Two Approaches to Rehabilitation of Metal Roofing at Wheeler Army Airfield Hawaii

Dave Bailey

U.S. Army Corps of Engineers,
Engineer Research and Development Center
Construction Engineering Research Laboratory
Champaign IL
Two Approaches to Rehabilitation of Metal Roofing at Wheeler Army Airfield Hawaii

1. **REPORT DATE**
 - FEB 2009

2. **REPORT TYPE**
 - 00-00-2009 to 00-00-2009

4. **TITLE AND SUBTITLE**
 - Two Approaches to Rehabilitation of Metal Roofing at Wheeler Army Airfield Hawaii

5a. **CONTRACT NUMBER**

5b. **GRANT NUMBER**

5c. **PROGRAM ELEMENT NUMBER**

5d. **PROJECT NUMBER**

5e. **TASK NUMBER**

5f. **WORK UNIT NUMBER**

6. **AUTHOR(S)**
 - U.S. Army Corps of Engineers, Engineer Research and Development Center, Construction Engineering Research Laboratory, Champaign, IL, 61826-9005

7. **PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)**
 - U.S. Army Corps of Engineers, Engineer Research and Development Center, Construction Engineering Research Laboratory, Champaign, IL, 61826-9005

8. **PERFORMING ORGANIZATION REPORT NUMBER**

9. **SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)**

10. **SPONSOR/MONITOR'S ACRONYM(S)**

11. **SPONSOR/MONITOR'S REPORT NUMBER(S)**

12. **DISTRIBUTION/AVAILABILITY STATEMENT**
 - Approved for public release; distribution unlimited

13. **SUPPLEMENTARY NOTES**
 - 2009 U.S. Army Corrosion Summit, 3-5 Feb, Clearwater Beach, FL

14. **ABSTRACT**

15. **SUBJECT TERMS**

16. **SECURITY CLASSIFICATION OF:**
 - a. REPORt: unclassified
 - b. ABSTRACT: unclassified
 - c. THIS PAGE: unclassified

17. **LIMITATION OF ABSTRACT**
 - Same as Report (SAR)

18. **NUMBER OF PAGES**
 - 28

19a. **NAME OF RESPONSIBLE PERSON**

Standard Form 298 (Rev. 8-98)
Proscribed by ANSI Std Z39-18
Corrosion Problem

• Standing seam metal roofs (SSMR) comprise 80% of DoD new roofing
 – 1980’s roofs reaching end of service life
• Early coatings with performance problems
 – Not adequate
 – Not “cool”
• Corrosion around panel-penetrating fasteners
 – Corrosion
• Improper flashing of roof penetrations
Objective

• To demonstrate and implement rehabilitation technologies to extend service life of existing metal roofs identified for replacement due to corrosion related problems
• Two metal roofs at Wheeler Army Airfield, Hawaii
• Two corrosion mitigation technologies
Approach/Technologies

- Polyurea coating over existing metal roof
- New metal roofing system over existing metal roof
Wheeler Army Airfield
Polyurea Coating Restoration

Building 118 - Barracks

- Corrugated metal panel
- 20,000 SF
- 15 + years old
Polyurea Coating Restoration

Existing Conditions

- Overlay with coating
- Some rusting
- Persistent leaking
Polyurea Coating Restoration

Demonstration Metrics

• Must meet established parameters
• Fifteen year warranty
• Must effectively seal around roof penetrations and seams
• Aesthetically acceptable to customer
Polyurea Coating Restoration

Polyurea Roof Coating

- Solids: 98% by weight
- Tensile (ASTM D-412): 1800 psi
- Elongation (ASTM D-412): 500%
- Permanent Set (ASTM D-412): 10% max.
- Hardness Shore A (ASTM D-2240): 60 ± 3
- Tear Resistance (ASTM D-624, Die C): 250 pli
- Water Vapor Perm. (ASTM E-96, BW): 0.025 perm In.
Polyurea Coating Restoration

Preparation

• Pre-work inspection
 – Only minor, peeling, flaking
 – Some missing seam sealant

• Pressure washing
 – Water\bleach\mildewcide

• Cleaning of gutters, sealing of open joints with polyurethane sealant
Polyurea Coating Restoration Training
Polyurea Coating Restoration

Application
Polyurea Coating Restoration

Finished Appearance
Polyurea Coating Restoration

Lessons Learned

- Parking/personnel access to building must be well coordinated
- Maintain fluid lines at established elev. temps.
- Overspray needs to be minimized
 - Gun tip, backpressure & fluid temp.
 - Applicator standoff distance
 - Application angle
 - wind
Polyurea Coating Restoration

Project Cost Savings

• Estimated Cost for Tear-off and Replacement
 – $420,000
 – 30-year service life

• Rehabilitation using polyurea-hybrid coating
 – $118,000
 – 15-year service life
SSMR Re-cover on Existing Metal System

Building 835 – Bowling Center

• Standing seam metal roof
• 10,000 SF
• 22 years old
SSMR Re-cover on Existing Metal System

Existing Conditions

- Severe paint delamination
- Areas of rusting on panel surfaces
- Poor detailing of roof penetrations
SSMR Re-cover on Existing Metal System

Existing Conditions
SSMR Re-cover on Existing Metal System

Demonstration Metrics

- Sub purlins used to re-cover existing metal roof.
- Must meet CERL’s accepted parameters,
- Must have a minimum 2 mil finish.
- Must meet wind uplift requirements (ASTM E1592)
- Flashing details must provide effective seal around vents, stack and seams.
- Must be aesthetically acceptable to DPW and the garrison’s senior leadership.
SSMR Re-cover on Existing Metal System

Retrofit Subpurlin System

Roof Hugger™
SSMR Re-cover on Existing Metal System

Surface Preparation

• Pressure wash surface
• Apply rust inhibitors
• Remove existing fascia and gutters
SSMR Re-cover on Existing Metal System

Application
SSMR Re-cover on Existing Metal System

Application
SSMR Re-cover on Existing Metal System Application
SSMR Re-cover on Existing Metal System

Application
SSMR Re-cover on Existing Metal System

Application
Lessons Learned

• Re-cover installation (vs. replace) greatly reduces work space requirements and minimizing disruptions
• Mock-up and testing of fascia and gutter prior to initiating work can result in improved detailing
• To minimize “oil canning”, consider reducing panel width to 12” and or use lighter color
Rehabilitation of Metal Roofing

Recommendations

- Continue to survey both roofs to determine service life extension
- Collect exposure samples during the next two years to assess performance
- Based on assessments, develop guide specifications, manuals and standards for use by the DoD