)-(10) requires a numerical simulation. The results of such
a simulation are shown in Fig. 6. The parameters are given in
Table I, with the only difference that y=0 was used.

Figure 6 shows a clear pattern in the spectrum. This pat-
tern appears only after very long averaging (order of a mi-
crosecond) of the spectrum. Such averaging is appropriate,
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FIG. 6. Results of numerical simulations of the spectra based on
the Maxwell-Bloch equations including a saturable absorber and
spatial hole burning for different values of the current density nor-
malized to the threshold value.

since similar averaging occurs when the spectra are mea-
sured. The pattern depends on T, and €,, but very weakly
depends on T;. A similar pattern occurs in the experimental
spectra. However, we were not able to trace its origin.

The combined effect of SHB and a saturable absorber is
demonstrated in Fig. 7. One can observe two effects. First is
spectral broadening due to SHB, similarly to Fig. 6. Second,
however, is the appearance of a splitting in the spectrum.
This splitting is roughly equal to twice the Rabi frequency.
Note, however, that in contrast to a ring laser, in a Fabry-

Optical Frequency (THz)

33 3 35 36 37
27

23

21
1.9

Optical Power

1.7 I
15

i, =1.1

L L " L L
1110 1130 1150 1170 1190 1210 1230 1250

Wave Number (cm'1)

FIG. 7. Results of numerical simulations of the spectra based on
the Maxwell-Bloch equations including a saturable absorber and
spatial hole burning for different values of the current density nor-
malized to the threshold value.
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FIG. 8. (Color online) Scanning electron microscope (SEM) im-
age of the cross section of a 10 wm wide ridge QC laser.

Perot laser “the Rabi frequency” is not a perfectly well-
defined quantity. Since a standing wave is formed in the
cavity, the electric field and thus the Rabi frequency depend
on the position in the cavity. This dependence is even stron-
ger when the mirrors have a relatively low reflection coeffi-
cient, since the field amplitude even more strongly depends
on position.

In the previous section we saw that a saturable absorber
lowers the threshold of the RNGH instability. Here we see
that SHB suppresses the central peak seen in Fig. 4 and
replaces it by a minimum in the spectrum. In the next sec-
tions we see that Fig. 7 agrees well with experimentally mea-
sured spectra, at least for devices where the RNGH behavior
was dominant.

VI. EXPERIMENTAL RESULTS: RIDGE LASERS

We first study the multimode regimes in standard ridge
QCLs, in which the sidewalls of the laser ridges are covered
by a thick layer of electrically plated gold contact, see Fig. 8
for a typical laser cross section. The active region of the
samples tested is based on a three-quantum-well design emit-
ting at a wavelength A ~8 um [18]. The wafer was grown
by metalorganic vapor phase epitaxy (MOVPE). Figure 9(a)
shows the voltage-current (V-1) and light-current (L-1) char-
acteristics of a 10 um wide laser operated in cw at 200 K,
and Fig. 9(b) shows the corresponding optical spectra. The
laser was cleaved into a 2 mm long bar and soldered with
indium onto a copper heat sink. The optical power was mea-
sured by an thermal head power meter with a collection ef-
ficiency of nearly 100%. The spectra were measured by a
Nicolet Fourier transform infrared spectrometer (FTIR)
equipped with a deuterated triglycine sulfate (DTGS) detec-
tor.

As shown in Fig. 9(b), the laser spectrum is single mode
close to laser threshold. It broadens and splits into two sepa-
rated humps as the pumping current increases. The separa-
tion between the two peaks of the two humps increases lin-
early with the square root of the collected output power from
one facet, as shown in Fig. 9(c). The Rabi angular frequency
can be calculated from the collected output power, using the
formula Qpgpi=uE/f=u\2nl,,/(Ce)/h, where wu is the
electron charge times the matrix element of the laser transi-
tion (=1.9 nm for this particular device). 1, is the average
intracavity intensity in the gain region, which can be derived

PHYSICAL REVIEW A 77, 053804 (2008)

from the measured output power [19]. For all values of in-
tensity corresponding to the spectra reported in Fig. 9(b),
QORgabi/ 27 was calculated, multiplied by a factor of 2 and then
added to Fig. 9(c) (solid line). Reasonably good agreement is
found between the experimental splitting and twice the esti-
mated Rabi frequency. The error bars of the spectrum split-
tings come from the uncertainty in determining the exact
position of the peaks, which is the full width at half maxi-
mum (FWHM) of the humps. As mentioned previously in the
theoretical section, the RNGH instability predicts that large
intracavity intensity will result in parametric gain at frequen-
cies detuned from the maximum of the gain curve by the
Rabi frequency. The measured spectra thus show clear indi-
cation of the RNGH instability in ridge QCLs.

The lowering of the RNGH instability threshold in our
QCLs is due to the presence of a saturable absorber. This
phenomenon is demonstrated analytically in the theoretical
section. Such a saturable absorption mechanism in our ex-
periments is likely to come from Kerr lensing, caused by a
nonlinear (i.e., intensity dependent) refractive index n,l in
the active region [5]. As the light intensity increases, the
mode becomes more confined in the plane transverse to the
propagation direction, and the corresponding net modal gain
also increases. The reason is twofold: First, the mode over-
laps more with the active region, leading to a larger modal
gain (this mechanism is often called “soft Kerr-lensing”).
Second, the overlap with the metal contacts is reduced, lead-
ing to smaller losses. Thus the metal acts like a saturable
absorber. A detailed analysis is given in Appendix C.

The same RNGH splitting in spectra is observed in many
different devices, from wafers grown by both molecular
beam epitaxy (MBE) and MOVPE. Figure 10 shows the
spectra of a laser fabricated from a MBE-grown wafer with
the same active region design as in Fig. 9, taken in continu-
ous wave at 77 K. The spectrum starts from single mode
close to the laser threshold, and the mode hops at a pumping
ratio of j/j;,=1.66, where there is a corresponding kink in
the (L-1) curve at 330 mA. At 590 mA, there is another kink
in the (L-1) curve, and a corresponding abrupt shift in the
spectrum associated with mode hopping. Mode hopping and
its relationship to kinks in the (L-I) curves are common phe-
nomena in semiconductor lasers [20-22], but its cause in QC
lasers has not yet been studied and is beyond the focus of
this paper. After the spectrum broadens, it forms two sepa-
rated humps whose peaks shift apart with increased optical
power, similar to the MOVPE-grown lasers.

Characterization of the pulse emission was done using the
method of second-harmonic interferometric autocorrelation.
It is based on a Michelson interferometer in which the input
beam is split into two and one of them is delayed by . In the
standard setup, once recombined, the two pulses are sent
collinearly first into a nonlinear crystal, and then a filter,
which allows only the second-harmonic generation (SHG)
component to be detected. One can test if it originates from a
stationary isolated pulse train from the ratio between the in-
terference maximum and the background (see Appendix B).
The pulse duration can also be determined. However, due to
the extremely low SHG conversion efficiency of nonlinear
crystals in the mid-IR, the conventional setup is not feasible.
To overcome this problem, we used a two-photon quantum
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FIG. 9. (Color online) (a) V-1 and L-I curves and (b) optical spectra vs pumping ratio (j/jy,) above threshold obtained in cw at 200 K of
a 10 wm wide ridge laser emitting at 8 um (wafer No. 2721). (c) Spectral splitting and twice the Rabi frequency Qrapi/ (277) Vs square root
of output power collected from a single laser facet. The different quantities reported on the graph were deduced from the experimental data

shown in (b). The dashed line is a least-squares linear fit of the data.

well infrared photodetector (QWIP) [23,24] instead of using
a nonlinear crystal plus a linear detector. The energy diagram
of one period of the multiquantum well detector under bias is
shown in the inset of Fig. 11. The first three electronic states
are nearly equidistant in energy. When electrons in the doped
quantum wells absorb two photons simultaneously and the
detector is biased (1-3 V), a photocurrent is generated and
the signal can be detected by use of a preamplifier and a
lock-in amplifier. This experimental setup is shown in Fig.
11. The second-order interferometric autocorrelation trace of
the MBE-grown device mentioned above is shown in Fig.
12. Interference fringes are observed when the delay time
from one arm of the autocorrelator is equal to multiples of
the cavity round-trip time. The ratio between the maximum
of the interference fringes and the background is smaller than
8, and the autocorrelation trace has some features between
the cavity round-trip times, indicating that the multimode
regime observed in this device is not stable mode locking

with a single pulse per round-trip. The meaning of the auto-
correlation traces is discussed in Appendix B, and simulated
traces are given therein.

In addition to second-order autocorrelation, the micro-
wave spectrum of the laser output was also measured with an
ultrafast QWIP [25] whose bandwidth is 52 GHz. The laser
output is sent directly to the ultrafast QWIP, and the resulting
photocurrent is displayed in a spectrum analyzer. Figure 12
shows the beat note signal of the MOVPE-grown sample at
pump current 800 mA at 77 K. A steady peak with a FWHM
of 13 MHz at 22.01 GHz, which corresponds to the cavity
round-trip frequency of the 2 mm long laser (background
refractive index n=3.3), is observed on the spectrum ana-
lyzer. It indicates a modulation of the laser output at the
cavity round-trip frequency, and thus at least partial phase
locking between the longitudinal modes: The phase relation-
ships between the modes are stable for about 10% round-trips,
as inferred from the peak frequency-to-FWHM ratio.
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FIG. 10. (Color online) (a) V-1 and L-1 curves and (b) the optical spectra vs pumping ratio (j/ j;,) above threshold obtained from a 10 um
wide ridge QCL operated in cw at 77 K emitting at 8 um (wafer No. 2743). Note that mode hopping occurs while there is a jump in the L-I

curve.

As the ridge width is increased, the RNGH instability and
the Rabi splitting in the spectrum are suppressed. Figure 13
shows the spectra of a device processed from the same wafer
as the one in Fig. 9, with the difference of its ridge width
being increased to 15 wm. The spectra do not broaden much
even at very high pumping currents, and do not show the
Rabi splitting. As discussed in Appendix C, the effect of Kerr
lensing decreases significantly when the active region width
is increased. Thus this is strong evidence that the saturable
absorption needed for lowering the RNGH threshold is pro-
vided by the Kerr-lensing mechanism.

VIlI. EXPERIMENTAL RESULTS: BURIED
HETEROSTRUCTURE LASERS

The second type of lasers we have tested are the so-called
buried heterostructure lasers, in which an insulating Fe-
doped InP layer is regrown after etching of the ridges. A

ostat

cryos
A

spectrum
analyzer

2 photon QWIP

/

corner cube

/
It e

FIG. 11. (Color online) The experimental setup of a two-photon
autocorrelation measurement. (Inset) Conduction band diagram of
the two-photon QWIP showing three equidistant energy levels.

amplifier

lock-in

thick layer of electrically plated gold is deposited on top of
the ridges as the top contact layer after the InP regrowth.
Figure 14 shows the cross section of such a device.

The active region of the buried heterostructure lasers
tested is based on a four-quantum-well design, which relies
on a double phonon resonance to achieve population inver-
sion [26]. Figure 15(a) shows the V-l and L-1 characteristics
of a laser with an active region width of 3 um and wave-
length 8.38 um operated in cw at room temperature, and
Fig. 15(b) shows its optical spectra. The spectra show Rabi
splitting similar to the ridge laser case, indicating the RNGH
instability in this narrow buried heterostructure laser. The
spectral splitting and twice the Rabi frequency are plotted
against the square root of the collected output power in Fig.
15(b). Good agreement is found between the experimental
splitting and twice the calculated Rabi frequency.

The second-order interferometric autocorrelation trace of
the device when it is pumped five times above threshold at
80 K is shown in Fig. 16. The ratio between the maximum of
the interference fringes and the background is close to 8 to 3,
similar to the ridge laser case. In addition, there are smaller
interference fringes within one cavity round-trip period. Both
features indicate no stable pulsation from the laser (see Ap-
pendix B). The microwave spectrum of the laser output
shows a steady peak with FWHM of 700 kHz at 15.018
GHz. This is shown in the inset of Fig. 16. This indicates that
the phase relationship between the modes are maintained for
about 10* cavity round-trips.

As in the ridge laser case, the lowering of the threshold of
RNGH instability can also be attributed to the Kerr-lens type
saturable absorption. In order to better support this idea ex-
perimentally, the spectra of another device processed from
the same wafer as in Fig. 15 but with a wider active region
(7.5 um) are measured. Two-dimensional waveguide simu-
lations indicate a much weaker Kerr-lensing effect in these
QCLs, due to the much larger ratio of active region width to
wavelength (see Appendix C). The measured optical spectra
obtained at 300 K in cw mode are shown in Fig. 17(a). The
envelopes of the spectra consist of multiple peaks whose
separation is independent of the pumping current. The spec-
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FIG. 12. (Color online) A
second-order interferometric auto-
correlation trace of a 8 um wave-
length ridge QC laser (wafer No.

2743) under the condition of
RNGH instability. (Inset) Micro-
wave spectrum of photocurrent
generated by a similar laser (wafer
No. 2721) under the condition of
RNGH instability (measured with
a 68 kHz resolution bandwidth).
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tral signatures qualitatively agree with the numerical simula-
tions in a Fabry-Perot cavity without a saturable absorber
(y=0) (Fig. 6).

Further increasing the active region width tends to sup-
press both the instabilities caused by RNGH and spatial hole
burning. Figure 17(b) shows the spectra of a device also
processed from the same wafer but with an even wider active
region (10 wm) at 77 K. The spectra do not broaden much
even at very high pumping currents, as in the ridge laser
case. Since both RNGH instability and SHB stem from non-
linear effects, they are suppressed when the intensity of the
field in the cavity is lower. Moreover, when the active region
width increases, higher transverse modes are excited. Differ-
ent transverse modes have different propagation constants S,
and thus form different gain gratings which tend to wash out
the effect of spatial hole burning.
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FIG. 13. Optical spectra vs pumping ratio (j/]jy,) above thresh-
old obtained in cw at 77 K with a 15 um wide ridge laser emitting
at 8 um (wafer No. 2721).

VIIl. TEMPERATURE EFFECTS

Temperature also plays an important role in the shape of
the spectrum. To illustrate this point, we now present the
spectra at different temperatures for the A=8.38 um buried
heterostructure laser with 3 um active region width (the
same as in Fig. 15).

From the spectra in Fig. 18, it is clear that at lower tem-
peratures the spectra are dominated by spatial hole burning,
showing multiple peaks independent of pumping and no sig-
nificant Rabi splitting. As the temperature increases, the Rabi
splitting becomes more evident and finally the RNGH insta-
bility takes over.

The effect of temperature on the nature of the multimode
regime in QCLs can be explained in part by carrier diffusion,
however, this effect alone seems to be too weak to provide a
complete explanation. The lifetime of the gain grating T, is
defined as T,'=T;*+4kD. The diffusion coefficient D of the
gain grating is proportional to the temperature, D= ukgT/q,
where w here is the carrier mobility, kg is the Boltzmann’s
constant, T is the temperature, and q is the carrier charge.
Therefore at higher temperature carrier diffusion would re-

n* InGaAs layer

InP cladding}

s re-grown
%= FeinP

St ctive core

FIG. 14. SEM image of the cross section of a buried hetero-
structure QC laser.
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FIG. 15. (Color online) (a) V-1 and L-I curves and (b) optical spectra vs pumping ratio (j/ i) above threshold obtained in cw at 300 K
with a 3 um wide ridge laser emitting at 8.38 um (wafer No. 3251). (c) Spectral splitting and twice the Rabi frequency Qgapi/ (277) Vs
square root of output power collected from a single laser facet. The dashed line is a least-squares linear fit of the data.

duce spatial hole burning and thus reveal the RNGH insta-
bility. However, with an upper limit for the mobility of
7000 (cm?/s)/V and k=2.25x10* cm™ (which corre-
sponds to a wavelength in vacuum of 8.38 um), 4k’D
~0.09 THz at 77 K and 4k’D~0.4 THz at 300 K, both
significantly smaller than T;*~0.6 THz at 77 K and T;*
~2 THz at 300 K. Thus carrier diffusion is unlikely to be
the reason for the temperature dependence. Although the
temperature effect is not entirely understood to us at this
point, one possibility is temperature-dependent saturable ab-
sorption. The QCL injector consists of many energy levels
which can be thermally populated. It is not surprising that if
any two higher levels in the injector are nearly resonant with
the laser transition, they will form a two-level saturable ab-
sorber. Therefore in this case saturable absorption is stronger
at higher temperature and makes the RNGH instability more
easily observable.

IX. CONCLUSION

This paper provides a thorough account of different mul-
timode regimes in QCLs. It was found that two key mecha-

nisms which govern the multimode regimes in QCLs are a
coherent instability similar to the RNGH instability and spa-
tial hole burning. The former is enhanced due to the large
dipole moment . of the laser transition, which results in a
large Rabi frequency compared to the relaxation rates. Thus
the Rabi splitting can be resolved by the comb of modes
supported by the cavity. SHB is enhanced because carrier
diffusion is slower than the gain recovery, and thus leaves
the gain grating intact. Note that in conventional semicon-
ductor lasers the RNGH instability is not observed because
typical Rabi frequencies are much smaller than the phase
relaxation rate 1/T,. SHB in diode lasers is not so readily
observable because diffusion occurs on a time scale compa-
rable to the recombination time, i.e., the second term on the
right-hand side of Eq. (22) is of the same order or greater
than the first term 1/T,;=10° s*

Due to the fast gain recovery, conventional mode locking,
with one pulse per round-trip, is suppressed. In order to
achieve conventional mode locking in QCLs, one needs to
design a QCL with a slower gain recovery, such that T, be-
comes longer than or comparable to the cavity round-trip.
Efforts in this direction are currently underway.
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APPENDIX A: LINEAR STABILITY ANALYSIS AnT2
This appendix elaborates on the linear stability analysis of 0A
the Maxwell-Bloch equations in a ring cavity [Egs. A== (A1)
(13)—(15)] and in the Fabry-Perot cavity [Egs. (7)—(10)]. AT,
1. Ring cavity Equations (13)—(15) are then rewritten as
We begin with a linear stability analysis of Egs. (13)—(15), 1
with €(E)=¢,—|E|. In order to keep the expressions from N E e 3B —i= 2t -3ERE A2
becoming too cluttered we define c ! : 7 2( 0~ AEPE, (A2)
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- A~ 7
on=—E-—, A3
t7] 2 T, (A3)
X peo Z et
oA=—""-—+i(E"p-c.c.). A4
S i(E"p-c.c.) (A4)

Setting the left-hand sides of Egs. (A2)—(A4) to zero we find
that they admit a steady state solution of the form E=E, 7
=7, A=A.E,»,A are constants in time and space satisfying

~ by YE?
A=f-1, (A5)
2 2
_ =
=5t~ ¥E)E, (A6)
¥E? =
pri={1--~— (1+E’TiTy). (A7)
0

E was assumed real, since it can be always chosen so without
loss of generality.

Adding perturbations SE, o7, SA to the steady state so-
lution, and linearizing Eqgs. (A2)-(A4) with respect to the
perturbations, one obtains a set of linear equations:

om
T (A8)

1 — ~ o
aom = E(A5ER + SAE) -
2

~ —~ = SA
015A:_T2AE5ER_2E577|_T_7 (Ag)
1
n - . =y OF
COER == R+ Iy = (fo=3%ED) " (A10)
and
1- = &%
057 =- “ASE, - 2B, (A11)
2 T,
e =y OE
SHOE =~ 0,08 - S = (6o -FED S (A1D)

The two sets of equations, (A8)—(A10) and (A1l) and (A12),
are decoupled, and can be thus studied independently. Since
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both sets of equations are translationally invariant, plane
waves are their eigenfunctions. For Egs. (A8)-(A10) we

therefore choose 7,(z,t)=87,(H)el, and similarly for SA

and 5ER. The stability of the cw solution is thus determined
by the eigenvalues of the matrix

— 1_
- (o= E? “E
2 2T2( 0~ ¥EY) 2
m=| ¢ ¢ 3=, . )
= 2=+ SyE2-ik] 0
n n( 20 27
-2E FE3 - (,E -T;!

(A13)

If all eigenvalues have a negative real part, the cw solution is
stable.

The eigenvalues of M can be easily found numerically.
However, it is always more enlightening to have an analyti-
cal expression. To this aim we observe that of the three fre-
quency parameters in M [T7%, T;%, and £(¢+7%E?)], the lat-
ter, which is the inverse cavity photon lifetime, is often the
slowest one in QCLs. According to Table I, £€,=0.05 THz,
T;'=2 THz, and T,'=15 THz. We thus derive expressions
for the eigenvalues which are correct to first order in €, and
Y-

For €,=0 and =0, the eigenvalue with the greatest real
part is \g(k)=—-ick/n. Putting A(k)=Nq(k)+X;(k) into the
characteristic polynomial of M and equating the parts which
are first order in €,, 7y, and A4, one arrives at

€0C (QT]_ QTZ 2(p - 1)
Max =~ 1
2n (AT +D)(QT,+i)-(p-1)
N (p—1)yc (AT, +1)(3QT, +2i) - 4(p-1)
2nT1T2 (QT]_ + |)(QT2 + |) - (p - 1) '
(Al4)
where p=A,/Ay—1 and Q=ke/n. Taking the real part of Eq.
(A14) one obtains Eq. (17).
The position of the maximum of the gain curve is inde-

pendent of %, and to first order in T,/ T, is given by Eq. (19).
The gain at that frequency is given by

cy(p-1)
TlTZ '
(A15)

The threshold for the instability is found, to leading order in
T,/T,, by equating Eq. (A15) to zero. This yields Eq. (21).

() = 2130~ 1) ~21200p - 1] +

e
2n

2. Fabry-Perot cavity

Employing the same transformation as in Eq. (Al), Egs.
(7)-(10) take the form

GE.= F 9E. (A16)

(e =]

~ 1 =
- i = SE-,

AE++AE -
(o 2E5) T2

dp = (AL7)
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- A=Ay o~ o~
o= —"Tl—o +iE +E7.-cc),  (Al8)
= s~ ~ % Zt
ddy = +i(Ey7- - 7E) - T—2 (A19)

g

Splitting the variables with the tilde into their real and imagi-
nary parts, Eqs. (A16)—(A19) can be rewritten as

1 — — —~ ~ — ~ ~
&7, + 7. = E(Ao +Ap)(SER + SED) + E(8Ag + 8AR)

57, + 57
_ 77+T 7/—’ (A20)
2

n ~ ~ ~ ~
E(MEE + G OER) = — 0,(6ER - 6ER) + (67, + 671)

On ~ ~
— 50(555 + SER), (A21)
X — =R =R = I | 530
ataAO = 2|77(6E+ + 5E—) - 2E(5;7+ + 55—) - T_v
1
(A22)
AR _ i~ R SRy _ | | 5Z§
A6Ay =in(6ES + 6ET) — E(67, + 67_) — T
g
(A23)
1 — _ - - -
RO} = 7 = = 5 (80 = Ag) (9B - SEL) + OAZE
5“ A
o7, ~ 07— ’ (A24)
IF

n ~ ~ ~ ~
< (O, = OEL) = = 6,( 0. + EL) ~ (57 = )

- %(5& - 6EL), (A25)

A
é?ﬁ——z

o =
SEL) - E(57; - T,

07t5Z|2 == |_7](6EI+ -

(A26)

We now define the generalized parity operator P, which re-
flects the space around the center of the cavity and swaps all
+ and — quantities:

PX.(z,t) =X=(L-1z,1),

where X is any of the quantities 7, E, or A, with an R or |
superscript. Equations (A20)-(A26) commute with P, and
therefore their eigenmodes can be chosen to be eigenstates of
P as well. Since P2 is the unity operator, P can have only
“even” or “odd” eigenstates, with +1 and -1 eigenvalues,
respectively.
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We now observe that Egs. (A20)-(A23) are decoupled
from Egs. (A24)-(A26). For Egs. (A20)-(A23), odd solu-
tions are trivial, whereas for Egs. (A24)-(A26), even solu-
tions are trivial. Assuming an even solution for Egs.
(A20)-(A23) and an odd solution to Egs. (A24)—-(A26), Egs.
(A20)—(A23) are reduced to

Ag+Ay =, E ~ ~ &7
a7 = S 2GR+ =(6Rg + 8Bp) - 2, (A27)
2 2 T,
n TR _ _ 1 oR |_@~R
Cﬁt5E+_ 828E++5;7+ 25E+: (A28)
e = SA
90A, = 4inER - 4E57, - T—O (A29)
1
AR — R <l 555
0505 = 2o - 2E 7L~ —*, (A30)
9
Aog=Dp = 1 ~= &
GoTR= - 2225 L ZSAE- 2 (A31)
2 2 T,
N~ o= r_toz
Cﬁt6E+_ 325E+ 57]+ 25E+a (A32)
~ S~ = SA!
aoAY = - 2insE. - 2ES57} - T—2 (A33)

g

Similarly to the discussion around Eq. (A13), the stability
of Eqgs. (A27)—-(A33) is studied by finding the eigenvalues of
the matrix

- TE:L ﬁ E E
2T, 2 2
c c/ 1
= Z|-Z6-ik] 0 o0
n n( o b0 I ) (A34)
—4E  -20 -T¢0 0
- 2E - ¢E 0o -7
for Egs. (A27)-(A30), and
‘ _
— Tgl =0 E
2T, 2
c ¢ 1 . (A35)
-= Z|-Z6-ik] 0
n n( g0t )
- 2E €E -Ty

for Egs. (A31)—(A33). E is now related to p via

RSt S
2T T, + T, Ty

The matrix (A34) is related to the RNGH instability, whereas

matrix (A35) is related to spatial hole burning. In the limit of

PHYSICAL REVIEW A 77, 053804 (2008)

Ty—0, as well as in the case Ty=T, g({2) is identical to the
expression (17) without a saturable absorber (y=0):

e, [ QT +)OT,-2(0-1)
9V =-- Re{(QTﬁi)(QT2+i)—(p—1)]

(A36)

The RNGH instability threshold is therefore again around
p=9. Note, however, that the cw solution destabilizes for
much smaller p due to spatial hole burning. Indeed, g({)
obtained from Eq. (A35) is given by

__@ i(i+QT)-(p-1)
9V=- Re{l T3+ T+ 0Ty - (p- 1>}
(A37)

for Ty=T,. The peak of the gain curve is obtained at

1 /p-1
szax =T \ar
T, V3TT,

for T,<T, and p—1<1. For Ty=0 spatial hole burning does
not exists, and g({2) obtained from Eq. (A35) is given by
04C {Zi + mz}

)=- g
9= R o,

(A38)

which is never positive.

APPENDIX B: INTERFEROMETRIC AUTOCORRELATION

If we write the electric field as a function of time as
E(t)e'!, the two-photon interferometric autocorrelation is
given by

I(7) = f |E(t+ ne'™+ E(t)[*dt
= fo [[E(t+ D|*+ [E(W)|* + 4|E(t + DE()[*]dt
+ 2“00 dt|E(t)[2E*(t)E(t + ne'™ + c.c.]

—0o

+ Zlfc dt|E(t+ DPPE*()E(t+ De'“T+ c.c.}

+ [ f dt[E(t + DE*(t)ed P + c.c.]. (B1)
We define the background as
I, = zf |E(t)[*dt. (B2)

From Eqg. (B1) one can see that 1(0)=8l,. We now assume
that E(t) is an isolated pulse, and for simplicity’s sake we
assume that E(t) is nonzero only over an interval T. Then for
7>T all terms in Eq. (B1) which include both t and t+7
vanish. Therefore 1(7>T)=1,. In other words, for a pulse
one has
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FIG. 19. (Color online) Simulated interferometric autocorrela-
tion, corresponding to the same parameters as in Fig. 7. The value
of p is denoted at each plot.

10 _

(r>T) (B3)

Now let us assume that E(t) is a complex stationary random
process whose phase at each point in time is uniformly dis-
tributed over the interval [0,27]. Let us assume for simplic-
ity that there is T such that for 7>T E(t) and E(t+7) are
statistically independent. One can see that the mean value of
the third, the fourth, and the fifth line of Eq. (B1) vanish. The
second line of Eq. (B1) equals 3l,. We therefore obtain that
for a random process

1(0) 8
— =, B4
I(r>T) 3 (B4
The ratio between the peak and the background in the auto-
correlation function is therefore 8:1 for an isolated pulse, that
is when the phases of all modes are all zero, and 8:3 for
modes with completely random phases.

5.6 T T T
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Figure 19 shows simulated interferometric autocorrelation
traces for the same parameters as in Fig. 7. For p=1 the
phases of the modes are random, and the peak-to-background
ratio is 8:3. When the saturable absorber is absent, v=0, the
ratio in the autocorrelation is also 8:3. When the pumping is
higher (Fig. 19 below), the saturable absorber induces some
phase relationships between the modes, and the peak-to-
background ratio is about 8:2. Note that in the autocorrela-
tion in Fig. 12, the ratio is slightly greater than 8:3. The
autocorrelation also has a nontrivial structure, with a peak at
half the cavity round-trip time. We were not able to repro-
duce this structure in the simulations.

APPENDIX C: KERR LENSING IN QCLs

This section elaborates on the analysis of the Kerr lensing
effect (including soft Kerr lensing) in QCLs. The mechanism
of Kerr lensing can be understood as follows: above lasing
threshold, there is net gain in the active region which com-
pensates the mirror losses. Assuming a nonlinear refractive
index Any. =n,l in the active region, it causes self-focusing
of the transverse mode, which results in a net increase in the
modal gain due to an increased overlap with the active re-
gion and a decreased overlap with lossy waveguide cladding.
A stronger intensity leads to stronger Kerr lensing, thus
forming an intensity-dependent saturable absorber.

The active region width is expected to play an important
role in the Kerr lensing effect. The narrower the active re-
gion, the less confined is the transverse mode, which results
in a bigger increase of the modal gain due to Kerr lensing.
Therefore the saturable absorber coefficient y is expected to
be larger in lasers with a narrower active region.

We performed FDTD waveguide simulations using the
commercial software BeamPROP. We simulated buried het-
erostructure QCLs (wafer No. 3251) with various active re-
gion widths. The software allows us to assign complex re-
fractive indices to each layer, and the effective modal index

— — — 5umwide
521 3um wide

Gain (cm’1)

FIG. 20. (Color online) Simu-
—1 lation results of the modal gain vs
the nonlinear refractive index n,l
for a 3 um wide and a 5 um
wide active region in wafer No.
3251.

0.10
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is calculated by the software. The detailed steps of our Kerr-
lensing simulation are as follows.

(1) We first assign a net gain (i.e., a negative imaginary
part of n.ive) in the active region, making the total modal
gain equal to the total mirror loss. In our case, given the
reflectivity r=0.27 at our laser facets, a 3 mm long laser has
a total mirror loss of 4 cm™.

(2) We assign different values of Any =n,l to the real
part of n,ve. After running the simulation, we get the net
modal gain for each Any,.

(3) We plot the modal gain versus Any,. For example,
Fig. 20 shows the plots for 3 um wide and 5 um wide
active regions.

(4) In order to relate to our theoretical model, the change
in modal gain is attributed entirely to change in modal losses.

(5) The change in modal loss equals y|E|?, which is also
proportional to the intensity I. Thus from the slope of the
plot of modal gain vs Any =n,l, we can extract the ratio of
'}// nz.

(6) For a given active region width, we choose the value
of v that brings the threshold of RNGH instability down
close to our experimental data. Then we can determine the
value of n, from the ratio of y/n,.

(7) With the fixed value of n,, we repeat the waveguide
simulation with different active region widths and plot y vs
the active region width.

For an active region width of 3 um, the RNGH threshold
is dramatically lowered from nine times the lasing threshold
to less than twice the lasing threshold (see Fig. 15). From
Fig. 2, the required v is about 2 107° cm/V?, from which
we obtain that n, is about 2 X 1078 cm?/W. The estimated y
vs active region width is plotted in Fig. 21. As the active
region width increases, vy decreases, and when the active
region is as wide as 7.5 um, 7y decreases to 1
%107 cm/V2. This pushes the RNGH instability threshold
to above twice the lasing threshold. This may explain why
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FIG. 21. (Color online) Simulation results of the saturable ab-
sorber coefficient y vs the active region width in wafer No. 3251
assuming n,=2 X 1078 cm?/W.

we see only instabilities resulting from spatial hole burning
in wider buried heterostructure lasers (see Fig. 17).

For ridge lasers, the lossy gold contact on the sidewalls of
the laser ridges will make the saturable absorber even stron-
ger. This may explain the absence of spatial hole burning in
ridge lasers.

There are several possibilities which might explain the
origin of n, in the active region. The complex states in the
injector can all contribute to both real and imaginary parts of
x® at the laser wavelength, which results in both n, and 1.
The laser transition itself can contribute an n, as big as
107 cm?/W [5]. v should be enhanced with increasing tem-
perature since electrons at higher temperatures populate a
larger number of excited states, from which absorption can
take place; and although not very significant, there is always
bulk n, of the material.
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We report the observation of a coherent multimode instability in quantum cascade lasers (QCLs), which is
driven by the same fundamental mechanism of Rabi oscillations as the elusive Risken-Nummedal-Graham-
Haken (RNGH) instability predicted 40 years ago for ring lasers. The threshold of the observed instability is
significantly lower than in the original RNGH instability, which we attribute to saturable-absorption nonlin-
earity in the laser. Coherent effects, which cannot be reproduced by standard laser rate equations, can play
therefore a key role in the multimode dynamics of QCLs, and in lasers with fast gain recovery in general.

DOI: 10.1103/PhysRevA.75.031802

The fundamental coherent mechanism that can destabilize
a single-mode laser was predicted in the early 1960s [1] and
was later extended to multimode lasers [2,3] where it became
known as the Risken-Nummedal-Graham-Haken (RNGH)
instability. These instabilities became classic landmarks for
the general field of nonlinear dynamics [4,5] because they
emerge in conceptually the simplest laser model, which in
the single-mode case was shown to be equivalent to the Lor-
entz model of deterministic chaos [6]. Another feature that
makes these instabilities so interesting and unique is their
coherent nature that involves the polarization of the medium
as a nontrivial dynamical variable. Most other physical
mechanisms that can drive a laser from a single-mode to a
multimode regime, such as spatial and spectral hole burning,
Q switching, and saturable absorption [7,8], can be ad-
equately described within the standard rate equation formal-
ism, in which the polarization of the active medium is adia-
batically eliminated. Both the single mode [1] and the
multimode [2,3] instabilities cannot be explained by the rate
equations. Such coherent effects can be only observed when
the polarization is driven faster than or on a time scale com-
parable to the dephasing time T, [9].

The origin of the two coherent phenomena mentioned
above is the oscillation of the population inversion at the
Rabi frequency Qgg,i that takes place when the intracavity
laser intensity becomes large. This results in a modification
of the gain spectrum and the emergence of sidebands sepa-
rated from the maximum of the gain curve by an amount
corresponding to the Rabi frequency. These sidebands can be
regarded as a manifestation of parametric gain. The instabil-
ity sets in when the intracavity power is sufficiently large:
the Rabi angular frequency Qg.pi has to be greater than the
relaxation time scales of the gain medium [more precisely,
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Qrabi is sufficiently greater than (T,T,)"2, where T, is the
gain relaxation time]. The instability threshold is often called
the second laser threshold due to its universal nature.

Pioneering theoretical works stimulated extensive experi-
mental studies that finally resulted in the observation of the
Lorenz-type chaos in a far-infrared single-mode laser [10].
However, despite almost 40 years of efforts, the experimen-
tal demonstration of the multimode RNGH instability has
remained somewhat controversial [11-16].

In lasers with long gain recovery compared to the cavity
round-trip time, the instability caused by a saturable absorber
can often lead to mode locking [8]. When the gain recovery
time is short compared with the cavity round-trip time, it is
usually assumed that the laser dynamics becomes very primi-
tive and uninteresting (so-called class A laser). In this case
mode locking is impossible according to conventional theory,
and the relaxation oscillation frequency becomes purely
imaginary [17]. Surprisingly, as we show in this Rapid Com-
munication, it is under these conditions that the elusive
RNGH instability can be observed. We show that quantum
cascade lasers (QCLs) are uniquely suited for studying these
coherent effects which, along with spatial hole burning
(SHB), become a key factor in dictating the dynamics of the
laser.

QCLs, because they are based on ultrafast tunneling and
phonon-limited intersubband transitions, belong to the class
of lasers which have an extremely fast gain recovery, in the
range of a few ps [18]. Recent experiments showed indeed
that the gain recovers within a few ps, which is approxi-
mately an order of magnitude shorter than the cavity round-
trip time [19]. Since its invention in 1994, QCLs have un-
dergone tremendous improvement [20]. Recent development
of low loss, high power QCLs [21,22] enables the study of
previously under investigated aspects, such as the richness of
the optical spectrum and the ultrafast dynamics of these de-
vices. In Ref. [23], strong evidence of self-pulsations at the
cavity round-trip frequency was reported in QCLs, in par-
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ticular a large broadening of the spectrum above the thresh-
old of this instability was observed. However, no detailed
pulse characterization was provided. The technological po-
tential of QCLs calls for a better understanding of the inter-
play of various instabilities in the parameter regime dictated
by these lasers. Moreover, the Rabi frequency in QCLs at the
power levels of a few hundred mW is of the order of a few
THz, much larger than the spacing of Fabry-Perot modes.
Therefore coherent effects should be easily observable in
QCLs.

In this Rapid Communication we present a clear experi-
mental demonstration of a coherent instability, driven by the
same mechanism as the RNGH instability. It is identified in
the most direct manner, by demonstrating in the optical spec-
trum of QCLs a splitting corresponding to twice the Rabi
frequency.

The instability observed differs in some aspects from the
original RNGH instability [2,3]. The threshold of instability
can be as low as a few tens of percent above the laser thresh-
old, as shown in Fig. 1(a). In addition, the pure RNGH in-
stability typically gives rise to spectra with one central mode
and two sidebands separated from it by the Rabi frequency,
whereas in our experiments we observed two peaks only,
similarly to Ref. [11]. However, the mechanism of the insta-
bility is the same in essence, namely the Rabi oscillations of
the population inversion due to coherent effects. The differ-
ences from the RNGH instability as it occurs in ideal condi-
tions [2,3] can be attributed to the presence of saturable ab-
sorption and SHB.

The QCLs studied were fabricated from two different wa-
fers (wafer nos. 3251 and 3252) grown by metalorganic va-
por phase epitaxy. The devices were processed into buried
heterostructure lasers, in which an insulating Fe-doped InP
layer is regrown after etching of the ridges [21,22]. The ac-
tive region of all the samples tested is based on a four-
quantum-well design, which relies on a double phonon reso-
nance to achieve population inversion [24]. Note, however,
that the multimode operation described in the present paper
was also observed with lasers based on so-called three-
quantum-well designs [18]. Figure 1(a) shows the optical
spectra of a laser operated in continuous wave (cw) at room
temperature. The active region of this laser is 3 um wide and
its emission wavelength is close to 8.47 um (wafer no.
3251). The laser was cleaved into a 3-mm-long bar and sol-
dered with indium onto a copper heat sink. The spectra were
measured by a Fourier transform infrared spectrometer
(FTIR) equipped with a deuterated triglycine sulphate
(DTGS) detector.

As shown in Fig. 1(a), the laser spectrum is single mode
close to threshold and broadens as the pumping current in-
creases, splitting into two separated humps. The difference
between the weighted centers of the two peaks increases lin-
early as a function of the square root of the collected output
power from one facet, as shown in Fig. 1(b) (square dots
with the dashed line as its best fit). The Rabi angular fre-
quency gqpi can be easily calculated using the formula
Qravi=nE/h=pr2nly,/(Ce)/f, where u is the electron
charge times the matrix element of the laser transition
(=2.54 nm). l,, is the average intracavity intensity in the
gain region, which can be derived from the measured output
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FIG. 1. (Color online) (a) Optical spectra vs pumping ratio
(j/ i) above threshold obtained in cw at 300 K with a 3-um-wide
buried heterostructure lasers emitting at 8.47 um. For 1<<j/j
< 1.2 the spectra are identical to j/jy=1.2. (b) Spectral splitting
and twice the Rabi frequency Qgapi/ (277) vs square root of output
power collected from a single laser facet. The different quantities
reported on the graph were deduced from the experimental data
shown in (a). The dashed line is a least-square linear fit of the data.

power. ¢ is the speed of light in vacuum and n is the back-
ground refractive index. For all the values of the intensity
corresponding to the spectra reported in Fig. 1(a), Qgapi Was
calculated, multiplied by a factor 2 and then added to Fig.
2(b) (solid line). A very good agreement is found between
the experimental splitting and twice the estimated Rabi fre-
quency. Both curves fall indeed well within the error bars
[25]. As mentioned before, the theory behind the RNGH in-
stability predicts that the large intracavity intensity will result
in parametric gain at frequencies detuned from the maximum
of the gain curve by the Rabi frequency. The agreement men-
tioned above is thus a strong indication of the RNGH insta-
bility in QCLs.

In order to better understand the experimental spectra of
the QCLs presented in Fig. 1(a), we use a simple model
based on the standard one-dimensional Maxwell-Bloch equa-
tions [9], where the active medium is described by an “open”
two-level system [26]. However, contrary to the standard
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FIG. 2. Results of numerical simulations of the spectra based on
the Maxwell-Bloch equations including a saturable absorber and
spatial hole burning for different values of the current density nor-
malized to the threshold value.

unidirectional Maxwell-Bloch equations, we allow the elec-
tromagnetic field to propagate in both directions. The waves
traveling in the two directions are coupled, as they share the
same gain medium. This gives rise to SHB [7]: The standing
wave formed by a cavity mode imprints a grating in the gain
medium through gain saturation. As a result, other modes
become more favorable for lasing, and a multimode opera-
tion is triggered.

In the slowly varying envelope approximation, the equa-
tions read

EatEi = FOE, - i%m— %€(E+,E_)Ei, (1a)
ohme = ;_Z(AOEJ;*'A;E:) - 17?_:, (1b)

8Ag = éPT_lﬂ + i;’M(E’: e +E-y_—c.c.), (1c)
GAE= + i%(E:n_ - 7E)- % (1d)

The + and — subscripts label the two directions of propaga-
tion. E and # are the slowly varying envelopes of the electric
field and the polarization, respectively. The actual electric
field and polarization are obtained by multiplying E and » by
el“! (w is the optical resonance frequency) and taking the real
part. The position-dependent inversion is written as the sum
of the three terms, A,, Aje?* and Aje 2* where (A;)"
=A,. The inversion is thereby represented by two slowly
varying functions (A, and A3), and e*?'% gives the fast varia-
tion in space. All the quantities mentioned so far are func-
tions of space z and time t.
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¢(E,,E_) is the loss in the cavity (not including the mirror
loss), which is allowed to be nonlinear and dependent on the
intensity. In this work we assume

C(ELED) = 6= H[EL+ ), )

where €, is the linear loss and v is the self-amplitude modu-
lation coefficient characterizing the nonlinear (saturable) part
of the loss. Such a saturable absorption mechanism can come
from Kerr lensing [8,23], caused by a nonlinear refractive
index n, in the active region. As the intensity increases, the
mode is more confined in the plane transverse to the propa-
gation direction, and the net gain it experiences is greater.
The reason is twofold: First, the mode overlaps more with
the active region, leading to a larger modal gain (this mecha-
nism is often called “soft Kerr lensing” [27]). Second, the
overlap with the metal contacts is smaller, leading to smaller
losses [23].

E, and E_ satisfy the boundary conditions E,=rE_ at the
z=0 boundary and rE,=E_ at the z=L boundary (L is the
cavity length and r=0.53 is the reflection coefficient). The
other quantities in Eq. (1) are constants: k, N, and I" are the
wave number (in the material) associated with the resonance
optical frequency, the electron density in the active region,
and the overlap factor between the laser mode and the active
region, respectively.

Figure 2 shows spectra that were obtained by solving nu-
merically Egs. (1) with the following parameters: for the
saturable absorber, we used y=10"% {7, obtained from two-
dimensional mode simulations, assuming a n,~107° CW’“Z
[23]. The index change due to this n, at typical intracavity
intensities is about 107. The other parameters are €,
=5cm™, T,=0.5 ps [19], T,=0.07 ps (corresponding to a
gain full width at half maximum bandwidth of 4.8 THz), L
=0.3 cm, and n=3, which are typical values for these lasers.
N and I" are not needed as long as the pumping is expressed
relative to the lasing threshold. Note that the simulated spec-
tra presented in Fig. 2 are averaged over about a microsec-
ond. Only then does the average spectrum reach a steady
state and a clear pattern shows up. The averaging is moti-
vated by the fact that experimentally the spectra are acquired
over an even much longer time scale. The envelopes of the
spectra show two clear peaks whose separation compares
well with twice the Rabi frequency, similarly to the experi-
ment.

The lowering of the RNGH instability threshold by a satu-
rable absorber can be established analytically by means of
linear stability analysis. We propose this mechanism as the
main reason for the observation of the RNGH instability at
much lower pumping than RNGH theory predicts. In order to
support this idea, we now present spectra from another de-
vice similar to the one described previously. The only differ-
ence between the two lasers is a shorter optical wavelength
(5.25 um) (wafer no. 3252) and a wider active region
(5 uwm). The two-dimensional waveguide simulations indi-
cate a much weaker Kerr-lensing effect in these QCLs (vy is
smaller by a factor of 4), due to the much larger ratio of
active region width to wavelength. The measured optical
spectra obtained at 300 K in cw mode with the 5-um device
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FIG. 3. Optical spectra vs pumping ratio above threshold ob-
tained in cw at 300 K with a 5-um-wide buried heterostructure
lasers emitting at 5.25 um.

are shown in Fig. 3. The data clearly show that the laser is at
first single mode close to threshold and becomes multimode
immediately after a slight increase of the pumping current.
The envelopes of the spectra consist of multiple peaks, with
an average separation 0.2 THz, independently of the pump-
ing. Numerical integration of Eq. (1) without a saturable ab-
sorber (y=0) leads to spectra that qualitatively agree with
the ones in Fig. 3.

Reference [15] suggested that the suppression of the cen-
tral peak in RNGH-type spectra can be due to the complex

PHYSICAL REVIEW A 75, 031802(R) (2007)

level structure of the gain medium, a dye molecule in that
case. We show that SHB can also result in the suppression of
the central peak (Fig. 2).

Our postulation of saturable absorption due to Kerr-
lensing is supported by more extensive study of different
devices beyond those shown in this Rapid Communication.
First, we observed that for the same emission wavelength, a
broad active region leads to a less pronounced RNGH-type
signature. Second, we have also tested several standard ridge
waveguide QCLs, for which the sidewalls of the ridges are
covered by the gold contact. For these devices the coupling
between the optical mode and the metal is expected to be
stronger and so is the effect of saturable absorber due to Kerr
lensing. The spectral behavior observed in this class of de-
vices is dominated by RNGH-type instability.

In summary, a coherent multimode instability in quantum
cascade lasers (QCLs) has been observed. It is similar
in many ways to the Risken-Nummedal-Graham-Haken
(RNGH) instability. The threshold of the observed phenom-
enon is significantly lower than in the original RNGH insta-
bility, which is attributed to the presence of a saturable ab-
sorber in the laser. For devices with a weaker saturable
absorber, the envelope of the optical spectrum consists of
many maxima whose separations are independent of the int-
racavity power. The nontrivial shape of the spectrum can be
explained by SHB.
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