A presentation from the 2009 Topical Symposium:

Energy Security: A Global Challenge

Hosted by:
The Institute for National Strategic Studies
of
The National Defense University

29-30 September 2009

By
FRANK VERRASTRO

Papers presented at NDU Symposia reflect original research by members of NDU as well as other scholars and specialists in national security affairs from this country and abroad. The opinions, conclusions, and recommendations expressed or implied within are those of the authors and do not necessarily reflect the views of the Department of Defense or any other agency of the Federal Government.
The Emerging Petroleum and Natural Gas Economy

30 SEP 2009

PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

PERFORMING ORGANIZATION REPORT NUMBER

Approved for public release; distribution unlimited

ABSTRACT

SUBJECT TERMS

SECURITY CLASSIFICATION OF:

- REPORT
 - Unclassified

- ABSTRACT
 - Unclassified

- THIS PAGE
 - Unclassified

LIMITATION OF ABSTRACT

SAME AS REPORT (SAR)

NUMBER OF PAGES

26

NAME OF RESPONSIBLE PERSON

unclassified

unclassified

unclassified

unclassified

Standard Form 298 (Rev. 8-98)

Prescribed by ANSI Std Z39-18
The Emerging Petroleum and Natural Gas Economy

Ft. McNair, Washington, D.C.

Frank A. Verrastro
Director & Senior Fellow

Sept 30, 2009
Topical Focus

• Peak Oil
• Technology Developments
• NOCs & IOCs
• Game Changers
 • Climate
 • Natural Gas
Beyond Peak Oil: Global Resource Endowment is enormous, but conventional distribution is uneven and unconventional resources have environmental challenges.
Geopolitical & governance risks are accumulating

- **Canada:** Climate policy
- **US:** Climate Policy, access, storms
- **Europe:** Gas Supplies
- **Caspian:** Transit Security
- **Russia:** Policy
- **Iran:** Nuclear Ambition
- **Iraq:** Instability
- **Pakistan:** Political Turmoil
- **Nigeria:** Civil Unrest
- **Aden, Malacca:** Piracy
- **China:** Demand increase
- **N-Korea:** Nuclear Ambition
- **Latin America:** Resource Nationalism

- **Europe:** Gas Supplies
- **Caspian:** Transit Security
- **Russia:** Policy
- **Iran:** Nuclear Ambition
- **Iraq:** Instability
- **Pakistan:** Political Turmoil
- **Nigeria:** Civil Unrest
- **Aden, Malacca:** Piracy
- **China:** Demand increase
- **N-Korea:** Nuclear Ambition
- **Latin America:** Resource Nationalism
Non-OPEC Oil Production Looks Flat

(change from previous year)

Million barrels per day

2010
2009
2008

Source: EIA, STEO September 2009
OPEC Surplus Production Capacity

Total Current (est.): 5.5 mmb/d

Note: Shaded area represents 1998-2008 average (2.8 million barrels per day)

Source: EIA STEO September 2009, Bloomberg, IEA OMR
Replacing Global Liquids Supply Will Be Challenging

Source: CSIS, EIA
15 of the Top 20 Largest Oil Companies are NOCs; NOCs control 80-90% of conventional oil and gas reserves; Will play an increasing role in managing resources going forward.

Sources: PFC Energy, HFHS
All NOCs are NOT alike, but they share certain priorities and objectives:

- Agents of host governments
- Protectors of the National Resource Patrimony
- Source of Revenues needed to fund other programs
- Responsible for Social development & infrastructure
- Role in International relations
- Stakeholders are Political
- Management practices, operating standards and agendas different from IOCs
A Word on Technology Advancements

- Better diagnostics, intelligent wells
- GeoSteering
- Improved reservoir simulation
- Pre-salt experience
- Maximum Reservoir Contact Wells
- Sub-sea completions
- Rez “Bots”
- Horizontal drilling (shales)

Bottom Line: Significant new discoveries (BB fields), improved accessibility & increased recovery rates
Game Changers

• Climate Change and Regulation of Carbon & GHG Emissions

• Exploitation of Unconventional Shale Gas Reserves
Climate Change as a Game Changer

• Affects supply & demand
• Alters fuels choices, increases prices
• In the extreme, raises security concerns
• New investment & technologies applied on a global scale
• Implications of a fractured vs. unified response
• Concept of “Sustainable Development” challenges traditional view of economic prosperity
• Requires long-term global policy solutions and trade-offs balances
Climate Change as a Threat Multiplier
Conventional Global Natural Gas Reserves

Source: BP Statistical Review 2009
Global Gas Supply Dilemma

• Global gas demand to grow, especially in a carbon constrained world
• Conventional supply sources become more concentrated geographically
• Concentration can affect leverage, supply and prices, geopolitics, etc.
• Delivery system under greater stress
• Price rise + increased import dependence recreates balance of payments concerns
What’s New?: Substantial growth in U.S. natural gas production through 2030 led by unconventionals…

Source: EIA Annual Energy Outlook 2009
Conventional vs. Continuous Resources
Game-Changing Potential: Estimates of US Shale Gas Resources

EIA Annual Energy Outlook 2009: 267 tcf undiscovered technically recoverable shale gas resources (mean)
 • Based on 2007 U.S. Geological Survey assessment and 2006 Mineral Management Service data

Navigant Consulting Inc. 2008: 274 tcf undiscovered technically recoverable shale gas resources (mean)
 • Based on aggregated data from numerous studies

Navigant Producer Reports 2008: up to 842 tcf undiscovered technically recoverable shale gas resources (max reported)
 • Ascertained by Navigant in 2008 study (accounts for Marcellus and Haynesville)

Potential Gas Committee 2009: 616 tcf undiscovered technically recoverable shale gas resources (mean)
 • **Estimated total U.S. gas resources** of 2,074 tcf (mean undiscovered tech recoverable + reserves)
Shale Resources and Natural Gas Pipeline Network

Source: R Hefner
New US Domestic resources mean less imports (pipeline gas and LNG) and more supply choices for the world!

<table>
<thead>
<tr>
<th>Year</th>
<th>History</th>
<th>Projections</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>16%</td>
<td>3%</td>
</tr>
<tr>
<td>1995</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2020</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2025</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2030</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: EIA Annual Energy Outlook 2009
Implications of Global Shale Gas Exploitation

- Development of US shale formations would free up LNG for use elsewhere
- Significant shale prospects likely in China, Turkey, Australia and Europe
- Development of indigenous gas sources, coupled with LNG, efficiency, renewables and interconnects could reduce EU reliance on Russian gas
- Global gas surplus could revamp price/contract structures
Source: The Economist
BUT …realizing the full promise of shale resources is not a certainty and US domestic policy is important!

Technical/Economic Challenges

- All shales are not alike; application of drilling/reservoir fracturing technology & operational experience matters
- Steep decline rates require ongoing investment and drilling; and repeated fracturing
- Up front investment (lease acreage and pilot wells) not insignificant vs. cost basis relative to commodity price/value

Environmental/Regulatory/Societal Challenges

- Uncertain regulation (hydraulic fracturing, water, land use, permits), “industrialization” of areas unfamiliar with development plans and associated impacts
- Location, location, location – shale resources are, at times, proximate to and distant from delivery infrastructure and demand centers – both present problems
Strategies to Enhance Oil U.S. Security Count

Source: EIA Reference Case / NPC Global Oil and Gas study survey.
Policy Model

- **Economic Objectives**
 - Affordable/Accessible
 - Reliable and Secure

- **Environmental Objectives**
 - Low/no emissions
 - Environmentally Benign

- **Security & Foreign Policy Objectives**
 - Defensible
 - Supports Economic Growth & Employment

- **Energy Sources**
 - Natural Gas
 - Oil
 - Nuclear
 - Coal
 - Renewable Energy
 - Carbon Capture and Storage

- **Energy Efficiency**