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ABSTRACT 

This thesis develops (a) a mission-planning tool for a Navy Mine Counter 

Measure (MCM) force to find a minimum-risk route for a surface ship through a mapped 

minefield, and (b) a heuristic to identify a sequence of mines whose clearance (removal 

and/or deactivation) leads to a rapid reduction of the risk of a minimum-risk path. All 

modeling concepts reflect the requirements of the Republic of China Navy’s MCM 

operations. 

The problem is formulated and solved as a shortest-path problem in a network. A 

grid of nodes, representing waypoints, is embedded in a representation of the operating 

area, while arcs are created to link waypoints.  The risk function is defined in terms of the 

closest point of approach distance between each mine that falls within a maximum danger 

radius along a route.  

A complete planning tool is implemented using Excel and Visual Basic for 

Applications.  A basic test scenario describes an operational area of 1,000 by 3,000 yards 

containing 30 mines; node spacing is 100 yards. The minimum-risk path is found in few 

seconds on a laptop computer, while a greedy “mine-clearance list” is found in a few 

minutes. 
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EXECUTIVE SUMMARY 

This thesis develops (a) a mission-planning tool for a Navy Mine Counter 

Measure (MCM) force to find a minimum-risk route for a surface ship through a mapped 

minefield, and (b) a heuristic to identify a sequence of mines whose removal (“clearance”) 

leads to a rapid reduction of the risk of a minimum-risk path. The problem is formulated 

and solved as a shortest-path problem in a network. A grid of nodes, representing 

waypoints, is embedded in a representation of the operating area, while arcs are created to 

link waypoints.  For a specified set of mapped mine locations, the risk function for a 

candidate route is a sum of the risks for each arc along the route.  The risk to an 

individual arc is the sum of the risks generated by mines in the vicinity of that arc.  And 

the risk a specific mine generates for a specified arc increases as the minimum distance 

from the arc to the mine decreases. Additional arcs are added to the usual network 

formulation to encourage each mine to interact with at most one “long arc” in the optimal 

solution. This would allow the user to incorporate actuation-curve data, which is familiar 

to mine warfare planners and would provide a stronger probabilistic foundation for the 

optimization modeling.   We do not test a model that uses actuation-curve data, but 

describe how such a model would be constructed in a separate chapter. 

The test scenario for this thesis defines an operational area of 1000 by 3000 yards 

containing 30 mines; node spacing in the grid network is 100 yards.  Multiple runs of the 

model are made to test the effects of (a) “long arcs,” in addition to arcs that connect 

nearest-neighbor nodes, (b) the inclusion or exclusion of a “head-node penalty,” and (c) 

the effectiveness of a greedy mine-clearance heuristic compared to an optimal integer-

programming model. Using long arcs and head-node penalties encourages each mine 

along the optimal path to interact with only one arc. This allows approximate network arc 

costs (or “lengths,” to maintain the analogy with shortest paths) to be computed from 

lateral range curve data for actuation and damage probabilities of mines against ships, 

and provides a probabilistic interpretation of the optimization objective function. 

Test results show that (1) models with “long arcs” allow greater flexibility in 

routing and can provide lower-risk routing solutions, (2) removing a “head-node penalty” 



 xiv

that may double count the risk contribution of certain mines to an optimal path does not 

significantly improve routing solutions, and (3) the greedy mine-clearance heuristic can 

identify a sequence of mines whose clearance leads to a rapid reduction of the risk of a 

minimum-risk path and, furthermore, if mines are “nearly uniformly distributed” across 

the operational area, then the greedy solution will be optimal or near-optimal. 

The problem we study in this thesis assumes that a “Q-route” has been established 

in a particular area, nominally the entrance to a harbor. A Q-route is a preplanned system 

of shipping lanes in mined or potentially mined waters designed to reduce the size of the 

area in which a mine warfare commander must manage the risk from mines. Countermine 

patrols have been carried out along the Q-route (using manned and/or unmanned vessels), 

the location of each relevant mine has been mapped and its type established. Several 

assumptions are made to simplify the problem in order to develop a practical model: we 

assume each mine position is known exactly, and each has known characteristics (e.g., 

activation method, explosive force), and no own-ship navigation errors occur. We further 

assume that the enemy does not “re-seed” the minefield during the period of interest.  

A complete planning tool is implemented using Excel and Visual Basic for 

Applications. For the test scenario, the minimum-risk path is found in few seconds on a 

laptop computer, while a greedy “mine-clearance list” is found in a few minutes. This 

prototype should provide the framework for a usable mission-planning tool for the ROC 

Navy MCM force. 
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I. INTRODUCTION 

In the event of a conflict with the People’s Republic of China (PRC), the navy of 

the Republic of China (ROC, also known as Taiwan) must be prepared to deal with its 

ports being blockaded by naval mines: the ROC Navy must be able to maintain safe 

maritime passage into and out of designated ports at all times. To help with this effort, 

this thesis (a) describes the problem of finding a minimum-risk path for a surface ship 

through a mapped minefield, (b) implements a solution as a variant of a shortest-path 

problem in a network, and (c) develops a heuristic to identify a sequence of mines to 

remove (“clear”) that quickly reduces the risk of the minimum-risk path to zero, and 

which should yield a good solution if exigencies cut short the sequence of removals.  

The thesis also develops a prototypic decision-support tool for the ROC Navy MCM 

force. The tool will run on most personal computers and is available for immediate use. 

A. THE PROBLEMS: AVOIDING MINES AND CLEARING MINES  

This thesis studies the problem of how to reduce the effectiveness of an enemy’s 

sea mines through optimized avoidance.  In particular, we develop an automated method 

for finding a minimum-risk path for naval or commercial vessels to transit through a 

mapped minefield. (Because of possible confusion with a related term “Q-route,” we use 

“path” rather than “route” to refer to a ship’s movement through a minefield.)  “Risk” can 

have several meanings, but for our purposes the risk a specified minefield generates 

against a specified track through that minefield is the sum of the risks on the component 

arcs of the route.  And the risk to any arc is the sum of the risks generated by the mines 

near that arc.  And the risk a mine generates for an arc is a deterministic measure that 

increases as the minimum distance between the mine and arc decreases.  This is a 

deterministic approach for designing paths through a mapped minefield, which stays 

furthest away from the most dangerous mines. The formulation in this study adds 

additional “long arcs” to the standard network formulation to encourage in the optimal 
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solution each mine to engage with at most one arc. This allows the model to use 

actuation-curve data, familiar to mine warfare planners, in the cost function (see 

Washburn and Kress 2009, Chap. 8). 

For simplicity, we assume all mine positions are known exactly, and all have the 

same characteristics (e.g., activation method, explosive force).  Furthermore, all mines 

have a known damage radius and no own-ship navigation errors occur.  The model easily 

generalizes to allow mines of different types as long as the characteristics of each mine 

are known. For practicality, i.e., speed of computation, we use a shortest-path based 

methodology much like that described by Bekker and Schmid (2006) for finding mine-

avoiding paths; see also Boerman (1994).  This is essentially the same model type that 

others use for the routing of manned and unmanned aircraft (e.g., Carlyle et al. 2007; 

Reber 2007). In particular, the area of operations (AO) is discretized into a grid of nodes 

representing waypoints, and arcs connecting nodes to represent potential transitions 

between waypoints.  We will call this network the AO network. 

Because of the great uncertainty about if and when a mine will detonate and how 

much damage it might cause, identifying a true “minimum-risk path” is probably 

impossible in our context.  In this study, we will (a) compute a “risk measure” for each 

arc in the AO network as the probability of mine actuation that a ship will incur if it 

travels an infinite straight-line path containing this arc, and (b) identify a path through the 

network that minimizes the sum of arc risk-measure values along that path. (To avoid 

identifying paths that may be too long and circuitous, we may also add an arc-length 

penalty to the “risk-measure value” assigned to each arc.) 

Two different risk measures for paths in minefield have been used in the literature: 

(a) a measure based on the closest point of approach (CPA) to the closest single mine 

along a path (Boerman 1994), and (b) a measure based on the CPA to each mine that 

might conceivably endanger transit along the path (Bekker and Schmid 2006).  Case (a) 

computes risk with respect to a single mine; case (b) could involve all mines in a 

minefield, but would normally involve only a small number of mines that are within 

some “maximum danger radius” of the arc.   
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If “true risk” corresponds to the maximum explosive force that a ship can 

withstand and maintain some specified level of operational effectiveness, the “single 

closest CPA” might be the right measure to use. If “true risk” involves a set of explosions 

that a ship can experience with an acceptable level of resulting damage, then considering 

the “CPA to each mine within a maximum danger radius” is a reasonable approach. 

Because we focus on naval operations, and because warships are designed for flotation 

that is robust against damage, we will investigate arc risk measures based on case (b). In 

the simplest case, we will compute an additive risk-measure for each arc in the network, 

identify a “minimum-risk-measure path” and label that as an approximation to the true 

“minimum-risk path.”    

In this thesis, we first implement a model similar to that of Bekker and Schmid in 

Excel and VBA (Visual Basic for Applications), and then extend the model by adding 

additional arcs to encourage the optimal solution to use longer arcs. The reason for this is 

two-fold: (1) paths with fewer turns are easier to execute accurately, and navigational 

accuracy is critical when crossing a minefield; and (2) when a mine interacts with a 

single, straight-line arc, the probability of mine actuation can be approximated with 

lateral range curve data, generally understood and available to mine warfare planners 

(Washburn and Kress 2009, Chap. 8).  Our testing does not actually use the actuation-

curve model—it uses an intuitively appealing model of risk that varies inversely with the 

closest point of approach to each mine—but our procedures are ready to accept the 

former model. 

In addition, we implement a greedy heuristic for mine clearance that may have 

useful properties when trying to quickly reduce mine risk. Motivation for this result is 

that a ship may need to transit the minefield before all the mines on the list have been 

cleared and a zero-risk path established. To illustrate, suppose that a commander 

identifies the smallest set of mines whose clearance (removal) results in a zero-risk path.  

Further, suppose that the smallest set has cardinality five.  MCM forces begin removing 

these mines, but only have time to clear three before operations must halt, and a ship 

must transit the minefield.  There is no reason to believe that the three mines that were 

cleared were the best three to clear. Naturally, identifying a minimum set of mine 
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removals that gives good intermediate solutions might be impossible, but we provide a 

greedy heuristic that identifies a sequence of mines, always choosing the next best mine 

to clear.  This greedy approach might lead to a poor overall solution, but the sequence of 

removals that it generates has the chance of being a good sequence that can be interrupted 

at any point with reasonable results.  This issue is investigated computationally in 

Chapter V. 

An important aspect of our solution approach is that it can be, and has been, fully 

implemented in Excel and VBA, so that it can run on most personal computers.  

Although we can find a path that minimizes our definition of risk, we have not validated 

the model with empirical data. This must wait for further research. 

B. MOTIVATION 

According to the Quadrennial Defense Review (QDR) of the Ministry of National 

Defense (MND), ROC, partial blockade of Taiwan’s important ports is one of the five 

possible military actions that the PRC might apply against Taiwan in the case of 

hostilities (ROC MND QDR 2009, pp. 41-42). Also, a US Congressional Research 

Service Report points out that a maritime quarantine or blockade by naval mines of the 

Taiwan’s ports is one of the PRC’s options in a military conflict with the ROC 

(O’Rourke 2008, pp. 47-48). 

It is critical for the ROC Navy to maintain the safe access into and out of certain 

harbors at all times. Establishing a “Q-route” system is a standard method to help with 

this access problem, if harbors or nearby waters may be mined (Vego 2008). A Q-route is 

a preplanned system of shipping lanes in mined or potentially mined waters. By making 

use of extensive route surveys conducted prior to hostilities, the MCM force can rapidly 

verify the presence (or absence) of mines in the designated routes and take appropriate 

clearance (mine-removal) actions. Q-routes are used to minimize the area that an MCM 

commander must patrol and clear and yet still be able to provide safe passage for friendly 

ship movements (Holden 1994).  

The problem we study in this thesis assumes that a Q-route has been established 

in a particular area, nominally the entrance to a harbor. Countermine patrols have been 
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carried out along the Q-route (using manned and/or unmanned vessels), the depth and 

position of each relevant mine has been mapped and its type established. We further 

assume that the enemy does not “re-seed” the minefield during the period of interest. The 

basic problems that remain are (a) to find a minimum-risk path through the Q-route, 

and/or (b) to find a prioritized list of mines whose removal will result in a rapid reduction 

in the risk of a minimum-risk path, and ultimately lead to a zero-risk path.  

The main reason we want to find a prioritized list of mines for disposal, instead of 

the best set of  n  mines to clear, is to reflect how MCM operations might actually evolve.  

For instance, suppose a Q-route has been established to enable the egress of a naval 

combat force from a harbor.  Ideally, the MCM force would clear all mines required to 

create a zero-risk path for all of the force’s ships to exit the harbor.  However, suppose 

that an attack on the harbor by aircraft-borne missiles is anticipated and the force must 

evacuate its ships from the harbor immediately.  Furthermore, suppose that only half of 

the n mines necessary to achieve a zero-risk route have been cleared.  Has risk been 

reduced to an acceptable level?  It is possible that risk has hardly been reduced at all, 

actually.  

This kind of scenario illustrates a type “optimal priority list problem” (Koc et al. 

2008). Koc et al. solve an optimal prioritized-list problem (under uncertainty) for creating 

a project portfolio, and that is the kind of model that we would like to solve, to create a 

prioritized mine-removal list.  But since that is too complicated for our computational 

platform, we are going to use a heuristic to solve this problem approximately, and hope to 

get good intermediate solutions. We note that Pfarrer (2000) uses a greedy heuristic in his 

thesis to approximately solve a acquisition-prioritization model that is much like the 

prioritized-list model that Koc et al. (2008) solve (for project prioritization). Pfarrer 

reports near-optimal results with his greedy heuristic, making it seem more likely that the 

greedy mine-removal heuristic will also work well.  Computational experiments will 

investigate this expectation.  

There are many combat-related instances of optimal prioritized-list problems, 

with one example being the Allied amphibious operations at Guadalcanal during World 

War II (Miller 1995). In the Guadalcanal Islands, the Allies wished to complete a landing 
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mission encompassing approximately 150 landing craft loaded with troops, ammunition, 

fuel, etc.  However, the Japanese began an air attack and the landing operation broke 

down completely after about 100 craft had landed. Clearly, mission planning should have 

tried to achieve a good sequence of landing-craft landings, i.e., a prioritized-list of 

landings, so that if the full operation were cut short, the successfully landed forces would 

be equipped as best possible.  There is no evidence that a good sequence of landing-craft 

landings was investigated, however. 

C. THESIS OUTLINE 

This thesis is structured as follows. This chapter has defined, in general terms, the 

problem of finding a minimum-risk route through a mapped minefield, and the problem 

of finding a good mine-clearance sequence.  It has also motivated the need for solving 

both of these problems.  Chapter II presents several models for a minimum-risk routing 

through a mapped minefield and describes solution techniques. Chapter III develops a 

greedy heuristic for mine clearance. Chapter IV describes how actuation-curve data could 

be incorporated into our basic model at a later date. Chapter V develops test scenarios 

and provides computational results for finding a minimum-risk path through the Q-route, 

also comparing the effects for mine removal using greedy heuristic and integer-

programming model. Finally, Chapter VI presents a summary and conclusion, also 

suggests areas of further research. 
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II. MODELING A MINIMUM-RISK ROUTE THROUGH A 
MAPPED MINEFIELD 

This chapter starts by defining a network model that can represent the transit of 

ship through a Q-route.  Then, we define a simple, additive risk function for each arc in 

the network that should reflect, approximately, the true risk that a ship would experience 

from mines that would be approached during a transit of that arc.  Once the risk function 

and network structure are defined, any standard shortest-path algorithm can be used to 

find an “approximate minimum-risk path.” 

The risk function we use may imply risk from a single mine across multiple arcs, 

and traversing those arcs could amount “double counting” of risk.  To reduce this effect, 

we add “long arcs” to the model, which will tend to be preferred in the optimal solution. 

This will encourage each mine to engage with at most one arc in the optimal solution.  

Furthermore, the use of long arcs should simplify the incorporation of actuation-curve 

data at a later date.    

A. NETWORK STRUCTURE AND SHORTEST-PATH MODEL  

This thesis models two types of Navy MCM operations in an established Q-route, 

(a) mine-avoidance, known as Passive Defensive MCM, and (b) mine-clearance, known 

as Active Defensive MCM (Holden 1994). We assume that all mines in the Q-route of 

interest have been mapped. For simplicity, we also assume that a rectangular area defines 

the Q-route, as might be the situation with a potentially mined harbor entrance.  As in 

Bekker and Schmid (2006), we define a two-dimensional grid of nodes i N  in that area 

to represent waypoints for a transiting ship, and connect those nodes with a set of directed 

arcs ( , )i j A , ,i j N  and i j .  The arcs represent potential transitions between 

waypoints.  Together, the nodes and arcs define a directed graph ( , )G N A .  A set of 

nodes S  at one end of the network represents potential starting points for a transit, and a 

set T  at the other end represents potential endpoints, beyond which the transiting ship is 

assumed free from the danger of mines.  See Figure 1.  
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We wish to find a route with the lowest total risk for a ship to transit through the 

area. The simplest way to solve this problem approximately is to assign an additive risk 

measure to each arc as a length, and find a shortest path from some node in S to some 

node in T, using any reasonably efficient shortest-path algorithm.  (We use a label-

correcting algorithm implemented with a deque; see Ahuja et al. 1993, pp. 136–143.)  

The risk on each arc is computed as some function of the mines that fall within a 

prescribed “maximum-danger radius” if a ship were to transit the arc.  

There is a problem with that simple approximation, however, because the 

maximum-danger radius of any single mine may cover more than one arc that might be 

traversed along a ship’s path, and risk may not truly be additive.  Suppose, for instance, 

that we define a risk measure to be 1/ CPA , and one path crosses a single arc with a CPA 

to mine m  of 50 yards, and suppose another path crosses two arcs each with a CPA of 

100 yards to mine m .  (No other mines come into play, and the maximum-danger radius 

exceeds 100 yards.)  The specified additive risk measure would evaluate the two paths 

identically with respect to risk, but a ship’s captain might find the former situation 

“riskier.” For simplicity, we will implement a simple additive risk function first, and then 

look at the alternatives that may better represent the true risk for a transiting ship. 
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Figure 1.   Network structure for the minimum-risk routing model without long arcs. A 
set of nodes 1 2 3 4{ , , , }S s s s s  represents potential starting points, and a set 

of nodes 1 2 3 4{ , , , }T t t t t  represents potential endpoints. Between S and T, 

nodes represent potential waypoints for a transit; beyond T, the transiting 
ship is assumed free from the danger of mines. For simplicity, the figure 
displays an undirected version of a portion of an AO-network, with only 
nearest-neighbor nodes connected.  In reality, the network will be directed, 
and the connectivity of the arcs will depend on modeling assumptions. 

B. RISK FUNCTION 

Two different additive risk measures for arcs have been used in the literature on 

mine-avoiding paths.  Roughly, they are (a) the CPA to the closest single mine along a 

path (Boerman 1994), and (b) CPA to each mine that might conceivably endanger transit 

along a path (Bekker and Schmid 2006).  Whatever we use to define the risk measure, it 

will relate to the CPA distance from an arc to a mine.  There will likely be some 

minimum ship-to-mine distance at which unacceptable damage must occur to the ship if 

the mine explodes.  This will be called the mine-damage radius, and any arc that passes 

within such a distance will be heavily penalized: unless there is no other way, a ship 

should never traverse such an arc.  This distance can be calculated, and depends on the 

mine’s depth, explosive charge weight, and the relevant type of vessel (TM Navord Op 

3696 1996). For computational efficiency, we also define a maximum danger radius 

beyond which a ship cannot possibly be damaged by a mine.  Thus, we need not compute  
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any contribution to risk from mine m  to arc ( , )i j  if all points on that arc fall outside the 

maximum danger radius. The following describes our basic shortest-path model with all 

risk-measure calculations. 

Indices: 

,i j N  nodes in AO network ( , )G N A  

( , )i j A  arcs in AO network ( , )G N A  

m M  mines in the AO 

s S N     start nodes in AO network 

t T N   end nodes in AO network 

pathA  arcs in a simple directed path in G  from some node s S  to some node 

t T  (all paths assumed to be simple, i.e., with no nodes repeated) 

( , )S TA  the set of all simple paths in G  from some node s S  to some node t T   

Data [units]: 

D  mine-damage radius [yards]   

D  maximum danger radius, with D D   [yards], where 1   will be set by 

the decision maker  ( 2   in this thesis) 

ijmD               CPA distance from mine m to arc ( , )i j  [yards] 

  risk-measure exponent, where 1  and can be decided by decision maker’s 

 risk preference ( 2  in this thesis) 

ijmr    risk measure for arc ( , )i j  from mine m  

maxr            ( , ) ,
max ijm

i j A m M
r

 
 


                 

mine-damage penalty constant, where maxN r  ( 1  in this thesis) 
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Single-mine Arc Risk Measure: 

 

if

1/ if

0 if

ijm

ijm ijm ijm

ijm

D D

r D D D D

D D



 
  




  (1)  

Multiple-mine Arc Risk Measure: 

 ij ijm
m M

r r


     (2) 

Formulation of Basic Minimum-Risk Routing Model: 

( , )
( , )

min
path

path

ij
A S T

i j A

r



A

 

         (3) 

We define the AO network only for a Q-route, since only the region in the Q-

route has been surveyed.  Thus, no ship will be allowed outside the Q-route.  Furthermore, 

for safety’s sake, we also assume that fictitious mines m  exist just a small distance 

0   beyond the borders of Q-route (only along the two side borders of the Q-route that 

do not include S and T). We apply the same risk function to those regions along the side 

borders; consequently we include a risk contribution from a fictitious mine m  for each 

arc ( , )i j  in the upper and lower row of arcs in the grid when CPA distance from the 

borders '( )ijmD  is within maximum danger radius ( ijmr   if ijmD D   
; 1/ k

ijm ijmr D   if 

ijmD D D  ). 

C. GRID SPACING, ARC STRUCTURE, AND LONG ARCS 

It is important to set the proper grid spacing for the AO network.  Although we 

might obtain better resolution with a finer grid spacing (and with more arcs to give a 

greater variety of angles), that finer grid comes with higher computational cost. But, if we 

set the grid spacing too large, then the approximation of risk and a ship’s ability to 

maneuver will be poor. Since this model is designed as a decision-support tool for navy 

MCM operations, and want to provide waypoint coordinates that a vessel can navigate by, 

a reasonable grid spacing is the minimum turn radius that a  vessel can achieve (known as 

the “90-degree turn radius”). Thus, this spacing will depend on the relevant vessel’s 



 12

maneuverability: small for small and more-maneuverable vessels, and large for large and 

less-maneuverable vessels.  For simplicity in this thesis, we fix the grid spacing to 100 

yards, which roughly corresponds to an 800-tons Aggressive-class ocean minesweeper 

when guiding a convoy through the Q-route for port ingress or egress (known as a “lead-

through operation,” see Holden 1994).  (Note that the 90-degree turn radius for a naval 

ship would likely constitute classified data.) 

The topological structure chosen will directly affect the quality of the path found 

through the Q-route. Bekker and Schmid (2006) use a topology that consists of a square 

grid, with each node i  connected to all its nearest neighbor nodes j , including those on 

the diagonal; see Figure 2.  Our model disallows certain turns sharper than an acceptable 

90 degrees by removing backward arcs and by adding long arcs (Figure 3).  

Unfortunately, our model does not eliminate all sharper-than-90-degree turns, and might 

disallow an optimal path that takes no sharp turns but which does move back toward S  at 

some point. Further development will require the implementation of a turn-restricted 

shortest-path model (e.g., Caldwell 1961, Carlyle et al. 2007). 

Long arcs are critical to the model because they tend to be preferred to short arcs 

in an optimal solution. This occurs because long arcs are “cheaper” in that they move 

further across the minefield with the same cost (risk) as shorter arcs. In so doing, they 

encourage optimal paths to avoid counting risk from the same mine on multiple arcs, 

which would lead to an overestimation of risk.  As discussed in Chapter 0, long arcs also 

more accurately approximate lateral range curve and actuation curve geometry, and 

would be important in a future implementation that used such constructs. 
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Figure 2.   Network topology used by Bekker and Schmid (2006). They use a regular, 
square grid of nodes and connect each node i  to each of its nearest 
neighbors j , using a directed arc ( , )i j .  Note that “nearest neighbors” 
includes nodes that are diagonally adjacent. For simplicity, no arcs are 
shown. 

 

 
 

Figure 3.   Network topology used in this thesis (we call this the “long-arc topology”). 
Nodes are laid out in a regular, square grid, with each node i  connected by 
directed arcs ( , )i j  to neighbor nodes j , as shown. For simplicity, no arcs 
are shown. 
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D. MODIFIED MINIMUM RISK PATH 

In the basic minimum-risk routing model defined in Chapter II, an approximate 

minimum-risk path is found by assigning arcs lengths ij ijc r  to each arc ( , )i j A , and 

finding a shortest path from any node s S  to any node t T .  However, we may wish 

to keep the transiting ship’s route reasonably short to reduce the effects of technical 

issues such as mine-position errors, own-ship navigation errors, etc.  (It is also possible 

that a long path would require too much time, and might subject the ship to other risks 

such as missile strikes.)  This can be accomplished effectively by adding a small distance 

penalty to any arc length and then finding a shortest path (see Bekker and Schmid 2006).  

Thus, if an arc’s physical length is denoted ijd , we find a “shortest path” using arc 

lengths 

 ij ij ijc r d   (4) 

where  0   is a user-specified value ( 710  in this thesis).  We end up with the 

following routing model:  

Formulation of Modified Minimum-Risk Routing Model: 

 
( , )

( , )

min
path

path

ij
A S T

i j A

c



A

 (5) 

E. REDUCING “DOUBLE COUNTING” 

We intend to use the minimum-risk routing model that culminates in Equation (5). 

That model is susceptible to the “double counting” of risk as described in Chapter II.B, 

but it may be possible to reduce that using the long arcs also described in that section.  

Further reductions in double counting may be possible by ignoring the risk associated 

with certain mine-arc combinations.  In particular, suppose that mine m  has a CPA to arc 

( , )i j  at the head node j  of the arc, and CPA is within the maximum danger radius; see 

Figure 4.  In this case, ijmr  will not be included in the computation of ijr  
and we call this 
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modified risk penalty calculation as “without head-node penalty.” This modified 

calculation is correct because, if  ( , )i j  appears on a ship’s path, some arc ( , )j k  must 

also appear on that path, and jkr  will include a contribution from mine m .  (This 

assumes that all mines m  lie strictly within the region of the Q-route.) Both techniques, 

“long arcs” and “without head-node penalty,” may reduce double counting, and this issue 

is investigated computationally in Chapter V. 

 

Figure 4.   Modified risk penalty calculation to reduce the effect of double counting. If 
a mine m  has its CPA to arc ( , )i j  at the head node j  (within the 
maximum-danger radius so that, nominally, 0ijmr  ), the model will ignore 

the risk measure from mine m   to arc ( , )i j , i.e., it will use 0ijmr  .  This 

modification is correct because a ship transiting ( , )i j  must use some other 
arc ( , )j k , and jkr will include a contribution from mine m as jkmr .   
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III. REMOVING MINES TO REDUCE RISK  

Depending on assumptions, different algorithms and/or models may apply to 

finding an optimal or good set of mines to clear. For example, the heuristic used by 

Bekker and Schmid (2006) tries to find a smallest set of mines whose clearance creates a 

“sufficiently safe passage.”  We will take “sufficiently safe” to mean zero-risk.  A 

solution from their heuristic will be good if we assume that all the required mines can be 

cleared before a ship must transit the minefield. But, in a naval MCM operation, the 

MCM force may need to halt the mine-clearance operation before the full “optimal” set 

of mines has been cleared. This may happen because a higher-risk situation presents itself: 

for instance, ships in port anticipate a guided-missiles attack, and they must exit the port 

before those missiles arrive.  This scenario leads us to another approach for mine 

clearance. 

As discussed in the Introduction, the naval MCM operational scenario has the 

characteristics of an “optimal priority list problem.”  In lieu of formally modeling this 

problem, we have argued that applying a sequential heuristic to identify a sequence of 

mines to clear—the heuristic will always choose the next-best mine to clear—may be a 

good way to solve this problem. Thus, our algorithm will not only provide a list of mines 

to clear, but also the sequence in which they should be cleared. This additional 

information should be useful for an MCM force. (For simplicity, this thesis must ignore 

the issue of the safety of MCM forces. That is, we assume that a minesweeper can reach 

and clear any mine in any sequence, safely.) Computational tests in Chapter 0 will verify 

whether this reasoning holds. 

Pseudo code follows for the heuristic greedy algorithm that has been implemented.  

The code is self-explanatory, and we add no discussion. 

Algorithm Greedy Mine-clearance Heuristic 

Description: A heuristic greedy algorithm to approximately solve the optimal mine-

clearance problem. 

Input: All data for the minimum risk path transit on ( , )G N A , with mine set M . 
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Output:  A prioritized list of mines whose removal will greedily reduce the risk of a 

minimum-risk path until a zero-risk path is found. 

{ 

[1] List  ; /* Create an empty prioritized list */ 

[2]  
( , )

( , )

min ;
path

path

ij
A S T

i j A

z c




 A
 /* Find min-risk path with original mine set M  */ 

[3] Let *
pathA  denote the optimal path found above; 

[4] 
*( , )

;
path

ij
i j A

z r


    /* Compute “true risk” for optimal path, i.e., ignore arc lengths */ 

[5] while ( 0z  ) { 

[6]   for (each m M  ) { 

[7]    M M m  ; /* Remove m from M */ 

[8]    Recompute ijr  and ijc  with respect to M ; 

[9]    
( , )

( , )

min ;
path

path

m ij
A S T

i j A

z c




 A
 /* Find min-risk path with new mine set M  */ 

[10]    ;M M m   /* Put m back into  M  */  

   } /* end for */    

[11]    * argmin m
m M

m z


 ; /* best single mine to clear next */ 

[12]   *;M M m   

[13]   Add *m  to back of ;List  
 [14]    Recompute ijr  and ijc with respect to new M ; 

[15]    
( , )

( , )

min ;
path

path

ij
A S T

i j A

z c




 A
 /* Find min-risk path with new mine set M  */ 

[16]   Let *
pathA  denote new optimal path found above; 

[17]  
*( , )

;
path

ij
i j A

z r


    /* Compute “true risk” for *
pathA , i.e., ignore arc lengths */ 

  } /* end while */  

[18]  Print (“Clear mines in this order:”, List)}  /* “List” referred to as M* elsewhere */ 

} 
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IV. A PROBABILISTIC OBJECTIVE FUNCTION, AND 
ACTUATION CURVES 

This chapter gives a probabilistic interpretation to the additive risk function for 

mine avoidance described in Chapter II.  It also describes how standard mine-actuation 

data could be used to compute risk measures for individual arcs that would be consistent 

with that probabilistic interpretation. 

This thesis does not attempt to implement the models described in this chapter, 

but we hope that this provides useful information for future research.   

A. A PROBABILISTIC OBJECTIVE FUNCTION 

We return to the basic model for minimizing risk when transiting a minefield, 

ignoring the physical lengths of arcs for simplicity: 

Basic Minimum-Risk Routing Model: 

( , ) ( , )

min
path

path

ij
A S T i j A

r
 


A

 

         (6) 

Written in terms of the risk from individual mines, ijmr , and letting 

 | 0ij ijmM m M r   , Equation (6) becomes 

( , ) ( , )

min
path

path ij

ijm
A S T i j A m M

r
  

 
A

.  (7) 

A reasonable model for the safe transit of the ship through the minefield is one 

that maximizes the probability that the ship experiences no mine actuations that damage 

the ship during its transit. Let ijmp  denote the probability that mine m  actuates and 

damages the ship in question while it transits arc ( , )i j , and let 1ijm ijmq p  .  Assuming 

independence of actuation and damage events leads to the following model: 

( , ) ( , )

max
path

path ij

ijm
A S T i j A m M

q
  

 
A

  (8) 
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Independence is a strong assumption, to be discussed momentarily, but is made more 

plausible if each mine in the optimal solution endangers at most one arc.  The network 

topology and “long-arc” model used here encourage this to happen. 

Now, using a standard transformation (e.g., Ahuja et al. 1993, p. 130), if we let 

lnijm ijmr q  , it is easy to see that the models of Equations (7) and (8) are essentially 

identical.  Thus, our basic model has a straightforward probabilistic interpretation if the 

ijmq  can be computed, and if independence holds.  We discuss one standard method of 

computing the ijmq  in the following section, but take up the issue of independence here. 

If a particular mine implies risk on two separate arcs of a transit, then 

independence could be lost, depending on how risk is interpreted.  To see this, imagine 

that a mine that has a probability of .75 of being operational and .25 of being inert.  Then, 

one close pass by this mine results in a probability of actuation of .75, and ten close 

passes produce the same value. The pass-to-pass actuation events are, in this case, 

completely correlated. If, on the other hand, we assume that the mine is always 

operational, and on each pass the mine receives an independent look at the target with a 

probability of actuation of .75, then the cumulative probability of actuation accumulates 

very quickly with each pass.  

 It is reasonable to assume that actual mines have both reliability and actuation 

probabilities, which could complicate the modeling.  However, if we can allow that each 

mine interacts with only one arc in the optimal solution, we need only assume mine-to-

mine independence along the path, which is more reasonable than is pass-to-pass 

independence for a single mine.  

The restriction that paths move generally forward will encourage mines to interact 

with a single arc, as will the “long-arc topology.”  In particular, (a) the restriction of 

“generally forward” disallows a path that passes close to a mine in one direction, moves 

some distance away, and then returns to pass by the mine in a different direction; and (b) 

the long-arc topology tends to have fewer arcs and thus fewer instances where adjacent 

arcs have risk measures associated with the same mine, which would imply dependence 

along the path. Computational results in Chapter 0 will indicate whether or not we have 
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successfully dealt with this type of dependence, and will thus indicate whether or not our 

basic model is a good candidate for a probabilistic interpretation. 

Mine-to-mine dependence which could cause difficulties in the use of the basic 

model include, for instance, the minefield-wide environmental effects of temperature and 

salinity, or randomness in the blast hardening as actuation signature of the transiting ship.  

Those issues need further study, and are beyond the scope of this thesis. 

B. ESTIMATING PROBABILITIES OF DAMAGE: ACTUATION CURVES   

If a ship transits along a straight path, infinite in both directions, and with CPA 

mx  to mine m, then the probability of mine actuation during the transit has been called 

“the actuation probability” and can be denoted ( )mA x . This function is called the 

actuation curve for the mine/ship pair (Washburn and Kress 2009, p. 165). Actuation 

curves are familiar to mine warfare planners and have been measured or modeled for 

some mine types and ships; see Figure 5.   

   

Figure 5.   Actuation curves. When a ship transits along a straight path, infinite in both 
directions, and with CPA mx  (lateral range) to a mine m, then the 

probability of mine actuation during the transit is ( )mA x .  
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One conservative assumption is that a ship will be damaged by mine m if that 

mine actuates.  Thus, if arc ( , )i j  passes within the maximum danger radius of mine m 

and if that arc is sufficiently long, then it is reasonable to define 

1 ( )ijm ijmq A L  ,  (9) 

where ijmL  denotes the CPA of mine m  to the infinite extension of arc ( , )i j ; see Figure 

6.   

 

Figure 6.   Definition of ijmD  and ijmL . ijmD is the CPA distance from mine m to 

arc ( , )i j , while  ijmL is the CPA distance from mine m to arc ( , )i j extended 

in both directions to edge of Q route.  

Thus, an approximate risk-measure calculation for the basic model, when using 

actuation-curve data is: 

ln(1 ( ))   if     

0    if     

ijm ijm

ijm

ijm

A L D D
r

D D

   


 

Again, the long-arc topology should help to make this risk measure more accurate, 

because a long arc more closely resembles the hypothetical, infinitely long straight path 

than a short arc does.  Typically, we also expect that ijm ijmL D  with long arcs.   
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 It should also be noted that when the actuation probabilities ( )ijmA L are 

small,  ln(1 A(Lijm ))  A(Lijm ).  Thus, minimizing the sum of small actuation 

probabilities approximately maximizes the product of the non-actuation probabilities.  

And, from the standpoint of the transiting ship, we would hope that the actuation 

probabilities in the optimal solution would, in fact, be small. 
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V. COMPUTATIONAL RESULTS  

This chapter starts by introducing a standard test scenario and the three tests to be 

conducted.  We apply the minimum-risk routing model on the test scenario and compare 

results (a) with and without long arcs, and (b) with and without head-node penalties.  

Also, (c) compare the greedy mine-clearance heuristic to the solution of an optimal 

integer-programming model. All tests are carried out on a laptop computer with a 1.79 

GHz AMD Turion processor, 384MB of RAM, and the Microsoft Windows XP 

Professional operating system. Programs are written in Excel 2007 and Visual Basic for 

Applications (VBA). A minimum-risk path is found in a few seconds, and greedy “mine-

clearance list” is found in a few minutes. 

A. TEST SCENARIO 

The test scenario for this thesis models a Navy MCM force performing mine-

avoidance (for example, a lead-through operation) and mine-clearance operations in an 

established Q-route.  There are three tests to be conducted:  

(a) Evaluate the effects of using long arcs to reduce the issue of double counting, 

and to achieve lower-risk paths.  

− We claim that the long-arc structure can give our model more flexibility and 

result in a lower-risk path for the minimum-risk path problem. First, we run the 

modified minimum-risk routing model on the same test scenario with and without 

long arcs, and then compare the two solution values using the “approximate path-

risk measure” and the “true path-risk measure. The approximate path-risk 

measure is the model objective value, while the true path-risk measure is 

computed after the (approximate) minimum-risk path is found, by tracing the arcs 

in the path and the mines that interact with those arcs, and adding each mine’s risk 

contribution to the overall path-risk measure only once.  That contribution is 

computed for the CPA of the mine to the path, rather than the CPAs of the mine to 

each arc in the path. Finally, we check the result statistically to see if long arcs 

can achieve an advantage.  
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(b) Determine if the modified risk-penalty calculation that ignores head-node 

penalties can reduce the issue of double counting, and can lead to lower-risk paths.  

– Since we cannot avoid double counting when using a simple additive model, we 

try to use this modified risk-penalty calculation to reduce the issue. We also run 

the modified minimum-risk routing model on the same test scenario with and 

without head-node penalties, and then compare approximate path-risk measure 

and true path-risk measure, as described above. We check the result statistically to 

see if this adjusted risk measure can reduce the issue of double counting.  

(c) Evaluate the effect of reducing risk for a minimum-risk path by our greedy 

heuristic.  

– We hope that our greedy heuristic will find a prioritized list of mines whose 

sequential clearance will quickly reduce the risk of a minimum-risk path to zero. 

We compare our heuristic solution to an “optimal” solution computed through an 

integer-programming model (see Appendix A). We compare the greedy and 

optimal solutions in terms of (1) the total number of mines *( )m  required to be 

cleared, and (2) the amount of risk reduction when a subset of mines of size m is 

to be cleared, where *m m  . 

Specific input values for the test scenarios follow: 

 Area of AO network: 1000 yards wide (y-axis) by 3000 yards long (x-axis). 

 Grid spacing: 100 yards (11 nodes on y-axis, 31 nodes on x-axis, total nodes 341N  ). 

 Naval mines in the AO network: 30M  with uniformly distributed x-axis coordinates 

and uniformly distributed y-axis coordinates). 

 Mine-damage radius: 100D   yards. 

 Maximum danger radius: 200D  yards ( D D  , where 2  ). 
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 Single mine risk measure: 

, if

1/ , if

0 , if

ijm

ijm ijm ijm

ijm

D D

r D D D D

D D



 
  


    

, where 1  , 2  . 

 Arc “length”: ij ij ijc r d   
, where 710  . 

Mathematical symbols used for the tests follow: 

1z    random approximate risk measure computed without long arc 

 2z   random approximate risk measure computed with long arc 

3z    random true risk measure computed without long arc 

4z   random true risk measure computed with long arc 

5z    random approximate risk measure computed with head-node penalty 

6z   random approximate risk measure computed without head-node penalty 

7z  random true risk measure computed with head-node penalty 

8z  random true risk measure computed without head-node penalty 

1  mean approximate risk measure without long arc  1 1( )E z   

 2  mean approximate risk measure with long arc  2 2( )E z   

3  mean true risk measure without long arc  3 3( )E z   

4  mean true risk measure with long arc  4 4( )E z   

5  mean approximate risk measure with head-node penalty  5 5( )E z   

6  mean approximate risk measure without head-node penalty  6 6( )E z   

7  mean true risk measure with head-node penalty  7 7( )E z   
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8  mean true risk measure without head-node penalty  8 8( )E z   

0H  null hypothesis 

aH  alternative hypothesis 

B. RESULTS FOR TEST 1 (LONG ARCS) 

To evaluate the effects of using long arcs, we first run the modified minimum-risk 

routing model with and without long arcs for the same test scenario, and compare 

resulting approximate risk measures (objective values). Then, we calculate the true risk 

measure for each path, and see if the long-arc structure can actually reduce double 

counting and provide a lower-risk solution. Test results with and without long arcs, for 30 

trials on different minefields, are summarized in Table 1. Figure 7 shows an example test 

result of the approximate minimum-risk path with and without long arcs. Appendix B 

contains the raw solution data for Test 1.  

The test results show with long arcs, both mean approximate risk measure and 

mean true risk measure are smaller (better) than the ones without long 

arcs 2 1 4 3( , )     . To check if the mean of different with and without long arcs is 

significant, we conduct paired t hypothesis test on mean of difference for approximate 

risk measure 0 1 2 1 2( : 0; : 0)aH H        and true risk measure 

0 3 4 3 4( : 0; : 0)aH H       . The result of the hypothesis test shows that with long 

arcs, both mean of difference for approximate risk measure and true risk measure are 

greater than 0 (significant enough to reject 0H ) under a 90% confidence interval. So we 

conclude that using long arcs in the routing structure does give our model more flexibility 

and able to reduce the issue of double counting; furthermore, long arcs can result in 

lower-risk paths.  
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Path-risk 

measure 

Long-arc 

topology 

Mean risk 

measure 
Standard error  

Paired t-test 

result 

(90% CI) 

Without 0.135798 ( 1 ) 
Approximate 

With 0.034454 ( 2 ) 
1 2( )z z  =0.073459 

1 2: 0aH     

p-value=0.0891 

Without 0.100907 ( 3 ) 
True 

With 0.034008 ( 4 ) 
3 4( )z z  =0.046311 

3 4: 0aH     

p-value=0.0796 

Table 1.   Summary for Test 1. The mean objective value is better (smaller) when routing 
structure in the network with long arcs (0.034454) than without (0.135798); and 
mean true risk measures for the found path is also better (smaller) with long arcs 
(0.034008) than without (0.100907). The Paired t hypothesis test shows that both 
data for approximate and true risk measure are significant enough to reject the 
null hypothesis (accept the alternative hypothesis aH ) under a 90% confidence 

interval.  This means that it is likely that a lower-risk solution can be achieved 
using long arcs than without using them. 
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Figure 7.   Examples of the approximate minimum-risk path with and without long arcs. 
All data correspond to the basic scenario described in section V.A.   The 
approximate risk measure of the paths with and without long arcs are 
0.000974035 and 1.007169169 respectively; and true risk measure with and 
without long arcs are 0.000753084 and 1.00094265 respectively. The path 
with long arcs results in a lower-risk solution.  (The fact that the “short-arc 
risk measures” are slightly larger than 1.0, means that the lack of flexibility 
with short arcs forces the best path to pass within the mine-damage radius 
for one mine: recall that the penalty for this occurring is 1.0  .)   

C. RESULTS FOR TEST 2 (IGNORING HEAD-NODE PENALTIES) 

To further investigate the issue of double counting, we test a modified penalty 

calculation, which ignores head-node penalties. We run the modified minimum-risk 

routing model with and without head-node penalties for the same test minefield first, and 

then compare resulting approximate risk measures and true risk measures for each path to 

see if this modified penalty calculation can reduce the issue of double counting and 

provide a better solution. Table 2 summarizes test results, with and without head-node 

penalties, for 30 trials on different minefields. Figure 8 shows an example test result of 

the approximate minimum-risk path with and without head-node penalties. Appendix C 

contains the raw solution data for Test 2.  
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The test results show the mean approximate risk measure without head-node 

penalties is smaller than with head-node penalties 6 5( )  , but the mean true risk 

measure does not get better when using this modified penalty calculation 8 7( )  . We 

also conduct paired t hypothesis test on mean of difference for approximate risk measure  

0 5 6 5 6( : 0; : 0)aH H        and true risk measure 

0 7 8 7 8( : 0; : 0)aH H       . These results show that without head-node penalties, 

the mean of difference for approximate risk measure is greater than 0 (significant enough 

to reject 0H ) under a 90% confidence interval; but for true risk measure, the mean of 

difference is not greater than 0 (not enough evidence to reject 0H ). So we conclude that 

using this modified penalty calculation can not actually reduce the issue of double 

counting, and it will not guarantee to provide a better minimum-risk path solution.  

Path-risk 
measure 

Head-node 
penalties 

Mean risk 
measure 

Standard error of 

Paired t-test 
result 

(90% CI) 

With 0.034454 ( 5 ) 
Approximate 

Without 0.034182 ( 6 ) 
5 6( )z z  =0.000804 

5 6: 0aH     

p-value=0.0372 

With 0.034008 ( 7 ) 
True 

Without 0.034083 ( 8 ) 
7 8( )z z  =0.000204 0 7 8: 0H      

p-value=0.9725 

Table 2.   Summary for test 2. The mean approximate risk measure for the modified penalty 
calculation (without head-node penalty, 0.034182) is better (smaller) than with 
head node penalty (0.034454) as expected, since it ignores the head-penalties. But 
mean true risk measures for the found minimum-risk path, without head-node 
penalty (0.034083) is not better than with (0.034008). The Paired t hypothesis test 
also shows that for approximate measure is significant enough to reject null 
hypothesis (accept alternative hypothesis ( )aH ) under 90% confidence interval,  

but for true risk measure there is not enough evidence to reject null hypothesis 
(accept null hypothesis 0( )H ). That implies this modified penalty calculation 

(without head-node penalties) does not provide a lower-risk solution. 
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Figure 8.   Examples of the approximate minimum-risk path with and without head-
node penalties. All data correspond to the basic scenario described in section 
V.A.   The approximate risk measure of the paths with and without head-
node penalties are 0.000974035 and 0.000904875 respectively; and true risk 
measure with and without head-node penalties are 0.000753084 and 
0.000867963 respectively. The modified penalty calculation (without head-
node penalties) does not result in a lower-risk solution. 

D. RESULTS FOR TEST 3 (MINE REMOVAL) 

To evaluate the greedy heuristic for mine removal, we first we run both the 

greedy heuristic and an optimal integer-programming model to obtain a zero-risk path 

from each. Then, we compare the number of mines, *m , required to be cleared. Also, 

since we expect that the greedy heuristic can find a prioritized list of mines whose 

removal will result in a rapid reduction in the risk of a minimum-risk path, we will clear 

each subset of mines of size *m m  , following the prioritized list, and compare its risk-

reduction curve to the curve achieved by a sequence of optimal subsets of cleared mines. 

The latter curve provides a lower bound on the risk reduction for any prioritized list of 

mine removals. Test results from both models, for five trials on different minefields, are 

summarized in Table 3. Figure 9 shows an example test result of required mines to clear 

for both models to achieve a zero-risk path.  
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The test results show that for both models to achieve a zero risk path, not only the 

number of mines required to clear are the same, but also those solutions are the same set 

of mines. Furthermore, when we follow the prioritized list from greedy heuristic and start 

to clear one mine at a time until zero-risk path achieved, all subsets of removal mines are 

exactly the same as those from the integer-programming model which clears optimal 

subsets. From this, we conclude that when naval mines are “near uniformly distributed” 

in the area of operation, the greedy heuristic solution will be close to (or the same as) the 

optimal solution.  

To contrast an optimal solution with the greedy-heuristic solution when mines are 

not “near uniformly distributed,” we illustrate a scenario with 33 mines, with the mines 

distributed in the pattern shown in Figure 10. In that case, suppose that a commander uses 

both methods to try to find the smallest set of mines to clear, and the minimum number 

found from optimal and greedy solutions are three and five respectively.  MCM forces 

begin removing the three optimal mines, but only have time to clear two (the actual order 

of removal is immaterial) when operations must halt, and a ship must transit the 

minefield.  With the optimal solution, after two mines being cleared, the risk measure of 

the minimum-risk path will be higher than after removing two mines but following the 

prioritized list obtained from greedy heuristic (risk reduction curve as Figure 11). Since 

our heuristic identifies a sequence of mines to clear, always choosing the next best mine 

to clear, this case shows it generates a good sequence that can be interrupted at any point 

but still with reasonable results. 
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Test  Model 

Number of 
mines cleared to 
achieve a zero-
risk path *( )m  

Set of total mines 
to clear *( )M  

Subset of mines to 
clear ( ')M  

Greedy  5 
1 

Optimal 5 

Same set 

* *( )Greedy OptimalM M

Same all subsets 

' '( )Greedy OptimalM M  

Greedy  4 
2 

Optimal 4 

Same set 

* *( )Greedy OptimalM M

Same all subsets 

' '( )Greedy OptimalM M  

Greedy  5 
 3 

Optimal 5 

Same set 

* *( )Greedy OptimalM M

Same all subsets 

' '( )Greedy OptimalM M  

Greedy  5 
4 

Optimal 5 

Same set 

* *( )Greedy OptimalM M

Same all subsets 

' '( )Greedy OptimalM M  

Greedy  4 
5 

Optimal 4 

Same set 

* *( )Greedy OptimalM M

Same all subsets 

' '( )Greedy OptimalM M  

Table 3.   Summary for Test 3. In all cases, both solution methods (greedy heuristic and 
integer programming) clear the same (optimal) set of mines in order to achieve a 
zero-risk path. Furthermore, in all cases, both methods result in the same subsets 
of mines to clear. This means that the greedy heuristic in this test scenario will 
have the same optimal risk-reduction curve as integer-programming model.  
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Figure 9.   Examples in which five mines, in a “nearly uniformly distributed” minefield, 
must be cleared to achieve a zero-risk path. Both optimal and greedy-
heuristic solutions clear the same set of five mines. Furthermore, both 
solutions clear the same subsets of mines, prioritized from one to five. 
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Figure 10.   Examples of optimal and greedy heuristic solutions in an AO network in 
which mines are not “near uniformly distributed.” The greedy heuristic 
needs to clear five mines to achieve a zero-risk path, but optimal solution 
only needs to clear three. 
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Figure 11.   Examples of risk-reduction curves. All data correspond to the scenario 
shown in Figure 10. The greedy heuristic needs to clear five mines to 
achieve a zero-risk path, but the optimal solution only needs to clear three. 
But, suppose that we begin clearing the three “optimal mines,” and only 
have time to clear two before operations must halt, and a ship must transit 
the minefield. (The actual order of clearance is immaterial.) The risk 
measure for the minimum risk path will be the same (0.0005) as before 
clearing any mines, since one mine with penalty   remains, and the 
minimum-risk path does not change.  (That path avoids all three “optimal 
mines” entirely.) If we clear the two mines specified by the greedy heuristic, 
the risk measure drops to 0.0003, however. 
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VI. SUMMARY AND CONCLUSIONS 

This thesis develops a mission-planning tool for a Navy Mine Counter Measure 

(MCM) force to find a minimum-risk route for a surface ship through a mapped minefield 

(“mine avoidance”).  The thesis also develops a heuristic to identify a sequence of mines 

whose clearance leads to a rapid reduction of the risk of a minimum-risk path (“mine 

clearance”). The routing problem is formulated and solved as a shortest-path problem in a 

network. A grid of nodes, representing waypoints, is embedded in a representation of the 

operating area, while arcs are created to link waypoints.  The risk assigned to a path is the 

sum of the risks assigned to the component arcs of the path. And the risk to an arc is a 

function of the distance from the arc to nearby mines. 

The model investigates computationally potential improvements to the risk-

measure approximations in a highly dense minefield scenario. Test results shows that for 

the mine-avoidance problem, “long arcs” can provide lower-risk solutions and allow the 

use of activation curve data.  (“Long arcs” mean that not only are nearest-neighbor 

waypoints connected to each other, but so are those that are several echelons away in the 

grid of nodes.)  On the other hand, removing “head-node penalties” does not produce 

lower-risk solutions. For the mine-clearance problem, if mines are “nearly uniformly 

distributed” in the minefield, the greedy heuristic solution will be close to the optimal 

solution. 

The problem we study in this thesis assumes that a Q-route has been established 

in a particular area, nominally the entrance to a harbor. Countermine patrols have been 

carried out along the Q-route (using manned and/or unmanned vessels), the location of 

each relevant mine has been mapped and its type established. Several assumptions are 

made to simplify the problem in order to develop a practical model: we assume all mine 

positions are known exactly, and all mines have known characteristics (e.g., activation 

method, explosive force). Also we assume all mines have known mine-damage radius, 

and no own-ship navigation errors occur. Furthermore, we assume that the enemy does 

not “re-seed” the minefield during the period of interest.  
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Those assumptions may not be entirely true in reality, but they are reasonable for 

a prototype. An approximate, minimum-risk path can be found in few seconds on a laptop 

computer, and a greedy “mine-clearance list” can be found in a few minutes. This 

prototype should provide the framework for a usable mission-planning tool for ROC 

Navy MCM force. 

A. RECOMMENDATIONS FOR FUTURE RESEARCH 

Additional work is needed to solidify and generalize the probabilistic 

underpinnings of optimization approaches to modeling mine-avoidance and min-

clearance. This thesis does describe (but does not test) a mine-avoidance model with a 

risk-function sub model that has a probabilistic interpretation.  Furthermore, we describe 

how standard lateral range curve data can be used to calculate risk-function values. But 

this modeling requires a number of assumptions and approximations that may not be 

valid in practice, or which do not fit well into the computationally attractive paradigm of 

shortest paths.  Further research is needed. 
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APPENDIX A. FORMULATION FOR INTEGER-
PROGRAMMING MODEL 

Integer-programming model that identifies the set of *m mines whose removal results in 

the least-risk route being minimized. 

Indices and index Sets: 

i N   nodes 

s S N    source nodes 

t T N    sink nodes 

( , )i j A   directed arcs with tail node i  and head node j  

m M   mines  

Data: 

ijd   physical length of arc ( , )i j  

ijmr   risk for arc ( , )i j  contributed by mine m  

   arc length penalty ( 710   in this thesis) 

*m   total number of mines to clear 

Variable: 

z   variable representing the approximate risk measure for the identified path 

ijy   1 if arc ( , )i j  is on the optimal path, 0 otherwise 

ijmv   1 if arc ( , )i j  on the optimal path and mine m is not cleared, 0 otherwise 

mx   1 if mine m  is cleared, 0 otherwise 

Formulation: 

( , ) ( , )

min ijm ijm ij ij
i j A m M i j A

z r v d y
  

     
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s.t.           
( , ) ( , )

0ij ij ji ji
i j A j i A

d y d y i N S T
 

                      

( , )

1ij
i j A

y i S


    

( , )

1ji
j i A

y i T


      

( , ) ,ijm ij mv y x i j A m M      

*
m

m M

x m



 

All variables binary
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APPENDIX B. OUTPUT DATA FOR TEST 1   

 Long arcs with head node penalty Short arcs with head node penalty 

Trial # Approximate Risk True Risk Approximate Risk True Risk 
1 0.000577562 0.000546705 0.000966341 0.000603858 
2 0.001123551 0.000845455 0.004192647 0.003206728 
3 0.000672681 0.000579381 0.001173679 0.000645828 
4 0.000925368 0.000732076 0.001513938 0.000746541 
5 0.001001279 0.000766743 0.001852396 0.000903726 
6 0.000480648 0.000417294 0.000687652 0.000448816 
7 0.000807330 0.000670834 0.007279079 0.000934303 
8 0.000522961 0.000458028 0.000895349 0.000496554 
9 0.001190035 0.000890471 0.001880890 0.000901087 

10 0.000974035 0.000753084 1.007169169 1.000942650 
11 0.000476191 0.000436464 0.000814873 0.000518526 
12 0.000733513 0.000604009 0.001239326 0.000696952 
13 0.000680443 0.000571147 0.001186336 0.000671436 
14 0.001250837 0.000952037 0.002061613 0.001002332 
15 0.001410857 0.000957398 0.008017813 0.001536707 
16 0.000614547 0.000584754 0.001099147 0.000642474 
17 0.000687018 0.000586362 0.001014498 0.000607021 
18 0.000846754 0.000641033 0.001417664 0.000706301 
19 0.000962261 0.000719946 0.001481260 0.000798301 
20 0.000747701 0.000645377 0.001023361 0.000618937 
21 1.001051698 1.000768747 1.003772574 1.002920264 
22 0.001255361 0.000950139 0.002141887 0.001064435 
23 0.000530272 0.000498306 0.000737661 0.000475478 
24 0.001018953 0.000730815 0.001649367 0.000883335 
25 0.000788122 0.000649133 0.001309409 0.000685438 
26 0.000637582 0.000579532 0.001019192 0.000626495 
27 0.006617582 0.000736728 0.007093330 0.000856236 
28 0.000571352 0.000533636 0.000945936 0.000593624 
29 0.000992145 0.000772604 0.007284760 0.000938725 
30 0.003468737 0.000672653 2.001018043 1.000538656 

 



 46

THIS PAGE INTENTIONALLY LEFT BLANK 



 47

APPENDIX C. OUTPUT DATA FOR TEST 2   

 Long arcs with head node penalty Long arcs without head node penalty 

Trial # Approximate Risk True Risk Approximate Risk True Risk 
1 0.000577562 0.000546705 0.000560755 0.000560749 

2 0.001123551 0.000845455 0.000747592 0.001830270 

3 0.000672681 0.000579381 0.000641069 0.000637741 

4 0.000925368 0.000732076 0.000866159 0.000783442 

5 0.001001279 0.000766743 0.000864260 0.000766743 

6 0.000480648 0.000417294 0.000438567 0.000438072 

7 0.000807330 0.000670834 0.000712321 0.000682444 

8 0.000522961 0.000458028 0.000484516 0.000484516 

9 0.001190035 0.000890471 0.000949839 0.000913389 

10 0.000974035 0.000753084 0.000904875 0.000867964 

11 0.000476191 0.000436464 0.000448316 0.000448316 

12 0.000733513 0.000604009 0.000627596 0.000599062 

13 0.000680443 0.000571147 0.000634697 0.000558852 

14 0.001250837 0.000952037 0.001071356 0.000943874 

15 0.001410857 0.000957398 0.001018941 0.001013009 

16 0.000614547 0.000584754 0.000562649 0.000561037 

17 0.000687018 0.000586362 0.000642231 0.000602060 

18 0.000846754 0.000641033 0.000697065 0.000667054 

19 0.000962261 0.000719946 0.000700646 0.001300646 

20 0.000747701 0.000645377 0.000655630 0.000618051 

21 1.001051698 1.000768747 1.000641965 1.000841965 

22 0.001255361 0.000950139 0.001017353 0.000967557 

23 0.000530272 0.000498306 0.000479842 0.000478573 

24 0.001018953 0.000730815 0.000856403 0.000758809 

25 0.000788122 0.000649133 0.000689767 0.000684106 

26 0.000637582 0.000579532 0.000565831 0.000565371 

27 0.006617582 0.000736728 0.002126748 0.000717334 

28 0.000571352 0.000533636 0.000529262 0.000528447 

29 0.000992145 0.000772604 0.000935396 0.000808023 

30 0.003468737 0.000672653 0.003388454 0.000863583 
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