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Abstract

Models of crowd behavior facilitate analysis and prediction of the behavior
of large groups of people, who are affected by each other’s presence and actions.
For instance, in defense and security applications, generative models of crowd
behaviors are used for decision-support, simulation, and training. Most existing
approaches for modeling crowd behavior have focused on algorithmic and mathe-
matical approaches, which generate simulations which are qualitatively or visually
appealing, but have not been tied to social psychology, nor to cognitive architec-
tures.

In previous work, we proposed a novel model of crowd behavior, based on
Social Comparison Theory (SCT), a popular social psychology theory. The SCT
model relies on simulated entities (agents) to compare themselves to others, but the
timing of these comparisons is not well understood: People clearly do not imitate
others all the time, yet there is evidence that shows that people (and therefore, the
agents), do some comparison at all times (but do not at on these comparisons).
While some progress has been made to address this question, it remains open.

In this report, we present an extension of the SCT model to address this open
question. We argue that comparisons take place all the time (i.e., differences are
perceived and processed), but the cognitive architecture limits actions taken to
minimize differences to cases where the comparisons yield significant differences.
We use both toy domain experiments as well as movies of human pedestrians to
argue for our position. Two corollaries of our work are (i) implications for the role
of agent modeling and plan recognition in cognitive architectural mechanisms, and
(ii) initial steps in accounting for group size in social comparison.
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1 Introduction

Modeling crowd behavior is an important challenge for cognitive science and psychol-
ogy (Le Bon, 1968; Allport, 1924). Accurate models of crowd behavior are sought in
training simulations, safety decision-support systems, traffic management, and organi-
zational science. Indeed, a variety of computational models have been proposed that
exhibit crowd-like behavior in different tasks. For instance, cellular automata models
are used to model pedestrian movements (Blue & Adler, 2000; Helbing & Molnar,
1997) or people evacuating an area in emergency (Helbing, Molnar, Farkas, & Bolay,
2001; Kretz, 2007).

Unfortunately, only a handful of existing models of crowd behavior have been eval-
uated against real-world human crowd data. Moreover, essentially no computational
cognitive models have been proposed which are tied to cognitive science theory. In-
stead, existing models are often inspired by particle physics (modeling individuals as
particles), or by cellular automata. Thus fitting in the models with a deeper cognitive
model of humans, or the mechanisms of a cognitive architecture, is difficult.

In previous work, we presented a novel cognitive model of crowd behavior (Frid-
man & Kaminka, 2007), which has two key novelties (compared to previous models):
First, there is a single computational mechanism (algorithm) used to generate different
crowd phenomena (Fridman & Kaminka, 2009; Fridman, Kaminka, & Traub, 2009);
and second, it is inspired by social psychology theory. In particular, the model is based
on Social Comparison Theory (SCT) (Festinger, 1954), a popular social psychology
theory that has been continuously evolving since the 1950s. The key idea in SCT is
that humans, lacking objective means to evaluate their state, compare themselves to
others that are similar.

We believe that social comparison is a general cognitive process underlying social
behavior of each individual in crowd. Unlike previous crowd models that concentrate
on specific behavior, the SCT model can account for different crowd behaviors, depend-
ing on the perceptions and actions available to each individual (Fridman & Kaminka,
2007). However, while the SCT model proved superior to other computational mod-
els in behaviors-specific measures (e.g., the formation of lanes in bidirectional move-
ment) (Fridman & Kaminka, 2007), and in validation against human crowd data (Frid-
man & Kaminka, 2009; Fridman et al., 2009), it leaves open several challenges.

During the course of the year, we had focused on one particular question left open
by the SCT model, namely the question ofwhenit is used to guide action-selection
in agents. In particular, social psychology theory advocate a model in which social
comparison occurs only when the agent lacks objective means to evaluate its own
progress (Festinger, 1954). This approach, in which the social comparison process is
triggered only when the agent is uncertain as to how to pursue its task goals, works suc-
cessfully when used to simulate bi-directional pedestrian movement. However, it fails
when modeling uni-directional movement; here, an approach in which agents compare
themselves to others—and act on differences found—at all times is preferable. This
on-going comparison approach is also supported by some evidence from social psy-
chology and economics. Earlier successful demonstrations of the fidelity of the SCT
model thus switched between different triggering mechanisms ad-hoc; in Section 2 we
present the results of experiments which demonstrate that the two triggering mecha-
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nisms are mutually-exclusive. This interferes with a clear understanding of how social
comparison processes are used within a cognitive architecture; clearly, social compari-
son at the architecture level cannot change based on the domain.

As part of the research, we hypothesized that social comparison processes are in-
deed on-going, and that humans are aware of—and compare themselves to—others at
all times. Our hypothesis is that action selection mechanisms in the cognitive architec-
ture are responsible for sometimes selecting actions which minimize social differences
(i.e., act on the social comparison results), and at other times, selecting actions that
serve other goals. We experimented with two alternative mechanisms, and were able to
rule one of them out. This result puts constraints on the cognitive architecture mecha-
nisms that are used in social comparison.

Additionally, we examined alternative SCT algorithms, extending and refining the
SCT algorithm published earlier, in (Fridman & Kaminka, 2007). An important moti-
vation for this was the fact that the previously published algorithm ignored the group
size in comparison, while evidence from social psychology shows that in fact group
size is an important factor in the social action-selection of the individual. The refined
algorithms are presented and examined experimentally.

The report is organized as follows. Section 2 presents a short literature overview
and necessary background, and presents the results of the experiments motivating this
research into the triggering of social comparison processes. Section 3 then presents two
alternative architectural action-selection mechanisms, and related experiments. Section
4 presents several SCT algorithms that expand and refine the original model, and exper-
iments that provide evidence for their efficacy. Section 5 concludes, lists publications
resulting from this research, and discusses directions for continuing it.

2 Background and Motivation

We discuss background literature in Section 2.1. We then discuss our own previous
work in Section 2.2. There, we also present results which motivate this research.

2.1 Related Work

Social psychology literature provides several views on the emergence of crowds and the
mechanisms underlying its behaviors. These views can inspire computational models,
but are unfortunately too abstract to be used algorithmically. In contrast, computational
crowd models tend to be simplistic and focus on specific crowd behaviors (e.g, flock-
ing). A common theme in all of them is the generation of behavior from the aggregation
of many local rules of interaction, e.g., (Rymill & Dodgson, 2005; Reynolds, 1987,
1999; Kretz, 2007). However, these models have rarely, been validated against human
(or animal) data. Indeed, there is generally limited quantitative data on the behavior
of human crowds at a resolution which permits accurate modeling. The exception is
the formation of lanes (in opposing directions) in human pedestrian movements and
evacuation behavior (Daamen & Hoogendoorn, 2003; Kretz, 2007), which have been
extensively investigated and for which specific performance measures are well defined
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(reduced lane changes, flow, time between alarm and last person that leave the building
etc.). We discuss many of these psychology and computational research works below.

A phenomenon observed with crowds, and discovered early in crowd behavior re-
search is that people in crowds act similar to one another, often acting in a coordinated
fashion, which is achieved with little or no verbal communication. Moreover, the crowd
may cause its members to behave differently than they would have individually. There
are several different theories that explain this crowd characteristics, focusing on the
cognitive process underlying each individual within the crowd.

Contagion Theory (Le Bon, 1968) emphasized a view of crowd behaviors as con-
trolled by a "Collective Mind", and observed that an individual who becomes a part of
the crowd is strongly affected by it, to the extent that she is transformed into becoming
identical to the others in the crowd. Le Bon explains the homogeneous behavior of
a crowd by two processes: (i)Imitation, where people in crowds imitate each other;
and (ii)Contagion, where people in a crowd behave very differently from the way they
usually do, individually.

On the other hand, Convergence Theory (Allport, 1924) states that crowd behavior
is a product of the behavior of like-minded individuals. According to Allport’s theory,
individuals become a part of the crowd behavior when they have a "common stimulus"
with people inside the crowd; for example, a common cause (Allport, 1924). Allport
agrees with Le Bon (1968) about the homogeneous behavior of the crowd.

Researchers have developed computational models for simulation of collective be-
havior. However, these models are not often tied to cognitive processes underlying
individual behavior in crowd and have rarely been validated against human data.

Reynolds (Reynolds, 1987) simulated bird flocking using simple, individual-local
rules, which interacted to create coherent collective movement. There are only three
rules: avoid collision with neighbors, match velocity with neighbors and stay close
to the center of gravity of all neighbors. Each simulated bird is treated as a particle,
attracted and repelled by others. On the one hand there is a desire to stay close to the
flock, but on the other hand, there is a desire to avoid collisions. However, this model
was limited only to the interaction of the agents, and did not allow for their individual
goals (e.g., their own steering behavior).

Tu and Terzopoulos (Tu & Terzopoulos, 1994) simulated motion of artificial fish
that addressed individual goals. Like Reynolds’ "boids", the artificial fish are au-
tonomous creatures which have simple behaviors and together are able to create a more
complex, collective behavior. However, unlike Reynolds’ boids, that selected their be-
havior based on the current state of their neighbors, each fish revealed habits and men-
tal state (for example hunger, fear etc.) that also impact behavior selection. Indeed,
Reynolds later expanded his work on collective movement in (Reynolds, 1999) but,
this time allowing for a steering behavior for the autonomous agents. In the revised
model, each agent has a set of simple steering behaviors such as seek, flee, pursuit,
evade, etc. The combination of these simpler behaviors creates a complex steering
behavior.

Similar ideas have been applied in swarm robotics. Matarić (Mataríc, 1995) sees
collective (complex) behaviors as a combination of basic behaviors. Each robot has
spatial behaviors (controllers) that are combined to create different kinds of group
behavior: for example, flocking consisting ofsafe-wandering(moving around with-
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out bumping),homing,dispersion(moving away from other agents), andaggregation
(moving towards other agents). The combined outputs of the basic behaviors provide a
velocity vector which is used to control the robot.

Yamashita and Umemura (Yamashita & Umemura, 2003) take a different approach
in simulating panic behavior. While inspired by Reynolds’ boid model, they propose
a model where each simulated person moves by three instincts: escape instinct, group
instinct and imitational instinct. According to Yamashita and Umemura, when a person
is in panic, he or she acts based on their instincts which make their decision making
process much simpler.

Henderson compared pedestrian movement to gaskinetic fluids. Based on exper-
iments on real human crowds, he showed in (Henderson, 1971) that crowd distribu-
tion is compatible with Maxwell-Boltzmann’s distribution. Henderson (Henderson,
1974) developed a pedestrian movement model based on the Maxwell-Boltzmann the-
ory. Since each person has mass and velocity, the crowd may be transformed to liquid
gas and under some assumption the Maxwell-Boltzmann theory may be applied. Based
on Boltzmann-like equations, Helbing (Helbing, 1993) developed a general behavior
model for simulation of crowd dynamics. The proposed model takes into account so-
cial forces caused by interaction between the individuals and external or spontaneous
forces which are caused by the physical environment.

Helbing et al. (Helbing et al., 2001; Helbing & Molnar, 1997) observed phenom-
ena of self-organization in collective motion which can be caused by interaction among
pedestrians. By self-organization, it means that there are some behavioral phenomena
which were not planned: for example, creation of lane formation in pedestrian move-
ment. These lanes are created as a result of pedestrians moving against the flow. When
a pedestrian moves against the flow, he experiences an interaction which makes him
move a little aside, in contrast to a pedestrian who moves with the flow and will not
have an interaction. The number of lanes that are created cannot be planned. It depends
on the width of the street and on pedestrian density.

Helbing and Vicsek (Helbing & Vicsek, 1999) expanded their physical model by
using game theory. The attraction force can be expanded to profitable force which
may lead to optimal self-organization in pedestrian movement. Each entity calculates
"expected success" per each possible action and the action with maximum success will
be chosen. In pedestrian relations, actions are possible directions that an entity can
move to and optimal self-organization is minimal interaction between entities.

Adriana Brown et al. (Braun, Musse, Oliveira, & Bodmann, 2003) examined how
individual characteristics impact crowd evacuation. They expanded Helbing’s physical
model by adding to each agent individual parameters, such as dependence level and
altruism level. According to the model, there will be a creation of groups which are
combined from altruism and dependent agents. By changing these attributes, they ex-
amined crowd evacuation by measuring the flow of people passing the door per second
and population distribution in the flow.

Blue and Adler (Blue & Adler, 2000) proposed a different approach to module
collective dynamics. They used Cellular Automata (CA) in order to simulate collective
behaviors, in particular pedestrian movement. The focus is again on local interactions:
Each simulated pedestrian is controlled by an automaton, which decides on its next
action or behavior, based on its local neighborhoods. These rules are responsible for
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making a decision about lane changing and forward movement: If the way forward is
free, then it is taken. If not, then the automaton seeks to go left or right. If both lanes are
available, one is chosen arbitrarily. Blue and Adler showed that this simple rule results
in the formation of lanes in movement, similarly to those formed in human pedestrian
movement (Wolff, 1973). Toyama et al. (Toyama, Bazzan, & Silva, 2006) expanded the
cellular automata model by adding different pedestrian characteristics, such as speed,
gender, repulsion level, etc. The model was examined on bi-directional pedestrian
movement behavior and on evacuation behavior. The experiment analysis shows that
macroscopic behavior of homogeneous agents is different from heterogeneous agents.

Osaragi (Osaragi, 2004) proposed an agent-based model for simulating pedestrian
flow by using the concept of pedestrian mental stress. Pedestrian mental stress in-
creases as a result of other pedestrians (density) and whether the pedestrian is unable
to move to her destination using the shortest pass. To decrease her mental stress, the
pedestrian may dynamically change her direction or walking velocity. Because of these
dynamic changes, the simulated pedestrians are heterogeneous. Unlike in other mod-
els, the model parameters were estimated using observed data.

Kretz (Kretz, 2007) proposes the Floor field-and-Agent based Simulation Tool
model (F.A.S.T) which is discrete in space and time model for pedestrian motion. The
F.A.S.T model can be classified as an extension of probabilistic Cellular Automata
(PCA). In this model there are three levels of decision making: 1. The choice of an
exit. 2. The choice of a destination cell. and 3. The path between the current and
destination cell. The F.A.S.T model has been validated against human data. In partic-
ular, the model simulation results of evacuation scenario was compared to results of
evacuation exercise at a primary school.

In these previous works above, the behavior of crowds in every domain of study
(pedestrian movement, flocking, evacuation, etc.) is computed using a different algo-
rithm, yet the actions and perceptions remain largely invariant (e.g., distances to others,
occupied spaces versus empty spaces, goal locations, etc.). Instead, the computation
itself changes between modeled behaviors.

For instance, many models for crowd behavior utilize cellular-automata (CA),
which differ between domains. One CA model for pedestrian movement (Blue &
Adler, 2000) uses a set of 6 IF-THEN rules which work in parallel for all cells, to
simulate the movement of pedestrians in cells. The rules utilize knowledge of the oc-
cupancy in adjacent (rules 1,3 in (Blue & Adler, 2000)) and farther cells (rule 2), as
well as of the distance to oncoming pedestrians in the same lane (rules 4, 6). The rules
set the forward velocity and position of the entities, by using a set of non-deterministic
choices (sub-rules 5a,5b,5c), biased by distributions which differ depending on the en-
vironmental settings (e.g., choose from a uniform 50%/50% split distribution if two
nearby cells are occupied, or from a 10%/80%/10% distribution when three cells are
available). In contrast, a recent CA model for evacuation (Tissera, Printista, & Er-
recalde, 2007) uses knowledge of adjacent cells and distances to exits, and sets the
position of the entities. Thus the actions and perceptions of each entity are similar to
those used in the pedestrian model. But the algorithmic computation of the new posi-
tion is done in two deterministic rules (Tissera et al., 2007, pp. 17), which involve no
arbitrary choices at all.

In contrast to these previous investigations, we seek a single cognitive mechanism
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that, when executed by individuals, would give rise to different crowd behaviors, de-
pending on the perceptions and actions available to the agents. In other words, our goal
is to unravel asingle computational mechanism—a single algorithm—which would ac-
count for different crowd phenomena, by virtue of the actions and perceptions available
to each individual.

2.2 An Existing Model of Social Comparison

Over the last few years, we have been developing a model of social behavior inspired
by Festinger’s social comparison theory (Festinger, 1954). To the best of our knowl-
edge, social comparison theory has never been applied to modeling crowd behavior.
Nevertheless, as we show in the next sections, key elements of the theory are at the
very least compatible with those theories discussed above.

According to Festinger’s theory, people tend to compare their behavior with others
that are most like them and then attempt to correct any differences found. We oper-
ationalized these principles in algorithmic form (Fridman & Kaminka, 2007), briefly
described below.

An agent that uses social comparison observes agents around it, compares itself
to them, and potentially acts on differences found. Each observed agentA is taken
to be a tuple ofk state featuresA ≡ 〈 f A

1 , . . . , f A
k 〉. Each featuref i

j of agenti (1 ≤
j ≤ k) corresponds to a dimension, such that agenti is represented by a point in ak-
dimensional space, where the various dimensions correspond to state features (such as
location inx,y coordinates, color, heading, etc.

We measure similarity between agents independently along each dimension. The
similarities in different dimensions are functionssfi ( f Ame

i , f Ac
i ) : fi × fi 7→ [0,1]. The

functionsfi defines the similarity in featurefi between the two agentsAme andAc. A
value of 0 indicates complete dissimilarity. A value of 1 indicates complete similarity.
For instance, one commonly used feature denotes normalized Euclidean distance, in-
verted: A value of 0 means that the agents are as far apart as possible. A value of 1
means that they are positioned in the same location.

To determine the overall similarity between two agents, we use a weighted sum over
the functionssfi . With each featurefi , we associate a weightwi ≥ 0. The similarity
between two agents is then given by Eq. 1 below.

Sim(Ame,Ai)≡
k

∑
j=1

sf j ( f Ame
j , f Ai

j ) ·w j (1)

Each observing agentAmeexecutes the following algorithm (Algorithm 1). For each
observed agentAo ∈ O, we calculate a similarity valueSim(Ame,Ao), which measures
the similarity between the observed agent and the agent carrying out the comparison
process (Ame). An agentAc, with the highest similarity value within the bounds (Smin,
Smax) is selected. We determine the list of features (fi , wi) which cause the differences
betweenAme and the selected agentAc. We order these features in an increasing order
of weight wi , such that the first feature to trigger corrective action is the one with
the lowest weight. Then we trigger an action (a) to reduce the discrepancy (a library
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of actions is assumed to be available). We use the actiona with some scale—which
we term gain–given in the calculation of theGain function below (Eq. 2). This gain
translates into the amount of effort or power invested in the action. For instance, for
movement, the gain function would translate into velocity; the greater the gain, the
greater the velocity.

Algorithm 1 Argmax SCT (O,Ame,Smin,Smax)
1: S← /0
2: for all Ao ∈O do
3: if Smin < Sim(Ame,Ao) < Smax then
4: S→ S∪Ao

5: Ac← argmaxAc∈S(Sim(Ame,Ao)
6: D← differences between me and agentAc

7: a← SelectAction(D)
8: Apply actiona with its Gain (Eq. 2) to minimize differences inD.

Gain(Sim(Ame,Ac))≡
Smax−Smin

Smax−Sim(Ame,Ac)
(2)

Unfortunately, while early uses of Algorithm 1 were successful in modeling varia-
tions on pedestrian traffic (e.g., unidirectional vs. bidirectional, in groups, etc.), it turns
out that the procedure triggering the execution of the algorithm had to be changed de-
pending on the crowd modeling task (i.e., the pedestrian simulation variant). Moreover,
this result is supported by common-sense observations, as well as expert literature. As
the reader knows from her own experience, people do not constantly imitate others.
On the other hand, there is evidence that people do compare themselves to others even
when they do have objective means of evaluation (Hakmiller, 1966; Singer, 1966) (in
contradiction to Festinger’s claims in (Festinger, 1954)). The next section will address
this question in detail.

3 When are Social Comparison Processes Triggered?

In this section, we address the question ofwhensocial comparison is triggered. We
examine possible answers to it in Section 3.1, and conduct experiments that rule out
some candidate solutions and enable others, in Section 3.2.

3.1 Social Comparison at the Cognitive Architecture Level

There are two possible implementations of SCT process in an architectural level. The
first, which seems to follow directly from Festinger’s Social Comparison theory, treats
the SCT process as an uncertainty-resolution method, i.e., as a weak (read: general)
problem-solving method, which issocial. The second, takes a different approach, in
which an SCT process is constantly active, in parallel to any problem solving activity
which necessitates the agents to be constantly aware of others around them.
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According to Festinger, people use social comparison when they have a lack of
knowledge to make their decisions. Thus one way of implementing the SCT process
in a cognitive architecture is as a response to an uncertainty: When an agent is at an
uncertain state, it may call on a comparison process that will be used to assess similarity
and propose actions.

We thus may treat the social comparison theory as a new kind of uncertainty-
resolution method. Unlike previous uncertainty-resolution (problem-solving) tech-
niques, in which the agent focuses on using its own resources, here the agent uses
knowledge of others as a basis for resolving the uncertainty.

Readers familiar with the Soar integrated cognitive architecture will undoubtedly
be reminded of the capabilities of Soar to detectimpasses, situations in which the agent
has no direct knowledge of how to proceed in its task, and relies on problem-solving
methods to resolve the impasse (Newell, 1990). In this view of SCT as a problem-
solving activity, it is modeled in Soar as an impasse-resolution method.

However, elaborations on social comparison theory expanded its view on when
comparison takes place. Hakmiller (Hakmiller, 1966) and Singer (Singer, 1966) ex-
panded the theory and demonstrated that people tend to confirm or reassure that their
actions or beliefs are the correct ones, by comparing themselves to others. Thus accord-
ing to this approach people tend to use social comparison in parallel to their decision
making process.

We thus offer an account in which a second hypothesis (in which a comparison
process is always active) can be made compatible with Festinger’s observations (that
comparison occurs with uncertainty). Our hypothesis is that social comparison should
always be activealongsideany goal-oriented action-selection processes. When un-
certainty is low, this corresponds to the goal-oriented processes being able to produce
coherent actions, which are then selected by the agents for execution. But when uncer-
tainty increases (the goal-oriented processes are not suggesting actions for execution),
the social comparison processes manages to "push" its own proposed actions for exe-
cution.

In other words, an alternative is to view the SCT as an on-going process, taking
place (at the architectural level)in parallel to any problem-solving activity. Whereas
normally, actions are proposed (and selected) by cognitive architecture based on their
suitability for a current goal (e.g., through means-end analysis), in a socially-comparing
architecture of this type, the agent actions are also proposed based on the results of
social comparisons. In other words, the agent would consider actions that advance it
towards its goal,as well as actions that seek to minimize perceived differences to other
agents.

It may appear easy to dismiss the implementation question as insignificant. How-
ever, the implementation choice carries significant implication: As SCT processes in-
herently rely on knowing about the behavior of others, the implementation question
raises a more fundamental question about where modeling of others (e.g., using plan
recognition) occurs in cognition: Is it a problem-solving activity, or is it carried out all
the time, at an architectural level.
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3.2 Experiments

We conducted a set of experiments to evaluate which of these two approaches (Compar-
ison as Problem-Solvingor Continuous Comparison) is more applicable in the context
of crowd behavior simulations. We recreated the experiment setup and simulation envi-
ronment used in (Fridman & Kaminka, 2007; Fridman et al., 2009), and rewrote agents
to operate in this environment (see Section 3.2.1). We examine the two approaches in
the context of pedestrian grouping behavior and bidirectional movement of individual
pedestrians, described in Section 3.2.2.

3.2.1 Simulation Environment and Setup

To simulate pedestrian behavior, we used Net-Logo (Wilensky, 1999). We define a
sidewalk, 104 units in length, where agents were able to move in a circular fashion
from east to west (reappearing in the east side when they go out of bounds in the west)
or in opposite direction. Each agent had limited vision distance of 10 patches and
cone-shaped-field-of-view of 120 degrees.

Each agent has a set of features and their corresponding weights. For simulating
pedestrian movement, we used the following features and weights:color (weight 3);
walking directioneast or west (weight 2); andposition(weight 1), given global coordi-
nates. In grouping pedestrian simulation, to account for the western cultural intuition
that friends (and family) walk side-by-side, rather than in columns, we used another
feature: The similarity in position along the x-axis -X-Coordinate(weight 0.5).

The similarities in different features (s(fi)) are calculated as follows:

• s(fcolor) = 1 if color is the same, 0 otherwise.

• s(fdirection) = 1 if direction is the same, 0 otherwise.

• s(fdistance) = max( 1
dist ,1), wheredist is the Euclidean distance between the po-

sitions of the agents.

• s(fx−coordinate) = 1 if the x-coordinate is the same, 0 otherwise.

Each agent calculatesS(x). If the chosen feature for closing the gap is distance,
then the velocity for movement will be multiplied by the calculated gainGain. For
other features (which are binary), the gain is ignored (as it has no effect on categorical

The rationale for feature priorities, as represented in their weights, follows from
our intuition and common experience as to how pedestrians act. Positional difference
(distance, side-by-side) is the easiest difference to correct, and the least indicative of
a similarity between pedestrians. Direction is more indicative of a similarity between
agents, and color (which we use to denote sub-groups within the crowds) even more so.
For instance, if an agent sees two agents, one in the same direction as it (and far away),
and the other very close to it (but in the opposite direction), it will calculate greater
similarity to the first agent, and try to minimize the distance to it (this may cause a lane
change) and only then try to locate itself on the same X-coordinate.
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3.2.2 Two Crowd Modeling Tasks

We examine two pedestrian crowd tasks. In the first, the simulated pedestrians are all
moving in the same direction (uni-directional traffic), and are divided into five groups,
based on their color. Each agent is placed randomly, so that initially the group are
dispersed. Successful execution of the task involves moving while creating clusters of
groups of the same color. In the second task, the simulated pedestrians are moving in
opposing directions (randomly assigned to agents). Each agent is independent of the
others—no grouping is expected or desired.

To illustrate, Figure 1 shows screen shots of the simulation running this task. The
figures show the initial positions of the agents in one of the trials 1(a), their positions
after moving 5000 cycles using the continuous SCT approach 1(b) and their positions
after 5000 cycles using the problem-solving approach 1(c). The figures show that the
continuous SCT approach accounts for grouping behavior while the problem-solving
approach does not.

 
(a) Initial random positions.

 
(b) After 5000 cycles of continuous comparison.

(c) After 5000 cycles, social comparison only when stuck.

Figure 1: Screen shots, Comparison of Implementation approaches in regard to
Grouped Pedestrian Movement.

For each of the two tasks, we compare between the two trigger types: The problem-
solving, and the on-going continuous comparison. The only difference in the runs
is in when the SCT process is activated. In the problem-solving trigger, the social
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comparison process is activated only when the agent is stuck and is unable to proceed
towards its movement goal. In the continuous mode, the agent constantly compares
itself to others and acts on this comparison.

A summary of the results is presented in Table 1. The table examines quantitative
task measures for the two different pedestrian crowd tasks. The first column lists the
two tasks: Bidirectional traffic is a standard task in which individual agents walk in
two opposing directions on a simulated sidewalk. There are no groups; each agent is
individual. The second column lists the quantitative measures used to evaluate how
well each task was carried out (although the measures are different, they both share the
qualitative direction; a lower result is better). These quantitative measures are:

• The accumulated number of lane changes (i.e., how many times did agents need
to move left or right). This is a standard measure in such tasks.

• The clustering—measured via hierarchical social entropy (Balch, 1998)—of the
agents. A lower number indicated tighter groups (where agents belong to the
same group if they are of the same color).

The column titledProblem Solvingshows the result when the SCT algorithm is trig-
gered only when the agents are otherwise stuck (in pedestrian traffic, this happens when
its movement is blocked). The last column, titledContinuousshows the results when
the SCT is continuously triggered (i.e., it is essentially always in control of the agent’s
actions). Each entry in the table averages the results of 15 runs; the standard deviation
is provided in parentheses.

Pedestrian Task Measure Problem- Continuous
Solving

Bi-directional traffic Accumulating lane changes 8910.52 (sd.2434.7) 20942.23 (sd.5307.9)
Unidirectional traffic Clustering

(in groups) (Social Entropy) 171.75 (sd.11.9) 102.36 (sd.19.15)

Table 1: Results for different triggering mechanisms for social comparison, in two
different pedestrian traffic tasks. A lower result is better in both tasks. The winning
triggering mechanism is different for each task.

The table shows that to get good results in the two tasks, we needed to have changed
the triggering mechanism of the SCT algorithm. This result is of course supported by
common-sense observations, as well as expert literature. As the reader knows from her
own experience, people do not constantly imitate others. On the other hand, there is
evidence that people do compare themselves to others even when they do have objective
means of evaluation (Hakmiller, 1966; Singer, 1966) (in contradiction to Festinger’s
claims in (Festinger, 1954)).

4 Continuous Social Comparison with Action Selection

Our goal is to provide a single mechanism that accounts for different crowd behaviors
(different tasks). The results above seemingly threaten this goal, as they seem to imply
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that the appropriate triggering of social comparison is task-dependent, and therefore,
one could argue, comparison does not take place at the level of the cognitive architec-
ture.

In this section, we address this argument in depth. First, we examine it closely and
show that in fact it may still be possible to account for the results while allowing social
comparison to take place within the architecture (Section 4.1). Then, we examine ways
of weighing proposed actions that are motivated by the social comparison process, so
as to enable their selection by the architecture in a flexible manner (Section 4.2.

4.1 Social Comparison at the Architecture Level

Let us examine the conclusions of the previous section more closely. Can an archi-
tectural triggering mechanism of either type discussed above be made to support this
task-dependent behavior? Surely, the problem-solving triggering mechanism cannot
emulate continuous comparison. Quite simply, if it is not continuously running, it can-
not simulate a process that is continuously running.

However, a continuous comparison mechanism may emulate a sometimes-triggered
process, if the action-selection mechanism be made to sometimes ignore the actions
chosen by the social comparison process. The change, in other words, would be in the
final step of Algorithm 1: Rather than executing the actiona, the algorithm should only
be recommending it, allowing the action-selection mechanisms of the architecture to
decide on its selection for execution. In this section we tackle this modification and its
implications.

According to this view, the social comparison process should be implemented as
secondary parallel process within the cognitive architecture. Whereas normally, actions
are proposed (and selected) by architecture based on their suitability for a current goal
(e.g., through means-end analysis), in our agent actions were also proposed based on
their suitability for SCT. In other words, at every cycle, an agent would consider actions
that advance it towards its goal and, it would also consider social actions that seek
to minimize perceived differences to other agents. Thus, the SCT-proposed actions
compete with the task-oriented actions for control of the agent.

We consider two potential action-selection mechanisms which allow the competi-
tion between goal-oriented actions and socially-oriented actions. For simplicity, we
describe these using a hypothetical example in which two actions are proposed: One
goal-oriented and one socially-oriented. Let us denote the weight (activation) of the
goal-oriented action byα. Let us denote the weight of the social action, stemming
from the social comparison process, byβ. Then the following two alternative mecha-
nisms are possible for choosing between the actions:

max(α,β). In this approach, reminiscent of early work on spreading activation tech-
niques, the action selection mechanism simply selects the action with the greatest
weight.

thresholdβ. In this approach, the social action is selected for execution, but only ifβ
is sufficiently high. That is, only ifβ > C for some given constantC; otherwise,
the goal-oriented action is selected.
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In both cases, once the action is selected, it is executed. In the next decision-
making cycle, new values forα andβ are calculated, and again an action is selected,
ad infinitum.

We leave the discussion on an agent’sα (goal-oriented weight) out of the scope of
this report. Work on activation-based action-selection has explored this issue in some
detail. For our purposes here, it is suffice to assume that 0≤ α≤ 1, whereα = 0 when
the agent has no motivation to carry out the action, andα = 1 when the agent is fully
motivated to carry out the action.

The experiments which we describe later in this document involved direct compar-
ison between the goal-orientedα and the social-orientedβ. It is thus fair to ask how
we set values forα, as the values chosen impact the results of the experiments. We
selected an experiment design in which agents all have identical goals (movement in
their assigned direction), and theirα value varies betweenα = 1 when their path is
clear, andα = 0 when they are blocked. Therefore, when analyzing these behaviors we
can disregard the constantα measures and focus only on the changingβ measures.

4.2 Calculating β
The bulk of our work during the year has focused on determining appropriate ways to
calculateβ values which would meet the following requirements:

• Facilitate good simulation of pedestrian trafficin both tasksdescribed in Sec-
tion 3. We saw one such approach in Algorithm 1.

• Work well when the social comparison process is continuously running. This is
where Algorithm 1 fails, as it fails in the task of unidirectional traffic in groups.

• Preferably, be justifiable or otherwise compatible with cognitive science and psy-
chology theory.

Theβ measure is supposed to be a function of the agent’s attraction to the observed
agents (with whom it compared itself). We distinguish between two approaches. The
first approach, which has been taken in our earlier work (Algorithm 1) is based on
selecting an individual agent from the group and calculate the attraction to it. In Al-
gorithm 1 the agent chosen was the agent with the highest similarity, that was still less
than the maximal similar thresholdSmax. The second approach, which we have been
developing this year, takes an entire group of agents into account when calculatingβ,
without singling out any particular agent.

Algorithm 2 revises the earlier algorithm to allow our revised view of the social
comparison process. It differs from the earlier algorithm in several ways. First, rather
than selecting an actiona and executing it, it returns a recommendation fora, with a
weightβ. Formally, it returns a tuple〈a,βa〉. Second, it no longer selects a single most-
similar agent. Rather, among all observed agents that are not too dissimilar or too sim-
ilar (i.e, agents inS), a representative agent is selected by GetAgentForComparison(S),
which abstracts the selection process. We will discuss several versions of this pro-
cess.D gets a list of features which corresponds on differences between me and the
compared agentAc. Then, an agent calculatesβ value, which represents agent’s attrac-
tiveness to the selected group. The function CalculateBeta(Ac,S, Smin, Smax) receives
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the compared agent (Ac), the selected group (S) and the similarity boundsSmin, Smax)
and returns theβ value. In the following section we compared between different meth-
ods to calculate the agent’s attractiveness to the group (β), which replaces the use of
the gain function in the earlier version of the algorithm.

Algorithm 2 SCT (O, Ame,Smin, Smax)
1: S← /0
2: for all Ao ∈O do {Add only agents not too similar or dissimilar}
3: if Smin < Sim(Ame,Ao) < Smax then
4: S→ S∪Ao

5: Ac← GetAgentForComparison(Ame,S)
6: D← CalculateDifferences(Ac)
7: β← CalculateBeta(Ac,S, Smin, Smax)
8: a← SelectAction(D)
9: return〈a,β〉.

4.2.1 Individual Argmax Selection: Similarity Range

In our basic SCT model, an agent compares itself to one selected agent. This individual
comparison approach is successfully implemented in our previous work, and provided
good results in different crowd behaviors (see, for instance, its evaluation with respect
to human pedestrian data (Fridman et al., 2009). In this section we present compat-
ibility of the extended model to the basic model and also propose beta calculation to
account for the timing extension.

In our basic SCT model (Algorithm 1, between all observed agentsAo ∈ O, the
comparing agent selects the most similar agentAc within the similarity range and com-
pares itself to it. To the correction actiono that minimized the differences to the se-
lected agent, we attach aGain value which indicates the amount of effort that should
be invested in the action. TheGain(Sim(Ame,Ac)) function represents the normalized
distance between my similarity with the selected agent to the two extreme values of
similarity (Smax, Smin). To calculate agent’s attractiveness to the selected agent (β), we
will use this gain to account for normalized values (between 0 to 1).

There is some evidence for this approach in psychology literature relevant to social
comparison theory. In particular, Volkmann (Volkmann, 1951) proposedrange theory
of social judgment, which emphasized the relationship between what is being judged
and the two extreme values of the stimulus context. In social comparison, the con-
text is the group, which include other people with whom one’s own conditions can be
compared with and in our implementation we compare the similarity value.

Thus, in this variant of the extended SCT model, between all observed agents in
O, Sgets the group of agents with the similarity value within the bounds.Ac gets one
agent fromGetAgentForComparison(S) method, which selects the most similar one
(with highest similarity value within theS). D gets the vector of features with values of
0 or 1 which indicate the feature value differences between me and the selected agent.

To calculate agent’s attractiveness to the selected agent (βvalue), we calculate nor-
malized distance between my similarity with the selected agent to the two extreme
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values of similarity (Smax,Smin). The definition ofCalculateBeta(Ac,S,Smin,Smax) in
this case is presented in 3.

βargmax= CalculateBeta(Ac,S,Smin,Smax) =
(Sim(Ame,Ac))−Smin

Smax−Smin
(3)

4.2.2 Group Comparisons

One area where the individual model fails is in that it ignores the size of the group being
compared against. There is much evidence that the size of the group has an effect on
the imitational tendencies of the individual. For instance, a well-known experiment in
social sciences was performed by Milgram, Bickman, and Berkowitz (Milgram, Bick-
man, & Berkowitz, 1969). The experiment involves one participant who stood in the
middle of a busy street and stared into an empty spot in the sky. The experiments pur-
pose was to examine group pressure. The results showed that when there was only one
participant, there were only a few people that passed and briefly glanced up. However,
when there were several participants, almost 80 percent of the passers by also stopped
and stared into the sky.

We therefore seek to find a model in which the number of similar agents in the
group impactsβ. We propose two such models, both tied to psychology literature on
judgement of stimulus with respect to a context of other stimuli.

Mean Agent. Inspired by Helson’s adaptation-level theory ((Helson, 1964)), we pro-
pose an alternative approach. Helson proposes that the baseline of judging a stimulus
should be the mean of the stimuli that provide the context, such that the rating given
to a stimulus is a function of its difference from the mean. Thus, instead of selecting
one most similar agent and ignoring all others, we want to take into account the group
factor by looking at an abstract mean agent, and determine our similarity to it.

We create the mean agentAmeanand calculate the agent’s attractiveness to it. The
function GetAgentForComparison(S) in this case creates the mean agentAmeanfrom the
selected agents inS. Each agent is assumed to be modeled by a set of features, the mean
agent is modeled by features with mean values fromS1. The compared agentAc is then
the mean agentAmean. Note that this agent does not necessarily exist.D gets the vector
of features with values 0 to 1 which indicate the feature value differences betweenAme

and the mean agent. Theβ measure is again according to the range principle which
is normalized distance between my similarity with the mean agent to the two extreme
values of similarity (Smax, Smin).

Thus theβ measure is calculated as before (Eq. 3), but with a change to the param-
eters. Rather thanAc being the most similar agent, it is now a hypothetical mean agent
calculated as described:

βmean= CalculateBeta(Ac,S,Smin,Smax) =
(Sim(Ame,Ac))−Smin

Smax−Smin
(4)

1For categorical features, we use mode values.
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Range-Frequency Theory. We consider a second model, inspired by Parducci’s
Range-Frequency theory (Parducci, 1995). According to the theory, overall judgement
of a stimulus should not rely only on its range to the mean, but instead should take into
account its relative frequency—via its percentile rank—in the group of stimuli. Thus
judgement should be modeled as a a weighted sum of its range and percentile rank
(frequency).

We thus propose an alternative approach forβ calculation (Eq. 7), which takes into
consideration in addition to range, also the group distribution (via the percentile rank
of the result). Theβ is then a weighted sum of range to the mean (Eq. 5) and frequency
values (Eq. 6), as shown in Eq. 7.

The range calculation 5) is identical to that calculated for the mean agent model;
it is the range to the hypothetical mean agent. We also calculate the percentile rank
(frequency, in the terms of Parducci’s theory). For all agents in the selected group (S),
we calculate their similarity value to the mean agent (Sim(Ak,Amean), and also calculate
compared agent’s similarity to the mean agent (Sim(Ame,Amean my similarity). We
calculate the number of agents with same similarity value as similarity value of the
compared agent (my similarity) divided by the number of agents|S|.

Range=
Sim(Ame,Amean)−Smin

Smax−Smin
(5)

Let ISimi denote the number of agents with similarity value identical to mine.|S| is
the total number of agents. Then the frequency valueFrequencyis calculate according
to following equation:

Frequency=
ISimi

|S|
(6)

To compromise between range and frequency, we use the weightp to determine
the proportions that the range and frequency components are assigned in the weighted
sum. Usually, we will give the equal weight to both the results. Theβ is weighted
sum between the Range and Frequency values and calculated according to following
equation:

βRF = CalculateBeta(Ac,S,Smin,Smax) = p·Range+(1− p)·Frequency (7)

4.3 Experiments

We carried out several experiments to evaluate the hypotheses discussed in this sec-
tion. The experiment design and setup were already discussed in Section 3.2.1. In
Section 4.3.1 we present the results of experiments in applying social comparison con-
tinuously, using both themax(α,β) and the thresholdβ action-selection mechanisms.
We show that one of these mechanisms works well for the two tasks. Then in Sec-
tion 4.3.2 we present the results of experiments with the threeβ models, comparing
them (alas, indirectly) to human pedestrian data.
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4.3.1 Experimenting with Action-Selection Mechanisms

Our first task is to determine which, if any, of the two hypothetical action-selection
mechanisms may be used to allow social-comparison to take place in parallel to any
goal-oriented action-selection process. The two proposed mechanisms weremax(α,β)
(in which the highest gain wins) and thresholdβ (in which the socially-motivated action
wins if its threshold is higher than some fixed constantC). We varied the separatorC
value between 0.2, 0.3 and 0.4 (chosen based on pilot experiments). The weightp in
the RF model was set at 0.8.

In these experiments, we used the two mechanisms in variations on the pedestrian
tasks described above. These variations included bidirectional individual movement in
high-density settings, bidirectional individual movement in low-density settings, and
unidirectional movement in groups. As before, in the bidirectional movement tasks,
we measure performance by the accumulated number of lane changes (as before);
in the unidirectional grouping task, we measure clustering by hierarchical social en-
tropy (Balch, 1998).

In the pedestrian traffic tasks, the goal-orientedα is always set according the fol-
lowing rule: α is 1 if the agent’s path is clear, or 0 otherwise. Because of this rule—
fixed along all tasks and experiments—we can control the action-selection mechanism
and evaluate its performance in the different tasks, with respect only to the socially-
motivated actions, proposed with weightβ.

Table 1(a) shows the results of the experiments. The left column in each table
shows theβ variant in use. The next two columns show the results for the bidirectional
movement task, in two different densities. The last column shows the results for the
unidirectional grouping task.

Several conclusions can be drawn from these results. First, the reader should note
thatall results for the unidirectional grouping task in Table 1(a) (last column) are lower
than the respective results in Tables 1(b)–1(d). In the bidirectional movement tasks,
the results are inconclusive. Thus we can conclude that themax(α,β) mechanism is
inferior to the thresholdβ mechanism.

Second, we can conclude that the RF model is superior to the mean-agent model,
when using the thresholdβ action-selection mechanism. In all cases except for one
(whenC = 0.2), the results for the RF model improve on those of the mean-agent
model.

Third, in general, theβargmax model is superior to the others. This came out as
a surprise to us, given its failure to account for group size. However, while we are
investigating this further, a comparison to human data has shown that in fact this model
may be generating movement patterns that are unrealistic. This is discussed in the next
section.

4.3.2 Comparison with Human Pedestrian Data

The previous sets of results have all been based on quantitative measures of perfor-
mance, on an absolute scale where a lower result was better. These are well-recognized
measures, but they are artificial; they have not been applied to human data. Thus, we do
not know the nominal values for normal human pedestrian traffic. Thus better (lower)
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(a) max(α,β).

Bidirectional Bidirectional Unidirectional
β model Traffic Traffic (Grouping)

High Density Low Density
(Lane changes) (Lane changes) (Hier. entropy)

βargmax 25531.75 8707.48 168.89
βmean 35110.93 9864.27 170.47
βRF 29199.73 9592.33 172.64

(b) thresholdβ (threshold=0.2).

Bidirectional Bidirectional Unidirectional
β model Traffic Traffic (Grouping)

High Density Low Density
(lane changes) (lane changes) (hier. entropy)

βargmax 26086.47 9607.27 108.41
βmean 37533.33 9279.07 162.44
βRF 64401.2 40128.13 136.79

(c) thresholdβ (threshold=0.3).

Bidirectional Bidirectional Unidirectional
β model Traffic Traffic (Grouping)

High Density Low Density
(lane changes) (lane changes) (hier. entropy)

βargmax 25587.87 9833.53 108.3
βmean 37819.13 10837.4 155.66
βRF 32349.8 7697.13 147.34

(d) thresholdβ (threshold=0.4).

Bidirectional Bidirectional Unidirectional
β model Traffic Traffic (Grouping)

High Density Low Density
(lane changes) (lane changes) (hier. entropy)

βargmax 23414 8638.27 109.19
βmean 39198.8 11033.91 160.58
βRF 36539.53 8769.6 149.6

Table 2: The results of applying two action selection mechanisms in the two tasks,
for the βargmax, βmean andβRF variants. Table (a) shows the results in themax(α,β)
mechanism. Tables (b)–(d) show the results when applying the thresholdβ mechanism,
with a threshold ofC = 0.2, C = 0.3, C = 0.4, respectively. All results are averaged
over dozens of trials (15–50). Lower results are better.
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results on the absolute scale may in fact be unrealistic.
Thus, as a final evaluation, we also conducted experiments which indirectly com-

pare the performance of the various models to human crowd data, which we have pub-
lished in (Fridman et al., 2009). The experiments were carried out as follows.

First, in (Fridman et al., 2009) we allowed human subjects to qualitatively compare
various variants of theβargmaxmodel, based on continuous comparison, with movies of
human pedestrians moving bidirectionally, in groups. The models were also compared
to therandom selectionprocess, which is often used in the literature as baseline. While
a detailed discussion of the results of the paper are outside the scope of this document,
we will mention that one clear winning model—one of theβargmaxvariants—emerged.
We denote this model asSCTargmax. This model relied on using SCT as a problem-
solving activity, where the social comparison process is only triggered occasionally.
As shown in Section 3, this type of triggering mechanism is problematic.

However, given the success of theSCTargmaxcompared to other models, we can now
use it as a basis for comparison against newer models, such as those investigated in the
course of this research. In particular, we contrast the results from using this model, on
the same task used in the comparison with human data, with results from applying the
various variants described above.

The results of this experiment are shown in Table 3. The table shows both lane-
changes and hierarchical social entropy results for the same task (bidirectional move-
ment in small groups). The table compares several models: The original (which was
judged by human subjects to be the closest to human movement), shown in the second
column; theβargmax model, in the next column; and finally theβmeanandβRF model,
in the last two columns, respectively.

The table shows that theβRF model, introduced in this paper, seems the closest to
the original winning model in terms of the number of lane changes, and is also very
close to it in terms of the social entropy measure used to evaluate grouping. It thus
shows much promise for future development.

Note also that the other models—in particular theβargmaxmodel—provide smaller
numbers, which are considered better on an absolute scale, but are shown here to be
too good to be realistic. We hope to carry out a thorough investigation as part of our
research in the coming year.

Measure Baseline βargmax βmean βRF

Lane Changes 5974.5 2880.67 4283.97 5267.73
Social Entropy 22.32 25.99 22.4 21.69

Table 3: A comparison of different crowd models in the task of bidirectional pedestrian
traffic in small groups. The first column shows the baseline, which was shown in our
earlier work to be closet to human data of previous models.
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5 Conclusions and Future Directions

In this report we summarize our work in the past year on a revised and extended
social-comparison model of crowd behavior. We have explored—and provided ini-
tial answers—two key questions raised by earlier work. Our methodology involved
both experiments in synthetic simulations, as well as comparisons of their predictions
to human pedestrian data.

First, we have shown that it is possible to have a task-neutral, architecture-level,
social comparison process capable of working well across multiple tasks. We have
explored alternative action-selection mechanisms that enable continuous comparison
(required for such process), and provided evidence that one of these mechanisms, based
on threshold-ed selection, was superior.

Second, we have revised the underlying comparison process itself to account for the
comparison group size, another key issue ignored by previous work. We have shown
that the revised model offer, in some cases, superior performance to that of the previous
model. However, the results here are less conclusive than we’d like.

5.1 Future Directions

Indeed, there is many open questions still. First and foremost, while the revised com-
parison models show much promise, the use of theβRF model has not produced results
that are clearly superior to others in all cases. More work is needed in identifying its
strengths, possibly in additional crowd modeling tasks.

Other directions are left open as well. Preliminary experiments with human sub-
jects’ evaluation of synthetic situations have consistently yielded replies that indicate
expectations not only of reduced attraction in some cases, but of actual avoidance. In
other words, in some settings, human subjects sometimes expected agents to move
away from a group, rather than simply not move towards it. This avoidance is also
discussed in more modern elaborations of social comparison theory, but is yet not ac-
counted for in our models.

Another important open issue is that of accounting for culture and embodiment of
the simulated agents. It has been shown, for instance, that pedestrians prefer to walk
behindand slightly to the sideof others (Wolff, 1973), likely to decrease occlusion of
oncoming obstacles. Such constraints made by the bodies of others are not accounted
for. The existing model also do not account for the differences in "personal space" in
different cultures.

5.2 Resulting Publications

Publication of (Fridman et al., 2009) was supported in part by this grant. A journal
article extending these results is currently in preparation, as is a paper based on the
new results in this report.
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