Verification and Validation of DTRA’s Unified EM Design

Robert F. Gray
April 9, 2008

Approved for public release
Verification and Validation of DTRAs Unified EM Design

1. REPORT DATE
APR 2008

2. REPORT TYPE
N/A

3. DATES COVERED
-

4. TITLE AND SUBTITLE
Verification and Validation of DTRAs Unified EM Design

5a. CONTRACT NUMBER
-

5b. GRANT NUMBER
-

5c. PROGRAM ELEMENT NUMBER
-

5d. PROJECT NUMBER
-

5e. TASK NUMBER
-

5f. WORK UNIT NUMBER
-

6. AUTHOR(S)
-

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
ATK Mission Research, Newington, VA

8. PERFORMING ORGANIZATION REPORT NUMBER
-

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
-

10. SPONSOR/MONITOR’S ACRONYM(S)
-

11. SPONSOR/MONITOR’S REPORT NUMBER(S)
-

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
-

15. SUBJECT TERMS
-

16. SECURITY CLASSIFICATION OF:

<table>
<thead>
<tr>
<th>a. REPORT</th>
<th>b. ABSTRACT</th>
<th>c. THIS PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>unclassified</td>
<td>unclassified</td>
<td>unclassified</td>
</tr>
</tbody>
</table>

17. LIMITATION OF ABSTRACT
UU

18. NUMBER OF PAGES
12

19a. NAME OF RESPONSIBLE PERSON
-

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18
Overview

• Unified EM Design Background
• Unified EM Design Software Architecture
• V & V Approach
• V&V Results
• Conclusion
Background

- JCS memo on combined battlefield environmental effects initiative, c. 1994
 - Unified Protection Concept
 - Allocation Methodology
 - Evaluated Military and Commercial Standards
 - Prototype Unified EM Design Tool
- Unified EM Design & Test Protocols Program, 1999 - 2004
 - Unified EM Design Tool
 - Evaluation of potential for unified test methods
- Advanced Unified EM Design Program, 2005 - Present
 - Prototype DETES development
 - NuCS Capabilities integration
 - Verification and Validation
Application of UEM

<table>
<thead>
<tr>
<th>Phase 1 Concept Definition</th>
<th>Phase 2 Engineering Development</th>
<th>Phase 3 Production</th>
<th>Phase 4 Deployment</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Define System Concept to Meet Mission Needs</td>
<td>• Develop Cost Effective and Producible System Design</td>
<td>• Produce System</td>
<td>• Ensure Fielded Systems Operate to Requirements</td>
</tr>
</tbody>
</table>

Unified EM Design provides:
- Access to EM Standards (Left)
- System modeling (Bottom)
- Unified Barrier Performance Requirements for enclosure and penetration ports (Right)
Software Architecture

- Runs under all current Windows operating systems
- Major elements are:
 - User Interface
 - Analytical Models
 - Databases
- Databases have common structure
- Data in the UEM Design information database is protected

Diagram:
- Operating System
 - Windows XP
- User Interface
 - Visual Basic
 - SQL
- Analytical Models
 - Visual Basic
- System Information
 - MS Access DB Tables
 - SQL
- UEMD Information
 - MS Access DB Tables
 - SQL
- User Information
 - MS Access DB Tables
 - SQL
V & V Approach

- Based on DTRA V&V Guide
- Assumes Level II Accreditation

<table>
<thead>
<tr>
<th>V&V Activity</th>
<th>Accreditation Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>CM Assessment</td>
<td>I +</td>
</tr>
<tr>
<td>Documentation Assessment</td>
<td>I +</td>
</tr>
<tr>
<td>Software Quality Assessment</td>
<td>I +</td>
</tr>
<tr>
<td>Security Requirements Assessment (Not Required)</td>
<td>I +</td>
</tr>
<tr>
<td>Sensitivity Analysis</td>
<td>II +</td>
</tr>
<tr>
<td>Uncertainty Analysis</td>
<td>II +</td>
</tr>
<tr>
<td>Data V&V</td>
<td>II +</td>
</tr>
<tr>
<td>SME V&V (Conceptual Model, Logical, Face, & Results)</td>
<td>II +</td>
</tr>
<tr>
<td>Detailed V&V (Requirements, Design, & Code)</td>
<td>III</td>
</tr>
</tbody>
</table>
Results for Level I+ Activities

- CM Assessment looked at controls on software for maintenance and releases
- Documentation review
 - Independent review performed on V1.6
 - Verified current version documents consistent with V1.6
 - Verified new EM Quantity documentation
- SQA focused on outstanding program trouble reports (PTRs) and operational stability
Example Sensitivity Analysis

- Barrier performance requirements calculation utilizes a non-linear bounding process.
- Outputs will not vary linearly with input parameters in the large scale.
- Sensitivity analysis over a limited range.
- Example shows agreement within 0.2%.
Uncertainty Analysis Overview

<table>
<thead>
<tr>
<th>Uncertainty</th>
<th>Risk Level</th>
<th>Discussion</th>
<th>Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environments</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radiated</td>
<td>Low</td>
<td>Based on Standards. Very low sensitivity study result.</td>
<td></td>
</tr>
<tr>
<td>Conducted</td>
<td>Low to Moderate</td>
<td>Based on Standards or Worst Case Estimates. Low to moderate sensitivity study result.</td>
<td>Mitigators include use of test data or results from more accurate models and specifications.</td>
</tr>
<tr>
<td>Immunities</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radiated</td>
<td>Low</td>
<td>Based on Standards. Very low sensitivity study result.</td>
<td></td>
</tr>
<tr>
<td>Conducted</td>
<td>Low to Moderate</td>
<td>Depends on fidelity of model for conversion of standard’s specified test procedure to penetration current. Low to moderate sensitivity study result.</td>
<td>Mitigators include use of actual test data and margin.</td>
</tr>
<tr>
<td>Margins</td>
<td>Low</td>
<td>Based on QSTAG 1051 procedures. User selectable to manage risk. Very low sensitivity study result.</td>
<td></td>
</tr>
<tr>
<td>Topology</td>
<td>Low</td>
<td>Based on QSTAG 1051 procedures. No restrictions in Unified EM Design. Extensive user training also conducted.</td>
<td></td>
</tr>
<tr>
<td>Barrier Performance</td>
<td>Very low to Moderate</td>
<td>Based on QSTAG 1051 procedures. Very low sensitivity study result.</td>
<td>Mitigators include Shielding Effectiveness testing, Current Injection testing, and System Level testing.</td>
</tr>
</tbody>
</table>
Data V & V Analysis

- **Producer Quality**
 - Vast majority of the data comes from commercial and military standards
 - Verification approach
 - 857 EM Quantity descriptions in UEM V2.3
 - Randomly selected 60 descriptions & verified them against the standards
 - Accuracy of 90% or greater with 95% confidence
 - Complete review recommend
 - Review will be completed before release of V2.3

- **User Quality established by CBEE**
 - Instructional information in QSTAG 1051
Methodology was codified as part of the American, British, Canadian, and Australian Armies’ Standardization Program - QSTAG 1051

QSTAG 1051 includes:

- Step-by-step procedures for the barrier performance requirements calculations
- Logical verification of UEM processing
- Example results
Summary

- V & V approach based on DTRA guide
- Some of the V & V tasks completed as part of original development
- All V&V activities completed
- Draft V & V report available
 - V2.3 recommendations include complete data audit
 - Long term recommendations recommendations relate to maintainability and operation under new Operating Systems