Award Number: W81XWH-07-1-0063

TITLE: Induction of the p75NTR by Aryl Propionic Acids in Prostate Cancer Cells

PRINCIPAL INVESTIGATOR: Shehla Wynne

CONTRACTING ORGANIZATION: Georgetown University
Washington, DC 20057

REPORT DATE: December 2008

TYPE OF REPORT: Annual

PREPARED FOR: U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for Public Release;
Distribution Unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.
Induction of the p75NTR by Aryl Propionic Acids in Prostate Cancer Cells

The p75NTR receptor (p75NTR) is a tumor suppressor in the prostate whose expression decreases as prostate cancer progresses. The purpose of this project is to investigate the role of p75NTR in the observed anticancer activity of aryl propionic acids in the prostate. It has been demonstrated that treatment of prostate cancer cells with the aryl propionic acids R-flurbiprofen and ibuprofen induces reexpression of p75NTR, decreases cell survival, and increases apoptosis. Investigation into the mechanism of p75NTR induction by R-flurbiprofen and ibuprofen revealed a strong correlation between increased p75NTR protein level and increased p75NTR mRNA level. Finally, induction of p75NTR seems to be dependent on the p38 MAPK pathway, which is involved in regulating mRNA stability of a subset of transcripts. Using the 2-phenyl propionic acid moiety of these profens as a pharmacophore, an in silico database of 30 million compounds was screened and carprofen was additionally identified as having activity for induction of p75NTR levels and inhibition of cell survival.
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>4</td>
</tr>
<tr>
<td>Body</td>
<td>5</td>
</tr>
<tr>
<td>Key Research Accomplishments</td>
<td>6</td>
</tr>
<tr>
<td>Reportable Outcomes</td>
<td>8</td>
</tr>
<tr>
<td>Conclusions</td>
<td>9</td>
</tr>
<tr>
<td>References</td>
<td>11</td>
</tr>
<tr>
<td>Appendices</td>
<td>13</td>
</tr>
</tbody>
</table>
Introduction

The National Cancer Institute estimates there will be 218,890 new cases of prostate cancer and 27,050 deaths from prostate cancer in the United States this year (1). This makes prostate cancer the second most commonly diagnosed cancer type behind nonmelanoma skin cancer, and the second leading cause of cancer related death among men behind lung cancer (1). When detected early at the organ-confined stage, prostate cancer is often curable by surgical removal of the prostate or radiation therapy. However, when prostate cancer has spread outside of the prostate or has recurred following surgery or radiation therapy, current treatment involves some form of androgen deprivation therapy, and essentially always results in incurable hormone-refractory prostate cancer (HRPC). Once the cancer has reached this advanced stage, treatment options are limited and relatively unsuccessful. Docetaxel is the most successful drug to date and extends the life of the patient an average of two to three months. Therefore, there is a great need for improved treatment of advanced HRPC.

Nonsteroidal anti-inflammatory drugs (NSAIDs) demonstrate promise in both prevention and treatment of prostate cancer. They are traditionally used to treat inflammation by inhibiting cyclooxygenase (COX) activity. Increased COX-2 expression is believed to contribute to tumorigenesis through several mechanisms including stimulation of growth, promotion of angiogenesis, increased inflammation, increased invasion and migration, immune suppression, and inhibition of apoptosis (2). However the role of COX-2 in prostate cancer is controversial. Although, reports of COX-2 expression in prostate cancer vary, long term NSAID use is associated with decreased prostate cancer risk, and several COX inhibitors consistently induce apoptosis in prostate cancer cells regardless of COX-2 expression (3-7). Importantly, the efficacy of NSAIDs in inhibiting prostate cancer cell growth has been demonstrated in androgen nonresponsive cells such as PC-3 and DU-145, indicating potential for these drugs in the treatment of advanced prostate cancer (7-8). This is an exciting possibility given the limited options available for patients with HRPC. In particular, the aryl propionic acid class of NSAIDs, or profens, have repeatedly demonstrated anticancer activity in the prostate. This class of NSAIDs includes flurbiprofen, ibuprofen, naproxen, and ketoprofen among others. Long term ibuprofen use is associated with a decreased risk of prostate cancer (9-10). Treatment with the enantiomer R-flurbiprofen, which lacks COX inhibitory activity, was able to inhibit progression of prostate cancer in the TRAMP mouse (11). In addition, ibuprofen treatment decreased survival and induced apoptosis of DU-145 and LNCaP cells (7). This result was also observed in LNCaP cells treated with naproxen (7).

The p75 neurotrophin receptor (p75NTR) is an important player in the development of prostate cancer. It is a member of the tumor necrosis factor receptor superfamily (TNFR), and acts as a tumor suppressor in the prostate by inducing apoptosis and suppressing growth through its intracellular death domain (12-13). However, expression of p75NTR is decreased as prostate cancer progresses and is minimal in established advanced prostate cancer cell lines such as PC-3, DU-145, and LNCaP (14-15). Exogenous reexpression of p75NTR in prostate cancer cells resulted in decreased proliferation and increased apoptosis that was dependent upon the death domain of p75NTR (16). This indicates that drugs which induce reexpression of p75NTR in prostate cancer cells may have therapeutic potential. Interestingly, treatment of DU-145 prostate cancer cells with ibuprofen resulted in increased p75NTR expression (17). Therefore, it seems possible that induction of p75NTR may be causal of the observed anticancer activity of aryl propionic acids in the prostate.
Body

Task 1: I took over this award as a continuation of the work of Ms Emily Quann, after the completion of her graduate degree. Previous studies supported by this award examined the effect of selected aryl propionic acid NSAIDs and structurally related compounds on the decreased survival of prostate cancer cell lines PC-3, DU-145, and LNCaP by induction of the p75NTR protein. The p75NTR has been shown to function as a tumor suppressor in the prostate by virtue of its intracellular death domain that can initiate apoptosis and inhibit growth. The most efficacious compounds for induction of p75NTR and decreased survival, in rank-order, were R-flurbiprofen, ibuprofen, oxaprozin, fenoprofen, naproxen, and ketoprofen. Since R-flurbiprofen and ibuprofen exhibited the greatest efficacy, these were the drugs used in subsequent studies. It was found that R-flurbiprofen and ibuprofen selectively induce p75NTR-dependent decreased survival of prostate cancer cells independently of COX inhibition. Previously our lab demonstrated that loss of p75NTR expression in prostate cancer cells may be due to increased p75NTR mRNA instability. Consistently, it was found that the observed increase in p75NTR protein due to R-flurbiprofen and ibuprofen treatment was accompanied by an increase in p75NTR mRNA, and this increase in mRNA was the result of increased p75NTR mRNA stability. In addition, treatment with R-flurbiprofen or ibuprofen led to sustained activation of the p38 MAPK pathway and inhibition of this pathway prevented an induction of p75NTR by R-flurbiprofen and ibuprofen. Collectively, the data suggest that R-flurbiprofen and ibuprofen induce p75NTR expression leading to p75NTR dependent decreased survival by increased p75NTR mRNA stability that is mediated through the p38 MAPK pathway.

Following Dr Quann’s work, using the 2-phenyl propionic acid moiety of these profens as a pharmacophore, an in silico database of 30 million compounds was screened and carprofen was additionally identified as having activity for induction of p75NTR levels and inhibition of cell survival.

All procedures and results are described in detail in the manuscripts found in the appendices.

Task 2: The goal of task 2 is to investigate the role of the aryl hydrocarbon receptor (AhR) in the induction of p75NTR expression by R-flurbiprofen or ibuprofen. Our investigation of AhR identified a role of the p38 MAPK in the induction of p75NTR. I specifically examined the effect of inhibiting Dual Specificity Phosphatases, or DUSPs on the induction of in the prostate cancer cell lines PC-3, DU-145, and LNCaP. I scanned the cell lines for expression of Wip-1, HePTP, PP2Ca, MKP-1, MKP-5, M3/6 and found that they are expressed at varying levels in the three cell lines. However it was found that inhibition of the DUSPs had little to no effect on the induction of p75NTR. Presently, my focus is on the two other MAPK pathways - the ERK and JNK MAPK pathways – to determine their involvement in the induction of p75NTR by profens. In addition I am investigating the role of NSAID mediated p75NTR induction in the cell cycle. This task is still under progress.
Key Research Accomplishments

- Using the 2-phenyl propionic acid moiety of these profens as a pharmacophore, in silico database of 30 million compounds was screened. Carprofen as having an order of magnitude greater activity for induction of p75NTR levels and inhibition of cell survival (figure 1, Appendix 1).

- Prostate (PC-3 and DU-145) and bladder (T24) cancer cells were found to be more sensitive to carprofen induction of p75NTR-associated loss of survival than breast (MCF-7) and fibroblast (3T3) cells (figure 2 A and B, Appendix 1).

- Transfection of prostate cell lines with a dominant-negative form of p75NTR before carprofen treatment partially rescued cell survival, showing a cause-and-effect relationship between carprofen induction of p75NTR levels and inhibition of survival (figure 3 A and B, Appendix 1).

- Carprofen induced apoptotic nuclear fragmentation in the prostate cancer cell lines DU-145 and PC-3, but not in MCF-7 and 3T3 cells. Furthermore, small interfering RNA knockdown of the p38 mitogen-activated protein kinase (MAPK) protein prevented induction of p75NTR by carprofen in both prostate cancer cell lines (figure 4, Appendix 1).

- Carprofen treatment induced phosphorylation of p38 MAPK as early as within 1 min. Expression of a dominant-negative form of MK2, the kinase downstream of p38 MAPK frequently associated with signaling cascades leading to apoptosis, prevented carprofen induction of the p75NTR protein (figure 5 and figure 6, Appendix 1).

The items listed in the Statement of Work Task 1 below have been completed by the previous PI Dr Emily Quann. Some additional work was done and has been added to the accomplishments of Task 1. Task 2 has not yet been completed. These and other research accomplishments have been published in the following three journal articles and are included as Appendices.

Task 1: Determine the role of p75NTR induction in aryl propionic acid induced survival inhibition of prostate cancer cells (1-18 months).

- Perform western blots for cyclooxygenase (COX) expression following 48 hour aryl propionic acid treatment of PC-3 or DU-145 cells.

- Perform western blots for expression of other tumor necrosis factor receptor (TNFR) superfamily members following 48 hour aryl propionic acid treatment of PC-3 or DU-145 cells.

- Perform western blots for p75NTR following 2 week chronic aryl propionic acid treatment of PC-3 or DU-145 cells at concentrations lower than those used in the 48 hour treatments.

- Determine enumeration of PC-3 and DU-145 cells using a hemocytometer following 2 week chronic aryl propionic acid treatment at concentrations lower than those used in the 48 hour treatments.

- Perform rescue experiments with PC-3 and DU-145 cells involving transfection of ecdysone-inducible dominant negative p75NTR expression vectors followed by 48 hour aryl propionic acid treatment. Determine relative survival by MTT assay.

- Perform rescue experiments with PC-3 and DU-145 cells involving 24 hour transfection of p75NTR-targeted siRNA followed by 48 hour aryl propionic acid treatment. Determine relative cell survival by MTT assay.

- The above listed experiments were repeated with the NSAID carprofen, and it was found to have an order of magnitude greater activity for the induction of p75NTR.

Task 2: Determine the role of proteins proximal to p38 MAPK in the induction of p75NTR.

- Perform western blots for expression of p75NTR in PC-3, Du-145 and LNCaP cells following 72 hour Dual Specificity Phosphatase targeted siRNA transfection.

- Perform western blots for expression of p75NTR in PC-3, DU-145 and LNCaP cells following 24 hour Dual Specificity Phosphatase dominant negative mutant transfection.

- Perform western blots for expression of p75NTR following 24 hours treatment with commercially available inhibitors for the ERK and JNK MAPK pathways.
Reportable Outcomes

Manuscripts

Conference Abstracts

- Quann EJ, Khwaja F, Djakiew D. The p38 MAPK pathway mediates aryl propionic acid induced mRNA stability of p75NTR in prostate cancer cells. AACR-NCI-EORTC Molecular Targets and Cancer Therapeutics, October 2007, San Francisco.
Conclusions

This study revealed that several aryl propionic acids induce reexpression of p75^{NTR} in two different metastatic hormone-refractory prostate cancer cell lines, PC-3 and DU-145. Of those tested, the enantiomer R-flurbiprofen and ibuprofen were the most effective. These drugs were also effective in inducing p75^{NTR} expression in the metastatic androgen responsive LNCaP cell line. R-flurbiprofen or ibuprofen treatment of all three cell lines resulted in decreased survival that corresponded with induction of p75^{NTR}, confirming the potential for these drugs as anticancer agents in the prostate and also suggesting that p75^{NTR} induction is involved in the observed decreased survival. Additionally, the drug carprofen was also shown to have activity for the induction of p75^{NTR}. In addition, treatment with these drugs resulted in induction of apoptosis. Consistently, p75^{NTR} is a TNFR family member capable of inducing apoptosis through its conserved intracellular death domain. There are several other TNFR family members that also possess apoptosis inducing death domains; however, none of these family members was significantly upregulated in response to profen treatment. Increases in p75^{NTR} protein expression were found to closely correlate with increases in p75^{NTR} mRNA following profen treatment. The observed increase in p75^{NTR} mRNA level was found to be largely due to substantial increases in mRNA stability. The p38 MAPK pathway has been shown to regulate mRNA stability through its downstream kinases MK2 and MK3, and therefore, its role in p75^{NTR} induction by profens was investigated. Profen treatment resulted in increased p38 MAPK phosphorylation, and inhibition of this pathway using a p38 MAPK inhibitor or by siRNA knockdown of p38 MAPK, or MK2 and MK3 before profen treatment prevented an induction of p75^{NTR}. Collectively, the data suggests that profen treatment activates the p38 MAPK pathway, which increases the stability of the p75^{NTR} transcript, thus resulting in increased p75^{NTR} mRNA, increased p75^{NTR} protein expression, and p75^{NTR} mediated decreased prostate cancer cell survival.

Investigation into the role of p38 MAPK proximal proteins, specifically the Dual Specificity Phosphatases revealed that although expressed at varying levels, these phosphatases are not involved in the profen mediated induction of p75^{NTR}. The DUSPs scanned were Wip-1, HePTP, PP2Ca, MKP-1, MKP-5, M3/6 and PAC-1.

The results described above have several implications. They contribute to the body of evidence demonstrating the potential of aryl propionic acids for the treatment of prostate cancer, and identify induction of p75^{NTR} as a COX independent mechanism by which these drugs achieve their anticancer activity in the prostate. This study also indicates that drugs which result in the reexpression of p75^{NTR} may be effective in the treatment of advanced prostate cancer. It is significant that the profens were effective in inducing p75^{NTR} expression and in decreasing survival of three different advanced prostate cancer cell lines, each derived from metastasis to a different organ, as this demonstrates that the results are not an artifact of a single cell line. This is an important observation given the significant dedifferentiation and heterogeneity associated with the advanced disease. In addition, these results were observed in both androgen independent and androgen responsive cells lines, suggesting these drugs may be effective for advanced prostate cancer regardless of AR status. Finally, this brings to light novel approaches for identifying drugs which induce p75^{NTR} with greater specificity. For example, identification of drugs that activate p38 MAPK may reveal drugs that induce p75^{NTR}. Better yet would be the identification of drugs which specifically activate the downstream kinases MK2 and MK3, as these may have decreased side effects relative to drugs that activate p38 MAPK which has many downstream targets. The exact mechanisms by which MK2 and MK3 stabilize mRNAs need to
be explored further. It is highly likely that several RNA binding proteins are involved in increasing $p75^{NTR}$ mRNA stability due to profen treatment, and further elucidation of this mechanism may lead to identification of additional novel targets and the identification and development of therapeutics highly specific in inducing $p75^{NTR}$ in prostate cancer cells with minimal off target effects.
References

15) Krygier S, Djakiew D. Molecular characterization of the loss of p75NTR expression in human prostate tumor cells. Mol Carcinog 2001;31:46-55.

Appendices

Carprofen induction of p75NTR-dependent apoptosis via the p38 mitogen-activated protein kinase pathway in prostate cancer cells

Fatima S. Khwaja,1 Emily J. Quann,3 Nagarajan Pattabiraman,2 Shehla Wynne,1 and Daniel Djakiew1,2

1 Department of Biochemistry and Molecular & Cellular Biology and 2 Vincent T. Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia; and 3 Immunology Program, Memorial Sloan Kettering Cancer Center, New York, New York

Abstract
The p75 neurotrophin receptor (p75NTR) functions as a tumor suppressor in prostate epithelial cells, where its expression declines with progression to malignant cancer. Previously, we showed that treatment with R-flurbiprofen or ibuprofen induced p75NTR expression in several prostate cancer cell lines leading to p75NTR-mediated decreased survival. Using the 2-phenyl propionic acid moiety of these profens as a pharmacophore, we screened an in silico database of 30 million compounds and identified carprofen as having an order of magnitude greater activity for induction of p75NTR levels and inhibition of cell survival. Prostate (PC-3 and DU-145) and bladder (T24) cancer cells were more sensitive to carprofen induction of p75NTR, associated loss of survival than breast (MCF-7) and fibroblast (3T3) cells. Transfection of prostate cell lines with a dominant-negative form of p75NTR before carprofen treatment partially rescued cell survival, showing a cause-and-effect relationship between carprofen induction of p75NTR levels and inhibition of survival. Carprofen induced apoptotic nuclear fragmentation in prostate but not in MCF-7 and 3T3 cells. Furthermore, small interfering RNA knockdown of the p38 mitogen-activated protein kinase (MAPK) protein prevented induction of p75NTR by carprofen in both prostate cell lines. Carprofen treatment induced phosphorylation of p38 MAPK as early as within 1 min.

Expression of a dominant-negative form of MK2, the kinase downstream of p38 MAPK frequently associated with signaling cascades leading to apoptosis, prevented carprofen induction of the p75NTR protein. Collectively, we identify carprofen as a highly potent profen capable of inducing p75NTR-dependent apoptosis via the p38 MAPK pathway in prostate cancer cells. [Mol Cancer Ther 2008;7(11):3539–45]

Introduction
The p75 neurotrophin receptor (p75NTR) is a 75-kDa cell surface receptor glycoprotein that shares both structural and sequence homology with the tumor necrosis factor receptor superfamily of proteins (1, 2). Some of these proteins (e.g., p75NTR, p55TNFR, Fas, DRs3-6, and EDAR) have similar sequence motifs of defined elongated structure (1) designated “death domains” based on their apoptosis-inducing function (2). In the human prostate, the p75NTR protein is progressively lost in pathologic cancer tissues (3). The proportion of epithelial cells that have retained p75NTR expression in the organ-confined pathologic prostate is inversely associated with increasing Gleason score and preoperative serum prostate-specific antigen concentrations (4). In addition, immunoblot of human prostate epithelial cell lines derived from metastases exhibit a further reduction of p75NTR expression (5). Significantly, although expression of the p75NTR protein is suppressed, the gene encoding p75NTR appears intact in these prostate cancer cells (6). The loss of p75NTR expression is a result of a loss of mRNA stability (6). Following ectopic reexpression of the p75NTR in these cancer cells, their rate of apoptosis increased (7). Additionally, the same ectopically expressing p75NTR cancer cells exhibited a retardation of cell cycle progression characterized by accumulation of cells in G1 phase with a corresponding reduction of cells in the S phase of the cell cycle (7). Consistent with these observations, the p75NTR has been characterized with both tumor suppressor and metastasis suppressor activity in prostate cancer cells (7, 8).

Several studies have shown that nonsteroidal anti-inflammatory drugs (NSAID) are effective as anticancer agents for colorectal, breast, pancreatic, squamous cell carcinoma of the head and neck, bladder, ovarian, lung, and prostate cancers (9, 10). With respect to prostate cancer, retrospective studies indicate that there is a significantly reduced risk of prostate cancer associated with regular use of NSAIDs (11–13). In vivo studies using rodents have indicated that NSAIDs can decrease the size of prostate tumors (14, 15) and suppress the metastasis of prostatic cancer (14, 16). There is no common mechanism of action underlying NSAIDs effectiveness against cancer cells. Some
NSAIDs inhibit the cyclooxygenases (COX) that convert arachidonic acid to prostaglandins (17). Prostaglandins are thought to contribute to tumor growth by inhibiting apoptosis (18) and by inducing the formation of new blood vessels needed to sustain tumor growth (19). Hence, COX inhibition of prostaglandin synthesis could explain part of the antitumor activity of certain NSAIDs. However, NSAIDs can also inhibit tumor formation and growth of COX-null cell lines (20). In addition, NSAIDs that lack COX inhibitory activity can still have significant anticancer effects both in vivo (21) and in vitro (22). Similarly, growth of the DU-145 prostate cancer cell line that lacks expression of COX-1 and COX-2 is inhibited by NSAIDs (23). Interestingly, R-flurbiprofen and ibuprofen have been shown to induce
$p75^{NTR}$ levels leading to apoptosis in prostate cancer cell lines (23). These profens activated the p38 mitogen-activated protein kinase (MAPK) pathway leading to stabilization of $p75^{NTR}$ mRNA and increased levels of $p75^{NTR}$ protein that subsequently induced apoptosis of the prostate cancer cells (24). In this report, we used the 2-phenyl propionic acid moiety of the profens as a pharmacophore for an in silico search of related compounds and identified carprofen as having an order of magnitude greater activity for induction of $p75^{NTR}$ levels and inhibition of cell survival. Carprofen activity occurred through rapid phosphorylation of p38 MAPK, which signaled through MK2 to increase levels of $p75^{NTR}$ protein and stimulate apoptosis in the prostate cancer cells.

Materials and Methods

Cell Lines and Culture Conditions

PC-3 and DU-145 prostate cell lines were obtained from the Tissue Culture Core Facility of the Georgetown University Lombardi Comprehensive Cancer Center. T24 bladder, MCF-7 breast, and 3T3 fibroblast cells were obtained from the American Type Culture Collection. All cell lines were maintained in DMEM (Mediatech) containing 4.5 g/L glucose and L-glutamine supplemented with antibiotic/antimycotic [100 units/mL penicillin G, 100 μg/mL streptomycin, and 0.25 μg/mL amphotericin B (Mediatech)] and 10% fetal bovine serum (Sigma). Cells were incubated in the presence of 5% CO$_2$ and air at 37°C.

![Figure 1. Immunoblots of $p75^{NTR}$ levels in PC-3 and DU-145 cells following 48 h treatment with 0, 0.1, 0.25, 0.5, and 1.0 mM drug. The compound ID of each drug is given adjacent to its chemical structure. The A875 melanoma cell line was used as a positive control for $p75^{NTR}$ expression.](image-url)
Drug Preparation, Treatment, and Cell Lysis

Using 2-phenyl propionic acid as a pharmacophore, we searched an in silico database of ~30 million compounds from which nine aryl propionic acids were selected for further analysis. Stock solutions were prepared by dissolving each aryl propionic acid in DMSO (Sigma) at a concentration of 200 mmol/L. Cells were seeded overnight at 70% to 80% confluency and were then treated for 48 h at concentrations of 0, 20, 40, 60, 80, and 100 μmol/L. Cell lysates of treated cells were prepared as described previously (7, 8, 23). The supernatant was retained and protein concentration was determined according to the manufacturer’s protocol (Bio-Rad Laboratories).

Immunoblot Analysis

Immunoblot analysis was done as described previously (23). Membranes were incubated in the primary antibody: murine monoclonal anti-p75^{NTR} (1:2,000; Upstate Cell Signaling Solutions), rabbit polyclonal phosphorylated p38 MAPK (1:1,000), mouse monoclonal anti-p38α (1:1,000; Cell Signaling Technology), or murine monoclonal anti-β-actin (1:5,000; Sigma). Membranes were subsequently incubated in goat anti-mouse or goat anti-rabbit horseradish peroxidase-conjugated secondary antibodies (Bio-Rad Laboratories) at a dilution of 1:2,000 and immunoreactivity was visualized with a chemiluminescence detection reagent (Amersham Pharmacia Biotech). The positive control for p75^{NTR} expression was a whole-cell lysate of A875 cells (Dr. Moses Chao, Cornell University).

Cell Survival Assay with p75^{NTR} Dominant-Negative Transfection and Hoechst Dye Nuclear Staining

An equal number of viable cells (2 × 10⁵ per well) in 96-well culture plates (final volume of 100 μL/well culture medium) were incubated for 4 h at 37°C in a humidified atmosphere of 5% CO₂. Some cells were also transiently transfected with a p75^{NTR} dominant-negative vector described previously (24–26). The ΔICD vector expresses a p75^{NTR} gene product with the intracellular domain (ICD) deleted. The ΔICD is an edcysone-inducible p75^{NTR} vector and therefore was cotransfected with the edcysone receptor plasmid pVgRxR. The transfection was done with LipofectAMINE reagent (Invitrogen) in serum-free medium for 6 h, after which serum-containing medium was added. After 18 subsequent hours, cells were incubated in 1 μmol/L ponasterone A (Invitrogen) for 24 h to drive expression of the dominant-negative gene product. Following incubation with ponasterone A, cells were treated with carprofen (0-100 μmol/L) for 48 h and relative cell survival was determined with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide labeling reagent (final concentration, 0.5 mg/mL; Roche Diagnostics). Subsequently, cells were incubated overnight with 100 μL/well solubilization solution and the samples were quantified at 570 nm using a microtiter plate reader (Bio-Rad Laboratories). Hoechst dye nuclear (DNA) staining to identify apoptotic nuclei was conducted as described previously (25). PC-3, DU-145, MCF-7, and 3T3 cells were treated for 48 h with carprofen and then fixed in 10% formalin (Electron Microscopy Sciences). Some cells were transfected with the ΔICDp75^{NTR} plus ponasterone A before carprofen treatment.

Small Interfering RNA Transfection

Cells were transfected for 72 h with nontargeting small interfering RNA (siRNA) or siRNA specific for p38α (J-003512-20; Dharmacon RNA Technologies) at final concentrations of 100 nmol/L according to the manufacturer’s protocol. Transfection reagent DharmaFECT 1 was used for DU-145 cells, and DharmaFECT 2 was used for PC-3 cells (Dharmacon RNA Technologies). After transfection, the cells were treated with carprofen for 48 h followed by determination of p75^{NTR} protein expression.

MK2 Dominant-Negative Transfection

PC-3 and DU-145 cells were transiently transfected with a MK2 dominant-negative vector (MK2-K76R) described previously (27). The transfection was done with LipofectAMINE reagent (Invitrogen) in serum-free medium for 6 h, after which serum-containing medium was added for 24 h to allow expression of the dominant-negative gene product. Cells were treated with carprofen (100 μmol/L) for 48 h and expression of p75^{NTR} protein was determined by immunoblot with mouse monoclonal anti-p75^{NTR} (1:2,000; Millipore).
Statistical Analysis

The statistical differences between data sets and/or means were analyzed by ANOVA or the Mann-Whitney test using the Prizm program (GraphPad Software) and the data expressed as the mean ± SE. Data were considered statistically significant when \(P \leq 0.05 \).

Results

Carprofen Exhibits Superior Efficacy of the Aryl Propionic Acids to Induce p75NTR Levels Associated with Cell-Specific Decreased Survival

Analysis of the 2-phenyl propionic acid pharmacophore homology search identified nine aryl propionic acids that were screened for activity to induce expression of p75NTR protein in PC-3 and DU-145 human prostate cancer cells. Initially, the PC-3 and DU-145 cell lines were selected because they are the only two prostate tumor cell lines included in the NIH Developmental Therapeutics Program Anticancer Drug Discovery Program. The immunoblots showing activity of each compound to induce p75NTR were placed in rank-order (Fig. 1). In both cell lines, carprofen exhibited superior efficacy for induction of p75NTR expression at a concentration of \(\leq 100 \mu\text{mol/L} \) compared with all other aryl propionic acids examined (Fig. 1). At lower concentrations, carprofen selectively induced expression of p75NTR protein at \(\geq 40 \mu\text{mol/L} \) in PC-3 and DU-145 prostate cancer cells, as well as in the T24 bladder cancer cell line, but not in the MCF-7 breast cancer cell line or the 3T3 fibroblast cell line (Fig. 2A). The T24 bladder cancer cell line was included as a positive control because they were shown previously to be sensitive to profen (ibuprofen and R-flurbiprofen)-induced p75NTR-dependent decreased survival, whereas MCF-7 and 3T3 cells were included as negative controls because they were shown previously not to be sensitive to profen (ibuprofen and R-flurbiprofen)-induced decreased survival (25).

Carprofen treatment selectively decreased the survival of cells in rank-order with PC-3 and DU-145 prostate cancer cells exhibiting greatest sensitivity to dose-dependent decreased survival followed by the T24 bladder cancer cells and with MCF-7 and 3T3 fibroblasts the least sensitive to carprofen-induced decreased survival (Fig. 2B). Significantly, there was a strong association between the dose-dependent induction of p75NTR levels (Fig. 2A) and decreased survival of specific cell types following carprofen treatment (Fig. 2B).

Carprofen Induced Decreased Prostate Cancer Cell Survival Is Dependent on p75NTR

To establish a causal relationship between carprofen induction of p75NTR protein expression and inhibition of cell survival, we used a ponasterone A-inducible expression vector for p75NTR that exhibits a deletion of the intracellular death domain (\(\Delta ICD\text{p75}NTR \)) shown to function as a dominant-negative antagonist of the intact p75NTR gene product (23–26). The treatment of both PC-3 and DU-145 cells with carprofen or carprofen plus ponasterone A inhibited cell survival in a dose-dependent manner (Fig. 3). However, both PC-3 and DU-145 cell lines induced with ponasterone A to express \(\Delta ICD\text{p75}NTR \) exhibited a significant (\(P < 0.001 \)) partial rescue from carprofen-mediated inhibition of cell survival relative to carprofen-treated \(\Delta ICD\text{p75}NTR \) cells in the absence of ponasterone A (Fig. 3). Subsequently, we examined Hoechst-stained nuclear morphology to identify fragmented nuclei typical of apoptotic cells with the exception of T24 bladder cells for which we have shown previously profen-induced apoptotic nuclear fragmentation (25). Treatment of the two prostate cancer cell lines (DU-145 and PC-3) with carprofen induced a dose-dependent (0-100 \(\mu\text{mol/L} \)) fragmentation of nuclei (Fig. 4). As negative controls, the MCF-7 and 3T3 cells that were not induced by carprofen to express p75NTR (Fig. 2A) did not undergo carprofen-dependent apoptotic nuclear fragmentation (Fig. 4). Expression of the \(\Delta ICD\text{p75}NTR \) dominant-negative vector before carprofen treatment partially rescued nuclear fragmentation in the PC-3 and DU-145 prostate cells, whereas the MCF-7 and 3T3 negative control cells did not exhibit fragmented nuclei (Fig. 4).

Figure 3. PC-3 (A) and DU-145 (B) cell survival analysis by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay following 48 h treatment with 0 \(\mu\text{mol/L} \) (cross-hatched), 50 \(\mu\text{mol/L} \) (diagonal), or 100 \(\mu\text{mol/L} \) (stippled) carprofen (Carp). Before treatment, cells were cotransfected with a ponasterone A-inducible ecdysone receptor plasmid pVgRxR and \(\Delta ICD\text{p75}NTR \). Following transfection, cells were incubated in serum-containing medium for 18 h and then incubated in 1 \(\mu\text{mol/L} \) ponasterone A (P) for 24 h to drive expression of the dominant-negative gene products. Results are expressed relative to the control (0 \(\mu\text{mol/L} \)). *

\(P < 0.001 \).
Carprofen Induction of p75NTR Occurs via the p38 MAPK Pathway

An earlier study from our laboratory (24) implicated the aryl propionic acids, R-flurbiprofen and ibuprofen, in the induction of p75NTR via the p38 MAPK pathway. Because carprofen, an aryl propionic acid, exhibits an order of magnitude greater potency (Fig. 2A) than R-flurbiprofen and ibuprofen for the induction of p75NTR expression levels (23, 24), we examined the effect of siRNA knockdown of the p38 \(\alpha \) MAPK isoform on p75NTR levels following treatment with carprofen. We showed previously that p38 \(\alpha \) MAPK is the predominant isoform expressed in PC-3 and DU-145 cells (24). Whereas treatment with carprofen induced p75NTR expression levels, transfection of prostate cancer cells with p38 \(\alpha \) siRNA before carprofen treatment prevented induction of p75NTR relative to untransfected cells or cells transfected with nontargeting siRNA (Fig. 5A).

Because the p38 MAPK is activated by phosphorylation, we determined the phosphorylation status of p38 MAPK at several time points in PC-3 and DU-145 cells following treatment with carprofen. In both cell lines, carprofen treatment stimulated rapid phosphorylation of p38 MAPK as early as within 1 min treatment and subsequently led to the sustained activation of the p38 MAPK pathway that could be observed even 8 h following treatment of each cell line (Fig. 5B).

Because the MK2 kinase is downstream of p38 MAPK and was shown previously to be involved in profen induction of p75NTR (24), we used a dominant-negative expression vector for MK2 to determine involvement in carprofen induction of p75NTR. Treatment with carprofen alone induced expression of p75NTR in both PC-3 and DU-145 cells, whereas transfection of dominant-negative MK2 before carprofen treatment decreased the induction of p75NTR (Fig. 6).

Discussion

Carprofen is a propionic acid NSAID that induced p75NTR levels in prostate cancer cell lines with an order of magnitude greater efficacy than the related propionic acid NSAIDs, R-flurbiprofen and ibuprofen (23). Concomitant with the superior efficacy of carprofen to induce levels of p75NTR was its activity to inhibit cell survival via apoptosis. Our previous studies have shown a strong cause-and-effect relationship between induced levels of p75NTR and induction of apoptosis in cancer cell lines (23, 25). When expression levels are induced, p75NTR appears to be a robust marker of drug-induced apoptosis (23, 25). Because carprofen exhibited some degree of cell-specific induction of p75NTR-associated apoptosis, we focused on the PC-3 and DU-145 prostate cancer cell lines, which were most responsive to carprofen treatment, and coincidentally are the...
only two prostate cancer cell lines included in the NIH Developmental Therapeutics Program Anticancer Drug Discovery Program, due to their well-characterized aggressive phenotype. Hormone-responsive prostate cells were intentionally not included in these studies to maintain a focus on potential therapeutics of prostate tumor cells with phenotypes refractory to hormone ablation treatment consistent with poor prognosis. Using the prostate cancer cell lines, PC-3 and DU-145, most responsive to carprofen, we showed that a dominant-negative antagonist of p75NTR (DICDp75NTR) partially rescued carprofen-induced inhibition of cell survival, thereby confirming a cause-and-effect relationship between carprofen induction of p75NTR levels and p75NTR induction of apoptosis. Partial rather than complete rescue may be attributed to assay conditions or additional effects of carprofen independent of p75NTR.

In prostate cancer cell lines, reexpression of p75NTR induces modifications to several downstream signal transduction cascades leading to apoptosis. Initially, p75NTR expression down-regulates components of the nuclear factor-κB and c-Jun NH2-terminal kinase pathways preventing nuclear translocation of both these prosurvival transcriptional effectors (28). Expression of p75NTR also retards cell cycle progression through accumulation of cells in G1 at the expense of S-phase cells (7, 26). Down-regulation of cyclin/cyclin-dependent kinase holoenzyme components cyclin E, cyclin A, cyclin-dependent kinase 2, and cyclin-dependent kinase 6 contributes to hypophosphorylation of retinoblastoma along with elevated levels of p16INK4a in the p75NTR-induced cytostatic cell (26). Reexpression of p75NTR also induces elevated expression of the retinoic acid receptor β and retinoid X receptors α and β during partial redifferentiation of PC-3 cells that may also contribute to cytostasis (29). Evidence for p75NTR-dependent activation of extrinsic apoptosis in prostate cells has been limited to caspase-8 reductions in RIP, an adaptor protein that interacts with the ICD of p75NTR (28). Evidence for p75NTR-dependent activation of the intrinsic mitochondrial pathway includes an increase in proapoptotic effectors, Smac, Bak, and Bad, and conversely a decrease in the prosurvival effector, Bcl-xl (26), leading to a reduction in X-linked inhibitor of apoptosis protein and cleavage of caspase-9 and caspase-7 followed by poly(ADP-ribose) polymerase cleavage and nuclear fragmentation in PC-3 cells (26). Hence, reexpression of p75NTR appears to promote partial redifferentiation, cell cycle arrest, and apoptosis in prostate cancer cells, thereby providing a rationale for investigation of compounds that may be used for p75NTR-dependent therapeutics.

Prostate cancer cells evade the apoptotic effects of p75NTR expression by loss of p75NTR mRNA stability with concomitant suppression of p75NTR protein levels (6). Conversely, R-flurbiprofen and ibuprofen stabilize p75NTR mRNA with concomitant expression of p75NTR protein (24) and induction of apoptosis (23) through the p38 MAPK pathway (24). Indeed, abundant evidence has been reported for the involvement of p38 MAPK in apoptosis induced by a variety of agents such as the profen NSAIDs (23, 24), Fas ligation (30), and nerve growth factor withdrawal (31). The latter is significant because nerve growth factor ligation to the p75NTR acts as a survival signal in prostate cancer cells (26). Conversely, a relative absence of nerve growth factor, either by ligand withdrawal or by...
activation of p38 MAPK up-regulation of p75NTR-dependent apoptosis has the appeal that agents, such as the profens, which elevate p75NTR levels, have the same effect as ligand withdrawal leading to apoptosis of cancer cells. Activation of the p38 MAPK signal transduction pathway by carprofen was rapid, within 1 min, suggesting that carprofen is interacting with a molecule highly proximal to p38 MAPK. The observation that p38 MAPK knockdown prevented carprofen induction of p75NTR levels confirms this pathway as a mechanism responsible for p75NTR-regulation. We recently reported similar observations for R-flurbiprofen and ibuprofen activation of p38 MAPK up-regulation of p75NTR-dependent apoptosis in prostate cancer cells (24). In this pathway, MK2 directly binds to the p38 isoform of MAPK during activation (32). Expression levels of MK2 are relatively high in both PC-3 and DU-145 prostate cancer cells (24). Indeed, dominant-negative antagonism of MK2 prevented carprofen induction of p75NTR levels in prostate cancer cells. These observations suggest that carprofen initiates p75NTR-dependent apoptosis through a similar p38 MAPK signal transduction pathway to that of R-flurbiprofen and ibuprofen, albeit at an order of magnitude lower concentration of drug. Additional studies of this mechanism may lead to more potent compounds that induce p75NTR-dependent apoptosis of prostate cancer cells.

Disclosure of Potential Conflicts of Interest
No potential conflicts of interest were disclosed.

Acknowledgments
We thank Prof. M. Gaestel for providing the dominant-negative MK2 construct.

References
12. Norrish AE, Jackson RT, McRae CU. Non-steroidal anti-inflammato-
30. Joo P, Kuo CJ, Reynolds, et al. Fas activation of the p38 mitogen-
The p38 MAPK Pathway Mediates Aryl Propionic Acid–Induced Messenger RNA Stability of p75NTR in Prostate Cancer Cells

Emily J. Quann,1 Fatima Khwaja,1 and Daniel Djakiew1,2

1Department of Biochemistry and Molecular & Cellular Biology and 2Vincent T. Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia

Abstract

The p75NTR acts as a tumor suppressor in the prostate, but its expression is lost as prostate cancer progresses and is minimal in established prostate cancer cell lines such as PC-3, DU-145, and LNCaP. Previously, we showed that treatment with R-flurbiprofen or ibuprofen induced p75NTR expression in PC-3 and DU-145 cells leading to p75NTR-mediated decreased survival. Here, we investigate the mechanism by which these drugs induce p75NTR expression. We show that the observed increase in p75NTR protein due to R-flurbiprofen and ibuprofen treatment was accompanied by an increase in p75NTR mRNA, and this increase in mRNA was the result of increased mRNA stability and not by an up-regulation of transcription. In addition, we show that treatment with R-flurbiprofen or ibuprofen led to sustained activation of the p38 mitogen-activated protein kinase (MAPK) pathway. Furthermore, inhibition of the p38 MAPK pathway with the p38 MAPK–specific inhibitor SB202190 or by small interfering RNA (siRNA) knockdown of p38 MAPK protein prevented induction of p75NTR by R-flurbiprofen and ibuprofen. We also observed that siRNA knockdown of MAPK-activated protein kinase (MK)-2 and MK3, the kinases downstream of p38 MAPK that are responsible for the mRNA stabilizing effects of the p38 MAPK pathway, also prevented an induction of p75NTR by R-flurbiprofen and ibuprofen. Finally, we identify the RNA stabilizing protein HuR and the posttranscriptional regulator eukaryotic translation initiation factor 4E as two possible mechanisms by which the p38 MAPK pathway may increase p75NTR expression. Collectively, the data suggest that R-flurbiprofen and ibuprofen induce p75NTR expression by increased mRNA stability that is mediated through the p38 MAPK pathway. [Cancer Res 2007;67(23):11402–10]

Introduction

The p75NTR (neuretrophin receptor) is a member of the tumor necrosis factor (TNF) receptor superfamily that share a conserved intracellular death domain capable of inducing apoptosis and suppressing growth (1, 2). It binds neurotrophin ligands with similar affinity; however, unlike other members of the TNF receptor superfamily, it is able to induce apoptosis and suppress growth in the unbound state (3–8). p75NTR has been shown to act as a tumor suppressor in the prostate (5, 7, 9). However, whereas normal prostate epithelial cells express high levels of p75NTR expression is lost as prostate cancer progresses (10). In addition, although the gene remains intact, expression is very low in metastatic prostate cancer cell lines PC-3, DU-145, and LNCaP (10). Exogenous reexpression of p75NTR in PC-3 cells led to increased apoptosis, reduced proliferation, and a decreased ability of these cells to form tumors in mice, thus indicating potential for treatments that result in the reexpression of p75NTR in prostate tumor cells (5, 7–9, 11).

Nonsteroidal anti-inflammatory drugs are typically used to relieve inflammation by inhibiting cyclooxygenase (COX) activity; however, many of these drugs seem to possess anticancer activity that is independent of their COX inhibitory activity (12). Flurbiprofen and ibuprofen are members of the aryl propionic acid class of nonsteroidal anti-inflammatory drugs, also referred to as profens, and have shown anticancer activity in the prostate. For example, treatment with the enantiomer R-flurbiprofen, which lacks COX inhibitory activity, was able to slow progression of prostate cancer in the transgenic adenocarcinoma of the mouse prostate mouse (13). In addition, long-term ibuprofen use has been associated with decreased prostate cancer risk, and treatment of prostate cancer cells with ibuprofen resulted in decreased survival (14–16). Recently, we showed that treatment of PC-3 and DU-145 prostate cancer cells with R-flurbiprofen or ibuprofen resulted in a strong induction of p75NTR, which led to p75NTR-mediated apoptosis and decreased survival (17). The results of this study were significant because they showed that p75NTR expression is inducible, and that drugs which induce p75NTR in prostate cancer cells have therapeutic potential.

The p38 mitogen-activated protein kinase (MAPK) pathway is activated in response to cell stresses and external stimuli such as heat, UV light, osmotic shock, and inflammatory cytokines (18). It mediates various cellular processes including apoptosis, senescence, inflammation, and tumorigenesis through decreased p38 MAPK activity, which has been associated with tumor progression (18–20). In addition, p38 MAPK has been strongly implicated as a regulator of mRNA stability (18, 21, 22). p38 MAPK is activated through phosphorylation by upstream kinases MAPK kinase (MKK)-3 and MKK6 and, on activation, phosphorylates a number of downstream targets (18). Among these targets are the kinases MAPK-activated protein kinase (MK)-2 and MK3, which have been shown to be responsible for mediating the effects of the p38 MAPK pathway on mRNA stability (21, 23).

In this study, we investigated the mechanism by which the profens, R-flurbiprofen and ibuprofen, induce p75NTR expression in PC-3, DU-145, and LNCaP prostate cancer cells. We showed that induction of p75NTR protein expression corresponded to increased p75NTR mRNA levels that were due to increased mRNA stability and not to an up-regulation of transcription. In addition, we showed that R-flurbiprofen and ibuprofen treatment led to sustained activation of the p38 MAPK pathway and that this pathway was necessary for induction of p75NTR expression.
Results

R-Flurbiprofen and ibuprofen increase p75NTR mRNA level. To determine the mechanism by which the profens, R-flurbiprofen and ibuprofen, induce p75NTR expression in PC-3 and DU-145 human prostate cancer cell lines, we first compared the levels of p75NTR protein and mRNA following treatment with various concentrations of each profen (Fig. 1A). There was a strong correlation between p75NTR protein and mRNA, indicating that increased mRNA levels are responsible for the induction of p75NTR protein by R-flurbiprofen and ibuprofen. A strong increase in p75NTR protein and mRNA levels was observed in PC-3 cells following treatment with 0.5 mmol/L R-flurbiprofen and 1.0 mmol/L ibuprofen, and in DU-145 cells with 1.0 mmol/L R-flurbiprofen and 2.0 mmol/L ibuprofen. Therefore, in subsequent experiments, we used 2.0 mmol/L R-flurbiprofen and ibuprofen because at this concentration, each of these profens induced high levels of p75NTR in both cell types. The level of p75NTR mRNA was also determined at various time points following profen treatment, and an induction was first observed within 1 to 2 h of treatment (Fig. 1B). We also compared levels of p75NTR protein and mRNA in the androgen-responsive LNCaP cell line following treatment with several concentrations of ibuprofen, and again observed a strong correlation between p75NTR protein and mRNA (Supplementary Fig. S1A). In addition, we observed a similar time course for induction of p75NTR mRNA in LNCaP cells treated with ibuprofen (Supplementary Fig. S1B).

R-Flurbiprofen and ibuprofen increase p75NTR mRNA stability. Because the amount of transcript in a cell is a function of the rate of transcription and the rate of degradation, the observed increase in p75NTR mRNA in PC-3 and DU-145 cells following R-flurbiprofen and ibuprofen treatment must be due to either an up-regulation of transcriptional activity or a decrease in the rate of degradation of the p75NTR transcript, or both. Thus, we examined transcriptional activity and mRNA stability following treatment with profens. PC-3 and DU-145 cells were transfected with a p75NTR promoter-luciferase construct followed by treatment with R-flurbiprofen or ibuprofen, and promoter activity was compared with DMSO control–treated cells (Fig. 2A). Treatment with profens did not result in a significant change in p75NTR promoter activity, suggesting that the increase in mRNA was not due to transcriptional up-regulation of the p75NTR gene. Previously, p75NTR promoter activity was shown to be up-regulated in the A875 melanoma cell line on exposure to hypoosmotic medium (24). Therefore, to show that the p75NTR promoter-luciferase construct was functional, we transfected A875 cells with the construct and compared luciferase activity in cells exposed to isotonic versus hypoosmotic medium. Consistent with previously published data, treatment with hypoosmotic medium resulted in 17-fold increased p75NTR promoter activity (Fig. 2A; ref. 24). Therefore, increased levels of p75NTR mRNA and protein in PC-3 and DU-145 cells treated with R-flurbiprofen or ibuprofen were not a consequence of changed transcriptional activity.
The stability of the p75NTR transcript was determined with the transcriptional inhibitor actinomycin D. PC-3 and DU-145 cells were treated with R-flurbiprofen, ibuprofen, or DMSO for 8 h followed by the addition of actinomycin D. p75NTR mRNA level was determined by RT-PCR at several time points following actinomycin D addition (Fig. 2B and C). The majority of p75NTR mRNA from DMSO control–treated PC-3 and DU-145 cells was degraded within 2 and 4 h, respectively. In contrast, p75NTR mRNA was still present at high levels in profen-treated cells 12 h following the addition of actinomycin D. Therefore, profen treatment strongly enhanced p75NTR mRNA stability but did not influence transcription, suggesting that increased mRNA stability is responsible for the induction of p75NTR expression by R-flurbiprofen and ibuprofen (Fig. 2). We also observed an increase in p75NTR mRNA stability in LNCaP cells treated with ibuprofen relative to DMSO control–treated cells (Supplementary Fig. S1C and D).

R-flurbiprofen and ibuprofen activate the p38 MAPK pathway. The p38 MAPK pathway has been strongly implicated in the stabilization of several mRNAs through the downstream kinases MK2 and MK3, which are activated upon phosphorylation by p38 MAPK (21, 23). The p38 MAPK pathway is involved in the induction of p75NTR by R-flurbiprofen and ibuprofen. Increased p75NTR mRNA stability seems to be the mechanism by which R-flurbiprofen and ibuprofen induce p75NTR expression, and these drugs activate the p38 MAPK pathway, which is known to be involved in mRNA stabilization. Pretreatment of PC-3 and DU-145 cells with the p38 MAPK inhibitor SB202190 followed by treatment with R-flurbiprofen or ibuprofen prevented an induction of p75NTR, indicating that p38 MAPK is involved in profen-mediated induction of p75NTR (Fig. 3B). To further confirm the role of the p38 MAPK pathway in profen-mediated induction of p75NTR, we also used p38 MAPK siRNA to specifically knock down p38 MAPK protein. There are two ubiquitously expressed isoforms of p38 MAPK, p38α and p38β, which are capable of phosphorylating MK2 and MK3 (18, 23, 25). PC-3 and DU-145 cells were transfected with nontargeting siRNA, p38α siRNA, p38β siRNA, or siRNAs for p38α and p38β together. The efficacy and specificity of the siRNAs were determined by Western blot (Fig. 4A). Transfection of cells with p38α siRNA or p38α and p38β siRNAs together before profen treatment prevented an induction of p75NTR relative to untransfected cells or cells transfected with nontargeting siRNA (Fig. 4B). Transfection with p38β siRNA alone was less effective in preventing induction of p75NTR than transfection with p38α siRNA. Because the p38β isoform seems to be expressed at much lower levels, the p38α isoform may play a more critical role in the induction of p75NTR.
levels than p38α, it is not surprising that knockdown of p38β alone only modestly affected induction of p75NTR because p38α was still present. Expression of p38α was also much greater than that of p38β in LNCaP cells (not shown), and consistently, induction of p75NTR by ibuprofen was prevented in LNCaP cells transfected with p38α siRNA (Supplementary Fig. S2C).

Because the MK2 and MK3 kinases are downstream of p38 MAPK and have both been shown to mediate mRNA stabilization, we used siRNA for MK2 and MK3 to determine if they are involved in the induction of p75NTR by R-flurbiprofen or ibuprofen. PC-3 and DU-145 cells were transfected with nontargeting siRNA, MK2 siRNA, MK3 siRNA, or siRNAs for MK2 and MK3 in combination. The efficacy and specificity of these siRNAs were tested in PC-3 and DU-145 cells by Western blot (Fig. 5A). Transfection with MK2 siRNA or MK3 siRNA separately before profen treatment resulted in decreased induction of p75NTR (Fig. 5B). However, transfection with MK2 siRNA and MK3 siRNA together, resulting in the simultaneous knockdown of both proteins, was more effective in preventing induction of p75NTR by R-flurbiprofen or ibuprofen than knockdown of MK2 or MK3 separately (Fig. 5B). This is consistent with previous observations that MK2 and MK3 are activated in parallel by p38 MAPK, have similar substrates, and are both strongly expressed in PC-3 and DU-145 cells (Fig. 5A; refs. 23, 25). Likewise, in LNCaP cells, simultaneous siRNA knockdown of MK2 and MK3 was successful in preventing induction of p75NTR expression by ibuprofen (Supplementary Fig. S2C).

p75NTR mRNA is a target of the RNA stabilizing protein HuR. The HuR is an RNA binding protein that enhances the stability of target mRNAs (26, 27). It has been shown that activation of the p38 MAPK pathway results in the translocation of HuR from the nucleus to the cytoplasm where it binds to the 3′-untranslated regions (UTR) of various mRNAs containing a core AUUUA sequence (20, 28–31). The p75NTR transcript contains two AUUUA sites in the 3′-UTR, suggesting HuR binding as a possible mechanism by which R-flurbiprofen and ibuprofen may stabilize p75NTR mRNA. R-Flurbiprofen- and ibuprofen-treated cells exhibited modestly increased levels of cytoplasmic HuR (Fig. 6A). In addition, siRNA knockdown of HuR protein before profen treatment of PC-3 and

![Figure 2. A, p75NTR promoter activity following R-flurbiprofen and ibuprofen treatment. PC-3 and DU-145 cells were transfected for 48 h with a p75NTR promoter-luciferase construct and then treated with 2 mmol/L R-flurbiprofen (FLU), 2 mmol/L ibuprofen (IBU), or DMSO vehicle control (C) for 24 h. Relative luciferase activity was determined after normalization to Renilla and graphed as fold induction relative to DMSO control–treated cells. As a positive control, A875 cells were transfected for 48 h with the p75NTR promoter-luciferase construct and then exposed to hypoosmotic (Hypo) or isotonic (Iso) medium for 24 h. Fold induction of luciferase activity was determined for hypoosmotic treated cells relative to cells in isotonic medium. Bars, SE, *** P < 0.0001 (ANOVA). B and C, increase in p75NTR mRNA stability following R-flurbiprofen or ibuprofen treatment. PC-3 and DU-145 cells were treated with 2 mmol/L R-flurbiprofen, 2 mmol/L ibuprofen, or DMSO vehicle control for 8 h followed by the addition of 5 μg/mL actinomycin D (ActD). RNA was isolated at 0, 2, 4, 8, and 12 h following the addition of actinomycin D, and p75NTR mRNA levels were determined by RT-PCR. The intensity of the bands for p75NTR was analyzed by densitometry and graphed as a percentage of the 0-h time point.](https://www.aacrjournals.org/cancerres/article-pdf/67/23/11405/12971012/cancerres-2007;67-23-11405.pdf)
DU-145 cells partially prevented induction of p75NTR relative to untransfected or nontargeting siRNA–transfected cells, suggesting that HuR is involved in the induction of p75NTR by R-flurbiprofen and ibuprofen (Fig. 6B). Similarly, transfection of LNCaP cells with HuR siRNA before ibuprofen treatment was effective in preventing increased p75NTR expression (Supplementary Fig. S2C). HuR belongs to the embryonic lethal abnormal vision family of proteins, which also includes HuB, HuC, and HuD, all RNA stabilizing proteins that are typically expressed in neurons (32). Whereas HuR expression was detected in PC-3 and DU-145 cells (Fig. 6A), expression of the other family members could not be detected (not shown), indicating that they most likely do not participate in profen-mediated induction of p75NTR. A direct interaction between the HuR protein and the p75NTR transcript was shown by an immunoprecipitation RT-PCR assay. Lysates of profen-treated PC-3 and DU-145 cells were immunoprecipitated with, or without, an HuR antibody and RNA was isolated from the immunoprecipitated beads, followed by RT-PCR for p75NTR mRNA. PC-3 and DU-145 cells treated with R-flurbiprofen or ibuprofen showed a direct interaction between HuR and p75NTR mRNA, whereas DMSO control–treated cells did not (Fig. 6C). In addition, p75NTR mRNA was not detected in samples from cells treated with ibuprofen but not incubated with the HuR antibody, indicating that the p75NTR mRNA detected in the treated samples was not nonspecific (Fig. 6C).

R-Flurbiprofen and ibuprofen increase phosphorylation of eIF4E. Although HuR seems to bind to the p75NTR transcript upon profen treatment, the inhibition of p75NTR induction in the presence of a substantial HuR knockdown was modest. This result suggests that there are additional mechanisms involved in the induction of p75NTR by the p38 MAPK pathway. eIF4E is a downstream, indirect target of p38 MAPK and is involved in several mechanisms of posttranscriptional regulation including translation initiation through 5′-cap binding, mRNA nuclear export, and mRNA stability (33, 34). We examined eIF4E phosphorylation following profen treatment in untransfected, nontargeting siRNA–transfected, and p38α siRNA–transfected PC-3 and DU-145 cells. R-Flurbiprofen and ibuprofen treatment resulted in increased phosphorylated eIF4E levels in both cell types, and the increase was inhibited to varying degrees in the p38α siRNA–transfected cells (Fig. 6D). These results identify eIF4E phosphorylation as another mechanism through which the p38 MAPK pathway may regulate p75NTR expression.

Discussion

The p75NTR exhibits tumor suppressor activity in prostate cancer cells, which is mediated through an intracellular death domain capable of inducing apoptosis and suppressing growth (2, 5, 7, 9). However, p75NTR expression is progressively lost in organ confined prostate cancer and is minimal in established metastatic prostate cancer cell lines (10). Significantly, our recent observations that the profens, R-flurbiprofen and ibuprofen, induced reexpression of p75NTR protein levels causal of p75NTR-dependent decreased survival of prostate cancer cells has stimulated an investigation.
of the associated signal transduction cascade that mediates profen effects on prostate cancer cells (17). Increased p75_{NTR} protein levels in R-flurbiprofen– or ibuprofen-treated cells were accompanied by increased mRNA levels. This indicated that profen treatment influenced either the rate of mRNA degradation or the rate at which the gene was transcribed. Profen-treated cells showed no significant change in luciferase activity of the p75_{NTR} promoter construct relative to untreated cells. However, the transcriptional
inhibitor actinomycin D revealed a strong increase in p75NTR mRNA stability in cells treated with R-flurbiprofen or ibuprofen. Previously, our investigation of the mechanism by which several prostate cancer cell lines lose expression of p75NTR showed that although p75NTR is actively transcribed at levels comparable to the high-expressing A875 melanoma cell line, the prostate cancer cells contain <1% of the p75NTR mRNA found in A875 cells (10). Furthermore, transfection of prostate cancer cells with full-length p75NTR cDNA led to very modest p75NTR protein expression, whereas transfection with p75NTR cDNA lacking most of the 3′-UTR resulted in high protein expression. This suggested that although p75NTR is transcribed at a high level, prostate cancer cells have very little mRNA or protein due to increased mRNA instability that is mediated through the 3′-UTR. Interestingly, the p75NTR 3′-UTR is
R-flurbiprofen and ibuprofen are able to induce p75 NTR expression and this may be due to participation of additional pathways. R-Flurbiprofen and ibuprofen induced activation of the kinase MK2, which is directly downstream of p38 MAPK. MK2 and the closely related MK3 are known to be responsible for mediating the mRNA stabilizing effects of the p38 MAPK pathway (22, 23). They are activated with similar kinetics, are able to compensate for one another, have similar substrates, and lead to stabilization of the same group of transcripts in response to lipopolysaccharide (LPS; refs. 23, 25). Not surprisingly, siRNA knockdown of MK2 and MK3 together was more effective in preventing induction of p75NTR by R-flurbiprofen or ibuprofen than knockdown of either MK2 or MK3 separately, indicating that p38 MAPK is able to induce p75NTR by acting through both MK2 and MK3.

Activation of the p38 MAPK pathway seems to be responsible for R-flurbiprofen- and ibuprofen-mediated induction of p75NTR in prostate cancer cells. Significantly, there is an accumulating body of evidence linking p38 MAPK to tumor suppression. For example, inactivation of p38 MAPK, inactivation of the p38 MAPK activating kinases MKK3 and MKK6, and overexpression of the p38 MAPK phosphatase Wip1 are associated with increased tumorigenesis (36, 37). In addition, Wip1 was found to be amplified in primary breast tumors (36, 37). The tumor suppressor p53 is a direct substrate of p38 MAPK and is therefore one way in which p38 MAPK exerts its tumor-suppressing effects (18, 21, 36). However, p53 is inactivated by mutation in roughly half of all cancers (38). This is also the case for PC-3 cells, which are p53-null, and for DU-145 cells, which express mutated p53 (39). Here, we identify induction of p75NTR expression as a novel mechanism by which p38 MAPK may achieve tumor suppressor activity. This may be applicable to other cancer types in addition to prostate cancer. For example, we previously showed that ibuprofen up-regulates p75NTR in bladder cancer cells, which resulted in p75NTR-mediated apoptosis (40). In addition, basic fibroblast growth factor treatment resulted in the p38 MAPK–dependent death of Ewing’s sarcoma family of tumor cells and was associated with induction of p75NTR that was prevented in the presence of a p38 MAPK selective inhibitor (41). Interestingly, p38 MAPK and p75NTR have many overlapping roles in addition to induction of apoptosis and tumor suppression. For example, both are involved in the regulation of inflammation as well as response to brain injury (18, 24, 42–45). Therefore, it is possible that p38 MAPK achieves these roles, in part, by increasing expression of p75NTR. Consistent with this hypothesis is the observation that LPS, which leads to the stabilization of several transcripts through the p38 MAPK/MK2 pathway, also induces p75NTR expression (23, 46, 47).

One mechanism by which the p38 MAPK pathway has been shown to stabilize target transcripts involves the RNA binding protein HuR (22, 29–31). HuR is the only RNA binding protein repeatedly shown to stabilize transcripts containing the AUUUA sequence (22, 31). Its ability to stabilize target mRNAs is linked to its subcellular localization, and activation of p38 MAPK and MK2 has been shown to cause translocation of HuR from the nucleus to the cytoplasm, resulting in increased mRNA stability of a number of p38 MAPK regulated genes (22, 29–31). The human p75NTR transcript contains AUUUA sites located in the 3′-UTR at positions 2,946 and 3,124, and these are conserved in rat and mouse, suggesting that they may be involved in the regulation of p75NTR expression. We showed that treatment with R-flurbiprofen or ibuprofen resulted in the binding of HuR to the p75NTR transcript, and a modest increase in the cytoplasmic level of HuR was observed following profen treatment. However, siRNA knockdown of HuR before profen treatment only partially prevented an induction of p75NTR. These data suggest that binding of HuR to the p75NTR transcript is not the sole mechanism responsible for increased p75NTR expression. This is not surprising given the elaborate picture of mRNA regulation that is emerging. Recent data suggest that posttranscriptional regulation of gene expression occurs through a plethora of RNA binding proteins that control the splicing, nuclear export, stability, localization, translation, and degradation of transcripts, often through specific sequential or structural elements located in the untranslated regions (48, 49). Therefore, given the exceptionally long 3′-UTR of the p75NTR transcript, it is probable that other RNA binding proteins regulate expression as well, and this area requires further investigation. To provide insight into additional mechanisms through which the p38 MAPK pathway may influence p75NTR mRNA stability, we examined phosphorylation of eIF4E. eIF4E is phosphorylated by kinases downstream of p38 MAPK (33). It is most well known as a 5′-cap binding protein involved in translation initiation. However, recent data suggest that it regulates gene expression at several levels (34). Interestingly, an increase in eIF4E activity is not associated with an increase in global translation, but rather translation of only a subset of transcripts (34). In addition, eIF4E has been shown to control the nuclear export of a different subset of transcripts (34). Finally, eIF4E is linked to control of mRNA stability in that removal of the 5′-cap is a key step in mRNA degradation, and competition between eIF4E and decapping enzymes has been shown (50). We show that profen treatment increases the level of phosphorylated eIF4E, and this seems to occur, at least partially, through the p38 MAPK pathway because the increase in phosphorylation is substantially inhibited in the presence of p38 MAPK siRNA. Therefore, these data identify modulation of eIF4E activity as another mechanism by which the p38 MAPK pathway may control posttranscriptional events in response to profen treatment.

In this study, we show for the first time that R-flurbiprofen and ibuprofen activate the p38 MAPK pathway in prostate cancer cells and that this pathway is necessary for induction of the p75NTR tumor suppressor by these drugs. This mechanism of induction occurs in both androgen-independent PC-3 and DU-145 cells as...
Cancer Research

References

The Aryl Propionic Acid R-Flurbiprofen Selectively Induces p75_{NTR}-Dependent Decreased Survival of Prostate Tumor Cells

Emily J. Quann, Fatima Khwaja, Kenton H. Zavitz, and Daniel Djakiew

Abstract

Epidemiologic studies show that patients chronically consuming nonsteroidal anti-inflammatory drugs (NSAID) for arthritis exhibit a reduced incidence of prostate cancer. In addition, some NSAIDs show anticancer activity in vitro. NSAIDs exert their anti-inflammatory effects by inhibiting cyclooxygenase (COX) activity; however, evidence suggests that COX-independent mechanisms mediate decreased prostate cancer cell survival. Hence, we examined the effect of selected aryl propionic acid NSAIDs and structurally related compounds on the decreased survival of prostate cancer cell lines PC-3, DU-145, and LNCaP by induction of the p75_{NTR} protein. The p75_{NTR} has been shown to function as a tumor suppressor in the prostate by virtue of its intracellular death domain that can initiate apoptosis and inhibit growth. The most efficacious compounds for induction of p75_{NTR} and decreased survival, in rank-order, were R-flurbiprofen, ibuprofen, oxaprozin, fenoprofen, naproxen, and ketoprofen. Because R-flurbiprofen and ibuprofen exhibited the greatest efficacy, we examined their dose-dependent specificity of induction for p75_{NTR} relative to other members of the death receptor family. Whereas treatment with R-flurbiprofen or ibuprofen resulted in a massive induction of p75_{NTR} protein levels, the expression of Fas, p53_{NTR}, DR3, DR4, DR5, and DR6 remained largely unchanged. Moreover, transfection of either cell line before R-flurbiprofen or ibuprofen treatment with a dominant negative form of p75_{NTR} to antagonize p75_{NTR} activity or p75_{NTR} small interfering RNA to prevent p75_{NTR} protein expression rescued both cell lines from decreased survival. Hence, R-flurbiprofen and ibuprofen selectively induce p75_{NTR}-dependent decreased survival of prostate cancer cells independently of COX inhibition. [Cancer Res 2007;67(7):1–9]

Introduction

Prostate cancer is the most commonly diagnosed cancer and ranks as the second leading cause of cancer-related deaths among men in the United States (1, 2). Recent epidemiologic studies found a correlation between long-term nonsteroidal anti-inflammatory drug (NSAID) use and decreased prostate cancer risk (3–6). In addition, studies involving various human prostate cancer cell lines consistently show decreased proliferation and increased apoptosis in response to select NSAID treatment (7, 8). NSAIDs exert their anti-inflammatory activity by inhibiting cyclooxygenase (COX), the enzyme which catalyzes the conversion of arachidonic acid to prostaglandins. Two isoforms of COX exist; COX-1 is a housekeeping gene that is constitutively expressed at low levels in most cells types, whereas COX-2 is highly inducible in response to cytokines, hormones, and growth factors. COX-2 seems to play a significant role in the promotion of colon cancer with 50% of precancerous adenomatous polyps and 85% of colon carcinomas exhibiting COX-2 overexpression (9). However, the data pertaining to the role of COX-2 in prostate cancer are less conclusive. Although some studies show overexpression, others show expression is low or absent relative to normal tissue (10–14). In addition, there is not a consensus regarding the status of COX-2 expression in established prostate cancer cell lines, including LNCaP, DU-145, and PC-3 (13, 15–17). However, regardless of COX-2 expression, these cell lines all show susceptibility to select NSAID treatment (17–19). Furthermore, the anticancer activity of NSAIDs occurs at concentrations several orders of magnitude higher than those required to inhibit COX-2, and different NSAIDs show varying levels of anticancer activity (20–22). These results suggest the existence of a COX-independent mechanism by which some NSAIDs initiate apoptosis and inhibit proliferation.

The p75_{NTR} (neurotrophin receptor) is a member of the tumor necrosis factor receptor (TNFR) superfamily capable of inducing apoptosis through a conserved intracellular death domain (23, 24). It binds neurotrophin ligands with similar affinity; however, unlike other members of the TNFR superfamily, p75_{NTR} induces cell death and suppresses growth in the unbound state (25–29). Recently, p75_{NTR} was identified as a tumor and metastasis suppressor in the prostate and bladder (27, 28). Although normal prostate epithelial cells express high levels of p75_{NTR}, this expression becomes suppressed as prostate cancer progresses (30). In addition, the human prostate cancer cell lines PC-3, DU-145, and LNCaP, all derived from metastases, showed little to no p75_{NTR} expression (31). However, the p75_{NTR} gene in these cells has remained intact, indicating that the potential for up-regulation may exist (31). Furthermore, exogenous reexpression of p75_{NTR} in PC-3 cells suppressed growth and increased apoptosis (28, 32). This suggests potential for treatments that result in the up-regulation and re-expression of p75_{NTR} in prostate cancer cells.

Ibuprofen and flurbiprofen belong to the aryl propionic acid class of NSAIDs. Treatment of T24 bladder cancer cells and HCT-116 colon cancer cells with ibuprofen or the enantiomer R-flurbiprofen, which lacks COX inhibitory activity, induced a dose-dependent up-regulation of p75_{NTR} and a corresponding decrease in survival (33). Rescue experiments involving transfection of dominant negative forms of p75_{NTR} before ibuprofen treatment of T24 cells showed that the observed induction of p75_{NTR} was causal of the decreased survival (33). Significantly, R-flurbiprofen treatment of TRAMP mice has been shown to lower the incidence of primary tumors and metastases of prostate cancer (34). In this context, we show that R-flurbiprofen and ibuprofen most

Requests for reprints: Daniel Djakiew, Department of Biochemistry and Molecular Cellular Biology, Georgetown University Medical Center, 3900 Reservoir Road, N.W., Washington, DC 20057-1436. Phone: 202-687-1203; Fax: 1-202-687-1823; E-mail: djakiewd@georgetown.edu.

©2007 American Association for Cancer Research. doi:10.1158/0008-5472.CAN-06-3657
effectively up-regulate p75NTR expression in both PC-3 and DU-145 cell lines relative to other aryl propionic acids. This up-regulation occurs in a dose-dependent manner and corresponds to a decrease in cell survival. The use of p75NTR dominant negatives and p75NTR-targeting small interfering RNA (siRNA) shows that the observed decreased survival is directly mediated through p75NTR, a COX-independent mechanism.

Materials and Methods

Cell lines and culture conditions. PC-3 and DU-145 cell lines were obtained from the tissue culture core facility of the Georgetown University Lombardi Comprehensive Cancer Center. LNCaP cells were obtained from the American Type Culture Collection (Rockville, MD). All cell lines were maintained in DMEM (Mediatech Inc., Herndon, VA) containing 4.5 g/L glucose and t-glutamine supplemented with antibiotic/antimycotic [100 units/mL penicillin G, 100 μg/mL streptomycin, and 0.25 μg/mL amphotericin B (Mediatech Inc.)] and 5% fetal bovine calf serum (Sigma Chemical Co., St. Louis, MO). Cells were incubated in the presence of 5% CO₂ and air at 37°C.

Drug preparation, treatment, and cell lysis. Stock solutions were prepared by dissolving each aryl propionic acid [ibuprofen, ketoprofen, naproxen, oxaprozin, fenoprofen, and R-flurbiprofen (Myriad Pharmaceuticals Inc., Salt Lake City, UT)] in DMSO (Sigma) at a concentration of 200 mmol/L. Cells were seeded overnight at 70% to 80% confluency and were then treated for 48 h at concentrations of 0, 0.1, 0.25, 0.5, 1.0, and 2.0 mmol/L. Cell lysates of treated cells were prepared using lysis buffer [10 mmol/L Tris-Cl (pH 7.4), 10 mmol/L NaCl, 3 mmol/L MgCl₂, and 0.5% Nonidet P-40] containing 1 μL/mL cocktail protease inhibitor.
(Sigma). The supernatant was retained, and protein concentration was determined according to the manufacturer’s protocol (Bio-Rad Laboratories, Hercules, CA). For long-term treatment of cells, 1000 cells were seeded overnight and treated the next day with 0, 0.1, 0.2, 0.3, 0.4, and 0.5 mmol/L ibuprofen or R-flurbiprofen twice per week for 2 weeks. After 2 weeks, lysates were prepared as described above, or cells were trypsinized, resuspended, and counted using a hemocytometer.

Immunoblot analysis. Immunoblot analysis was done by loading 50 μg of protein onto 10% SDS-polyacrylamide gels for electrophoresis, followed by transfer to a nitrocellulose membrane (Amersham Pharmacia Biotech, Piscataway, NJ). Membranes were blocked in 5% nonfat milk (Bio-Rad Laboratories) and then incubated in the primary antibody: murine monoclonal anti-p75NTR (1:2,000, Upstate Cell Signaling Solutions, Lake Placid, NY), murine monoclonal anti-Fas (1:100, Santa Cruz Biotechnologies, Santa Cruz, CA), murine monoclonal anti-p55TNFR (1:100, Santa Cruz Biotechnologies), rat polyclonal anti-DR3 (1:200, Santa Cruz Biotechnologies), murine monoclonal anti-DR4 (1:100, Santa Cruz Biotechnologies), rat polyclonal anti-DR5 (1:500, ProSci Inc., Poway, CA), rat polyclonal anti-DR6 (2 μg/mL; Upstate Cell Signaling Solutions), mouse monoclonal anti–h-actin (1:5000, Sigma). Following incubation in the primary antibody, membranes were incubated in the appropriate horseradish peroxidase–conjugated secondary antibody (1:3,000, Bio-Rad Laboratories). Immunoreactivity was detected using the chemiluminescence detection reagent (Amersham Pharmacia). Several positive controls were used: A875 whole cell lysate (WCL; Tissue Culture Core Facility, Georgetown University) for p75NTR, A431 WCL (Santa Cruz Biotechnologies) for Fas, MCF-7 WCL (Santa Cruz Biotechnologies) for p55TNFR, Jurkat WCL (Upstate Cell Signaling Solutions) for DR3 and DR6, HeLa WCL (ProSci Inc.) for DR4 and DR5, U-937 WCL (Santa Cruz Biotechnologies) for COX-1, and RAW 264.7 WCL (Santa Cruz Biotechnologies) for COX-2.

Reverse transcription-PCR. PC-3 and DU145 cells were treated with 2.0 mmol/L R-flurbiprofen or ibuprofen. RNA was isolated following 0, 2, 4, 8, 12, 18, and 24 h of treatment using TRIzol Reagent (Invitrogen, Carlsbad, CA) according to the manufacturer’s protocol. Reverse transcription-PCR (RT-PCR) was done using the SuperScript III One-Step RT-PCR System with Platinum Taq DNA Polymerase (Invitrogen) using 250 ng RNA for p75NTR and 125 ng RNA for glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Primers were designed using Primer Quest, and their sequences are as follows: p75NTR forward 5′-AGG TGA CCT TCT GGG AAA TGG CTT-3′, p75NTR reverse 5′-ATT TCC TCC GAT GCT TCT CTG GCA-3′, GAPDH forward 5′-CCA CCC ATG GCA AAT TCC ATG GCA-3′, and GAPDH reverse 5′-TCT AGA CGG CAG GTC AGG TCC ACC-3′ (Integrated DNA Technologies, Coralville, IA). cDNA synthesis was done at 47°C for 30 min followed by denaturation at 94°C for 2 min and then 30 cycles of PCR at 94°C for 1 min, 60°C for 1 min, and 72°C for 1 min, with final extension at 72°C for 5 min. PCR products were separated on 1.5% agarose gels.

Hoechst dye nuclear (DNA) staining. Hoechst staining to identify apoptotic nuclei was conducted as described previously (33). PC-3, DU-145, and LNCaP cells were treated for 48 h with aryl propionic acids and then fixed in 10% formalin (Electron Microscopy Sciences, Hatfield, PA). Cells were collected, washed in PBS, centrifuged, resuspended in PBS, and dried on slides. Slides were rehydrated with PBS, washed with distilled water, and covered with a 1:3,000 aqueous dilution of Hoechst 33258 stain (Molecular Probes, Eugene, OR) for a final concentration of 10 μg/mL. After 10 min, slides were washed with distilled water, mounted, and viewed using a fluorescence microscope (Zeiss Axioplan 2 Imaging, Jena, Germany).

Figure 2. A and B, PC-3, DU-145, and LNCaP cell survival analysis by MTT assay following treatment with 0, 0.1, 0.25, 0.5, 1.0, or 2.0 mmol/L R-flurbiprofen or ibuprofen for 48 h. Columns, mean relative to the control (0 mM); bars, SE. **P < 0.01; ***P < 0.001. C and D, detection of apoptotic nuclei (arrows) by Hoechst staining of PC-3, DU-145, and LNCaP cells following treatment with 0 or 2.0 mmol/L R-flurbiprofen or ibuprofen.
p75NTR dominant negative transfection. PC-3 and DU-145 cells were transiently transfected with one of two p75NTR dominant negative vectors described previously (35). The ΔDD vector expresses p75NTR with the death domain deleted, and the ΔICD vector expresses p75NTR with the slightly larger intracellular domain deleted. Both are ecdysone-inducible p75NTR vectors and, therefore, were each cotransfected with the ecdysone receptor plasmid pVgRxR. The transfection was done with LipofectAMINE reagent (Invitrogen) in serum-free medium for 6 h, after which serum-containing medium was added. After 18 subsequent hours, cells were incubated in 1 μmol/L ponasterone A (Invitrogen) for 24 h to drive the expression of the dominant negative gene products. Following incubation with ponasterone A, cells were treated with aryl propionic acids for 48 h, and relative cell survival was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay (Roche Applied Science).

siRNA transfection. PC-3 and DU-145 cells were transfected for 24 h with nontargeting or p75NTR-specific siRNA [Dharmacon RNA Technologies (Duplex D-000940-03), Lafayette, CO] at a final concentration of 100 nmol/L according to the manufacturer’s protocol using transfection reagents DharmaFECT 1 for DU-145 cells and DharmaFECT 2 (Dharmacon RNA Technologies) for PC-3 cells. After transfection, the cells were treated with aryl propionic acids for 48 h, followed by determination of p75NTR protein expression or relative cell survival by MTT assay (Roche Applied Science).

Results

Aryl propionic acids selectively induce p75NTR expression and decrease cell survival. We examined the ability of R-flurbiprofen and ibuprofen, as well as four other members of the aryl propionic acid family, including oxaprozin, fenoprofen, naproxen, and ketoprofen to induce the expression of p75NTR protein in PC-3 and DU-145 human prostate cancer cells. In both cell lines, R-flurbiprofen was the most efficacious for the induction of p75NTR expression followed by ibuprofen, oxaprozin, fenoprofen, naproxen, and finally, ketoprofen, which was the least effective compound (Fig. 1A). For subsequent experiments, only R-flurbiprofen and ibuprofen were used because they were the most effective of the six aryl propionic acids tested. Treatment with R-flurbiprofen or ibuprofen also resulted in an induction of p75NTR in LNCaP cells, which are androgen responsive (Fig. 1B). To elucidate the mechanism by which these aryl propionic acids may be inducing p75NTR protein expression, we determined relative p75NTR mRNA levels at various time points following 2.0 mmol/L R-flurbiprofen or ibuprofen treatment (Fig. 1C). In both cell lines, R-flurbiprofen and ibuprofen significantly induced p75NTR message level. This induction is first noticeable within 4 h of treatment in both cell lines with both drugs.

The aryl propionic acids are commonly used as NSAIDs that act through COX inhibition. Therefore, we examined the status of COX expression in both cell lines and determined whether the expression level of either isoform changed in response to treatment with R-flurbiprofen and ibuprofen (Fig. 1D). Both PC-3 and DU-145 cells expressed COX-1 at low levels, and expression remained unchanged following R-flurbiprofen or ibuprofen treatment. PC-3 cells lacked COX-2 expression; however, expression was induced upon treatment with R-flurbiprofen or ibuprofen. DU-145 cells also lacked COX-2 expression, and no induction was observed following treatment with either compound.

Examination of the effect of R-flurbiprofen and ibuprofen on survival of PC-3, DU-145, and LNCaP cells after 48-h treatment resulted in a dose-dependent decrease in survival that corresponded with the observed induction of p75NTR (Fig. 2A and B). Again, R-flurbiprofen was more efficacious than ibuprofen, resulting in a greater dose-dependent decrease in survival. Because p75NTR contains an intracellular death domain capable of initiating apoptosis, we used Hoechst staining to identify fragmented nuclei typical of apoptotic cells. Treatment with 2.0 mmol/L R-flurbiprofen or ibuprofen resulted in an induction of apoptotic cells, indicating that apoptosis was at least partially responsible for the observed decrease in survival (Fig. 2C and D).

p75NTR is a member of the TNFR superfamily in which members contain an intracellular death domain capable of inducing apoptosis (23, 24). Although 48-h treatment with R-flurbiprofen resulted in a substantial dose-dependent induction of p75NTR, the other death receptors, including Fas, p55TNFR, DR3, DR4, and DR6, showed little, if any, induction in PC-3 cells (Fig. 3A). Similar results were observed following treatment with ibuprofen (Fig. 3B). There seemed to be a slight induction of DR4 with ibuprofen; however, the magnitude of the response was small relative to the induction observed for p75NTR expression (Fig. 3B). The addition of the ligand corresponding to each death receptor had no effect on the induction of death receptors by R-flurbiprofen or ibuprofen (data not shown). Therefore, R-flurbiprofen and ibuprofen selectively induced p75NTR, whereas protein expression of the other TNFR family members remained largely unchanged.

Figure 3. A and B, expression of TNFR superfamily members in PC-3 cells after 48-h treatment with 0, 0.1, 0.25, 0.5, 1.0, or 2.0 mmol/L R-flurbiprofen or ibuprofen. About 50 μg of cell lysate were subjected to SDS-PAGE followed by immunoblot analysis using monoclonal antibodies to human Fas, p55TNFR, and DR4, or rat polyclonal antibodies to human DR3, DR5, and DR6, and β-actin as the loading control. A431, MCF-7, Jurkat, and HeLa cell lysates were used as positive controls for Fas, p55TNFR, DR3 and DR6, and DR4 and DR5, respectively.

p75NTR contains an intracellular death domain capable of initiating apoptosis, we used Hoechst staining to identify fragmented nuclei typical of apoptotic cells. Treatment with 2.0 mmol/L R-flurbiprofen or ibuprofen resulted in an induction of apoptotic cells, indicating that apoptosis was at least partially responsible for the observed decrease in survival (Fig. 2C and D).

p75NTR is a member of the TNFR superfamily in which members contain an intracellular death domain capable of inducing apoptosis (23, 24). Although 48-h treatment with R-flurbiprofen resulted in a substantial dose-dependent induction of p75NTR, the other death receptors, including Fas, p55TNFR, DR3, DR4, and DR6, showed little, if any, induction in PC-3 cells (Fig. 3A). Similar results were observed following treatment with ibuprofen (Fig. 3B). There seemed to be a slight induction of DR4 with ibuprofen; however, the magnitude of the response was small relative to the induction observed for p75NTR expression (Fig. 3B). The addition of the ligand corresponding to each death receptor had no effect on the induction of death receptors by R-flurbiprofen or ibuprofen (data not shown). Therefore, R-flurbiprofen and ibuprofen selectively induced p75NTR, whereas protein expression of the other TNFR family members remained largely unchanged.
Long-term R-flurbiprofen and ibuprofen treatment results in p75NTR induction and decreased survival at lower drug concentrations. Epidemiologic studies have shown a correlation between long-term continuous NSAID use and a decreased risk of prostate cancer (3, 4). Therefore, we examined whether chronic treatment with R-flurbiprofen or ibuprofen for 2 weeks at lower concentrations of 0, 0.1, 0.2, 0.3, 0.4, and 0.5 mmol/L may be equally effective or more effective than the 48-h acute treatment at higher concentrations in PC-3 and DU-145 cells. Long-term treatment with R-flurbiprofen resulted in a dose-dependent decrease in cell growth with severe growth arrest even at 0.1 mmol/L and almost a complete loss of growth at 0.3 mmol/L for PC-3 cells and 0.5 mmol/L for DU-145 cells (Fig. 4A). In addition, there was a dose-dependent increase in p75NTR levels beginning at 0.1 mmol/L, which corresponds to the concentration at which decreased growth first occurred (Fig. 4B). Similarly, long-term treatment with ibuprofen resulted in a dose-dependent decrease in survival and induction of p75NTR at lower concentrations than observed with 48-h ibuprofen treatment, but was not as efficacious as long-term treatment with R-flurbiprofen (Fig. 4C and D).

Decreased survival caused by R-flurbiprofen and ibuprofen is mediated through p75NTR. The results presented thus far show that the induction of p75NTR is associated with decreased survival of PC-3 and DU-145 cells in response to R-flurbiprofen or ibuprofen treatment. To determine if the observed decreased survival is causally mediated through R-flurbiprofen– and ibuprofen-dependent induction of p75NTR, ponasterone A–inducible expression vectors for one of two different dominant negative forms of p75NTR were transfected into PC-3 and DU-145 cells before R-flurbiprofen or ibuprofen treatment. The dominant negative vectors both express truncated forms of p75NTR. ΔDDp75NTR has a deletion of the death domain, and ΔICDp75NTR has a deletion of the larger intracellular domain that includes the death domain. PC-3 and DU-145 cells treated with 0, 0.5, or 1.0 mmol/L R-flurbiprofen alone or with ponasterone A resulted in a similar dose-dependent decrease in survival (Fig. 5A and B). R-flurbiprofen treatment of cells transfected with either ΔDDp75NTR or ΔICDp75NTR but not treated with ponasterone A yielded the same result (Fig. 5A and B). However, cells transfected with either of the two dominant negative expression vectors followed by ponasterone A treatment to induce expression of the gene product exhibited increased survival following R-flurbiprofen treatment compared with cells not expressing dominant negative p75NTR (Fig. 5A and B). Similar results were observed with ibuprofen in PC-3 and DU-145 cells, where expression of the dominant negative forms of p75NTR partially prevented decreased survival due to ibuprofen (Fig. 5C and D).

We did similar rescue experiments using siRNA targeted against p75NTR. Transfection of PC-3 cells with p75NTR siRNA before R-flurbiprofen almost completely prevented the induction of p75NTR protein, whereas transfection with nontargeting siRNA did not prevent the induction of p75NTR protein (Fig. 6A). Treatment with R-flurbiprofen at 0.5, and 1.0 mmol/L in untransfected PC-3 cells or in PC-3 cells transfected with nontargeting siRNA resulted in a similar dose-dependent decrease in cell viability (Fig. 6A). However, treatment of PC-3 cells transfected with p75NTR siRNA partially prevented R-flurbiprofen–dependent decreased survival at 0.5 and 1.0 mmol/L concentrations (Fig. 6A). Similarly, transfection of PC-3 or DU-145 cells with p75NTR–targeting siRNA before ibuprofen treatment also almost completely blocked the induction of p75NTR, whereas transfection with nontargeting siRNA did not block induction (Fig. 6C and D). Treatment with 0, 0.5, and 1.0 mmol/L ibuprofen led to a dose-dependent decrease of cell survival in.

Figure 4. A and C, relative growth of PC-3 and DU-145 cells following treatment with 0, 0.1, 0.2, 0.3, 0.4, or 0.5 mmol/L R-flurbiprofen or ibuprofen twice per week for 2 wks. Cell number was determined using a hemocytometer. Columns, mean relative to the control (0 mM); bars, SE. *, *P < 0.05; **, *P < 0.01; ***, *P < 0.001. B and D, expression of p75NTR in PC-3 and DU-145 cells that were treated with 0, 0.1, 0.2, 0.3, 0.4, or 0.5 mmol/L R-flurbiprofen or ibuprofen twice per week for 2 wks. The A875 cell line was used as a positive control. SDS-PAGE was done using 50 μg of cell lysate and followed by immunoblot analysis using a monoclonal antibody to human p75NTR and β-actin as the loading control.
untransfected cells and in cells transfected with nontargeting siRNA, whereas transfection with p75NTR siRNA before ibuprofen treatment prevented a decrease in survival at the 1.0 mmol/L concentration (Fig. 6C and D). Transfection of DU-145 cells with p75NTR-targeting siRNA only partially prevented p75NTR induction upon R-flurbiprofen treatment (Fig. 6B). Consistently, only a partial rescue from R-flurbiprofen–dependent decreased survival was observed in these cells.

Discussion

The profens, also referred to as 2-aryl propionic acid derivatives, are a class of NSAIDs that share several characteristics. They can be reversible inhibitors of COX, are highly bound to plasma albumin, and are weak acids (36). They exist as enantiomer pairs, and it is generally the S-enantiomer, but not the R-enantiomer, that possesses potent COX inhibitory activity (37). Some profens have been in use for roughly 30 years, most commonly as treatment for inflammation due to rheumatoid arthritis (38–43). However, based on emerging studies associating NSAIDs with anticancer activity, various profens have been examined for their efficacy as chemopreventive and chemotherapeutic agents in a variety of cancer types (44–46). In this study, we examined the ability of six profens, including R-flurbiprofen, ibuprofen, oxaprozin, fenoprofen, naproxen, and ketoprofen, to induce the expression of the p75NTR tumor suppressor in prostate cancer cells. We observed a dosedependent induction of p75NTR by these drugs; however, the level of efficacy varied with R-flurbiprofen followed by ibuprofen as the most effective. Consistently, previous reports identify these two drugs as promising agents in prostate cancer treatment. R-flurbiprofen was shown to inhibit the progression of prostate cancer in the TRAMP mouse, whereas ibuprofen was shown to reduce survival of LNCaP and DU-145 human prostate cancer cells (8, 21, 34). In addition, treatment of the human colon cancer COX-null cell line HCT-116 with either of these drugs resulted in reduced cell survival, indicating that these drugs possess the ability to inhibit growth through a COX-independent mechanism (33). The remaining four profens induced p75NTR to a lesser degree with oxaprozin as the next most effective followed by fenoprofen, naproxen, and ketoprofen as the least effective. Of these four drugs, naproxen has also been shown to suppress growth of prostate cancer cells; however, it was less effective when compared with ibuprofen (21).

The results showed that an induction of p75NTR was associated with significantly decreased survival of PC-3, DU-145, and LNCaP cells. Although these cell lines exhibited low levels of p75NTR expression at lower concentrations of R-flurbiprofen and ibuprofen, the levels of p75NTR were below the threshold for decreased survival. As the concentration of R-flurbiprofen or ibuprofen increased, some variability between levels of p75NTR and decreased
survival may have resulted from discordance around inflection points. At higher concentrations of R-flurbiprofen and ibuprofen, levels of p75NTR were concordant with decreased survival. This cause and effect relationship between higher levels of p75NTR and decreased survival was subsequently shown in the rescue experiments with dominant negatives and siRNA to p75NTR.

The exact mechanism by which R-flurbiprofen and ibuprofen induce p75NTR protein expression remains under investigation. However, an examination of p75NTR mRNA levels by RT-PCR at various time points showed that treatment of PC-3 and DU-145 cells with 2.0 mmol/L R-flurbiprofen or ibuprofen resulted in a relatively strong induction of p75NTR mRNA in all cases within 4 h and continuing until between 8 and 12 h, after which p75NTR mRNA remained constant. These results suggest that the observed induction of p75NTR protein expression is a result of an increase in p75NTR mRNA. This may occur by an increase in mRNA stability because previous work showed that p75NTR protein expression is lost in prostate cancer cell lines due to increased mRNA instability that is mediated through the 3′ untranslated region (31). Therefore, it is possible that treatment with R-flurbiprofen or ibuprofen alleviates this instability.

COX-2 catalyzes the conversion of arachidonic acid to prostaglandins, which are associated with increased survival, decreased apoptosis, and promotion of angiogenesis (13). Hence, inhibition of COX-2 has been suggested as a mechanism by which NSAIDs decrease cancer cell survival. However, an increasing body of literature suggests that many NSAIDs act through a COX-independent mechanism to achieve anticancer activity in the prostate (13). To elucidate whether COX plays a role in aryl propionic acid–dependent decreased prostate cancer cell survival, we examined the status of COX-1 and COX-2 expression. As expected, the housekeeping isoform COX-1 was expressed at low levels in PC-3 and DU-145 cells, and neither R-flurbiprofen nor ibuprofen induced its expression. Because COX-1 is not overexpressed in prostate cancer, is not generally associated with tumor development, and was minimally expressed in both cell lines at a...
constant level, it seems that R-flurbiprofen and ibuprofen inhibited survival through a mechanism other than COX-1 inhibition. DU-145 cells lacked any COX-2 expression, whereas PC-3 cells only exhibited expression upon R-flurbiprofen or ibuprofen treatment. An induction of COX-2 following NSAID treatment has been observed previously in PC-3 cells, as well as several other cell types (47–49). Although ibuprofen treatment led to an up-regulation of COX-2, the effect would be negated because ibuprofen would inhibit COX-2 activity. Because R-flurbiprofen lacks COX inhibitory activity, COX-2 could potentially remain active upon induction by R-flurbiprofen. However, 48-h R-flurbiprofen treatment of PC-3 cells was more potent for decreased survival than R-flurbiprofen in DU-145 cells, as well as more potent than ibuprofen treatment in both PC-3 and DU-145 cells. Therefore, there is no evidence that an induction of COX-2 in PC-3 cells promotes survival or reduces the effect of R-flurbiprofen treatment. Indeed, induction of COX-2 in PC-3 cells was associated with the greatest decrease in cell survival. This further supports the hypothesis that these drugs act as anticancer agents independently of COX-2.

p75NTR belongs to the TNFR superfamily, which includes Fas, p55TNFR, DR3, DR4, DR5, and DR6 (35). These receptors initiate instructive apoptosis through a homologous intracellular death domain (50). With the exception of p75NTR, they induce apoptosis upon ligand binding (51). In contrast, p75NTR initiates apoptosis and suppresses growth in a ligand-independent manner in prostate and bladder cancer cells (26–29). Previous studies show that some NSAIDs up-regulate expression of various death receptors (52, 53). To eliminate the possibility that the observed decrease in survival was due to apoptosis initiated by another member of the TNFR family, we examined expression of the remaining six family members in PC-3 cells following R-flurbiprofen or ibuprofen treatment. Neither p55TNFR nor DR6 were detected with or without treatment. Fas and DR5 were weakly expressed and remained constant upon treatment. DR3 expression was stronger than the other family members, but weak relative to p75NTR, and remained constant following treatment. DR4 seems slightly up-regulated by ibuprofen; however, its expression levels were minimal relative to the robust induction of p75NTR. Similar results were observed in the presence of the appropriate ligand for each receptor. Therefore, other than p75NTR, the death receptors capable of initiating apoptosis do not seem to play a significant role in the decreased survival caused by R-flurbiprofen and ibuprofen treatment of PC-3 and DU-145 prostate cancer cells. It seems that R-flurbiprofen and ibuprofen decrease survival of PC-3 and DU-145 cells by a COX-independent mechanism. p75NTR is the only TNFR superfamily member significantly up-regulated by treatment with aryl propionic acids, and its up-regulation is associated with decreased survival in both cell lines. This suggests p75NTR induction as a COX-independent mechanism initiating the observed decrease in survival. Hence, three different approaches including p75NTR-targeting siRNA and two different p75NTR dominant negatives were used to examine a causal relationship between p75NTR levels and decreased cell survival. Each method increased survival of PC-3 and DU-145 cells treated with R-flurbiprofen or ibuprofen relative to untransfected cells. Collectively, these results provide strong evidence that p75NTR is at least partially causal of the decreased survival due to treatment with R-flurbiprofen or ibuprofen.

Because chemopreventive and chemotherapeutic drugs are often administered chronically, we examined whether long-term treatment enabled R-flurbiprofen and ibuprofen to maintain their anticancer activity at lower concentrations than observed with acute treatments (48 h). Both R-flurbiprofen and ibuprofen were highly effective in inducing p75NTR and reducing growth at lower concentrations after chronic treatment. In particular, long-term R-flurbiprofen treatment at the lowest concentration of 0.1 mmol/L exhibited an 85% reduction of growth relative to the control and essentially total loss of growth at concentrations of 0.3 mmol/L or greater in PC-3 cells. Likewise, in DU-145 cells, 0.1 mmol/L long-term R-flurbiprofen treatment resulted in 66% reduction of growth and almost a total loss of growth at 0.5 mmol/L treatment. This dramatic loss of growth also correlates with the induction of p75NTR, which occurred in a dose-dependent manner starting at 0.1 mmol/L. Similarly, ibuprofen exhibited a substantial loss of growth due to chronic treatment at lower concentrations relative to acute 48-h treatment at higher concentrations in both PC-3 and DU-145 cells. The results of the chronic treatment experiments are especially significant because they indicate that these drugs, especially R-flurbiprofen, could be highly effective in inhibiting prostate cancer growth at clinically achievable concentrations with long-term use. In clinical trials, R-flurbiprofen and ibuprofen have been given at doses that result in plasma concentrations of 0.14 and 0.48 mmol/L, respectively (54). These concentrations are within the range of concentrations used in our chronic study. Hence, the data collectively show the activity of R-flurbiprofen and ibuprofen as anticancer agents in the prostate and convincingly implicates p75NTR induction as a COX-independent mechanism by which this anticancer activity is achieved.

Acknowledgments

Received 10/3/2006; revised 12/29/2006; accepted 2/1/2007.

Grant support: NIH (UO1DK52626), the Department of Defense Prostate Cancer Research Program (PC060409), and Myriad Pharmaceuticals Inc.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

References

