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We consider analog to digital (A/D) conversion, based on the quantization of coefficients obtained via the projection of a 
continuous time signal over a set of basis functions. The framework presented here for A/D conversion is motivated by the 
sampling of an input signal in domains which may lead to significantly less demanding A/D conversion characteristics, i.e., lower 
sampling rates and lower bit resolution requirements.We show that the proposed system efficiently parallelizes the analog to digital 
converter (ADC), which lowers the sampling rate requirements by increasing the number of basis functions on which the 
continuous time signal is projected, leading to a tradeoff between sampling rate reduction and system complexity. Additionally, the 
A/D conversion resolution requirements can be reduced by optimally assigning the available number of bits according to the 
variance distribution of the coefficients obtained from the signal projection over the new A/D conversion domain. In particular, we 
study A/D conversion in the frequency domain, where samples of the continuous signal spectrum are taken such that no time 
aliasing occurs in the discrete time version of the signal.We show that the frequency domain ADC overcomes some of the 
difficulties encountered in conventional time-domain methods for A/D conversion of signals with very large bandwidths, such as 
ultra-wideband (UWB) signals. The proposed A/D conversion method is compared with conventional 
ADCs based on pulse code modulation (PCM). Fundamental figures of merit in A/D conversion and system tradeoffs are discussed 
for the proposed ADC. The signal-to-noise and distortion ratios of the frequency domain ADC are presented, which quantify the 
impact of themost critical impairments of the proposed ADC technique. We also consider application to communications receivers, 
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Abstract—We consider analog to digital (A/D) conversion, based
on the quantization of coefficients obtained via the projection of
a continuous time signal over a set of basis functions. The frame-
work presented here for A/D conversion is motivated by the sam-
pling of an input signal in domains which may lead to significantly
less demanding A/D conversion characteristics, i.e., lower sampling
rates and lower bit resolution requirements. We show that the pro-
posed system efficiently parallelizes the analog to digital converter
(ADC), which lowers the sampling rate requirements by increas-
ing the number of basis functions on which the continuous time
signal is projected, leading to a tradeoff between sampling rate
reduction and system complexity. Additionally, the A/D conversion
resolution requirements can be reduced by optimally assigning the
available number of bits according to the variance distribution of
the coefficients obtained from the signal projection over the new
A/D conversion domain. In particular, we study A/D conversion
in the frequency domain, where samples of the continuous sig-
nal spectrum are taken such that no time aliasing occurs in the
discrete time version of the signal. We show that the frequency do-
main ADC overcomes some of the difficulties encountered in con-
ventional time-domain methods for A/D conversion of signals with
very large bandwidths, such as ultra-wideband (UWB) signals. The
proposed A/D conversion method is compared with conventional
ADCs based on pulse code modulation (PCM). Fundamental fig-
ures of merit in A/D conversion and system tradeoffs are discussed
for the proposed ADC. The signal-to-noise and distortion ratios
of the frequency domain ADC are presented, which quantify the
impact of the most critical impairments of the proposed ADC tech-
nique. We also consider application to communications receivers,
and provide a design example of a multi-carrier UWB receiver.

Index Terms—Analog to digital conversion (ADC), communica-
tions receiver, high-speed ADC, mixed-signal processing, quanti-
zation, signal expansion, ultra-wideband.

I. INTRODUCTION

D IGITAL ULTRA-WIDEBAND (UWB) systems are
highly desirable, offering flexibility and programmabil-

ity. However, while system data rates and bandwidths continue
to expand, analog-to-digital converters (ADCs) are limited in
bandwidth, resolution, and power consumption [1]. Currently
available architectures used in the fabrication of ADCs include
the flash architecture, which is based on parallel techniques that
use 2b − 1 comparators to achieve b bits of resolution. All com-
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parators sample the analog input signal simultaneously, making
the flash ADC inherently fast. Because of the parallelism of
this architecture, the number of comparators grows exponen-
tially with b, thus increasing the power consumption and also
the circuitry area. This in turn increases the input capacitance
limiting the system bandwidth and makes it difficult to match
components. Some variations of the flash architecture such as the
folded-flash [2]–[4], pipelined [5], [6], and time interleaved [7]
architectures have been proposed in order to overcome some
of these problems. Among the difficulties that have slowed the
evolution of ADCs is the aperture jitter or aperture uncertainty,
which is the sample-to-sample variation of the instant in time
at which sampling occurs. Moreover, the speed of sampling is
limited by the frequency characteristic of the device used in the
design, which limits the ability of the comparators to make an
unambiguous decision about the input voltage.

To overcome these problems, techniques that aim to relax the
operational conditions of the ADC have been proposed. Low-
resolution ADC is possible with sigma-delta modulation [8].
The noise penalty associated with the use of a few bits or less in
the quantization process is overcome in the sigma-delta scheme
by using either signal oversampling or multi-band processing
techniques [9], [10]. In particular, when a single bit is used,
the implementation is greatly simplified and practical mono-bit
UWB digital communications receivers have significant poten-
tial [11]–[13]. These techniques generally require sampling at
or above the Nyquist rate over the full signal bandwidth, and so
suffer from the aforementioned high speed issues. In addition,
they provide a single UWB serial data stream, which may stress
the digital signal processing following the ADC.

An alternative is to channelize the analog signal by means
of a bank of bandpass filters [14], and the output of each fil-
ter are sampled in parallel. Multirate approaches may also be
used [15]. ADC thus occurs at a reduced rate for each of the
resultant bandpass signals. The bandpass outputs may also be
frequency translated to baseband [16], allowing the use of a
single lowpass filter design. However, the bandpass analog filter
bank design is difficult, and the resulting nonideal filters cause
signal leakage across the bands that can degrade overall sys-
tem performance unless properly accounted for. The design of
analog filters with sharp rolloff needed in the multiband ADC
approaches also suffers from power consumption and a large cir-
cuitry area to accommodate the passive elements (i.e., inductors
and capacitors).

In this paper, we consider an alternative parallel sampling
scheme. Our approach is to project the signal over basis

0018-9545/$20.00 © 2005 IEEE
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functions, and then sample the basis coefficients. Representing
the signal in a domain other than the classical time-domain
sampling approach yields parallel data streams, and potentially
improves the distortion versus average bit rate in the sampled
output. The time-domain signal may be reconstructed via a
linear digital computation, or signal processing can be carried
out directly with the basis coefficients. N basis coefficients are
calculated in a parallel analog computation every Tc seconds,
followed by N parallel ADCs. Thus, the ADCs run at a speed
that is inversely proportional to the time-window duration Tc ,
which can be properly designed to meet the speeds allowed by
the technology used in the implementation. The speed reduction
comes at the cost of the implementation of the local basis
function generators, mixers, and integrators needed to project
the continuous-time signal onto the set of basis functions. This
introduces a tradeoff between sampling speed reduction and
system complexity that is characterized in this paper. Although
similar reductions in the speed of the quantizers could be
achieved in the time domain by using a time-interleaved bank
of quantizers [7], [17], [18], synchronization problems, the very
fine time resolution in high-speed applications, and the fact that
all the ADCs see the full bandwidth of the input signal makes it
difficult to design the sample/hold circuitry, and causes the over-
all design to require significant power. In addition, the signal
expansion approach avoids the sharp-rolloff filter bank needed
in multiband ADC architectures. Mixing with basis functions,
followed by integration over a time window required to project
the signal, generally synthesizes a filter bank with overlapping
spectrum and smooth transitions. The relaxed implementation
requirements are a key motivation for the ideas presented here.

Potential lower bit requirements, or equivalently, the potential
improvement in the distortion of the ADC of signal expansions,
can be achieved by optimally allocating the available number of
bits in the quantization of the coefficients obtained through the
projection of the continuous-time signal over the basis set. The
possibility of efficiently allocating the available resources in
terms of number of bits per sample is a feature that is not avail-
able in conventional time domain ADC. Optimal bit allocation is
possible in the proposed A/D conversion scheme because some
signal characteristics that are hidden in the time-domain, such as
power spectral distribution, can now be explored by projecting
the continuous-time signal.

As a particular case, we consider A/D conversion in the
frequency domain [19]–[21], in which samples of the signal
transform are taken at a rate that guarantees no aliasing in
the discrete-time signal domain. The discrete frequency sam-
ples are then quantized by a set of quantizers operating over
DC levels that change with a rate that is much lower than the
Nyquist rate needed in the sampling of the time domain signal.
Other domains, such as those provided by the Hadamard, Walsh,
Walsh–Fourier, and Haar wavelet transforms, are also potential
candidates.

Although the representation of an analog signal through its
projection on basis functions is a well known continuous sig-
nal processing tool, its specific application in A/D conversion
has not been fully investigated. Basic theoretical aspects and
practical issues in A/D conversion have not been reported in the

Fig. 1. Block diagram of the analog-to-digital converter, which expands the
received signal using a set of basis functions.

literature, to the best of the authors’ knowledge. Perhaps, the
closest related publication is sampling of signal projections [22],
and some information theory work on overcomplete expansions
[23], [24], where quantization of the coefficients of redundant
expansions is carried out. These publications study improved
sampling techniques based mainly on vector quantization, over-
sampling [25], [26], and signal reconstruction algorithms.

The paper is organized as follows. Section II sets up the sig-
nal expansion and sampling ideas. In Section III, we provide
an MSE distortion analysis, including quantization effects and
truncation of the number of basis coefficients N , and compare
these results with conventional time domain ADCs. We also
consider optimum bit allocation under a distortion metric, il-
luminating tradeoffs involving complexity (choice of N ) and
number of bits used in quantization. In Section IV, we describe
the application to communications systems, and illustrate how a
low complexity receiver operates with the sampled basis coeffi-
cients. Section V focuses on the use of a Fourier basis, and gives
the specifics of spectral sampling. In Section VI we provide an
SNR analysis of the Fourier-basis ADC operating with imperfect
devices, including errors in gain, timing, and frequency offset.
Finally, in Section VII we briefly consider application to UWB
multicarrier systems, and Section VIII provides conclusions.

II. ANALOG TO DIGITAL CONVERSION OF SIGNAL EXPANSIONS

The block diagram depicted in Fig. 1 shows the basic sig-
nal expansion principle of the proposed A/D conversion. The
received signal s(t) is decomposed every Tc seconds into N
components which are obtained through the projection over the
basis Φl(t)|N −1

l=0 . The coefficients s
(m )
l |N −1

l=0 are found as

s
(m )
l = 〈s(t),Φl(t)〉m,Tc

=
∫ Tc

0

s(t + mTc)Φ∗
l (t) dt. (1)

If the mean square error (MSE) criterion is used to reconstruct
the received signal s(t) in the interval mTc ≤ t ≤ (m + 1)Tc
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through a linear combination of the basis functions Φl(t)|N −1
l=0 ,

in general the coefficients s
(m )
l |N −1

l=0 will have to be linearly
transformed. We define the N × N matix Ψ, which contains
the correlation coefficients of the basis functions,

ψn,l = 〈Φn (t),Φl(t)〉Tc

=
∫ Tc

0

Φ∗
n (t)Φ∗

l (t) dt, n, l = 0, . . . , N. (2)

The coefficients a
(m )
l that provide the best MSE approximation

are found by solving the linear equation

s(m ) = Ψ a(m ) (3)

where the vectors s(m ) and a(m ) are defined as, s(m ) =
[s(m )

0 · · · s(m )
N −1]

T and a(m ) = [a(m )
0 · · · a(m )

N −1]
T . Solving (3) re-

quires invertibility of the matrix Ψ. If the basis functions are
orthonormal, then a(m ) = s(m ). The best MSE approximation
is given by

s̃(m )(t) =
N −1∑
l=0

a
(m )
l Φl(t), 0 ≤ t ≤ Tc (4)

where the signal s̃(m )(t), 0 ≤ t ≤ Tc , is the best MSE approx-
imation of the input signal s(t),mTc ≤ t ≤ (m + 1)Tc . At the
end of the conversion time Tc , the coefficients s

(m )
l |N −1

l=0 reach

a constant value that is fed to a set of quantizers Q
(m )
l |N −1

l=0 , one

for each coefficient, which return the digital words ŝ
(m )
l |N −1

l=0 .

The lth quantizer Q
(m )
l has 2bl output levels, where bl |N −1

l=0 is the
number of bits used to obtain the quantized set of coefficients
ŝ
(m )
l |N −1

l=0 . These values represent the output of the analog to
digital converter for the input signal in a Tc second interval.
Notice that the signal s(t) is being segmented by a rectangular
window for simplicity; windows with preferable characteristics
can be used instead. The number of coefficients N used in the
A/D conversion is intimately related to the conversion time Tc ,
and will affect the degree of the approximation indicated in
(4), up to the point where the signal s(t) is represented with
zero error energy with a sufficient number of coefficients1 N∗.
When only a limited number of coefficients (N ≤ N∗) is used in
the A/D signal conversion, some distortion is introduced. This
distortion, plus the distortion introduced in the quantization pro-
cess, constitutes the major sources of distortion in the proposed
A/D conversion, and is analyzed in Section III. We also consider
timing and frequency offset distortion in Section VI.

1The existence of the number N∗ that makes the mean square error zero
assumes that the basis functions Φl (t)|N ∗−1

l=0
span the input signal s(t). It is

also possible that N∗ tends to infinity as, for example, happens with signals
with infinite spectral support (non-bandlimited signals) when they are projected
in the frequency domain. However, for simplicity in the analysis, it is assumed
that the input signal s(t) is a smooth, well behaved signal (ideally a bandlimited
signal) that can be represented with a finite number of coefficients N∗. The
particular conditions that s(t) must satisfy for the existence of N∗ will depend
on the domain chosen for the A/D conversion.

III. ADC DISTORTION WITH AN ORTHOGONAL BASIS

DUE TO LIMITED NUMBER OF COEFFICIENTS AND

QUANTIZATION ERROR

Without loss of generality, consider the interval 0 ≤ t ≤ Tc ,
in which the coefficients âl |N −1

l=0 at the output of the A/D con-
verter provide a representation of the analog input signal in the
conversion time Tc . The reconstructed signal is expressed as

ŝ(t) =
N −1∑
l=0

âlΦl(t), 0 ≤ t ≤ Tc. (5)

Using the MSE criterion, the total distortion D can be expressed
as

D = E{|s(t) − ŝ(t)|2}
= E{(s(t) − ŝ(t))(s(t) − ŝ(t))∗}

= E



∣∣∣∣∣
N∗−1∑
l=0

alΦl(t) −
N −1∑
l=0

âlΦl(t)

∣∣∣∣∣
2



= E



∣∣∣∣∣
N∗−1∑
l=N

alΦl(t) +
N −1∑
l=0

alΦl(t) −
N −1∑
l=0

âlΦl(t)

∣∣∣∣∣
2



= E



∣∣∣∣∣
N∗−1∑
l=N

alΦl(t)

∣∣∣∣∣
2

+ E



∣∣∣∣∣
N −1∑
l=0

(al − âl)Φl(t)

∣∣∣∣∣
2



+
N∗−1∑
l=N

N −1∑
k=0

E{a∗
l (ak − âk )}Φ∗

l (t)Φk (t)

+
N∗−1∑
l=N

N −1∑
k=0

E{al(a∗
k − â∗

k )}Φl(t)Φ∗
k (t). (6)

In order to eliminate the time dependence in the distortion D,
we proceed to take the time average as follows:

D̄ =
1
Tc

∫ Tc

0

E{|s(t) − ŝ(t)|2}dt

= Ē



∣∣∣∣∣
N∗−1∑
l=N

alΦl(t)

∣∣∣∣∣
2

+ Ē



∣∣∣∣∣
N −1∑
l=0

(al − âl)Φl(t)

∣∣∣∣∣
2



+
N∗−1∑
l=N

N −1∑
k=0

E{a∗
l (ak − âk )}

× 1
Tc

∫ Tc

0

Φ∗
l (t)Φk (t) dt︸ ︷︷ ︸

=0

+
N∗−1∑
l=N

N −1∑
k=0

E{al(a∗
k − â∗

k )}

× 1
Tc

∫ Tc

0

Φl(t)Φ∗
k (t) dt︸ ︷︷ ︸

=0

= D̄N + D̄Q (7)

where the bar “−” on top of any variable or operator indicates
time average, for example Ē{ · } = 1/Tc

∫ Tc

0 E{ · }dt. Both
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terms in the third line of (7) are equal to zero due to the fact that
the functions Φl(t)|N∗−1

l=0 are orthogonal2 in the interval 0 ≤ t ≤
Tc . Thus, the total distortion introduced by the A/D converter
is the sum of the truncation distortion due to the potentially
limited number of coefficients N , which is denoted as D̄N , and
the quantization distortion due to the finite number of bits used
in the quantization of the coefficients al |N −1

l=0 , which is denoted
as D̄Q .

The first distortion D̄N introduces truncation error in the
reconstruction formula (4), which can be expressed as:

e(n) = s(t) − s̃(t) = s(t) −
N −1∑
l=0

alΦl(t) (8)

where the coefficients al |N −1
l=0 are calculated as in (1) in order

to minimize the MSE distortion; i.e., to minimize the energy of
the error e(n). The distortion D̄N , obtained with N coefficients,
can be expressed as

D̄N = Ē



∣∣∣∣∣
N∗−1∑
l=N

alΦl(t)

∣∣∣∣∣
2



=
1
Tc

∫ Tc

0

E



∣∣∣∣∣
N∗−1∑
l=N

alΦl(t)

∣∣∣∣∣
2

 dt

=
1
Tc

∫ Tc

0

E

{
N∗−1∑
l=N

N∗−1∑
m=N

ala
∗
m Φl(t)Φ∗

m (t)

}
dt

=
N∗−1∑
l=N

N∗−1∑
m=N

E{ala
∗
m} 1

Tc

∫ Tc

0

Φl(t)Φ∗
m (t) dt

=
1
Tc

N∗−1∑
l=N

E{ala
∗
l } =

1
Tc

(
N∗−1∑
l=0

σ2
l −

N −1∑
l=0

σ2
l

)

=
1
Tc

(
Es,Tc

−
N −1∑
l=0

σ2
l

)
(9)

where Es,Tc
=
∑N∗−1

l=0 σ2
l is the energy of the signal in the

conversion interval Tc, σ
2
l is the variance of the coefficient al (it

is assumed E{al} = 0 for convenience) and the distortion D̄N

is nonnegative by definition. The fourth line in (9) assumes that
the functions Φl(t)|N∗−1

l=0 are orthonormal. When the number of
coefficients is N∗, the distortion reaches the zero value and the
received signal s(t) can be represented as

s(t) =
N∗−1∑
l=0

alΦl(t), 0 ≤ t ≤ Tc (10)

where the equality holds in the sense that the approximation
error has zero energy. From a theoretical point of view, the trun-
cation error e(n) can be made as small as desired; however, in
a practical application, this error may be nonzero as the number

2We restrict the ADC distortion analysis presented in Section III to signal pro-
jection over orthonormal basis functions for simplicity of the results. However,
projection over linearly dependent basis functions can also be employed.

of coefficients N is limited by system constraints such as com-
plexity and circuitry area. In this case, the coefficients with the
largest variance σ2

l should be chosen in order to minimize the
error energy in (9).

The distortion introduced by the finite number of bits used
in the orthogonal-domain quantization of the coefficients, D̄Q ,
is called quantization error and is commonly measured by the
average MSE, given by

D̄Q = Ē



∣∣∣∣∣
N −1∑
l=0

(al − âl)Φl(t)

∣∣∣∣∣
2

 =

1
Tc

N −1∑
l=0

DQl
(11)

where the same argument used in (9) is used here to sim-
plify the expression, and DQl

= E{(al − âl)2}. A general
closed form expression for the individual distortions DQl

has
proven difficult to find except for Gaussian sources; how-
ever, for large number of bits bl , an expression has been
found as [27]

DQl
(bl) = ε2l σ

2
l 2−2bl (12)

where ε2l is a constant that depends on the probability density
function (pdf) of al , namely pl(a), as follows

ε2l =
1
12

(∫ ∞

−∞
p̃l(a)1/3 da

)3

(13)

where p̃l(a) = σlpl(σla). Therefore, the average distortion in-
troduced by the quantization process is

D̆Q =
1
N

D̄Q =
1

NTc

N −1∑
l=0

ε2l σ
2
l 2−2bl (14)

where the division by N is used to average across the coeffi-
cients.

A. Optimum Bit Allocation

At this point, we would like to find the optimal bit allo-
cation among the N coefficients when the desired average
number of bits per coefficient at the output of the ADC is a
constant B; i.e., we want to find the set of number of bits
bl |N −1

l=0 constrained to
∑N −1

l=0 bl = BN such that the distortion
in (14) is minimized. This classical optimization problem can
be solved using Lagrange multipliers as shown in Appendix I,
leading to

bl = B +
1
2

log2

ε2l σ
2
l(∏N −1

l=0 ε2l σ
2
l

)1/N
. (15)

The optimum solution assigns more bits to the coefficients with
larger variance in order to make the distortion of all the coeffi-
cients uniform and equal to

D̆Q∗ =
1
Tc

DQl
=

1
Tc

(
N −1∏
l=0

ε2l σ
2
l

)1/N

2−2B ≤ D̆Q . (16)

This bit allocation is equivalent to the concept of reverse water-
filling found in rate distortion theory [28]. Notice that if the
variance of one coefficient is sufficiently small, the resultant
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number of bits from (15) could be negative, which in prac-
tice would mean that the coefficient should be discarded. Ad-
ditionally, the optimal solution in (15) can lead to a fractional
number of bits bl , which must be rounded off for practical ap-
plication. This optimal bit allocation is also well known in the
context of video coding, in which the video frame is linearly
transformed to another domain before reducing its resolution in
order to make more efficient its transmission over a communi-
cation channel. This technique is called block-based transform
coding [29] and assumes that either the original digital data was
obtained by means of high-resolution conventional A/D conver-
sion at the Nyquist rate, or did not require any A/D conversion to
be generated. This assumption constrains the utilization of the
block-based transform coding to discrete applications where
high-speed and high-resolution A/D conversion is not required.
On the other hand, the technique proposed in this paper is di-
rectly intended for A/D conversion since it performs sampling in
the same domain where the quantization process is carried out.

B. Comparison Between the Orthogonal Space A/D Conversion
and the Conventional Time-Domain A/D Based on Pulse Code
Modulation

It is interesting to compare the performance of the A/D con-
version based on signal projection with the conventional pulse
code modulation (PCM) technique in which each time-domain
sample is quantized with a constant number of bits B. The aver-
age distortion incurred in PCM, assuming that N samples taken
in a Tc window comply with the Nyquist criteria, is [27]

D̄PCM =
1
Tc

ε2t σ
2
t 2−2B (17)

where the subindex t stands for time, εt depends on the pdf of a
sample of the time domain signal which is assumed stationary,
σ2

t is the samples’ variance, and B is large so that this expression
holds in general.

Now, we define a figure of merit of the proposed A/D conver-
sion, the orthogonal space A/D conversion versus time domain
PCM A/D conversion gain (G), defined as

G =
D̄PCM

D̆Q + D̄N

. (18)

Let G∗ be the gain obtained with the optimum number of coef-
ficients N ∗

G∗ =
D̄PCM

D̆Q∗ + D̄N

(19)

which is just the ratio between the distortion of PCM and the
distortion introduced by both the limited number of coefficients
and the quantization error when carrying out the A/D conversion
via signal expansion. Substituting (9), (11), and (17) into (18),
we have

G =
ε2t σ

2
t 2−2B

1
N

∑N −1
l=0 ε2l σ

2
l 2−2bl + Es,Tc

−
∑N −1

l=0 σ2
l

≤ ε2t σ
2
t 2−2B(∏N −1

l=0 ε2l σ
2
l

)1/N

2−2B + Es,Tc
−
∑N −1

l=0 σ2
l

. (20)

It is interesting to analyze the case in which the number of
coefficients reaches the defined value N∗, which makes D̄N

zero. In this case, (20) can be expressed as

G =
ε2t σ

2
t 2−2B

1
N

∑N −1
l=0 ε2l σ

2
l 2−2bl

≤ G∗

=
ε2t σ

2
t 2−2B(∏N −1

l=0 ε2l σ
2
l

)1/N

2−2B

=
ε2t(∏N −1

l=0 ε2l

)1/N

1
N

∑N −1
l=0 σ2

l(∏N −1
l=0 σ2

l

)1/N
(21)

where the last equality follows from the fact that the aver-
age energy of the coefficients al |N∗−1

l=0 equals the time sam-
ples’ variance, since the error in (8) has zero energy. Equa-
tion (21) shows the potential gain of the proposed method, as
the orthogonal space A/D conversion gain is proportional to
the ratio between the arithmetic mean of the orthogonal co-
efficients variances and the geometric mean of the same vari-
ances. Since the arithmetic mean is greater than or equal to
the geometric mean, being equal only when all the variances
are the same, and in general ε2t ≥ (

∏N −1
l=0 ε2l )

1/N , we have
that G∗ ≥ 1 or D̄PCM ≥ D̆Q ∗ , under the same average num-
ber of bits B. Notice that a more uneven distribution of the
variances leads to a larger gain, which can be advantageous in
domains where the variance distribution is known or can be
estimated.

C. Reduction in the Number of Basis Coefficients

Assume that instead of being interested in taking advantage
of the reduction in distortion offered by the A/D conversion via
basis expansion, it is preferred to reduce the number of basis
coefficients while keeping a level of distortion that is equal to
the one obtained in time-domain A/D conversion with PCM;
i.e., G = 1. This means that we want to trade distortion gain
for reduction in the number of parallel ADCs. The question that
arises here is how many coefficients NGu

we need to use such
that we obtain a unit gain (Gu = G = 1) for a desired average
number of bits B. Since we were unable to symbolically solve
for NGu

in terms of B from (20), we instead express B in terms
of NGu

as follows:

B (NGu
) =

1
2

log2


ε2t σ

2
t −

(∏NG u −1
l=0 ε2l σ

2
l

)1/NG u

Es,Tc
−
∑NG u −1

l=0 σ2
l


 .

(22)

This means that if the gain G obtained in (20) is bigger than 1
for some N ≤ N∗, we can reduce the number of coefficients to
NGu

, leading to an implementation that requires fewer ADCs
than the number of time-interleaved ADCs needed to achieve
the same distortion and the same sampling rate. The synchro-
nization challenges that appear in the time-interleaved ADC
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architectures due to the very fine time resolution are relaxed in
the orthogonal space ADC, because the signal is quantized at
the end of the time projection window Tc which will be larger
than the Nyquist period. Of course, the distortion gain or the
reduction in the number of quantizers come at the cost of the
alternative implementation of the circuitry needed in the projec-
tion of the input signal over the orthogonal basis.

The results presented so far in this section are suboptimal in
the sense that the distortion measure is based on scalar quantiza-
tion of individual coefficients, and only the bit distribution has
been optimized. Better performance can be attained if the dis-
tortion measure is optimized jointly over all the coefficients, a
concept known as vector quantization. However, practical ADCs
are likely to be implemented using only scalar quantization in
order to keep low levels of complexity. Optimal bit allocation,
together with scalar quantization, provides an interesting gain
as shown in (21), with a reasonable compromise in system com-
plexity.

D. Discussion on Optimal Analog to Digital Conversion

At this point we would like to ask a fundamental question
regarding the A/D framework presented in this paper: does there
exist an orthogonal space that provides the best A/D conversion
measured in MSE distortion? In other words, we are asking if
we can find a set of orthogonal functions Φl(t)|N∗

l=0 that expand
an input signal s(t) leading to a minimum MSE for a given
average number of bits B. Intuitively, the set of orthogonal basis
functions should provide the most compact representation, so
the number of coefficients N required to achieve some desired
level of distortion is minimal. Additionally, from (21) we know
that the optimal orthogonal space must minimize the geometric
mean of the variances of coefficients. We could try to find the
set of optimal orthogonal functions by setting up a constrained
optimization problem. However, we instead provide a discussion
based on analogy with known results in linear transformations of
discrete-time signals. It is well known in linear filter theory that
when the Karhunen–Loève transform (KLT) is applied to a zero
mean, wide-sense stationary random input vector, the resultant
output is a vector of uncorrelated random variables; i.e., the KLT
diagonalizes the autocorrelation matrix of the discrete random
process [30]. This key observation implies that the KLT provides
the most compact representation of the input signal. This result
can be easily proven by showing that the geometric mean of
the variances of coefficients is minimized when the coefficients
are obtained through the KLT [31]. Unfortunately, the KLT is
difficult to use in practice as it requires signal stationarity, and
the eigenvectors that constitute the basis of the transformation
are only available if the statistics of the input signal are known,
conditions that are not easily met in real systems. In general, it is
desirable for a practical application to have an orthogonal space
that is signal independent. To this end, the frequency domain
provides a well understood orthogonal space for A/D conversion
based on signal projection, which is described in Section IV.

The ADC via signal expansion introduces a time delay as the
signal information of the last Tc seconds is transferred to a new
domain and condensed into N coefficients. This latency should

be properly chosen according to the specific application. For in-
stance, in a communications system, a proper choice of Tc would
be a number less than or equal to the transmitted symbol period
T . Additionally, the nature of this ADC leads naturally to carry-
ing out digital signal processing (DSP) applications in the same
domain used in the A/D conversion itself. The duality between
time and some other domains has been extensively studied, and
powerful tools are available to carry out the DSP operations.
A classical example of this duality is the time-frequency pair,
which is studied in Section V in the context of A/D conversion.

IV. AN APPLICATION: MIXED-SIGNAL COMMUNICATION

RECEIVERS BASED ON A/D CONVERSION OF SIGNAL

EXPANSIONS

As an example of an application of the ideas presented here,
we will investigate the design of mixed-signal communications
receivers. The receivers are mixed-signal in the sense that in
their analog front end, signal projection over basis functions is
performed before the parallel ADCs are applied. Additionally,
the information bits are detected through a discrete matched
filter operation that takes place in the domain on which the
received signal has been expanded.

A. Transmitted Signal and Channel Model

To elaborate, assume that the signal s(t) is transmitted over
a linear communication channel with impulse response h(t)

r(t) = s(t) ∗ h(t) + z(t), 0 ≤ t ≤ T (23)

where “∗” indicates continuous-time convolution and z(t) is
additive white Gaussian noise (AWGN). In a typical conven-
tional all-digital linear communication receiver, the received
continuous-time signal is first passed through a time-domain
A/D converter running at Nyquist rate, and the discrete-time
samples are then demodulated by performing a discrete-time
linear filtering operation. The following presents a different ap-
proach based on the coefficients obtained from A/D conversion
after signal expansion.

B. Digital Linear Receivers Based on ADC of Signal Expansion

Assume that the transmitted signal s(t) conveys the informa-
tion symbol a. In order to obtain an estimate of the transmitted
symbol from the set of basis coefficients, we begin by express-
ing the receiver structure as a linear filtering problem in the time
domain

â = r(t) ∗ p(t)|t=T =
∫ T

0

r(τ)p(T − τ) dτ (24)

where â is the symbol estimate, and p(t) is the impulse response
of the linear filter demodulator which can be a simple matched
filter, a RAKE receiver, an MMSE receiver, etc. The output of
this filter is sampled at t = T . For convenience, (24) is expressed
as

â =
∫ T

0

r(τ)p(T − τ) dτ =
∫ T

0

r(τ)g∗(τ) dτ (25)
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where we define g∗(τ) = p(T − τ). Now, we proceed to seg-
ment the symbol duration time T into M time-slots of duration
Tc . We define the following signals

rm (t) = r(t)wm (t) (26)

gm (t) = g(t)wm (t) (27)

for m = 0, . . . ,M − 1, and the window wm (t) introduced in
(27) has been selected as rectangular for simplicity of the anal-
ysis although, as mentioned earlier, other windows with desired
characteristics could be used instead.

Using these definitions, the linear receiver output in (24) can
be expressed as

â =
M −1∑
m=0

∫ (m+1)Tc

mTc

r(τ)g∗(τ) dτ

=
M −1∑
m=0

∫ (m+1)Tc

mTc

rm (τ)g∗m (τ) dτ

=
M −1∑
m=0

∫ ∞

−∞
rm (τ)g∗m (τ) dτ (28)

in which the integral in (24) has been segmented into M integrals
that run over intervals of duration Tc each, such that T = MTc .

In order to express the matched filter operations in the new
conversion domain, the signal expansion over the basis functions
Φl(t) is used to represent both the segmented received signal
and segmented receive filter, leading to

â =
M −1∑
m=0

∫ ∞

−∞
rm (τ)g∗m (τ) dτ

=
M −1∑
m=0

∫ ∞

−∞

∞∑
n=0

Rm (n)Φn (τ)
∞∑

l=0

G∗
m (l)Φ∗

l (τ) dτ

=
M −1∑
m=0

∞∑
n=0

∞∑
l=0

Rm (n)G∗
m (l)

∫ ∞

−∞
Φn (τ)Φ∗

l (τ) dτ

=
M −1∑
m=0

∞∑
n=0

∞∑
l=0

Rm (n)G∗
m (l)ψn,l

≈
M −1∑
m=0

N −1∑
n=0

N −1∑
l=0

Rm (n)G∗
m (l)ψn,l (29)

where Rm (n)|N −1
n=0 and Gm (l)|N −1

l=0 are the best MSE coeffi-
cients representation as explained in (4), which requires re-
versing the linear transformation of (3). Note that the series
expansion in (29) has been truncated, leading to some degree
of error. Althuogh this truncation error should in principle de-
grade the receiver performance, we will show in the following
examples that any desired performance can be achieved if the
tradeoff between complexity in terms of number of coefficients
N , and sampling speed ∆Fc = 1/Tc = M/T , is adequately set
up. Note that if the basis functions are orthonormal, (29) reduces

Fig. 2. Mixed-signal receiver block diagram with ADC via signal expansion.
Binary basis functions are shown as an example.

Fig. 3. Block diagram of the frequency domain A/D converter.

to

â ≈
M −1∑
m=0

N −1∑
n=0

Rm (n)G∗
m (n) (30)

which reduces the complexity of detection. The tradeoff between
the choice of the basis functions, complexity of the detection
formula, and the degree of truncation error is fundamental in
the receiver design. Fig. 2 illustrates the mixed-signal receiver
architecture.

V. ANALOG TO DIGITAL CONVERSION IN THE

FREQUENCY DOMAIN

The frequency domain emerges as an appealing domain for
the analog to digital conversion of signals with very large band-
width, since, in principle, it relaxes the extremely fine time
resolution needed in time-domain ADCs and provides a scal-
able architecture. The timing requirements are relaxed since the
sampling is performed at a rate that is lower than the one im-
posed by Nyquist criteria. Fig. 3 shows the block diagram of
the frequency domain ADC in which the complex exponential
functions that constitute the orthogonal basis allow sampling of
the continuous-time signal at the frequencies Fl |N −1

l=0 , leading to
the set of frequency coefficients

cl =
∫ Tc

0

s(t)e−j2πFl t dt, l = 0, . . . , N − 1. (31)
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These coefficients are then quantized by a set of quantizers
Ql |N −1

l=0 which, in turn, produce the ADC output digital coeffi-
cients ĉl |N −1

l=0 . The frequency sample spacing ∆F = Fl − Fl−1

complies with ∆F ≤ (1)/(Tc) in order to avoid aliasing in the
discrete-time domain [32]. Thus, the optimal number of coef-
ficients N∗ necessary to fully sample the signal spectrum with
bandwidth W , without introducing time aliasing, is proportional
to the time-bandwidth product3

N∗ =
⌈

W

∆F
+ 1

⌉
≥ �WTc + 1	 (32)

where the operator � 	 is used to ensure that N∗ is the closest
upper integer that avoids discrete-time aliasing. When ∆F =
(1)/(Tc), (32) becomes an equality and the discrete-time alias-
free condition is satisfied without oversampling of the frequency
spectrum.

Note that the frequency-domain ADC is fundamentally dif-
ferent from the ADC architectures based on filter bank the-
ory [14], [16]. This simple but fundamental difference lies in
the fact that the frequency domain ADC samples the expan-
sion of time-segments of the received signal, whereas the filter
bank approach performs frequency channelization. The compu-
tation of the Fourier samples, via mixing and integration, can be
thought of as synthesizing a filter bank. However, these filters
are very broad with smooth transitions. In fact, the frequency re-
sponse of the branches in Fig. 3 overlap with each other, but this
overlapping does not introduce ADC distortion. On the other
hand, the filter bank approach requires filters with very sharp
roll-off and any leakage between the channels will seriously
degrade the ADC performance. This is an important motivation
for the implementation of the frequency domain ADC.

A. Example

Let us consider a stationary zero-mean Gaussian continuous
source with variance σ2

t , bandwidth W = 2 GHz @−55 dB,
central frequency Fc = 7 GHz and a power spectrum den-
sity (PSD) shown in Fig. 4(a). Notice that in this case the
signal PSD provides the information about the coefficient’s
variance distribution needed in the optimal bit allocation. The
signal is segmented in intervals of Tc = 3 ns to be A/D con-
verted, thus requiring a frequency spacing between samples of
∆F = 1/Tc = 333.33 MHz to avoid aliasing in the discrete-
time equivalent signal. The bits are optimally distributed among
the coefficients as indicated by (15), leading to the set of curves
of MSE distortion vs. average number of bits B plotted in
Fig. 4(b). The MSE distortion for PCM is also shown for com-
parison purposes. The A/D conversion gain (G) is plotted in
Fig. 4(c) against the number of coefficients N (N∗ = 7) for
several values of average number of bits B. These figures show

3Because signals found in applications are time-limited, the term bandwidth
here refers to the range of frequencies in which the signal power is larger than
some defined power level; for instance, many signal bandwidths are defined at
3 dB of attenuation, although more conservative attenuation could be desirable
for some applications such as A/D conversion. Moreover, the bandwidth W in
this paper is the bandwidth of the time-segmented signal which, in general, is
larger than the bandwidth of the signal s(t), as the segmentation introduces
sidelobes that should be sampled in order to obtain lower distortion error.

the potential gain of performing the A/D conversion in the fre-
quency domain together with optimal bit allocation, especially
when the target average number of bits is low. For this example,
a gain of up to 3.35 (5.25 dB) can be achieved when N∗ = 7
coefficients are implemented.

Furthermore, assume that a mono-bit (i.e., B = 1) imple-
mentation is desired and lowering the sampling rate is the main
concern in the design. So, we would like to trade distortion gain
for a lower sampling rate of the ADCs. Fig. 4(c) shows that
a mono-bit implementation with N = 5 coefficients (9 real-
valued ADCs, since the DC-frequency coefficient requires just
one ADC while the other complex-valued frequency samples
require two ADCs) achieves the same distortion rate of a time-
domain ADC with PCM. However, the frequency-domain ADC
operates at 1/Tc = 333.33 MHz whereas the time-domain ADC
requires a sampling rate of 4 GHz to meet the Nyquist criterion.
If a time-interleaved architecture is implemented in the time
domain ADC to reduce the speed of the comparators to 333.33
MHz, a total of 12 ADCs would have to be used, leading to
an implementation that requires three more ADCs than the fre-
quency domain ADC implementation. Notice that although the
MSE distortion in (12) is in general only valid for a large number
of bits; for Gaussian sources, the expression holds asymptoti-
cally even for a small number of bits [28], so the curves in Fig. 4
are exact under the assumptions of this example.

VI. SIGNAL TO NOISE AND DISTORTION RATIO (SNDR) OF

THE FREQUENCY-DOMAIN ADC

In this Section we calculate the signal to noise and distortion
error for the frequency domain ADC that includes gain distor-
tions, timing errors, frequency offsets, and additive noise in all
the paths of the ADC. It is assumed that a testing sinusoidal
signal r(t) = Acos(2πFxt) is driven to the ADC input. The
frequency samples provided by the ADC under distortion and
noise can be expressed as

R̃(Fn ) = gn

∫ Tc /2

−T c/2

r(t − ∆tn )e−j2π (Fn −∆F n)t dt + on

n = 0, . . . , N − 1 (33)

where gn is the gain distortion, ∆tn is the time error, ∆Fn is the
frequency offset, and on is the additive noise associated with the
nth frequency sample. For the specific case of a test signal r(t) =
Acos(2πFxt) and using the identity cos(2πFx(t − ∆tn )) =
cos(2πFxt)cos(2πFx∆tn ) + sin(2πFxt)sin(2πFx∆tn ), (33)
reduces to

R̃(Fn ) = gn

∫ Tc /2

−Tc /2

Acos(2πFx(t − ∆tn ))

× e−j2π (Fn −∆F n)t dt + on

= Agn

(
cos(2πFx∆tn)

×
∫ Tc /2

−Tc /2

cos(2πFxt)e−j2π (Fn −∆F n)t dt
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Fig. 4. (a) Raised cosine shaped power spectrum of the Gaussian source to be A/D converted. (b) Comparison between the MSE distortion of the time-domain
PCM ADC with the MSE distortion of the ADC in frequency domain with optimal bit allocation. (c) The A/D conversion gain (G) versus the number of coefficients
(N ) for different average number of bits.

+ sin(2πFx∆tn)

×
∫ Tc /2

−Tc /2

sin(2πFxt)e−j2π (Fn −∆F n)t dt

)

= Agn

(
cos(2πFx∆tn)

×
∫ Tc /2

−Tc /2

cos(2πFxt)e−j2π (Fn −∆F n)t dt

− jsin(2πFx∆tn)

×
∫ Tc /2

−Tc /2

cos(2πFxt)e−j2π (Fn −∆F n)t dt

)

= AgnR(Fn + ∆Fn )e−j2πFx ∆tn + on (34)

where R(Fn ) is given by

R(Fn ) =
sin(πTc(Fn − Fx))

πTc(Fn − Fx)
. (35)

It can be noted from (35) that if there are no frequency off-
sets, only the sample R(Fx) will be nonzero since all the other
samples align with the nulls of (35).

The SNDR will be given by the ratio of the power at
the frequency of interest Fx , and the sum of the powers
at all the other frequencies Fn . Note that the phase rota-
tion of the sample R̃(Fx) due to time jitter will degrade the
SNDR. To see this, let us express R̃(Fx) in real and imaginary
parts

R̃(Fx) = AgxR(Fn + ∆Fx)cos(2πFx∆tx)

+ oxR + j ∗ (AgxR(Fn + ∆Fx)

× sin(2πFx∆tx) + oxI ) (36)

where oxR = Re{ox} and oxI = Im{ox}. The real part of
R̃(Fx) corresponds to the signal component whereas the imag-
inary part of R̃(Fx) introduces distortion, where the amount of
jitter ∆tx determines how much distortion is introduced. Thus,
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the SNDR is given by

SNDR

= 10 log10


 E{|Re{R̃(Fx)}|2}∑N −1

n =0
n 
=x

E{|R̃(Fn )|2} + E{|Im{R̃(Fx)}|2}




(37)

where the orthogonality among the frequency samples allows
to express the expected value of the sum as a sum of expected
values. The numerator in (37) is the signal power component
which, as shown in Appendix II, can be approximated as

E{|Re{R̃(Fx)}|2} ≈ A2σ2
g

(
1 − π2

3
σ2

∆F

)

×
(
1 − 4π2σ2

∆tx

)
+

1
2
σ2

o (38)

where σ2
g = E{g2

n}|N −1
n=0 , σ2

∆F = (E{∆F 2
n })/(∆F 2

c )|N −1
n=0 ,

and σ2
∆tx = F 2

x E{∆t2x}, which assumes that the distortions in
all the paths have the same second order moments. Notice that
the parameters σ2

∆F and σ2
∆tx have included the normalization

factors (1)/(∆F 2
c ) and F 2

x , respectively.
The noise terms in the sum of the denominator of (37) are

shown in Appendix II to be

E{|R̃(Fn )|2} ≈ A2σ2
∆F σ2

g (n − x)−2 + σ2
o . (39)

The noise term due to the imaginary part of R̃(Fx) is also
approximated in Appendix II as

E{|Im{R̃(Fx)}|2} ≈ A2σ2
g (1 − π2

3
σ2

∆F )

×
(
4π2σ2

∆tx

)
+

1
2
σ2

o . (40)

These results lead to (41) for the SNDR (see bottom of the
page). This expression reveals several interesting results. For
instance, the gain variance has no effect on the SNDR if the
additive noise second order moment is zero, which in practice
means little impact on the SNDR for reasonable values of σ2

o .
Setting σ2

g = 0, σ2
∆tx = 0, and σ2

o = 0, we obtain the SNDR
due to frequency offset

SNDR = 10 log10


 (1 − π2

3 σ2
∆F )

σ2
∆F

∑N −1
n =0
n 
=x

(n − x)−2


 . (42)

With σ2
g = 0, σ2

∆F = 0, and σ2
o = 0, we find the SNDR due to

time jitter

SNDR = 10 log10

(
(1 − 4π2σ2

∆tx)
4π2σ2

∆tx

)
(43)

and setting σ2
g = 0, σ2

∆F = 0, and σ2
∆tx

= 0, we find the SNDR
due to amplitude offset

SNDR = 10 log10

( 1
2

(N − 1
2 )

)
. (44)

Fig. 5 illustrates the impact of the implementation impairments
on the SNDR. Each plot shows the impact of two impairments
on the SNDR; the left column shows the 3-D plots and the
right column shows the corresponding isolines. The number of
frequency samples is N = 5.

A. Example

To understand the implication of the results presented in
Fig. 5, let us consider a practical SNDR test scenario. As-
sume that a Fx = 5 GHz tone drives the frequency ADC. The
sampling period Tc is chosen to be five periods of the sinu-
soidal signal, Tc = 1 ns, which leads to a frequency spacing
between samples of ∆Fc = 1 GHz. Additionally, the ADC has
N = 5 branches which implies that 5 samples of the spec-
trum are taken for each Tc sec window. Thus, the 5 samples
are uniformly distributed around the tone frequency leading to
the frequency range [3,7] GHz. If the frequency samples do
not suffer from frequency offset, only the sample at Fx = 5
will be nonzero as the other samples will lie at the nulls of
the spectrum of the input signal. However, frequency offset
will result in all the components collecting some undesired
energy, degrading the SNDR as defined in (37). To obtain a
sense of practical levels of frequency offset and timing errors
that can be tolerated in this specific example, let us assume
that from Fig. 5 we conclude that acceptable SNDR value is
around 40 dB. This is achieved with a normalized frequency
offset second moment σ2

∆F near 10−6 GHz2, together with a
normalized time error with second moment around 10−6 s2.
Then, the second order moment of the frequency offset will
be equal to E{∆F 2

n } = ∆F 2
c σ2

∆F = 101810−6 = 1012 GHz2.
Now, assuming a deterministic frequency offset, a second or-
der moment of 1012 GHz2 is achieved by a fixed offset of
1 MHz or less. So, for the highest oscillator frequency, i.e.,
the one at 10 GHz, a requirement of only 103 parts per mil-
lion (ppm) is needed. In the case of timing errors, the tar-
get SNDR is achieved with normalized second moment of
around 10−6, which leads to an absolute time error second
moment of E{∆t2n} = (σ2

∆tn
)/(F 2

x ) = (10−6)/(25 ∗ 1018) =
4 ∗ 10−26 s2. Once again, assuming a fixed time offset, a second
order moment of 4 ∗ 10−26s is achieved with a time offset of
0.2 ps. Thus, up to 0.2 ps of time offset are allowed in time win-
dows of 1 ns for the specific example considered here. Lastly,
an acceptable value of AWGN noise is around 10−6 W/Hz.

SNDR = 10 log10


 A2σ2

g (1 − π2

3 σ2
∆F )(1 − 4π2σ2

∆tx) + 1
2σ2

o

A2σ2
g

(
σ2

∆F

∑N −1
n =0
n 
=x

(n − x)−2 + (1 − π2

3 σ2
∆F )(4π2σ2

∆tx)
)

+ (N − 1
2 )σ2

o


 . (41)
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Fig. 5. Signal to noise and distortion ratio for frequency domain ADC with N = 5. No gain distortion is included (i.e., E{g2
n } = 1). (a-left column) Normalized

timing errors second moment (σ2
∆tx

) versus normalized frequency offset second moment (σ2
∆F ) for σ2

o = 10−6, and in (a-right column) isolines. (b-left column)

Additive noise second moment (σ2
o ) versus normalized frequency offset second moment (σ2

∆F ) for σ2
∆t x

= 10−6, and in (a-right column) isolines. (c-left

column) Normalized timing errors second moment (σ2
∆tx

) versus additive noise second moment (σ2
o ) for σ2

∆F = 10−6, and in (c-right column) isolines.

VII. FREQUENCY-DOMAIN MIXED-SIGNAL RECEIVERS

The frequency domain ADC architecture allows the imple-
mentation of linear and nonlinear receivers with lower sampling
rates and lower bit resolution requirements [33].

A. Mixed-Signal Multicarrier Receiver

In this example, we consider the design of a mixed-signal
multicarrier receiver, summarized in the detection formula of
(29). In order to provide a practical example, we use the system
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Fig. 6. Output SNR of the mixed-signal multicarrier receiver implemented
with N = 3 coefficients, versus the sampling rate for different values of
SNRAWGN = 10 ∗ log10(Eb /No ).

specifications of the multiband UWB OFDM receiver presented
in the standard draft IEEE P802.15-03/268r1 [34]. The mul-
ticarrier signal is composed of 128 tones, with a frequency
spacing of 4.125 MHz and a central frequency that lies in any
of the UWB subbands. The receiver proposed in [34] requires
two conventional time domain ADC (for I/Q paths) operat-
ing at a Nyquist rate of 528 Ms/s. Additionally, up to seven
times this speed will be required to fully exploit all the UWB
spectrum.

For our receiver design we consider a single 528 MHz sub-
band. As illustrated in Fig. 2, the received signal is downcon-
verted to baseband frequencies, and then is projected onto the
set of basis functions. We use the complex exponential func-
tions as the basis functions, with N = 3 frequency samples.
Fig. 6 shows the signal to noise ratio (SNR) at the output of
the discrete frequency matched filter (AWGN noise power plus
truncation error power) versus the sampling rate ∆Fc , for differ-
ent values of SNRAWGN = 10 ∗ log10(Eb/No), where Eb is the
signal energy and No/2 is the two-sided power spectral density
of the AWGN noise. The figure shows the required sampling rate
to make negligible the truncation error compared with AWGN
noise. For practical values of SNR, the truncation error is in-
deed negligible. For example, in a UWB multiband multicarrier
application, the SNRAWGN ranges between 4.0 dB and 4.9 dB
or even lower if coding is taken into account, which makes this
receiver an interesting possibility to lower the sampling rate
requirements, especially as more subbands are included in the
design. However, for applications operating at larger SNRAWGN

values, the truncation error could become the dominant impair-
ment and needs to be taken into consideration.

VIII. CONCLUSION

We have explored analog to digital conversion of signal ex-
pansions, where instead of sampling the signal in the time do-
main as it has been conventionally done in A/D conversion, the
input analog signal is projected over a set of basis functions

before quantization takes place. Quantization is then carried
out over the coefficients obtained from this projection. This
A/D conversion technique provides a potential gain over time-
domain ADCs when optimal bit allocation is used in the quan-
tization process of the coefficients. Additionally, a reduction of
the sampling rate is achieved as the A/D conversion is performed
at the end of a properly chosen time window of Tc seconds dur-
ing which the signal is projected. The sampling rate reduction
comes at the cost of increasing the number of basis functions
on which the continuous-time signal is projected, leading to a
fundamental tradeoff between complexity and sampling rate.
Furthermore, the new technique possesses some degree of flex-
ibility in the design as trading between speed and distortion can
be achieved by properly choosing the conversion time Tc and
the number of coefficients N .

We have also established a framework for a family of
mixed-signal communications receivers as a potential appli-
cation of the ADC framework presented here, and closed
form expressions for symbol detection have been found.
The new receiver architecture provides a means to imple-
ment wide-band communication receivers with parallel pro-
cessing at lower sampling speeds, without time domain signal
reconstruction.

As a specific application, the frequency domain constitutes
an appealing domain to perform the A/D conversion of ultra-
wideband signals. Moreover, having samples of the signal spec-
trum encourages implementing many communications and sig-
nal processing applications in the frequency domain. Specifi-
cally, it was shown how the matched filter can be easily imple-
mented, even though segmentation of the time-domain signal
is used to reduce the number of coefficients. Additional robust-
ness is obtained by the ADC in the frequency domain as it
naturally filters narrow-band interference that lies away from
the spectrum points where samples are taken. As an example
in communication systems using multicarrier transmission, the
proposed A/D conversion in the frequency domain goes to-
gether with a very simple frequency domain implementation
of the digital correlators needed for the estimation of the in-
formation symbols. Although the frequency domain is perhaps
the oldest and best understood domain besides the time-domain,
other domains may have desirable characteristics when carrying
out A/D conversion. For example, from a circuit implementa-
tion point of view, generation of the sinusoidal signals operating
at frequencies Fl |N −1

l=0 used for the projection of the input sig-
nal in the frequency domain ADC might lead to higher levels
of complexity and power consumption. Lower complexity can
be achieved by generating binary waveforms instead of sinu-
soidal ones. Transformations that use orthogonal signals with
binary waveforms include the Hadamard transform [35], [36],
Walsh [35]–[37] and Walsh–Fourier [38] transform, and the
Haar wavelet transform [39].

All digital systems that interface with real-world signals, such
as voice, audio, communication waveforms, array processing
etc, can be implemented with the A/D conversion ideas pre-
sented in this paper. The solution provided is especially bene-
ficial for ultra-wideband systems, such as communications and
geolocation.
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APPENDIX I

Given a desired average number of bits B, we want to allocate
a total number of bits NB among the N coefficients, so that
the error in (14) is minimized. The Lagrange multiplier method
provides a solution to this constrained optimization problem as

J(bl |N −1
l=0 ) =

N −1∑
l=0

ε2l σ
2
l 2−2bl + λ

(
N −1∑
l=0

bl − BN

)
(45)

where λ must be chosen to satisfy
N −1∑
l=0

bl = BN. (46)

Now, setting to zero the derivative of (45) with respect to bl

leads to
∂J

∂bl
= −(2ln2)ε2l σ

2
l 2−2bl = −λ. (47)

λ is determined by the taking the product of (47) for all l,
leading to

λN = (2ln2)N

(
N −1∏
l=0

ε2l σ
2
l

)
2−2

∑
l
bl

= (2ln2)N

(
N −1∏
l=0

ε2l σ
2
l

)
2−2N B (48)

so that

λ = (2ln2)

(
N −1∏
l=0

ε2l σ
2
l

)1/N

2−2B . (49)

After substitution in (47), the optimum bit allocation is found
to be

bl = B +
1
2

log2

ε2l σ
2
l(∏N −1

l=0 ε2l σ
2
l

)1/N
. (50)

APPENDIX II

For simplicity of the analysis, we assume that
the impairments ∆Fn ,∆tn , and on have equal vari-
ance in all the paths, i.e., σ2

g = E{g2
n}|N −1

n=0 , σ2
∆F =

(E{∆F 2
n })/(∆F 2

c )|N −1
n=0 , σ2

∆tn
= F 2

x E{∆t2n}|N −1
n=0 , and σ2

o =
E{o2

n}|N −1
n=0 . Note also that the parameters σ2

∆F and σ2
∆tn

are
normalized with the factors (1)/∆F 2

c and F 2
x , respectively.

The SNDR is given by

SNDR

= 10 log10


 E{|Re{R̃(Fx)}|2}∑N −1

n =0
n 
=x

E{|R̃(Fn )|2} + E{|Im{R̃(Fx)}|2}


 .

(51)

The exact calculation of the expected values involved in (51)
is difficult. A simpler and perhaps more meaningful solution is
provided by using truncated Taylor expansions. The following
Taylor expansions will be used:(

sin(x)
x

)2

≈ 1 − x2

3
expansion around x = 0 (52)

cos2(x) ≈ 1 − x2 expansion around x = 0 (53)

sin2(x) ≈ x2 expansion around x = 0. (54)

The signal power term is given by

E{|Re{R̃(Fx)}|2}

= E

{
A2g2

x

(
sin(πTc(∆Fx))

πTc(∆Fx)

)2

cos2(2πFx∆tx) + o2
xR

}

≈ A2σ2
g (1 − π2

3
σ2

∆F )(1 − 4π2σ2
∆tx

) +
1
2
σ2

o . (55)

The noise terms in the sum of the denominator of (51) are
approximated as

E{|R̃(Fn )|2}

= E{A2g2
n

(
sin(πTc(Fn + ∆Fn − Fx))

πTc(Fn + ∆Fn − Fx)

)2

+ o2
n}

≈ A2σ2
∆F σ2

g (n − x)−2 + σ2
o , n 
= x. (56)

The noise term due to the imaginary part of R̃(Fx) is approxi-
mated as

E{|Im{R̃(Fx)}|2}

= E

{
A2g2

x

(
sin(πTc(∆Fx))

πTc(∆Fx)

)2

sin2(2πFx∆tx) + o2
xI

}

≈ A2σ2
g

(
1 − π2

3
σ2

∆F

)(
4π2σ2

∆tx

)
+

1
2
σ2

o . (57)

These results lead to (58) for the SNDR (see the bottom of the
page).
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