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ABSTRACT

The emerging theory of compressed sensing (CS) provides a univer-
sal signal detection approach for sparse signals at sub-Nyquist sam-
pling rates. A small number of random projection measurements
from the received analog signal would suffice to provide salient in-
formation for signal detection. However, the compressive measure-
ments are not efficient at gathering signal energy. In this paper, a
set of detectors called subspace compressive detectors are proposed
where a more efficient detection scheme can be constructed by ex-
ploiting the sparsity model of the underlying signal. Furthermore,
we show that the signal sparsity model can be approximately es-
timated using reconstruction algorithms with very limited random
measurements on the training signals. Based on the estimated signal
sparsity model, an effective subspace random measurement matrix
can be designed for unknown signal detection, which significantly
reduces the necessary number of measurements. The performance
of the subspace compressive detectors is analyzed. Simulation re-
sults show the effectiveness of the proposed subspace compressive
detectors.

Index Terms— Subspace, compressed sensing, detection

1. INTRODUCTION

Compressed sensing provides a new framework to jointly measure
and compress a sparse signal for sensors that need less sampling
resources than traditional approaches. A signal x € R”" is K sparse
on some basis ¥ = @1’%2’ . ,QN} if x can be represented by a
linear combination of K vectors from ¥ with K < N. Given the
sparse signal x, the theory of compressed sensing shows that x can
be recovered from M random measurements with high probability
when M = CKlog N <« N, where C' > 1 is the oversampling
factor [1], [2]. The measurements are given by y = ®x, where ®
isa M x N ii.d. random projection matrix with each entry taken
from ani.i.d. random distribution. Note that for illustrative purposes,
we represent the signal and the projection waveform in digital form.
However, it should be clear that only the projection results y are to
be measured and digitalized.

In addition to signal reconstruction, the CS framework can also
provide a universal measurement approach for signal detection and

tPrepared through collaborative participation in the Communications
and Networks Consortium sponsored by the U. S. Army Research Laboratory
under the Collaborative Technology Alliance Program, Cooperative Agree-
ment DAAD19-1-2-0011. The U.S. Government is authorized to reproduce
and distribute reprints for Government purposes notwithstanding any copy-
right notation thereon. This work was supported in part by the National Sci-
ence Foundation under the Grant ECCS-0725422.

1-4244-1484-9/08/$25.00 ©2008 IEEE

3873

classification [3], [4] with a reduced set of measurements. A small
number of random measurements suffice to provide sufficient signal
statistics for the detection problem. The Matching Pursuit algorithm
is proposed in [3] to detect relevant signal components from com-
pressive measurements. Given the compressive measurements, the
compressive detector is proposed in [4] for signal detection and esti-
mation without reconstructing the signal.

The i.i.d. random measurement scheme for compressive detec-
tion provides universality for signals with different structure. How-
ever, since the compressive measurements are not tailored to the
underlying signals, the detector is not efficient at gathering signal
energy and thus the performance is inferior to traditional detectors
when M < N. In this paper we show that the performance of
detection based on compressive measurements can be significantly
improved by exploiting the underlying signal structure, leading to
the requirement of far fewer measurements. A subspace compres-
sive measurement matrix can be constructed based on the estimated
signal subspace model. The analog projection waveforms generated
through the use of this matrix are more efficient at gathering signal
energy, in turn, leading to improved detection performance.

The subspace compressive detector is constructed based on the
theory of compressive sensing, which also draws on elements of the
mixed-signal architecture introduced in [5], [6]. It is different from
detection based on classes of liner transforms [7] in that the number
of measurements is flexible with more measurements leading to bet-
ter detection performance. The subspace compressive detector also
differs from traditional subspace detector [8] in that no Nyquist sam-
pling of the received signal is required. The analog input signal is
projected onto analog projection waveforms and only the small set
of projected results are sampled and digitalized. It can be shown that
far fewer samples are required for the same detection performance.
Compared with compressive detectors in [4], the subspace compres-
sive detector achieves the same detection performance with fewer
measurements (larger compression ratio). Although the subspace
compressive detector does not provide universality for signal detec-
tion w.r.t all signals in the R™ space, it does provides universality
for signal detection w.r.t all signals in a specific subspace.

The sparse signal structure can be estimated with high confi-
dence with relatively small additional cost. It has been shown that
the signal sparsity model can be estimated from limited i.i.d. ran-
dom measurements of the training signals [3],[9]. Furthermore, the
detection performance is robust to the estimation error of the signal
model. The Basis Pursuit Denoising algorithm [10] is introduced in
this paper to estimate the signal structure for its robustness to noise.
The estimated signal model is then used to construct a subspace mea-
surement matrix for subsequent signal detection. The setting for the
detection problem follows the typical CS setting where only the ba-
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sis W is available.

2. DETECTION OF KNOWN SPARSE SIGNAL

Here we assume an explicit subspace linear model for the sparse
signal x. The K vectors of W construct a N X K matrix H =
@m@ny . ..,ynk],whereni e{1,2,...,N}fori=1,..., K.
The signal x is represented as x = H#, where 0 is a K X 1 vector
with all non-zero entries. Py = H(HTH) 'HT is the projection
matrix for the subspace in which x lies. In the following, we discuss
whether the detection performance can be improved based upon a
priori knowledge of the signal sparsity model x = Hf.

2.1. Traditional Detector

Assume the signal x € R™ is known and let n. ~ N(0,0%Ix) be
i.i.d. Gaussian noise. The detection problem is to distinguish two
hypothesis Ho and H1:

Ho : y=n,
Hi @ y=Xx+n. (D)

It is well known that the optimal detector is the matched filter [11].
A sufficient statistic is given by: t = (y, x). The performance of the
matched filter is given by:

o2

Po(a) = Q[Q‘l(a) - "T"] @

where Q(z) 2 (27r)7% [ e=**/2qz and P, is the probability of
detection. Here, « is set such that the probability of false alarm is
Pra = a. The detection performance is unchanged even the explicit
signal model x = H is known.

2.2. Compressive Detector

The detection of transient signals that are wideband and nonstation-
ary requires sampling at the Nyquist rate. The sampling rate can
be reduced within the CS framework as follows. Given an M x N
i.i.d. random measurement matrix ¢ with M < N, where the en-
tries of @ are drawn from an i.i.d. random distribution, the detection
problem with compressive measurements for a known signal x is to
distinguish between two hypothesis Ho and H:

Ho S’ = <I>n,

Hi : y=2P(x+n). 3)
The sufficient statistic is given by: ¢ = §7 (®®T)~'®x. The per-
formance of the compressive detector is:

xTPax
2

; “

g

R@:QP1M)

where
Py = o7 (907) '®.
The detection performance can be approximated as [4]:

Po(a) Q[Ql(a) - VAN ’f"] o

Since M /N < 1, the compressive detector reduces the number of
measurements at the cost of increased miss probability. Tt is also
clear that the detection performance of the compressive detector can
not be improved upon using a priori knowledge of the signal sparsity
model.
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2.3. Subspace Compressive Detector

The measurement scheme of the compressive detection in Sec. 2.2
does not exploit the inherent structure of the sparse signal. In the
following, a subspace compressive detector is proposed where the
measurement matrix ¢ can be tailored to the signal structure so
that fewer measurements and better detection performance can be
achieved. Later we show that the signal structure can be estimated
using reconstruction algorithms.

If H and 6 are known, the proposed subspace measurement ma-
trix is given by:

d=GH"H) 'H, (6)

where G is an M x K i.i.d. random matrix with M < K. The
detection problem is to distinguish between two hypothesis Ho and
Ha:

Ho : y=on,
Hi : y¥=®(x+n). (7)
It is easy to show that the sufficient statistic is given by:
t=y"(@®d") 'ox =3 [GH"H)'G"]'Gs. (8
The detector performance is given by:

xTPgx

Py(e) =Q [Q‘l(a) - ; )

where

Furthermore, we have:

x7dT(®3T) ' dx

"GTIGH"H) 'GT]'Ge.

When M = K, G is invertible with probability 1, which leads
to: xTPgx = THTHY = xTx. Compared with (2), there is
no performance loss if M = K. Note that GGT ~ KIyrww,
GTG ~ MlIgyk. If Uisan orthogonal basis, it is easy to show
that: x"Pgx ~ (M/K)xTx. Then, with M < K, the detector
performance can be approximated as:

Q%M—VMM’i?} (10)

T
x Pgx =

PD(Q) %Q

The approximation of Pp(c) by (10) is also true when 1);s in W are
only approximately orthogonal to each other. Compared with (5),
the proposed detector provides better detection performance with the
same number of measurements. Note that only M < K measure-
ments are required. Much like the compressive detector provides a
universal detection scheme for signals in the N-dimensional space,
the subspace compressive detector exploiting the linear signal model
provides a universal detection scheme for all signals in the same sub-
space. The introduction of the random matrix makes the detector
robust to magnitude variations over 6.

3. DETECTION WITH UNKNOWN PARAMETERS

Very often at the time of detection, the signal is unknown or the sig-
nal has unknown parameters. In the following, it is assumed that the
signal sparsity model € is unknown but H is available. The develop-
ment of a general likelihood ratio test (GLRT) detector with a signal
linear model that samples the received signal at the Nyquist rate can
be found in [11]. In the following, a detector that uses subspace
compressive measurements is discussed.



3.1. Compressive GLRT Detector

For a compressive detector with i.i.d. random measurements, we
usually assume that M > K, or the detection performance is not
acceptable. In this case, the unknown parameters ¢ in the signal
sparsity model can be estimated. With the same hypothesis testing
problem as in (3) and with the a priori information of H, it can be
shown that the compressive GLRT detector for the unknown signal
is to decide H; if the sufficient statistic satisfies:

Tx) =y cl(vVicTV)'Viy >4, an
where C = 02®®” and V = ®H. In deriving T"(x), the esti-
mate of 0, § = (VT071V)71VT071y, is used. The detection
performance is given by:

}Slé/\ = Qxi( (;y)

B 13 = QX/;? ) (:7)7
where QX% is the right-tail probability of a chi-squared random vari-
able with K degrees of freedom; QX/Q( 5) is the right-tail probabil-

K
ity for a noncentral chi-squared random variable with K degrees of
freedom and noncentrality parameter
QT(HTq)T(q)q)T)—lq)H)—lQT

2

=

(12)

g

It can be shown that with a priori information of the subspace (H),
the performance of the compressive GLRT detector is improved
compared to the case when H is unknown. However, the improve-
ment is limited. A more efficient detection scheme is needed.

3.2. Subspace Compressive GLRT Detector

As in Sec. 2.3, the subspace measurement matrix ® is designed ac-
cording to (6) and only M < K measurements are needed. With the
same hypothesis testing problem (7), the likelihood ratio is:

L(y) = ¥7
p(¥; Ho)
where ®HJ is the MLE of ®H0 under H;. Clearly, with M <

K, the MLE of ®H9 is y. The sufficient statistic of the subspace
compressive GLRT detector reduces to:

“T/&5T\—1s
dP
E’ZY( ) y>_

(13)

= (14)
The detection performance is given by:
B I"{A = QX%/I (’7)
B, = Qxﬁ(;)(ﬁ)»
where the noncentrality parameter X is given by:
5 0rat [G(HTH)*IGT]_IGQ. )

o2

It can be shown that for x” Pgx/0® <« M, the detection perfor-
mance can be approximated as:

xTPsx 1

Poa) =~ Q[Ql(a)—a2 m] (16)
T
~ Q[Ql(a)— sz?@—ﬂ a7)
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when U is (approximately) orthogonal. Compared with (10), there
is performance loss due to unknown ¢ when xTx/ o? < 2M. How-
ever, with the same number of measurements, the subspace com-
pressive GLRT detector outperforms the compressive GLLRT detector
that uses random compressive measurements, as will be illustrated in
the simulations.

4. ESTIMATION OF SIGNAL SPARSITY MODEL

In the traditional CS setting, the signal x is assumed to be K sparse
on a known basis W. But the location of the K relevant vectors of
z in ¥ is unknown, which leads to the matrix H being unavailable
at the time of detection. However, if training signals can be pro-
vided and the compressive measurements of the training signals are
available, then based on the random measurements of these signals,
reconstruction algorithms such as Matching Pursuit and Basis Pur-
suit Denosing can be employed to estimate the locations of the K
relevant vectors in W. Although these algorithms were initially pro-
posed for sparse signal reconstruction, reconstruction of the sparse
signal with high precision is not possible with very limited i.i.d. ran-
dom measurements from the training signals. Instead, we expect to
use these algorithms to get approximate information about the signal
subspace. Far fewer measurements are required for signal structure
estimation than for exact sparse signal reconstruction [3]. For the
purpose of detection, approximate subspace information can suffi-
ciently lead to great improvement on detection performance.

Considering the sparse nature of the underlying signal and the
wideband noise effect, the Basis Pursuit Denoising (BPDN) algo-
rithm is introduced in this paper to identify the sparse signal from
the noisy measureemnts by solving the following problem:

mgin W0 —y.|/5+All0]l: subjectto y, = D(¥0+n), (18)

where A < ||2(®T) Ty ||« [12]. With increased computational com-
plexity, BPDN can give better estimation for the sparse signal sub-
space than Matching Pursuit.

5. SIMULATIONS

In this section, the performance of the proposed subspace compres-
sive detectors are evaluated through several simulations. Only the
detection of sparse signals with unknown parameters are simulated.
For all the simulations, the sparse signal x is given by: x = H0,
where H € RV** 9 € R*"*! and K < N.

In the first simulation, the performance of detecting a signal x
with unknown coefficients 6 is evaluated. The SNR for the detection
is 15 dB. The subspace matrix H has dimensionality N = 2048
and K = 200. It is assumed that H is known in the signal spar-
sity model. Each entry of H and € is drawn from an i.i.d. normal
distribution. The column vectors in H are approximately orthogo-
nal to each other. The subspace compressive GLRT detector pre-
sented in Sec. 3.2 employs subspace random measurements that are
tailored to the signal subspace model with the number of measure-
ments M; = 120. The compressive GLRT detector presented in
Sec. 3.1 uses i.i.d. random measurements with the number of mea-
surements Mo = 400, and exploits the signal structure when es-
timating the unknown coefficients . Simulation results in Fig. 1
show that the subspace compressive GLRT detector achieves better
detection performance with fewer measurements. The compressive
detector exploiting the signal structure achieves better performance
than the compressive detector that does not have the signal structure
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Fig. 1. Probability of detection of subspace compressive GLRT de-
tector.

information (modeless). The simulation also shows that the approx-
imations given by (16) and (17) are quite accurate.

In the second simulation, the performance of the subspace com-
pressive GLRT detector that uses i.i.d. random measurements to es-
timate the signal structure is investigated. The basis ¥ isa N x N
wavelet Daubechies-4 orthonormal basis with N = 1024. The sig-
nal is x = HO where H is composed of K = 50 randomly selected
column vectors from V. Each entry of 6 is drawn from an i.i.d. nor-
mal distribution. The detection of received signals with SNR= 16
dB is simulated. Signals are present or absent with equal probabil-
ity. At the time of detection, only ¥ and K are assumed known.
For each burst transmission, 200 training signals are first transmit-
ted. For each training signal, the number of measurements equals
4K. The BPDN algorithm is employed to estimate H from averaged
noisy measurements. The estimated H is then used to construct an
M x N subspace measurement matrix with M = 45 according to
(6). With 10,000 simulation results at each fixed Ppa, the perfor-
mance of the detector is compared with the subspace compressive
GLRT detector where H is assumed known. It is shown in Fig. 2
that BPDN is effective at estimating the signal structure and the per-
formance loss due to unknown signal structure is small.

6. CONCLUSION

In this paper, we evaluate the performance of a set of subspace com-
pressive detectors that exploit the signal sparsity model explicitly.
Furthermore, algorithms are introduced to estimate the signal spar-
sity model for subsequent unknown signal detection. The results
presented in this paper can also be easily extended to the case when
the noise variance is unknown.
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