A General Formula for Noncohesive Suspended Sediment Transport

Benoit Camenen† and Magnus Larson‡

†Disaster Prevention Research Institute
Kyoto University
Yoko-oji, Fushimi
Kyoto 612-8235, Japan
benoit@rcde.dpri.kyoto-u.ac.jp

‡Department of Water Resources
Engineering
Box 118
S-221-00 Lund, Sweden

ABSTRACT

A simple and robust suspended load transport formula for noncohesive sediment is presented for application to river, estuarine, and coastal environments with the use of depth-averaged models. The formula is based on an exponential profile for the concentration and assumes a constant velocity over depth to simplify the calculations. These assumptions were validated with a large data set, including data with a steady current, wave and current interaction, and breaking waves. The formula has two parameters: the mean sediment diffusivity over depth and the bottom reference concentration. The sediment diffusivity is estimated assuming a linear combination of mixing because of breaking waves and the energy dissipation in the bottom boundary layer from the mean current, waves, or both. The bottom reference concentration is a function of the Shields parameter. Overall, the formula developed in this study yields the best agreement with the compiled data set compared with a number of existing formulas for estimating the suspended load.

ADDITIONAL INDEX WORDS: Suspended load, concentration, profile, reference concentration, diffusion parameter, current, waves, breaking waves, noncohesive sediment.

INTRODUCTION

Accurate prediction of noncohesive sediment transport rates is an important element in morphological studies for river, estuarine, and coastal environments. Depth-averaged (2DH) models are widely employed nowadays and generally allow for the use of one sediment transport formula only in the entire domain. Such a formula needs to be robust and reliable in a wide range of conditions. In estuarine and coastal environments, the process of sediment transport becomes increasingly complex because of the presence of oscillatory flows and the interaction between steady and oscillatory flows. For example, for longshore sediment transport, the influence of short waves is expressed as sediment stirring, which increases bed shear stress and the vertical mixing coefficient (diffusion) for sediment in suspension (BIJKER, 1968; VAN RIJN, 1993; WATANABE, 1982). The development of practical sediment transport models still has a strong empirical character and relies heavily on physical insights in combination with quantitative data obtained in laboratory and field studies.

The earliest formulas were mainly based on the concept that the sediment transport rate for steady uniform flows can be related to bottom shear stress (EINSTEIN, 1950; ENGELHUND and HANSEN, 1972; MEYER-PETER and MULLER, 1948) and assumed that bed load transport prevailed. However, when the bottom shear stress is large enough, the sediment particles can be lifted, put in suspension, and transported in large quantities by the current. Thus, suspended load is often dominant for fine sediment (median grain size \(d_{50} < 0.5 \) mm) under medium shear stress, under the presence of bed forms, or with wave stirring. The depth-averaged volumetric suspended load transport \(q_{ss} \) is herein defined (see NIELSEN, 1992, p. 201) as the integrated product of the velocity \(u \) and the concentration \(c \) from the edge of the bed load layer \(z = z_R \) to the water surface \(z = h \), averaged in time, yielding:

\[
q_{ss} = \frac{\int_{z_R}^{h} c(z, t)u(z, t) \, dz}{\bar{x}}
\]

where \(h \) is the water depth, \(z \) is a vertical coordinate, and \(\bar{x} \) is the time-averaged value of the variable \(x \).

Assuming that variables \(u \) and \(c \) can be decomposed into two components, i.e., a time-averaged component \(\bar{u} \) and \(\bar{c} \), an oscillating component \(\tilde{u} \) and \(\tilde{c} \), \(u(z, t) = \bar{u}(z) + \tilde{u}(z, t) \) and \(c(z, t) = \bar{c}(z) + \tilde{c}(z, t) \), then Equation (1) becomes:

\[
q_{ss} = \int_{z_R}^{h} \tilde{c}(z)\tilde{u}(z, t) \, dz + \int_{z_R}^{h} \bar{c}(z, t)\bar{u}(z, t) \, dz
\]
1. REPORT DATE
 MAY 2008

2. REPORT TYPE

3. DATES COVERED
 00-00-2008 to 00-00-2008

4. TITLE AND SUBTITLE
 A General Formula for Noncohesive Suspended Sediment Transport

5a. CONTRACT NUMBER
5b. GRANT NUMBER
5c. PROGRAM ELEMENT NUMBER
5d. PROJECT NUMBER
5e. TASK NUMBER
5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
 Disaster Prevention Research Institute, Kyoto University, Yoko-oji, Fushimi, Kyoto 612-8235, Japan,

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
 Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:
 a. REPORT unclassified
 b. ABSTRACT unclassified
 c. THIS PAGE unclassified

17. LIMITATION OF ABSTRACT
 Same as Report (SAR)

18. NUMBER OF PAGES
 13

19a. NAME OF RESPONSIBLE PERSON

Standard Form 298 (Rev. 8-98)
Prepared by ANSI Z39-18
suspended load. Steady conditions are generally assumed to simplify the problem, so time-averaged values \(\bar{u}(z) \) and \(\bar{c}(z) \) are used. Therefore, an accurate estimate of the total suspended load requires correct predictions of the mean current velocity and the concentration profile. Even if the unsteady part of the suspended sediment transport is significant for some cases (phase lag effects over ripples; see Van der Werf and Ribberink, 2004), in this study, we will focus on the steady part because most of the experimental data measured this quantity only.

The overall objective of this study was to develop a reliable and general formula for predicting suspended load transport under a wide range of river, estuarine, and coastal conditions. Such a formula is proposed for 2DH models in which only an average value of the velocity over the water depth is provided. This paper is organized as follows: The proposed formula is first developed, then the experimental data used for this study are described, together with a validation of the hypothesis underlying the proposed formula. The study and calibration of the two main parameters, which are the reference concentration \(c_0 \) and mean diffusivity \(\epsilon \), are presented. Finally, conclusions concerning the derived net suspended load transport formula and its predictive capability are discussed.

DEVELOPMENT OF A SUSPENDED LOAD FORMULA

On the basis of experimental results by Dohmen-Janssen and Hanes (2002), Figure 1 presents a typical concentration profile in which sheet flow and suspended load coexist. They observed a drop in concentration at the top of the sheet flow layer and defined the edge of the sheet flow (bed load) layer in which the concentration \(c = c_h = 0.08 \) (the maximum volume concentration is defined as \(c_0 = 0.65 \)). It appears that close to the bed load, both power law and an exponential profile underestimate the concentration. On the other hand, these two theoretical profiles yield very similar results for the suspended concentration. Indeed, compared with the experimental data compiled (see Experimental Data section), both exponential or power law profiles could be fitted to the experimental data with a small relative error.

Because the use of a power law profile for the sediment concentration requires a reference level \((z = z_h) \), which induces an additional parameter and thus even more uncertainty (because \(z_h \) is often arbitrarily chosen), an exponential law profile was preferred \((z_h = 0) \) could then be assumed, assuming a constant value for the sediment diffusivity over depth \(\epsilon \). By solving the mass conservation equation for the steady equilibrium of a particle under gravity and hydrodynamic forcing, the following profile for the sediment concentration is obtained,

\[
c(z) = c_R \exp \left(\frac{W_s}{\epsilon} z \right)
\]

where \(c_R \) is the bottom reference concentration, \(W_s \) is the settling velocity, and the parameter \(W_s/\epsilon \) determines the suspension conditions. In determining \(q_{ss} \), following the simplified approach by Madsen, Tajima, and Ebersole (2003), the vertical variation in \(u \) can be neglected (also discussed further in the Validation of the Hypothesis section). The suspended sediment load is thus found to be

\[
q_{ss} = U_c c_R \epsilon \left(1 - \exp \left(-\frac{W_s h}{\epsilon} \right) \right) = U_c F(c_R, \epsilon)
\]

where \(U_c = \bar{u} \) is the depth-averaged velocity and the function \(F \) determines the quantity of sediment available. In solving the integral, the ratio \(W_s h / \epsilon \) is often assumed to be large, implying that the exponential term \(\exp(-W_s h / \epsilon) \approx 0 \) or \(F \approx c_R \epsilon / W_s \).

In the case of wave and current interaction, Equation (4) can be modified to take into account possible sediment transport in the direction of the waves (see Figure 2),

\[
q_{an} = (U_{cw,ons} - U_{cw,off}) F(c_R, \epsilon) \quad \text{(5)}
\]

where the subscript “w” indicates the direction of the wave and the subscript “n” indicates the perpendicular direction; \(U_{cw} \) is the root mean square value of the velocity \([u(t) = u_{\text{rms}}(t) + U_c \cos \varphi] \) over the half period \(T_{w,j} \), for which the subscript \(j \) should be replaced by either onshore (for \(u(t) \geq 0 \)) or offshore (for \(u(t) < 0 \)); and \(\varphi \) is the angle between the wave and current direction (see Figure 2). For a steady current alone, Equation (5) reduces to Equation (4), and for sinusoidal waves alone, Equation (5) yields zero transport.

Thus, the two main parameters to estimate for calculation of the suspended load are the bottom reference concentration and mean sediment diffusivity over the water depth. Here, various data sets were used for model development with steady and oscillatory flows, including wave breaking. The aim of this paper was to develop and validate a formula that
gives accurate results when both waves and current are present in the nearshore zone. Thus, the effects of a steady current, waves, and breaking waves on sediment diffusivity and the reference concentration were investigated carefully to include all the main hydrodynamic parameters and provide robust predictive formulas.

EXPERIMENT DATA

Selection of the Data

To investigate mean diffusivity over depth, bed reference concentration, and resulting suspended sediment transport in steady conditions, as well as for waves and current combined, a wide range of existing data sets were compiled and analyzed. Depending on the experiments, velocities were measured with impeller flow meters, pitot tubes, acoustic Doppler probes (ADP), laser Doppler velocity meters, or electromagnetic current meters. Time-averaged concentrations were measured with suction (pump) samplers and, more recently, with optical probes (optical backscatter sensors), conductivity probes, and ADP. It is obvious that the different instruments and the precision of the instruments affect the quality and uncertainties of the results. It is difficult, however, and not the purpose here, to discuss in detail the uncertainties induced by the measurements in the different experiments. As pointed out previously, the limit between the bed load and the suspended load is difficult to establish. For most of the cases, concentrations were not measured close enough to the bed, or the instruments were not able to measure very high concentrations. The suspended load was estimated by the reference level proposed by Van Rijn (1993), i.e., \(z_R = \max(H_r/2, k_{sg}) \), where \(H_r \) is the ripple height and \(k_{sg} = 2d_{50} \) is the grain-related roughness height. An approximate power law regression was used for the experimental data when information was not available close to the bed.

For a steady current, Table 1 summarizes the data sets and lists the type of flow motion and sediment properties. Similarly, for waves and current combined, Table 2 summarizes the data sets, presenting the type of experiment, wave and current conditions, and sediment properties.

For all the experiments presented in Table 2, sand with a relative density \(s = \rho_d/\rho_w = 2.65 \) was used (\(\rho_d \) and \(\rho_w \) are the sediment and water densities, respectively). Most of these data sets were obtained from the data compilation provided by the SEDMOC European Union research project (Van Rijn et al., 2001). For wave–current interaction, only the cases in which the mean current (preferably the entire velocity profile) was estimated could be used to calculate the total suspended load. The number of measurement points over the water depth are also shown in Table 2, for both the sediment concentration and the time-averaged velocity, to indicate the spatial resolution of the data. In the cross-shore direction, the

Table 1. Data summary for experiments on suspended sediment transport under steady flow.

<table>
<thead>
<tr>
<th>Authors</th>
<th>Location</th>
<th>Flow Type</th>
<th>No. of Profiles</th>
<th>(d_{50}) (mm)</th>
<th>(b) (m)</th>
<th>Fr</th>
<th>(u_\star) (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anderson (1942)</td>
<td>Enoree River, USA (1940–41)</td>
<td>River data</td>
<td>23</td>
<td>0.7</td>
<td>15</td>
<td>0.15–0.25</td>
<td>0.02–0.07</td>
</tr>
<tr>
<td>Barton and Lin (1955)</td>
<td>Fort Collins, CO, USA</td>
<td>Tilting flume</td>
<td>26</td>
<td>0.18</td>
<td>1.2</td>
<td>0.2–0.9</td>
<td>0.02–0.08</td>
</tr>
<tr>
<td>Laursen (1958)</td>
<td>Iowa, USA (1961–63)</td>
<td>Tilting flume</td>
<td>12</td>
<td>0.4, 1</td>
<td>0.9</td>
<td>0.25–0.60</td>
<td>0.02–0.09</td>
</tr>
<tr>
<td>Scott & Stephens (1966)</td>
<td>Mississippi River, USA (1961–63)</td>
<td>River</td>
<td>23</td>
<td>0.4</td>
<td>500</td>
<td>0.11–0.16</td>
<td>0.05–0.13</td>
</tr>
<tr>
<td>Culberton, Scott, and Bennet (1972)</td>
<td>Rio Grande River, USA (1965–66)</td>
<td>River</td>
<td>22</td>
<td>0.18–0.33</td>
<td>20</td>
<td>0.2–0.6</td>
<td>0.05–0.15</td>
</tr>
<tr>
<td>Voogt, Van Rijn, and Van den Berg (1991)</td>
<td>Krammer beach, The Nederlands (April 1987)</td>
<td>Tidal channel</td>
<td>60</td>
<td>0.22–0.35</td>
<td>300</td>
<td>0.1–0.5</td>
<td>0.03–0.15</td>
</tr>
<tr>
<td>Peet (1999; see Van Rijn et al., 2001)</td>
<td>Wallingford, UK</td>
<td>Duct experiments</td>
<td>24</td>
<td>0.08–0.20</td>
<td>0.6</td>
<td>0.2–0.4</td>
<td>0.01–0.14</td>
</tr>
</tbody>
</table>

\(d_{50} \) = median grain size; \(b \) = width of the river/flume; Fr = Froude number; \(u_\star \) = current-related shear velocity.
Table 2. Data summary for experiments on suspended sediment transport under oscillatory flow

<table>
<thead>
<tr>
<th>Authors</th>
<th>Location</th>
<th>Flow Type</th>
<th>No. of Profiles†</th>
<th>No. of Measurements‡</th>
<th>d_{50} (mm)</th>
<th>h (m)</th>
<th>U_c (m/s)</th>
<th>U_w (m/s)§</th>
<th>T_w (s)§</th>
<th>H_r (m)</th>
<th>L_r (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bosman (1982), Steetzel (1985)</td>
<td>DHL, The Netherlands</td>
<td>Wave flume</td>
<td>70 (50, 16)</td>
<td>6–15/3–4</td>
<td>0.10</td>
<td>0.1–0.65</td>
<td>0.10–0.32</td>
<td>0.13–0.30</td>
<td>1.4–2.0</td>
<td>0.01–0.03</td>
<td>0.08</td>
</tr>
<tr>
<td>Nielsen (1984)</td>
<td>Australian beaches</td>
<td>Field</td>
<td>65 (39, 43)</td>
<td>5–7/—</td>
<td>0.11–0.62</td>
<td>0.8–1.8</td>
<td>0–0.54</td>
<td>0.28–0.80</td>
<td>5.3–14.4</td>
<td>0–0.20**</td>
<td>0–1.5**</td>
</tr>
<tr>
<td>Steetzel (1984), Van der Velden (1986)</td>
<td>DHL, The Netherlands</td>
<td>Small water tunnel</td>
<td>259 (259, 0)</td>
<td>5–11/—</td>
<td>0.10–0.36</td>
<td>0.4</td>
<td>0</td>
<td>0.07–0.65</td>
<td>1.0–7.0</td>
<td>0.005–0.1</td>
<td>0.011–0.55</td>
</tr>
<tr>
<td>Dette and Uliczka (1986)</td>
<td>Hannover, Germany</td>
<td>Large wave flume</td>
<td>11 (0, 0)</td>
<td>8–10/—</td>
<td>0.33</td>
<td>0.9–2.6</td>
<td>0</td>
<td>0.95–1.65</td>
<td>6.0</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Kroon (1991)</td>
<td>Egmond beach (1989–90), The Netherlands</td>
<td>Field</td>
<td>31 (11, 31)</td>
<td>5–8/3–5</td>
<td>0.30–0.47</td>
<td>0.4–1.5</td>
<td>−0.55–0.97</td>
<td>0.20–0.91</td>
<td>3.1–12.6</td>
<td>0.005–0.05</td>
<td>0.15–0.75</td>
</tr>
<tr>
<td>Havinga (1992)</td>
<td>Vinje Basin, Delft, The Netherlands</td>
<td>Basin</td>
<td>28 (28, 28)</td>
<td>7–10/10</td>
<td>0.10</td>
<td>0.40–0.43</td>
<td>0.10–0.32</td>
<td>0–0.80</td>
<td>2.1–2.3</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Ribberink and Al Salem (1994)</td>
<td>DHL, Delft, The Netherlands</td>
<td>Large water tunnel</td>
<td>71 (71, 0)</td>
<td>5–12/—</td>
<td>0.21</td>
<td>0.8</td>
<td>0</td>
<td>0.2–1.5</td>
<td>2.0–12.0</td>
<td>0–0.35**</td>
<td>0–3.0**</td>
</tr>
<tr>
<td>Chung Grasmeijer, and Van Rijn (2000)</td>
<td>Deltaflume, DHL, Delft, The Netherlands</td>
<td>Large wave flume</td>
<td>19 (19, 14)</td>
<td>5–8/5</td>
<td>0.16–0.33</td>
<td>3.5–4.5</td>
<td>−0.04—0.02</td>
<td>0.56–0.67</td>
<td>6.6–7.1</td>
<td>0.03–0.05</td>
<td>0.25–0.75</td>
</tr>
<tr>
<td>Voulgaris and Collins (2000)</td>
<td>Bournemouth beach, Ca-sewell Bay, Rhosili Bay, UK</td>
<td>Field</td>
<td>12 (12, 0)</td>
<td>—/—</td>
<td>0.21–0.33</td>
<td>0.4–2.1</td>
<td>0.01–0.10</td>
<td>0.16–0.40</td>
<td>3.2–9.1</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>SEDMOC data set (Van Rijn et al., 2001) - Vessem-Eastern Scheldt estuary (1983–84), The Nether-lands</td>
<td>Field</td>
<td>70 (70, 70)</td>
<td>6–10/1</td>
<td>0.15</td>
<td>0.7–4.0</td>
<td>0.05–0.65</td>
<td>0.02–0.40</td>
<td>2.0–3.2</td>
<td>0.05</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>SEDMOC data set (Van Rijn et al., 2001) - Grote Speurwerk (45m), DUT, Delft, The Netherlands</td>
<td>Wave flume</td>
<td>62 (62, 19)</td>
<td>6–10/2–3</td>
<td>0.15–0.29</td>
<td>0.49–0.55</td>
<td>0.16–0.35</td>
<td>0.14–0.60</td>
<td>2.4–2.8</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>SEDMOC data set (Van Rijn et al., 2001) - Grote Speurwerk (35m), DUT, Delft, The Netherlands</td>
<td>Wave flume</td>
<td>125 (81, 58)</td>
<td>4–10/9–12</td>
<td>0.10–0.22</td>
<td>0.29–0.60</td>
<td>0.07–0.45</td>
<td>0.17–0.55</td>
<td>1.2–2.7</td>
<td>0.002–0.029</td>
<td>0.006–0.20</td>
<td></td>
</tr>
<tr>
<td>SEDMOC data set (Van Rijn et al., 2001) - Deltaflume, DHL, Delft, The Netherlands</td>
<td>Large wave flume</td>
<td>57 (30, 0)</td>
<td>3–13/—</td>
<td>0.19–0.24</td>
<td>0.7–3.4</td>
<td>−0.18–0.0</td>
<td>0.67–1.46</td>
<td>2.6–5.0</td>
<td>0–0.04**</td>
<td>0–1.0**</td>
<td></td>
</tr>
<tr>
<td>Bayram et al. (2001)</td>
<td>Sandy-Duck (1996–98), South Carolina, USA</td>
<td>Field</td>
<td>66 (25, 66)</td>
<td>6–9/3</td>
<td>0.18–0.20</td>
<td>1.2–8.6</td>
<td>0.04–1.32</td>
<td>0.71–2.13</td>
<td>8.0–12.8</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Wang, Eversole, and Smith (2002)</td>
<td>LSTF, Vicksburg, Missis-sippi, USA</td>
<td>Large basin</td>
<td>14 (0, 14)</td>
<td>5–14/6–9</td>
<td>0.22</td>
<td>0.10–0.40</td>
<td>0–0.18</td>
<td>0.27–0.45</td>
<td>1.5–3.0</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

*— Not measured or not available, DHL = Delft Hydraulic Laboratory, DUT = Delft University of Technology, LSTF = Large Scale Sediment Transport Facility.
† Values in the parentheses are no. of nonbreaking cases and no. of cases in which the suspended load can be estimated.
‡ For random waves, the orbital wave velocity U_w is computed from the root mean square wave height and wave period $T_w = T_p$.
** Flat bed (bed form height H_r and length L_r are assumed equal to zero.)
velocity was averaged from the bottom to the trough of the waves. Thus, it corresponds to the mean undertow.

An important question in nearshore sediment transport is to know whether bed load or suspended load prevails. For the lower regime and upper regime (sheet flow with nonbreaking waves), bed load has been observed to prevail over suspended load (DOHME-JANSSSEN and HANES, 2002). For medium regimes, when the bottom is covered by bed forms and when waves are breaking, it is often assumed that suspended load prevails (NIELSEN, 1992, pp. 201–206). With the CAMENEN and the fitted value (exponential profile) to the observed data for Table 3.

Table 3. Prediction (Pred.) of suspended load transport from Equation (4) and the fitted values (exponential profile) to the observed data for \(c_p \) and \(\epsilon \) (\(f(q_{ss}) = \log \left(\frac{q_{ss,\text{pred}}}{q_{ss,\text{mean}}} \right) \)).

<table>
<thead>
<tr>
<th>Conditions</th>
<th>No.</th>
<th>(\times 2)</th>
<th>(\times 5)</th>
<th>Mean</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steady current</td>
<td>187</td>
<td>99</td>
<td>100</td>
<td>0.03</td>
<td>0.09</td>
</tr>
<tr>
<td>Waves and current</td>
<td>322</td>
<td>66</td>
<td>91</td>
<td>−0.16</td>
<td>0.38</td>
</tr>
<tr>
<td>Breaking waves</td>
<td>151</td>
<td>72</td>
<td>93</td>
<td>−0.18</td>
<td>0.32</td>
</tr>
</tbody>
</table>

Validation of the Hypothesis

To validate the two main hypotheses underlying the proposed formula, a comparison was made between the observed suspended load and Equation (4) with the fitted values to the observed data on \(c_p \) and \(\epsilon \) for each experimental case (least squares method used to fit the exponential profile). For the data with current only (see Table 1), very good agreement was observed for all data sets. In Table 3, the main results of the comparison are provided—i.e., the percentage of correctly predicted within a factor of 2 or 5 (Pred. \(\times 2 \) and Pred. \(\times 5 \), respectively) and the mean value and standard deviation of the function \(f(q_{ss}) = \log \left(\frac{q_{ss,\text{pred}}}{q_{ss,\text{mean}}} \right) \), where \(q_{ss,\text{pred}} \) and \(q_{ss,\text{mean}} \) are the predicted and measured suspended load values, respectively. The table shows that 99% of the data are well predicted within a factor of 2. This means that the assumptions of an exponential concentration profile and a constant velocity over depth are sufficiently accurate to estimate the suspended load in the steady current case.

With waves and current combined, the results are not as good as for the steady current data. Only 66% and 91% of the data (72% and 93% in the case of breaking waves) are predicted within a factor of 2 and 5, respectively (see Table 3). Indeed, the suspended load is quite often underestimated. Large uncertainties occurred when estimating the suspended load, both for the actual data and the fitted data. Knowing the concentration profile and use of the mean current velocity instead of the velocity profile does not significantly affect the suspended load. It induces an overestimation of less than 5% for a logarithmic profile (longshore current) and an underestimation of 10% to an overestimation of 20% in more complex flows (undertow).

SEDIMENT DIFFUSIVITY

The sediment diffusivity \(\epsilon \) is a fundamental parameter for estimating the concentration profile. It is a function of bottom roughness and associated shear stress, agitation (mainly from waves), and settling velocity.

A General Equation for the Sediment Diffusivity

In a study on infilling of navigation channels, KRAUS and LARSON (2001) employed an exponential concentration profile to estimate the suspended load transport and assumed, following BATTJES (1983), that vertical mixing is proportional to the energy dissipation of wave breaking. Then, to employ a general formula for sediment diffusivity, it seems natural to assume that

\[
\epsilon = \left(\frac{D}{\rho} \right)^{1/3} \frac{h}{c}
\]

where \(D \) is the total effective dissipation and

\[
D = k_b^2 D_b + k_c^2 D_c + k_s^2 D_s
\]

in which the energy dissipation because of wave breaking \((D_b)\) and bottom friction from current \((D_c)\) and waves \((D_s)\) are simply added and \(k_b\), \(k_c\), and \(k_s\) are coefficients. The coefficient \(k_b\) mainly corresponds to an efficiency, whereas \(k_c\) and \(k_s\) are related to the Schmidt number (ratio between the vertical eddy diffusivity of the particle \(\epsilon\) and the vertical eddy viscosity \(\nu\)). Typically, \(D_b > D_c > D_s\) and in many cases, only the largest dissipation needs to be considered. Still, the formula for \(\epsilon\) is simplified because mixing should vary through the water column.

The energy dissipation in the bottom boundary layer because of a current can be written

\[
D_c = \tau_c \cdot u_{bc}
\]

where \(\tau_c\) and \(u_{bc}\) are bottom shear stress and shear velocity from the current only, respectively. This expression deviates from the standard way of defining dissipation by a current, which should be expressed as the product between the shear stress \(\tau_c\) and the mean velocity \(U_c\). However, the use of \(u_{bc}\) instead of \(U_c\) yields the same result as the classical mixing length approach (Equation [9]).
 sediment settling out of the surrounding water before the water loses its earlier composition by mixing. ROSE and THORNE (2001) added that the estimation of \(\sigma_c \) might be affected by the settling velocity, which varies because of turbulence (a smaller particle settles faster in turbulence; see MURRAY, 1970; NIELSEN, 1993). Finally, NIELSEN and TEAKLE (2004) proposed a Fickian diffusivity model showing the effect of the size of the particle on the Schmidt number. They also argued that the Schmidt number might be less than unity for fine particles over a flat bed because the mixing length could be smaller for these particles than for the fluid (Muste and Patel, 1997). To maintain a consistent approach between the analysis of different data sets, the von Kármán constant was assumed to equal the clear water value (0.4, even though some evidence suggests that this parameter is reduced by the presence of suspended sediment (on the basis of the assumption that the Schmidt number equals 1). These variations are thus included in the Schmidt number.

On the basis of measurements by COLEMAN (1981), VAN RIJN (1984b) suggested an expression for \(\sigma_c \) that is a function of the ratio between the settling velocity and the current-related shear velocity. With the exponential law to derive the sediment diffusivity, it is also possible to estimate the coefficient \(\sigma_c \) from the experimental concentration profiles. The experimental results are presented in Figure 3 together with the Van Rijn and Rose and Thorne formulas and the new equation proposed in this paper (Equation (12)), as well as additional data from ROSE and THORNE (2001) and VAN RIJN (1984b).

To put forward a relationship that gives physically meaningful results for all cases, it should be considered that the Van Rijn equation is correct only for \(W_s/u_{sc} < 1 \). For \(W_s/u_{sc} \gg 1 \), the Schmidt number must be equal to unity because suspension is negligible (sediments do not affect the flow). Thus, a new expression for \(\sigma_c \) is proposed in Equation (12) (see also Figure 3),

\[
\sigma_c = \begin{cases}
 \sigma_c^* \frac{A_{c1} + A_{c2} \sin^2 \left(\frac{\pi W_s}{2 u_{sc}} \right)}{A_{c1} + (A_{c2} - 1) \sin^2 \left(\frac{\pi u_{sc}}{2 W_s} \right)} & \text{if } \frac{W_s}{u_{sc}} \leq 1 \\
 1 & \text{if } \frac{W_s}{u_{sc}} > 1
\end{cases}
\]

where \(A_{c1} = 0.40 \) and \(A_{c2} = 3.5 \).

Overall, the new equation yields good predictions compared with the data (see Table 4). Nevertheless, data from the PEET (1999, see Van Rijn et al., 2001) experiments are, in general, overestimated, perhaps because measurements were only carried out close to the bed (\(\varepsilon < h/5 \)).

![Figure 3](image-url)
Effects of Nonbreaking Waves

Following the results obtained for the steady current, the relationship in Equation (13) for k_w is obtained (the factor $2/\pi$ results from time averaging assuming a sinusoidal wave),

$$k_w = \frac{\sigma_w}{3\pi} \kappa$$ \hspace{1cm} (13)

where σ_w is the wave-related Schmidt number.

With the data sets presented in Table 2, the total shear velocity was estimated assuming that the shear velocities due to the current and waves can be added linearly. For most of the cases (wave flumes), the shear stress from the current is much smaller than the shear stress from the waves and, thus, can be neglected. The total roughness height k_w was estimated by the method of Soulsby (1997), adding the grain-related, form drag, and sediment transport components $k_w = 2d_{so}$, k_{so}, and k_w, respectively. The roughness height k_w was obtained with the Kim (2004) formula, which is a function of the bed form characteristics, whereas k_w was obtained with the Wilson (1966, 1989) formula.

Following the method used for sediment diffusivity because of a current (see previous section), the correction factor (Schmidt number) was assumed to be a function of the ratio W_s/μ_w. The general tendency of the data appears similar to the steady current case (see Figures 3 and 4),

$$\sigma_w = \begin{cases} A_{w1} + A_{w2}\sin^2\left(\frac{\pi W_s}{2 \mu_{sw}}\right) & \text{if } \frac{W_s}{\mu_{sw}} \leq 1 \\ 1 + (A_{w1} + A_{w2} - 1)\sin^2\left(\frac{\pi \mu_{sw}}{2 W_s}\right) & \text{if } \frac{W_s}{\mu_{sw}} > 1 \end{cases}$$ \hspace{1cm} (14)

where $A_{w1} = 0.15$ and $A_{w2} = 1.5$.

Table 5. Prediction (Pred.) of the diffusivity for waves only $\ln [\epsilon_{w,\text{pred}}/\epsilon_{w,\text{meas}}]$, Authors & \quad x2 & \quad x5 & \quad Mean & \quad SD \\
Dally and Dean (1984) & 14 & 51 & 0.67 & 0.32 \\
Van Rijn (1993) & 38 & 76 & 0.29 & 0.52 \\
Nielsen (1992) & 56 & 90 & -0.31 & 0.57 \\
Equations (10) and (14) & 69 & 100 & 0.09 & 0.28 \\

The wave-induced Schmidt number (see Equation [14]) is often much smaller than that found for a steady current. However, because the friction velocity from waves is generally much larger than that from a current, the mixing attributable to waves is also much larger. In Figure 4, there seems to be a relationship between σ_w and the roughness ratio k_w/d_{so}. Because this roughness ratio (and the total shear stress) is calculated from empirical formulas, and not estimated directly from the experimental data (contrary to the data with current only), the relationship between ϵ_w and W_s/μ_{sw} exhibits larger scatter.

The results obtained by Equations (10) and (14) are better than those for the other studied formulas (see Table 5). Thus, 69% of the data is correctly predicted within a factor of 2 and 100% within a factor of 5. The percentages of values obtained within a factor of 2 or 5, as well as the mean value and the standard deviation of the function $f(\epsilon_w) = \ln [\epsilon_{w,\text{pred}}/\epsilon_{w,\text{meas}}]$, are presented in Table 5.

It appears that of the existing formula, the one proposed by Dally and Dean (1984), who assumed that the Rouse (1938) expression could be used, presents the least scatter, even if the formula in general overestimates sediment diffusivity. This expression might be correct, but the Schmidt number appears to be much smaller than 1. The more complex formulas introduced by Nielsen (1992, pp. 215–217) or Van Rijn (1993) yield better results (especially for the Nielsen formula), but also larger scatter. The Nielsen formula tends, however, to largely underestimate the results when $U_s/W_s > 18$.

Wave–Current Interaction

Simply adding the sediment diffusivity from the current and waves (Equations [9], [10], [12], and [14]) leads to overestimation compared with the data. This overestimation could be because the Schmidt number should be the same for the current as for the waves. A more physical description of the wave and current interaction should be based on a unique Schmidt number, calculated as an empirical weighted value between σ_c and σ_{sw},

$$\sigma_{sw} = X_0 \sigma_c + (1 - X_0) \sigma_{sw}$$ \hspace{1cm} (15)

where $X_0 = \theta_c/(\theta_c + \theta_w)$, in which $\theta_c = \tau_c/(s - 1) gd_{so}$, and $\theta_w = \tau_w/(s - 1) gd_{so}$, which are the current-related and wave-related Shields parameters, respectively.

Table 6 shows the results obtained with the studied formulas. Because larger values are observed in cases with wave and current interaction, the formulas in which the sediment diffusivity was overestimated for waves only provide better...
results (see formulas by DALLY and DEAN, 1984; VAN RIJN, 1993). The NIELSEN (1992) formula yields poor results because $U_2/W_2 > 18$ for most of the cases. The proposed formula to calculate ϵ_m by Equation (15) yields the best results, although it often overestimates when large bed roughness is computed.

Effects of Breaking Waves

In the case of breaking waves, the energy dissipation was calculated with the energy dissipation of a bore analogy (SVENDSEN, 1984) with the coefficient $A = 2 \tanh(5\xi_c)$ proposed by STIVE (1984) to take into account breaker-type effects ($\xi_c = m/VH_{1/2}$ is the Irribaren parameter defined for deep water, m is the mean slope of the beach, and $H_{1/2}$ are the deep-water wave height and length, respectively). In the random waves case, the coefficient $\alpha_c = \exp[-(\gamma_c h/H_{1/2})^2]$ should be added to take into account the percentage of breaking waves (see LARSON, 1995), where γ_c is the breaker depth index and $H_{1/2}$ is the root mean square wave height, neglecting breaking. As a first approximation, the efficiency coefficient was found to be constant: $h_c = 0.010$. Even if some dispersion exists for the compiled data, Equation (6) yields results as good as for the nonbreaking cases: 72% (96%) of the data are well predicted within a factor of 2 (5), and the mean and standard deviation of the function $f(\epsilon_c) = \log[\epsilon_{c,pred}/\epsilon_{c,mean}]$ is 0.03 and 0.32, respectively.

REFERENCE CONCENTRATION

EINSTEIN (1950) proposed that the reference concentration could be a function of the bed load transport. Following MADSEN, TAJIMA, and EBERSOLE (2003), the reference volumetric bed concentration can be estimated from the volumetric bed load, assuming $q_c = c_R U$, where U is the velocity of the bed load layer. The bed load can be written following the results of CAMENEN and LARSON (2005), namely $q_c \approx \theta^{3/2} \exp[-4.50/\theta]$, where θ is the Shields parameter (the subscript “cr” indicates its critical value for the inception of motion; see CAMENEN and LARSON, 2005; SOULSBY, 1997). MADSEN, TAJIMA, and EBERSOLE (2003) proposed, as a first approximation, that the speed of the bed load layer is proportional to the shear velocity, $U_2 \propto \theta^{3/2}$. The bed reference concentration could thus be written as Equation (16),

$$c_R = A_{cr} \theta_r^{3/2} \exp\left(-\frac{\theta_{cr}}{\theta_r}\right)$$

Equation (16) with θ_{cr} as a function of the dimensionless grain size d_a, but to a varying power depending on the presence or absence of bed forms. For the compiled data (see Table 1), the dimensionless grain size d_a varies from 1 to 18. Improved results were obtained by calibrating A_{cr} as a function of the dimensionless grain size, as in Equation (17).

$$A_{cr} = 1.5 \times 10^{-3} \exp(-0.2 d_a)$$

The percentages for values obtained within a factor of 2 or 5, as well as the mean value and the standard deviation of the ratio $f(c_R) = \log[c_{R,pred}/c_{R,mean}]$, are presented in Table 7. It appears that the MADSEN, TAJIMA, and EBERSOLE (2003) formula presents correct results compared with the experimental values of c_R assuming an exponential profile. However, this formula seems not to be sensitive enough to the Shields parameter: it gives more or less a constant value for each data set. The NIELSEN (1986, 1992, pp. 201–233) formula, although fitted with data on waves only, presents correct results for the laboratory experiments (data from BARTON and LIN, 1955; LAURSEN, 1958; PEET, 1999 [see Van Rijn et al., 2001]). It tends, however, to overestimate the results for the field experiments, even if bed form influence on the Shields parameter were not taken into account because information was not available.

In Figure 5, the predicted reference concentration c_R from Equations (16) and (17) is plotted against the estimated reference concentration assuming an exponential profile. Even if the results are in agreement overall, it seems that sensitivity to the Shields parameter should be larger. The reference concentration is generally overestimated for low shear stresses. The prediction of the reference concentration is significantly improved compared with the MADSEN, TAJIMA, and EBERSOLE (2003) formula: nearly 40% of the data are predicted within a factor of 2 and 85% within a factor of 5. The mean value of $f(c_R)$ is closer to zero, and its standard
deviation is reduced compared with the previous formulas. However, some dispersion appears for the data sets of Peet (1999, see Van Rijn et al., 2001) and Voogt et al. (1991), which produces the negative value for the mean of f_{cR}.

Effect of Nonbreaking Waves

For the waves only case, according to the results of Menen and Larson (2005) for bed load transport, the mean shear stress θ_w is used for the transport-dependent term $\theta_k = \theta_{w,m}$, whereas the maximum wave shear stress θ_w is used for the critical shear stress ($\theta_k = \theta_{w,m}$). The mean Shields parameter attributable to the waves is defined as $\theta_{w,m} = \frac{1}{2}f_{cw,m}w/(s-1)gd_{s0}\int_0^t u^2(t)^2 dt$, whereas the maximum Shields parameter is defined as $\theta_w = \frac{1}{2}f_{cw}U^2/(s-1)gd_{s0}$, where f_{cw} is the wave-related friction coefficient and $\theta_{w,m} = 0.5\theta_w$ in the case of a sinusoidal wave.

For the data with waves prevailing ($|U_c| < 0.05$ m/s; see Table 2), a comparison was made between the different formulas studied and the data (see Table 8 and Figure 6). Equation (16) with Equation (17) for current only still presents correct results, although the dispersion is larger. The effect of grain size seems not to be as significant as for the results with waves only. Similar results are obtained with Equation (16) in which $A_{SR} = 5 \times 10^{-4}$. However, the range of values on d_s was larger for the data set with current only (d_s from 1.0 to 18). In the case of current only, $d_s < 5$ for 40% of the data, whereas 95% of the data was below this value for waves only. This result could explain the difference in the results for the current, and especially the difference observed with the use of Equation (16) and $A_{SR} = 5 \times 10^{-4}$ (overestimation for the current data set and underestimation for the wave data set).

Another reason for the large scatter comes from the uncertainties in the bed form characteristics (measured or estimated) and in the total shear stress calculation. A_{SR} is observed to be a function of the ripple height, H, or, more specifically, of the roughness height ratio k/d_{50} (see Figure 6). Finally, the Madsen, Tajima, and Ebersole (2003) formula (as well as Equation (16) with $A_{SR} = 5 \times 10^{-4}$) again shows reasonable results because it is not as sensitive to d_s and θ_k.

In Figure 6, the roughness height ratio is emphasized and shows that the calculation of the total shear stress induces large uncertainties (assuming that the reference concentration c_R should not be a function of the ripple height or the roughness ratio, but only of the total shear stress). It appears that the more overestimated/underestimated the reference concentration is, the higher/smaller the roughness ratio.

Wave–Current Interaction

For the wave–current interaction, the intuitive Shields parameters to be used in Equation (16) are $\theta_k = \theta_{w,m}$ and $\theta_k = \theta_{w,m}$. To simplify the calculations, the mean and maximum Shields parameters from the wave–current interaction can be obtained simply through addition: $i.e., \theta_{w,m} = (\theta^2 + \theta^2_m + 2\theta_m\theta_0 \cos \varphi)^{1/2}$ and $\theta_m = (\theta^2 + \theta^2_m + 2\theta_0 \cos \varphi)^{1/2}$, respectively, where φ is the angle between the wave and current directions.

Table 8. Prediction (Pred.) of the reference concentration with the waves-only data set [$|U_c| < 0.05$ m/s, $f_{cR} = \log(c_{R,\text{pred}}/c_{R,\text{meas}})$].

<table>
<thead>
<tr>
<th>Authors</th>
<th>Pres. (%)</th>
<th>f_{cR}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nielsen (1986, 1992)</td>
<td>26</td>
<td>0.34</td>
</tr>
<tr>
<td>0.05 m/s, 66</td>
<td>60</td>
<td>1.04</td>
</tr>
<tr>
<td>Madsen, Tajima, and Ebersole</td>
<td>20</td>
<td>0.76</td>
</tr>
<tr>
<td>(2003)</td>
<td>45</td>
<td>0.57</td>
</tr>
<tr>
<td>Equations (16) and (17)</td>
<td>31</td>
<td>-0.27</td>
</tr>
<tr>
<td>(16) with $A_{SR} = 5 \times 10^{-4}$</td>
<td>66</td>
<td>0.63</td>
</tr>
<tr>
<td>$A_{SR} = 5 \times 10^{-4}$</td>
<td>31</td>
<td>-0.26</td>
</tr>
<tr>
<td>$A_{SR} = 5 \times 10^{-4}$</td>
<td>67</td>
<td>0.61</td>
</tr>
</tbody>
</table>

Figure 5. Predicted reference concentration c_R with Equations (16) and (17) for the estimated reference concentration assuming an exponential profile. For a color version of this figure, see page 682.

Figure 6. Reference concentration c_R estimated from the data compiled (with waves only, $|U_c| < 0.05$ m/s) vs. c_R, calculated with Equations (16) and (17) (roughness ratio emphasized). For a color version of this figure, see page 682.
Table 9. Prediction (Pred.) of the reference concentration from the studied data set with wave–current interaction [parentheses hold the results for breaking waves only. \(f(\text{c}_\text{R}) = \log(\text{cR,meas}/\text{cR,exp}) \).

<table>
<thead>
<tr>
<th>Authors</th>
<th>Pred. (%) ×2</th>
<th>Pred. (%) ×5</th>
<th>Mean</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nielsen (1986, 1992)</td>
<td>42 (30)</td>
<td>68 (60)</td>
<td>−0.25 (0.30)</td>
<td>0.73 (0.90)</td>
</tr>
<tr>
<td>Madsen, Tajima, and</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ebersole (2003)</td>
<td>02 (08)</td>
<td>10 (37)</td>
<td>1.11 (0.90)</td>
<td>0.43 (0.50)</td>
</tr>
<tr>
<td>Equations (16) and (17)</td>
<td>52 (62)</td>
<td>82 (90)</td>
<td>0.17 (0.01)</td>
<td>0.53 (0.43)</td>
</tr>
<tr>
<td>Equations (16) with</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A_w = 5 × 10^{-4}</td>
<td>57 (59)</td>
<td>85 (88)</td>
<td>0.07 (−0.04)</td>
<td>0.50 (0.45)</td>
</tr>
</tbody>
</table>

The percentages for values obtained within a factor of 2 or 5, as well as the mean value and the standard deviation of the ratio \(f(\text{c}_\text{R}) = \log(\text{cR,meas}/\text{cR,exp}) \), for the wave–current interaction are presented in Table 9 for the investigated formulas and Equation (16). The Nielsen formula presents better results compared with the waves only case, but it is still very scattered (because it is a function of the ripple characteristics). On the other hand, the Madsen, Tajima, and Ebersole (2003) formula does not have so much scatter, but it generally overestimates, as does the present formula with \(\theta_r = \theta_{m,\text{m}} \). However, the new formula still presents the best results among those studied. It appears that the computation of the mean wave and current Shields parameter \(\theta_{m,\text{m}} \) significantly influences the results. Compared with the waves only cases, the formula yields better results but generally overestimates. The use of Equation (16) with \(A_w = 5 \times 10^{-4} \) produces surprisingly similar estimates.

Effect of Breaking Waves

As a first approach, it can be assumed that wave breaking does not affect the reference concentration, but only the sediment diffusivity. Indeed, as shown by Nielsen (1992, p. 219), the turbulence induced by the breakers generally occurs in the upper part of the water column; it should not influence the bottom concentration significantly. The reference concentration could, however, be enhanced by the breakers in the case of plunging waves, in which the generated turbulent jet might penetrate to the bottom.

The data sets presented in Table 2 involve many experimental cases in which breaking waves occurred. Table 9 presents the prediction results depending on the chosen formula. Even if the results are scattered, Equations (16) and (17) present the best results among the formulas studied, with 62% of the data correctly predicted within a factor of 2 and 90% within a factor of 5. No clear effect from the type of breaker could be observed from the collected data.

SUSPENDED LOAD

The use of Equation (4) together with the expressions for sediment diffusivity (Equation [6]) and the reference concentration (Equation [16]) allows for prediction of the suspended load for a steady current, waves and current combined, and breaking waves.

Table 10. Prediction (Pred.) of suspended load transport in the steady current case \[f(q_{ss}) = \log(q_{ss,\text{pred}}/q_{ss,\text{meas}}) \].

<table>
<thead>
<tr>
<th>Authors</th>
<th>Pred. (%) ×2</th>
<th>Pred. (%) ×5</th>
<th>Mean</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bijker (1968)</td>
<td>24</td>
<td>45</td>
<td>0.60</td>
<td>1.04</td>
</tr>
<tr>
<td>Engelund and Hansen (1972)</td>
<td>31</td>
<td>55</td>
<td>0.65</td>
<td>0.85</td>
</tr>
<tr>
<td>Bailard (1981)</td>
<td>33</td>
<td>72</td>
<td>0.32</td>
<td>0.69</td>
</tr>
<tr>
<td>Van Rijn (1984b)</td>
<td>30</td>
<td>69</td>
<td>−0.27</td>
<td>0.98</td>
</tr>
<tr>
<td>This work with equation (16)</td>
<td>37</td>
<td>79</td>
<td>−0.10</td>
<td>0.57</td>
</tr>
</tbody>
</table>

Comparison with Data for Current Only

A comparison between the predicted and observed suspended sediment load is presented in Table 10 and Figure 7. In general, the proposed formula (Equation [4]) shows correct behavior. The obtained results, however, appear to be highly dependent on the estimate of the reference concentration when a large dispersion is observed. Indeed, the equation proposed for \(c_R \) for a steady current only (i.e., Equations [1] and [17]) produces much better results than the use of a constant value for \(A_{m,\text{w}} (= 5 \times 10^{-4}) \). An increase in accuracy of nearly 10% and a decrease in the standard deviation by 10% can be observed.

In Figure 7, similar behavior as that of the reference concentration predictions is observed: a general overestimation for the Anderson (1942), Peet (1999, see Van Rijn et al., 2001), and Scott and Stephens (1966) data sets and a general underestimation for the Barton and Lin (1955) and Laursen (1958) data. A comparison with other semiempirical formulas found in the literature showed that the proposed relationship significantly improves the results when Equation (16) is used for the reference concentration.
Table 11. Prediction (Pred.) of suspended load transport in the interaction between current and waves (parentheses show the results for breaking waves only, \(f(q_{ss}) = \log(q_{ss,pred}/q_{ss,meas}) \)).

<table>
<thead>
<tr>
<th>Authors</th>
<th>Pred. (%)</th>
<th>(f(q_{ss}))</th>
<th>(\times2)</th>
<th>(\times5)</th>
<th>Mean</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bijker (1968)</td>
<td>10 (23)</td>
<td>40 (59)</td>
<td>0.83 (0.43)</td>
<td>0.60 (0.70)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bailard (1981)</td>
<td>19 (30)</td>
<td>58 (74)</td>
<td>0.65 (0.47)</td>
<td>0.52 (0.51)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Van Rijn (1993)</td>
<td>30 (23)</td>
<td>70 (62)</td>
<td>-0.22 (-0.03)</td>
<td>0.74 (0.69)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equations (4), (6),</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>44 (42)</td>
<td>77 (76)</td>
</tr>
<tr>
<td>and (16)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.23 (-0.05)</td>
<td>0.61 (0.60)</td>
</tr>
</tbody>
</table>

Comparison with Data for Waves and Current Combined

A comparison between the predicted and observed suspended sediment load for the wave–current interaction is presented in Table 11 and Figure 8. It appears that the proposed formula (Equation [4]) presents overall good results. Again, the results are highly dependent on the estimation of the reference concentration and, thus, as shown in the Reference Concentration section, on the estimation of the roughness height and total shear stress. Moreover, plunging breaking waves can induce larger values on the reference concentration, as discussed in the Effect of Breaking Waves section. Because the prediction of sediment diffusivity is generally less scattered, if an overestimation/underestimation is observed for the prediction of the reference concentration (Grote Speurwerk (35m), Vessem, BAYRAM et al. [2001]/KROON [1991] data sets), the same observation can be made for the resulting suspended load.

The percentages for values obtained within a factor of 2 and 5, as well as the mean value and the standard deviation of the ratio \(f(q_{ss}) = \log(q_{ss,pred}/q_{ss,exp}) \), are presented in Table 11 for nonbreaking and breaking waves (results in parentheses are for breaking waves). For the wave–current interaction without breaking waves, the VAN RIJN (1993) formula yields the best, though underestimated, results. The large number of parameters and their relative complexity might explain the

Figure 8. Comparison between observed and predicted values of the suspended sediment load in the wave–current interaction case according to Equation (4). For a color version of this figure, see page 682.
observed scatter because it is more sensitive to any given parameter. The result obtained with the Van Rijn (1993) formula is poorer when waves are breaking. On the other hand, it appears that the Bailard (1982) formula presents the best results among the studied formulas for breaking waves. This formula was calibrated to estimate the suspended load in the surf zone, thus yielding good predictions under breaking waves. The Bailard (1982) formula also produces less dispersion. Indeed, this formula is not sensitive to shear stress (only an average friction coefficient is introduced), and it is simple enough to reduce the dispersion of the results. However, no improvement of the results could be obtained because the formula is basically only a function of the current and wave velocities at the bottom. Calculation of the friction coefficient also appeared to affect the results of the Bailard (1982) formula. In the same way as the Bijker (1968) formula, the Bailard (1982) formula generally tends to overestimate the prediction.

Equation (4) yields the best results for both nonbreaking and breaking cases. The result appears, however, to overestimate for the case of nonbreaking waves and to underestimate slightly for the case of breaking waves (see the Kroon [1991] data set in Figure 8). Improvements in the results could be obtained with better predictions of the total shear stress and the reference concentration, as shown in the Effects of Nonbreaking Waves section.

CONCLUSION

In this paper, we presented a semi-empirical formula to estimate the suspended load resulting from a mean current and waves. Comparison between formula predictions and measured suspended load from a large data set demonstrated that the formula overall produces satisfactory predictions of the transport rate for a wide range of hydrodynamic and sediment conditions. Assuming an exponential profile for the sediment concentration and a constant value over depth for the time-averaged current velocity, the resulting sediment transport rate can be estimated from a simple equation (see Equation (4)). The two main parameters are mean sediment diffusivity over depth and the bottom reference concentration.

A relationship for sediment diffusivity is proposed assuming a linear combination of mixing by breaking waves and energy dissipation in the bottom boundary layer from a mean current, waves, or both (see Equations [6] and [7]). In the boundary layer, dissipation from the current/waves was expressed as the product between a force (bottom shear stress) and a velocity (shear velocity) so that it is consistent with the classical mixing length approach. Formulas to predict the Schmidt number \(\sigma \) were developed for a mean current and waves separately. For mixing by breaking waves, an efficiency coefficient was introduced, and its value was determined through calibration with experimental data.

Following the Madsen, Tajima, and Ebersole (2003) approach, the reference concentration was found to be proportional to the mean Shields parameter, including the effect of the critical Shields parameter introduced by Camenen and Larson (2005). The results displayed considerable scatter, mainly because of uncertainties in the prediction of the total Shields parameter, especially when bed forms were present. Also, as Van Rijn (1993) suggested, the dimensionless grain size \(d_s \) was taken into account in the calculation of the reference concentration. It significantly improves the results for cases with current only or with waves only.

The resulting formula for the suspended load is robust and effective, and it gives the best results among the formulas studied in most cases, although some dispersion still exists. Furthermore, because it is a physically based formula, an improvement of the process knowledge (e.g., for the estimation of the total shear stress) could easily be taken into account in the formula and thus improve the results. When the wave-related suspended load prevails (phase lag effects over a rippled bed), Equation (5) can be modified to take into account these effects by adding a coefficient \(\alpha_{\text{sw}} \) that will decrease the characteristic onshore velocity and increase the characteristic offshore velocity.

ACKNOWLEDGMENT

This work was conducted under the Inlet Modeling System Work Unit of the Coastal Inlets Research Program, U.S. Army Corps of Engineers. This work was partly sponsored by the Japanese Society for the Promotion of Science.

LITERATURE CITED

Dette, H. and Uliczka, K., 1986. Velocity and sediment concentra-
Suspended Sediment Transport Formula

627