Corrosion Mitigation Strategies - an Introduction

US Army Corrosion Summit
February 5, 2009
Joe Curran
Corrosion Mitigation Strategies - an Introduction

REPORT DATE
05 FEB 2009

REPORT TYPE

DATES COVERED
00-00-2009 to 00-00-2009

TITLE AND SUBTITLE
Corrosion Mitigation Strategies - an Introduction

AUTHOR(S)

PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

NACE International ,1440 South Creek Drive, Houston,TX,77084-4906

SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

ADDITIONAL NOTES
2009 U.S. Army Corrosion Summit, 3-5 Feb, Clearwater Beach, FL

ABSTRACT

SUBJECT TERMS

SECURITY CLASSIFICATION OF:

<table>
<thead>
<tr>
<th>a. REPORT</th>
<th>b. ABSTRACT</th>
<th>c. THIS PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>unclassified</td>
<td>unclassified</td>
<td>unclassified</td>
</tr>
</tbody>
</table>

LIMITATION OF ABSTRACT

Same as Report (SAR)

NUMBER OF PAGES

71

NAME OF RESPONSIBLE PERSON
Where Are We?

Army Corrosion Summit
Clearwater Beach, Florida
Corrosion Mitigation Strategies

- Experience
- Design
- Materials Selection
- Protective Coatings
- Cathodic Protection
- Modification of Environment
Experience

- Similar applications
 - Previous successes
 - Previous failures
- Material performance data
- Selection based on testing
- Corrosion Engineer on the design team
Design

- Materials Selection
- Process Parameters
- Construction Parameters
- Geometry for Drainage
- Dissimilar Metals

- Operating Lifetime
- Maintenance and Inspection
- Crevices
- Corrosion Allowance

Leaders in Corrosion Control Technology
Design – Process Parameters

- Temperature
- Velocity
- Pressure
- Chemistry
Design – Temperature

• Direct and indirect effects
 • Rates of diffusion-solubility of gases
 • Affects the surrounding service environment
• Nominal operating
 • Significant effects if varied from normal
Design – Temperature

• Maximum operating/upset
 • Surface deposit formation (heat zones
 • Affects stable protective films
• Minimum operating
 • Condensable gasses deposited on surfaces
• Downtime
Design – Velocity

• Flow rates
 • Fast/slow/stagnant
 • High rates are severe
 • Impingement by entrained solids
 • Availability of corrosion elements
 • Removal of protective films
 • Cavitation
Design – Velocity

- Flow regime
 - System
 - Bi-directional
 - Treatments
 - Methods
Design – Pressure

• Total hydraulic pressure
 • Affects the types of corrosion products formed
 • Stress corrosion cracking

• Overpressure
 • Pressure of a gas over a liquid-solubility of gases in the liquid

• O
Design – Pressure

• Pressure variations
 • Length-pressure drop
 • Reducers
 • Expanders
 • Elbows
• Power surges
 • Crack protective films, fretting, fatigue
Design – Chemistry

- Used to eliminate candidate materials
- pH: acidic (H+) basic (OH-) neutral
- Ionic concentrations
 - Major species affect the passive film
 - Minor species in localized attack
- Nature of environment
Design – Construction Parameters

- Shop vs field
- Welding
 - Heat affected zone
- Accommodating for additional corrosion control measures
Methods of Corrosion Control—Design

Dissimilar Metals Considerations

• Potential differences
• Area ratio
• Control by:
 – Compatible materials
 – Area ratio control
 – Insulation
 – Coatings
Methods of Corrosion Control–Design

Corrosion Allowance

- Anticipated lifecycle of asset
- Allow for corrosion to occur
 - Add extra material
 - Uniform attack
 - Linear or decreasing rate
Methods of Corrosion Control–Design

Inspection/Maintenance

• Maintenance manuals
• Ease of access
Methods of Corrosion Control—Materials Selection

- Corrosion resistance in environment
- Availability of data
- Mechanical properties
- Cost
- Availability
- Maintainability
- Compatibility
- Life expectancy
- Reliability
- Appearance
Methods of Corrosion Control—Materials Selection

Environment

- Main constituents
- Impurities
- Temperature
- pH
- Degree of aeration
- Velocity or agitation
- Pressure
- Range of each variable
Methods of Corrosion Control–Materials Selection

Test Data

- Specific service environment
- Actual service - identical service
- Actual service - similar environment
- Laboratory tests
- Published data
Methods of Corrosion Control–Materials Selection

Mechanical Properties

• Strength
• Ductility
• Environmental cracking
 • Hydrogen evolution
 • Stress corrosion cracking
 • Corrosion fatigue

Leaders in Corrosion Control Technology
Methods of Corrosion Control–Materials Selection

Cost

- Economic analysis
- Fabrication costs
- Other costs
 - Maintenance
 - Repair
Methods of Corrosion Control–Materials Selection

Cost

- Maintenance costs
- Unscheduled shutdowns
- Safety
- Other costs
 - Environmental damage
 - Product contamination
Methods of Corrosion Control—Materials Selection

Compatibility

- Consider entire system
 - Components can interact
- Galvanic effects
 - Cathodic/anodic ratio
- Metal ion effects
 - Fe/Cu Cu/Al Hg/Al
Methods of Corrosion Control—Materials Selection

Life Expectancy

- Inspection and maintenance guidelines
- Establishing life requirement
- Short life - frequent replacement
Methods of Corrosion Control—Materials Selection

Reliability

• Safety often an issue
 • Accidents, product contamination
 • Corrective corrosion control inappropriate
• Reliability often outweighs cost

Leaders in Corrosion Control Technology
Comparison with Other Methods

• Materials selection important
• Additional methods
 – Coatings
 – Cathodic protection
 – Corrosion inhibitors
 – Combination of methods
• Balance cost and other factors
Methods of Corrosion Control–Materials Selection

Candidate Materials - Metals

- Metallurgy
- Carbon and low-alloy steels
- Stainless steels
- Nickel and nickel-based alloys
- Copper and copper alloys
- Aluminum and aluminum alloys
- Titanium and titanium alloys
Methods of Corrosion Control–Materials Selection

Nonmetals

• Plastics-UV light, heat, solvents
• Composites-environmental attack
• Elastomers-UV, ozone, solvents, oxygen
• Concrete-acids, chlorides, sulfates
• Vitreous Materials-solvents
Methods of Corrosion Control–Protective Coatings

- Corrosion Control
- Waterproofing
- Weather protection
- Biocide
- Fireproofing
- Appearance
- Color coding
- Sanitation/decontamination
- Safety
- Prevent contamination
- Friction reduction
- Wear resistance
- Heat transfer
- Electrical insulation
- Sound deadening

Leaders in Corrosion Control Technology
Methods of Corrosion Control – Protective Coatings

• Organic coatings
 – Barrier
 – Inhibitive pigments
 – Cathodic protection
Methods of Corrosion Control – Protective Coatings

• Chemical resistance
• Low permeability
• Easy to apply
• Adhesion
• Cohesive strength
• Tensile strength
• Flexibility/ elongation

• Impact resistance
• Abrasion resistance
• Temperature resistance
• Cold flow resistance
• Dielectric strength
• Cathodic disbondment resistance
Methods of Corrosion Control–Protective Coatings

Selection

- Type of exposure
- Operating/upset conditions
- Substrate
- Application conditions
- Environmental regulations
- Cost

- Application - operation/shutdown
- Time constraints
- New construction/maintenance
- Shop/field application
- Design/fabrication
Methods of Corrosion Control – Protective Coatings

Design Defects

- Inaccessible areas
- Fasteners
- Gaps
- Angles
- Threaded areas
- Dissimilar metals
Methods of Corrosion Control – Protective Coatings

Fabrication Defects

- Imperfect welds
- Weld splatter
- Skip welds
- Rough welds
- Laminations
- Gouges
- Sharp corners
Coating Failures

What causes the majority of coating failures?
Poor Surface Preparation

- Rust
- Mill scale
- Anchor pattern
- Residues
 - Oil/grease/soil
 - Chemicals
- Ridges/burrs/sharp edges
- Moisture
- Old Coatings
Surface Preparation – Standards

- NACE
- ISO
- SSPC
Methods of Corrosion Control – Protective Coatings

Coating Application

• Manual
 – Brush
 – Roller
 – Palming

• Spray
 – Conventional air
 – Airless
 – Electrostatic
 – Thermal spray
Methods of Corrosion Control

Coating Application

• Production Techniques
 – Hot dipping
 – Fluidized bed
 – Powder spray
Methods of Corrosion Control

Protective Coating - Inspection

• Surface preparation
 – Cleanliness
 – Anchor profile

• During application
 – Verify conditions
 – Application technique
 – Wet film thickness

• Post application
 – Dry film thickness
 – Adhesion
 – Holidays
Methods of Corrosion Control—Protective Coatings

- Wraps and tapes
- Insulation
- Metallic coatings
 - Coating anodic to base metal
 - Coating cathodic to base metal
Methods of Corrosion Control—Protective Coatings

• External Pipeline Coatings
 – Fusion Bonded Epoxy (FBE)
 – Extruded thermoplastic
 – Coal Tar Enamel
 – Tape
 – Concrete (Weight) Coating
Methods of Corrosion Control – Electrochemical Techniques

- Make metal to be protected act as a cathode
- Application of electrical current
- From corroding anode (galvanic)
- From external power source (impressed)
Methods of Corrosion Control – Cathodic Protection–Galvanic

- Anode requirements
 - Potential
 - Long Life
 - Efficiency
- Aluminum
- Magnesium
- Zinc
 - Fresh water vs salt water
Methods of Corrosion Control – Cathodic Protection–Impressed

• External current source
• Ground bed required
 – Anode consumption not required
 – Inert (low consumption rate) anodes
Methods of Corrosion Control – Cathodic Protection–Impressed

• **Caution!** - Positive terminal of rectifier always connected to ground bed

• Anodes
 – Scrap iron
 – Silicon cast iron
 – Graphite
 – Magnetite
 – Lead-silver
 – Platinum
Transformer-Rectifier Schematic

- AC Power Input
- AC Breaker Switch
- Housing
- Rectifying Stacks
- Current Shunt
- Output Voltmeter
- Output Ammeter
- Grounding
- To Structure
- To Anodes
- Step-Down Transformer
- Adjusting Taps On Secondary Winding

Leaders in Corrosion Control Technology
Methods of Corrosion Control – Cathodic Protection–Impressed

• **Caution!** - Positive terminal of rectifier always connected to ground bed

• Power sources
 – Rectifiers
 – Solar cells
 – Generators
 – Wind
 – Thermoelectric
Methods of Corrosion Control – Cathodic Protection–Measurement

• Structure- to-electrolyte potential
 – Reference electrode
• Test coupons
• Potential change
Methods of Corrosion Control – Cathodic Protection–Design

- Regulations
- Anode backfill
- Coatings
- Shielding
- Economics
- Life

Wire & cable
Temperature
Current Environment
Stray currents
Metal
Methods of Corrosion Control – Cathodic Protection–Maintenance

• Galvanic
 – Anode consumption/replacement
 – Wire damage

• Impressed current
 – Power source
 – Ground bed connection
Methods of Corrosion Control – Anodic Protection

Oxidizing Power

Corrosion Rate

Transpassive

Passive

Active

Leaders in Corrosion Control Technology
Methods of Corrosion Control – Modification of Environment

- Augment inherent corrosion resistance
 - Corrosion inhibitors
 - Deaeration
 - pH control
Methods of Corrosion Control – Modification of Environment

Corrosion Inhibitors

• Film Formation
 – Adsorption
 – Bulky precipitates
 – Passive films
Methods of Corrosion Control – Modification of Environment

Corrosion Inhibitors

• Types of Inhibitors
 – Passive (anodic)
 – Cathodic
 – Ohmic
 – Precipitation-inducing
 – Vapor phase
Methods of Corrosion Control – Modification of Environment

Corrosion Inhibitors Passivating (Anodic)

More Positive
(+)

More Negative
(–)

Anode Polarization

Corrosion Current With Inhibitor

Initial Corrosion Current

Log i
Methods of Corrosion Control – Modification of Environment

Corrosion Inhibitors Passivating (Anodic)

• Can cause accelerated local attack if used in insufficient amounts
• Oxidizing
• Non-oxidizing
Methods of Corrosion Control – Modification of Environment

Corrosion Inhibitors Passivating (Cathodic)

More Positive (+) More Negative (-)

Cathodic Polarization

Initial Corrosion Current with Inhibitor

Corrosion Current

Log i

Leaders in Corrosion Control Technology
Methods of Corrosion Control – Modification of Environment

Corrosion Inhibitors Passivating (Cathodic)

- Cathodic poisons
 - Inhibit cathodic reactions
 - Inhibit hydrogen formation/evolution
 - Hydrogen damage

- Cathodic precipitates
 - Increased pH at cathode
Methods of Corrosion Control – Modification of Environment

Corrosion Inhibitors - Ohmic

• Increase resistance
• Resistive film
 – Anodic areas
 – Cathodic areas
 – Entire surface
Methods of Corrosion Control – Modification of Environment

Corrosion Inhibitors - Organic

- Can film entire surface
- Cationic (+)
- Anionic (−)
Corrosion Inhibitors - Precipitation

• Film-forming compounds
• Can film entire surface
• May act as anodic inhibitors
 – With oxygen
 – Local attack if insufficient amount

Methods of Corrosion Control – Modification of Environment

Leaders in Corrosion Control Technology
Methods of Corrosion Control – Modification of Environment

Corrosion Inhibitors - Vapor Phase

- Closed systems
- Volatile solids
- Volatile liquids
- Alkaline films
- Hydrophobic films
- May accelerate attack of some metals
Methods of Corrosion Control – Modification of Environment

Corrosion Inhibitors - Application

- Aqueous liquid systems
- Affected by environment
 - Oxygen
 - Hydrogen ions
 - Temperature
 - Sulfate
 - Metal cations
 - Hydroxyl ions
 - Chloride
 - Bicarbonate

Leaders in Corrosion Control Technology
Methods of Corrosion Control – Modification of Environment

Corrosion Inhibitors - Application

• Nonaqueous liquid systems
 – Fuels
 – Lubricants
 – Edible oils
• Water content
• Acids
Methods of Corrosion Control – Modification of Environment

Corrosion Inhibitors - Application

• Gaseous environments
• Open atmosphere
• Vapor phase in tanks
• Natural gas production
• Packaging containers
Methods of Corrosion Control – Modification of Environment

Corrosion Inhibitors - Application Techniques

- Continuous injection
- Batch treatment
- Squeeze treatment
- Coatings
Methods of Corrosion Control – Modification of Environment

Corrosion Inhibitors - Safety

• Handling
• Disposal

Corrosion Inhibitors - Heat Transfer
Methods of Corrosion Control – Modification of Environment

Water Treatment

- Physical
 - Removal of solids
 - Removal of liquids
 - Removal of gasses

- Chemical
 - Softening
 - pH adjustment
 - Demineralization
 - Desalination
 - Oxygen scavenging
Methods of Corrosion Control –Summary

- Design
- Materials Selection
- Protective Coatings
- Cathodic Protection
- Modification of Environment