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Free-Space Quantum Key Distribution

using Multilevel Encoding via Transverse Field Modulation

Mark T. Gruneisen
Air Force Research Laboratory, Directed Energy Directorate
AFRL/RDSE Kirtland AFB, NM 87117-5776

Abstract: Transverse modulation of the complex optical field defines sets of orthogonal states for multilevel
quantum key distribution. Principles of holography are evaluated as a means of generating and sorting the
single photon states.

OCIS codes: 270.5568 Quantum cryptography: 270.3365 Quantum communications; 030.1970 Diffractive optics;
050.7330 Volume gratings; 070.7345 Wave propagation

1. Introduction

Quantum key distribution (QKD) refers to a technique for sharing encryption keys that utilizes principles of
quantum uncertainty to detect eavesdropping [1.2]. The BB84 protocol introduced by Bennett and Brassard in 1984
utilizes two orthogonal polarization states in a given basis to define the quantum bit. or qubit, values. Polarization is
described by two dimensions and may be represented in any of three complementary bases; namely
vertical/horizontal, +/-45-degrees, and right-hand/left-hand circular polarization. In the BB84 protocol, sensitivity
to eavesdropping is ensured by randomly changing the polarization basis. Figure 1 shows the sender, Alice, and the
receiver, Bob, randomly switching between two complementary bases. When Alice and Bob choose the same basis,
a qubit may be unambiguously transmitted and measured. Measurements with complementary bases however yield
random outcomes and a sifting process discards these qubits. Should an eavesdropper, Eve, attempt to discretely
divert, measure, clone, and resend photons, she will sometimes choose the wrong bases and the thereby introduce bit
errors that alert Alice and Bob to her presence. Polarization encoding offers many compelling benefits for free-
space QKD including insensitivity to atmospheric propagation and availability of inexpensive and robust optics for
creating and sorting polarized photons.
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Fig. 1 Schematic of a BB84 quantum key distribution system.

It has been proposed that implementing QKD in dimensions greater than binary can result in increased security
and bandwidth [3]. As the dimension d increases, the number of complementary bases increases correspondingly
with as many as d+1 bases possible. With increasing number of bases, the probability that Eve will randomly
choose the correct basis decreases and the bit error rate due to eavesdropping increases enhancing the detectability
of eavesdropping. If fewer than all of the bases are utilized. the increased information content of the d-level “qudit”
may be, at least partially, realized.



Polarization is a vector characteristic of the optical field and intrinsically two-dimensional. However, the scalar
properties of the complex field (i.e. transverse modulation of the amplitude and phase) can be utilized to define
arbitrarily large sets of orthonormal complex fields in which free-space QKD could be implemented. For example,
the Laguerre-Gaussian and Hermite-Gaussian functions each provide a complete basis set of orthogonal functions in
which one can represent solutions to the paraxial wave equation [4]. While polarization is understood to be a
manifestation of the photon’s spin angular momentum, the azimuthal phase component of the Laguerre-Gaussian
polynomials is understood to be a manifestation of the photon’s orbital angular momentum [5,6].

2. Components of a free-space d-level QKD system based on transverse field modulation

Practical implementation of free-space QKD based on transverse field modulation (TFM) poses several challenges.
From an initial basis comprised of orthonormal complex optical fields, it is straightforward to define the additional
complementary bases [7]. The amplitude and phase modulation associated with these complex fields are to be
imparted to photons with fidelity sufficient to establish orthogonality among the states of each basis. Corruption of
these states due to atmospheric and diffractive propagation is to be considered and. finally, a robust technology for
sorting the photons with high efficiency and low cross talk is needed. In the discussion that follows, we take the
complex field of classical optics to be representative of the quantum probability amplitude of the photon state [8].
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Fig. 2 Generation of d-level states with computer-generated holography and a spatial light modulator,

The Leith-Upatnieks approach to holography utilizes interference between an optical field and a reference wave
to encode both amplitude and phase information in the hologram. We have shown that computer-generated
holography (CGH) implemented with high-resolution liquid-crystal spatial light modulators (SLMs) is a promising
technique for creating the required amplitude and phase modulation with sufficient fidelity [7]. Figure 2 shows an
excerpt from ref. [7] in which an initial basis comprised of three azimuthal phase functions is used to generate the 3
additional complementary bases. The Leith-Upatnieks interference function associated with one state in one of the
complementary bases is calculated, scaled and displayed on a 512x512 element phase modulator. The figure shows
the calculated intensity and wavefront interferogram associated with the theoretical state and that achieved
experimentally in the m=-1 diffracted order.
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Fig. 3 Propagation effects include atmospheric turbulence and diffraction,

photon

Figure 3 illustrates propagation phenomena that can corrupt the amplitude and phase modulated photon states.
These include both atmospheric aberrations and diffraction. The effects of atmospheric turbulence on the optical
phase associated with azimuthal phases has been evaluated analytically and shown to randomize the photon states



adaptive optics technologies can mitigate the effects of turbulence on optical phase. However, the fidelity with
which one can compensate turbulence may be limited by many parameters. These include atmospheric parameters
associated with range, altitude and elevation as well as the performance characteristics of the adaptive optics system.
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Fig. 4 An ideal photon sorter in a 3-level QKD system showing sorting with (a) correct basis and (b) incorrect basis.

Figure 4 shows a schematic representation of an ideal photon sorter in a 3-level system. An incident photon is
described by one of three states in as many as four bases. When the sorting element and photon are associated with
the same basis, the photon is binned to one of three detectors that reveal the state within that basis as shown in Fig.
4(a). When the sorting element and photon are associated with different bases, there is equal probability of
measuring any state within the measurement basis as shown in Fig. 4(b). Proposed approaches to photon sorting
include interferometry [11], cascaded volume holograms [12], and volume multiplexed holograms {13]. In the
multiplexed hologram approach, one hologram is prepared per basis. Each state of the basis is recorded with a
unique reference wave in a separate exposure. Upon readout, the matched hologram efficiently diffracts light from
each state of the basis to reconstruct the appropriate reference wave. Holograms associated with other bases will
disperse light uniformly among all reference waves associated with the hologram. A coupled mode theory analysis
of volume multiplexed holograms generated from plane-wave-derived bases captures the phenomenology of phase
and amplitude modulation and indicates that the ideal sorting characteristics described above should be achievable
{13]. Demonstrations of volume Bragg gratings as angular magnifiers with high efficiency and low cross talk also
indicate that such technology may be realizable [14].
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