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Spectral Survey Using Spectral Mixture Models
Alfredo Vega Irizarry

Air Force Research Laboratory
525 Brooks Road

Rome, New York 13441–4505
Email: Alfredo.VegaIrizarry@rl.af.mil

Abstract—A modification of the statistical technique known
as Expectation Maximization can be applied for detecting and
characterizing spectral activity. The novel technique adapts the
Expectation Maximization to process histogram data using a sig-
nal model. The method provides signal clustering and parameter
estimation.

I. INTRODUCTION

Conventional signal processing methods can be used to gain
information of the spectral activity. Spectral survey methods
can make use filtering, downconversion, frequency and phase
locking techniques [5], simple statistics, and neural networks
[5]. The methods can exploit unique features or use specialized
processing techniques [4].

This paper is going to treat spectral survey as a pattern
recognition problem. The proposed method provides clustering
and parameter estimation capabilities. The development of
the Spectral Mixture Models begins with a reinterpretation of
the statistical parameters in terms of the telecommunications
quantities. The similarities between the statistics and telecom-
munications are presented in Table I.

TABLE I
COMPARISON BETWEEN STATISTICS AND TELECOMMUNICATIONS

Statistics Telecommunications

Histogram Spectrum
Clusters Signals
Mean µ Center Frequency f

Standard Deviation σ Bandwidth b

Mixture probability α Amplitude-bandwidth product α

Statistical sample –
– Signal Sample

The frequency spectrum provides multimodal histogram
information. We wonder if a clustering algorithm such as the
Gaussian Mixture Models can be use for gaining information
about the activity in the spectrum. The idea sounds interesting,
but it has a problem. There is no equivalent concept of a sta-
tistical sample in the telecommunications domain. Fortunately,
it will be shown that it is possible to adapt the algorithm to
process histogram data. The process will be discussed in this
paper.

We will find out later that there is a second problem. The
Gaussian model is not adequate for representing telecommuni-
cations signals. A more suitable model for digital modulation
signals will be provided.

II. EXPECTATION MAXIMIZATION

The present discussion assumes that the reader is famil-
iarized with the derivation of the Gaussian Mixture Models
Algorithm which is an implementation of the Expectation
Maximization using a Gaussian distribution.

The expectation of the log-likelihood Q(~θ) is defined in
terms of the conditional expectation Ez′|~y′ , the known data
vector ~y′ , the missing data z′ which identifies the cluster
or mixture element, the parameter vector ~θ and the joint
probability of the data and the mixture element p(~y′, z′; ~θ).

Q(~θ) = Ez′|~y′{p(~y′, z′; ~θ)} (1)

The joint probability can be separated in two terms: the
model p(~y′|z′; ~θ) and the mixture probability P (z′).

p(~y′, z′; ~θ) = p(~y′|z′; ~θ)P (z′; ~θ) (2)

The parameter vector ~θ contains the following parameters:
the mixture probability α = P (z′; ~θ), the mean vector µ and
the covariance matrix Σ. Maximizing the expectation with
respect to these parameters provides optimal density functions
that characterize the sample space.

~θ = [µ,Σ, α] (3)

In our spectral survey problem, the parameter vector con-
sists of three quantities: the center frequency f , the bandwidth
b and the amplitude-bandwidth product α.

~θ = [f, b, α] (4)

The method under development can applied to multidimen-
sional cases. An interesting application the application to the
joint time-frequency domain. However, this discussion is out
of the scope of our present paper. For simplicity, the problem is
restricted to the one dimensional case which for the Gaussian
Mixture Models consists at this moment of fictitious statistical
samples.

~y′ = y′ (scalar) (5)
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III. HISTOGRAM DATA

The Gaussian Mixture Models will be adapted to work with
histogram data. The approach will consider two sets. The first
set Y ′ describes J ′ statistical events that represent our known
data. This is our input data y′ = y′m.

Y ′ = {y′m : j = 1, ...,M} (6)

A second set Y is defined as the histogram of the set Y ′.
Each partition j of the sample space is identified with a bin
number yj and the histogram count wj . This set is what we
would like our input to be y = yj .

Y = {(yj , wj) : j = 1, ..., J} (7)

We could assume that the elements of y′n are sorted in
ascending order. In such case, the elements of a bin yj can be
expressed by:

yj = {y′n, y′n+1, ..., y
′
n+wj−1} (8)

Associated with each bin yj , there is also the missing data
zj which contains information about the mixture element or
cluster index. (There is also a corresponding variable z′m for
each sample y′m.) The cluster element is identified by an
integer number from 1 to K, where K is the number of
clusters.

1 ≤ zj ≤ K (9)

We will assume that every sample point within a histogram
bin shares the same missing variable. In average, the statistical
samples in a certain vicinity should belong to the same cluster.
We can argue that if the bin size is small enough, this
assumption will be true.

P (z′n) = P (z′n+1) = ... = P (z′n+wj−1) = P̂ (zj = k) (10)

An alternative and perhaps less confusing notation for the
mixture probability is given by equation 11. This probability
can be represented as a matrix with indexes for the bin and
the cluster numbers.

P̂ (j, k) = P̂ (zj = k) (11)

The model must also be expressed in terms of the histogram
variables. This step requires to define a new conditional
probability for each bin p̂(yj |zj ; ~θ) as an average of the
probabilities of all the statistical samples within a histogram
bin.

p̂(yj |zj = k; ~θ) =
1
wj

n+wj−1∑
m=n

p(y′m ⊆ yj |z′m = k; ~θ) (12)

Now, we can proceed with the calculation of the joint
probability density and the a posteriori probability needed
by the Expectation Maximization. The term wj is canceled

resulting in an expression that is similar to the original
Bayesian estimate.

p̂(yj , zj = k; ~θ) =
1
wj

n+wj−1∑
m=n

p(y′m ⊆ yj |z′m = k)P̂ (zj = k)

(13)

p̂(yj ; ~θ) =
K∑

k=1

p̂(yj , zj = k; ~θ)P̂ (zj = k) (14)

p̂(zj = k|yj ; ~θ) =
p̂(yj , zj = k; ~θ)

p̂(yj ; ~θ)
(15)

The histogram data will be incorporated into the conditional
expectation of the log-likelihood. Each probability of the
histogram bin data is assumed to be a independent event.

The variable wj indicates the number of times that the joint
probability shown in equation 13 appears in the likelihood
expression. This is equivalent to raise each probability term to
the wj power. The term P̂ (zj ; ~θ)w will be treated as a single
term for convenience.

α = P (zj ; ~θ) = P̂ (zj ; ~θ)w (16)

The variable wj was originally defined as an integer, but by
looking at equation 17, we notice that the range of w can be
extended to any a real positive number. This quantity will be
used to represent the amplitude of the spectrum.

Q(~θ) = Ez|~y{p̂(~y|z; ~θ)wP (z; ~θ)} (17)

The maximization process requires the calculation of the
derivatives of with respect to each parameter: f , b and α and
finding the roots. The roots are the new updated parameters.
Finding the roots may require implementing methods such as
the Newton’s algorithm.

∇θQ(~θ) = 0 (18)

The parameter updates (M-step) are used to calculate the a
priori probabilities (E-step) using the Bayesian formulas that
have been derived. The process is repeated until the process
converges to some local maximum.

~θ ≈ ~θmax (19)

The parameter vector was relabeled to use the spectral
survey parameters. After running several trials, the new algo-
rithm was unable to converge to meaningful parameters. The
algorithm processed a mixture of MPSK and MFSK signals.
The equations and algorithm appeared to be implemented
properly. Using a Gaussian model was not an good choice.
Adjacent clusters interfere with each other due to the wide
transition bandwidth. The model also lacks of a flat passband.
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IV. CLIPPED GAUSSIAN MODEL

Our telecommunication signal requires a bandwidth efficient
model. The model must incorporate a profile that approximates
an ideal filter response in the frequency domain. Our first
choice would be to use a Butterworth filter model. Unfor-
tunately, the use of this model results in complex analytical
equations during the maximization process. Our desire is
to find bandwidth efficient models that are computationally
efficient.

A distribution known as Clipped Gaussian will be used for
our model [1]. The model provides a flat pass band and a
steep transition bandwidth. The model looks appealing because
the log-likelihood simplifies the product of the exponential
function. The implementation of the algorithm using this
model produced promising results.

p̂(y|z; ~θ) =
N

b · Γ( 1
N )

exp

((
y − f

b/2

)N
)

(20)

Where, N is an even positive integer and Γ(x) is the
incomplete Gamma function. Selecting b = 2

√
2σ and N = 2

results in the Gaussian distribution, but this is not a good
choice. Our signal model was built using N = 8.

V. OVERESTIMATION

The number signals in the spectrum is assumed to be
unknown. We hope that initializing the algorithm with many
mixtures will result in overestimation. This will allow us to
capture more details in the frequency spectrum.

The overestimation in the Spectral Mixture Models gener-
ates suboptimal solutions which will be referred as subbands.
The final solutions will be referred as bands or signals. The
algorithm will require an additional step for recombining
adjacent subbands that belong to the same band. The recom-
bination can make use of the parameters to determine the
proximity with two adjacent subbands. Recombination should
be done when the algorithm has converged to some suboptimal
solution.

VI. CONTROLLING CONVERGENCE

The Clipped Gaussian model has a singularity at b = 0.
To avoid convergence problems, we can execute a rule imme-
diately after updating the parameters. The rule will limit the
growth of b. The rule can be implemented with a simple if
statement.

if(b < bmin) then bj = bmin endif

Other useful way to control the convergence of the algo-
rithm is by reserving one mixture element for noise floor
characterization. The bandwidth of one mixture is forced to
be wide enough so it is force to converge to the receiver noise
floor.

Fig. 1. Convergence of 40 spectral mixtures after 19 iterations. Signals from
left to right: QPSK, tone, QPSK, FSK-2 and noise floor.

VII. SIMULATIONS

Tables II to VII contain the results of several Monte Carlo
simulations. The simulations were conducted using combina-
tion of center frequencies: 2, 4 and 6 kHz; bandwidth: 1 kHz;
and various signal-to-noise ratios (SNR): 40, 30, 20, 10, 5 and
2 dB. The algorithm was initialized with uniformly spaced
mixtures. The initial bandwidths were uniform except for the
bandwidth of one mixture that is forced to converge to the
noise floor of the receiver. The algorithm was stopped after
25 iterations. The signal under test is a QPSK type sampled
at 16 kHz. The message is a random sequence that contains
between 400 and 500 symbols. The true number of cycle is a
multiple of the total number of channels in the analysis filter
used to estimate the frequency spectrum. A total of 256 filter
channels were used in all the simulations.

VIII. CONCLUSION

Expectation Maximization can be use for spectral survey by
adapting the algorithm in two ways. First, the algorithm needs
to process histogram-like data such as the frequency spectrum
or spectrogram. Second, the model needs to be representative
of a signal. A display of the spectral mixtures is shown in
Figure 1.

The concept can be refined to produce better estimates. Bet-
ter combination rules can be implemented. Initial conditions
can be modified to acelerate the convergence. It is important
to notice that the parameter b was not meant to be a 3dB
bandwidth estimate. A better bandwidth estimates could be
produced by mapping b to the real 3dB bandwidth.

Potential applications of this method include cognitive ra-
dios, broadband receivers and measurement equipment.
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TABLE II
CENTER FREQUENCY ESTIMATES FOR VARIOUS SNR LEVELS. TRUE
PARAMETERS CENTER FREQUENCY = 2 KHZ, BANDWIDTH = 1 KHZ.

Fc = 2kHz Center Frequency Estimate (Hz)

SNR Mean Bias Std. Dev.

2 2005.48 -5.48 437.81
5 2057.59 -57.59 339.73

10 2010.82 -10.82 278.32
20 2015.63 -15.63 166.07
30 2024.53 -24.53 138.25
40 2022.31 -22.31 135.74

TABLE III
CENTER FREQUENCY ESTIMATES FOR VARIOUS SNR LEVELS. TRUE
PARAMETERS CENTER FREQUENCY = 4 KHZ, BANDWIDTH = 1 KHZ.

Fc = 4kHz Center Frequency Estimate (Hz)

SNR Mean Bias Std. Dev.

2 4303.15 -303.15 70.04
5 4026.37 -26.37 144.73

10 4020.42 -15.80 52.56
20 4015.80 -15.65 8.15
30 4015.65 -15.70 4.80
40 4015.70 -15.70 2.91

TABLE IV
CENTER FREQUENCY ESTIMATES FOR VARIOUS SNR LEVELS. TRUE
PARAMETERS CENTER FREQUENCY = 6 KHZ, BANDWIDTH = 1 KHZ.

Fc = 6kHz Center Frequency Estimate (Hz)

SNR Mean Bias Std. Dev.

2 5339.43 660.56 144.27
5 5957.93 42.06 42.23

10 6011.36 -14.84 5.40
20 6014.84 -15.46 10.32
30 6015.46 -15.68 4.74
40 6015.68 -15.68 3.55

TABLE V
BANDWIDTH ESTIMATES FOR VARIOUS SNR LEVELS. TRUE PARAMETERS

CENTER FREQUENCY = 2 KHZ, BANDWIDTH = 1 KHZ.

Fc = 2kHz Bandwidth Estimate (Hz)

SNR Mean Bias Std. Dev.

2 1063.18 -63.18 643.80
5 1249.49 -249.49 603.34
10 1409.90 -409.90 472.68
20 1670.68 -670.68 303.80
30 1747.25 -747.25 255.34
40 1796.64 -760.98 250.65
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