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Abstract

This paper expands and consolidates the use of analogies in thermodynamics to explore concepts in the characterization
of information systems. The analogy spans the range of information systems to include databases, knowledge bases and
model bases. It includes but is not limited to pressure, expressiveness, temperature, tractability, degrees of order, systems of
liquid–liquid equilibrium and disjunction in information-systems integration. By taking advantage of the isomorphism that
exists between states of matter and states of information, we can understand new ways to characterize and measure infor-
mation systems. This paper is the fourth in a series describing new aspects of ‘‘infodynamics.’’.
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1. Introduction

The purpose of this paper is to consolidate and expand the concept of ‘‘states of information’’ as similar to
states of matter using analogical reasoning. Differences in states of matter are described with regard to the
difficulties in defining each state explicitly. The difficulty in defining the various states of information is seen
as a natural consequence of the isomorphism between states of matter and states of information. Taking
advantage of this isomorphism, the paper examines the possibility of predicting properties and characteristics
of information systems using analogs of well established equations of state and other thermodynamic
equations.

Infodynamics is not really a new area of inquiry per se. Other researchers have applied principles of ther-
modynamics to information systems, particularly in the area of entropy, probability, and reasoning under
uncertainty. (See, for example [1,26,32,41,24,40].) Entropy continues to be an active area of research with
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an on-line journal since 1999 dedicated to the interdisciplinary approach of entropy in matter and information
systems. (See, for example, [23].) Because this aspect of thermodynamics already has received considerable
attention in the literature, the present paper does not address entropy, but rather, emphasizes other ways that
information systems are similar to systems of matter.

In the first paper in this series on Infodynamics [11], the pressure of a system of molecules was compared to
the expressiveness of an information system. Gases were compared to databases and liquids were compared to
knowledge bases (KBs) [11]. Temperature also was compared to tractability. In the second paper [12], the
dimensions of expressiveness were explored and compared to partial pressures in a gas mixture.

In the third paper [16], the focus shifted to the liquid phase in which the relationship between temperature
and tractability was expanded to address the tractability of integrated information systems. Tractability can be
conceptualized as the ease of understanding database content, the logic behind its structure and the efficiency
of using the database either directly by humans or in applications. Systems of liquid–liquid equilibrium and
miscibility were compared to the interaction of data at the interface between two information bases, such as
KBs during information-system integration. The relationship between systems of liquid–liquid equilibrium
was explored with the idea of application to information systems, their interaction and integration.

Liquids have been compared to knowledge bases (KBs) [11]. Systems of liquid–liquid equilibrium and mis-
cibility are selected for analogical purposes to gain insight into the interaction of data at the interface between
two information bases, such as KBs. To date, the relationship between systems of liquid–liquid equilibrium
has not been explored extensively for application to information systems, their interaction and integration.

Data integration [9] has been defined clearly in the literature. Data integration occurs when data sets are
consistent with each other and free from heterogeneity or conflicts. Data integration represents a tighter cou-
pling between data sets than data aggregation. The three basic levels of data integration are the platform, syn-
tactic and semantic levels [13]. What applies to data integration also applies, even more so in some cases, to
knowledge integration. The most challenging level at which to resolve inconsistencies is the semantic level [14].

The paper is organized as follows. Section 2 describes states of matter. Section 3 covers levels of informa-
tion aggregation. Section 4 describes states of information by analogy to states of matter. Section 5 presents
examples of the correspondence between matter and information. Section 6 describes equations of states. Sec-
tion 7 explores the information analogy of the heat of vaporization. Section 8 covers partial pressures and the
information-system analog of expressiveness. Section 9 describes liquid–vapor critical phenomena and their
relationship to information systems. Section 10 reviews systems of liquid–liquid equilibrium. Section 11 covers
the relationship of liquid mixtures to the integration of information systems. Section 12 explores the concept
of a tractability metric that is analogous to temperature. Section 13 explores the concept of information trans-
fer as it relates to diffusion and miscibility. Section 14 describes disjunction metrics and their relationship to
ontology and miscibility. Section 15 discusses some key features of an integration as they relate to thermody-
namics. Section 16 explores liquid crystals, long-range order and their relationship to information systems.
Section 17 discusses the limitations of the methodology. Section 19 suggests future research and applications.
Section 19 concludes the paper.

2. States of matter

The three basic states of matter that occur naturally in our environment are gas, liquid and solid. Other
states of matter that can occur in a laboratory or in the cosmos include plasma and the dense nuclear material
that constitutes neutron stars. This discussion is limited mainly to the naturally occurring states found on
earth.

The simplistic definitions for the various states of matter that are offered in introductory science classes and
also by Webster are as follows:

• A gas is a substance that has no definite volume or shape; ‘‘a fluid (as air) that has neither independent
shape nor volume but tends to expand indefinitely’’ [36].

• A liquid is a substance that has a definite volume but no definite shape; ‘‘neither solid nor gaseous; char-
acterized by free movement of the constituent molecules among themselves but without the tendency to sep-
arate’’ [37].
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• A solid is a substance that has a definite volume and a definite shape; ‘‘neither gaseous nor liquid; a sub-
stance that does not flow perceptibly under moderate stress’’ [38].

Unfortunately, these definitions are insufficient to characterize substances that have properties in between
those of liquid and gas, such as dense fluids above the critical temperature. (See, for example, [4–6].) More-
over, they do not characterize accurately substances on the border between liquids and solids, such as liquid
crystals. (See, for example, [42,43].) Actually, in the rigorous sense, no clear dividing line exists between liquids
and gases, or between liquids and solids. The continuum in the states of matter poses a difficulty in formulat-
ing definitions. Ideally, definitions should be crisp so that one can distinguish what an entity is and what it is
not. However crisp definitions are not possible in this case because the boundaries between states of matter
themselves are fuzzy and not crisp. Fig. 1 illustrates the continuum between gas, liquid and solid, showing
variables that either influence or characterize the state of matter.

At the lowest level of granularity, data elements in databases are like individual molecules in gases. The
behavior of gases at high temperature and low pressure approaches that of an ideal gas [2]. These gases consist
primarily of monomers. In other words, a typical gas at low pressure and high temperature is a collection of
single atoms or molecules, each with a trajectory that is separate from that of the other molecules (ignoring
collisions with the container wall and with other gaseous species). However, in most physical gases (i.e., not in
the theoretical ideal state) a calculable and, in some cases, a measurable fraction of the molecules form clusters
of two or more molecules. To form a cluster of N molecules requires an (N + 1)-way collision. For example,
dimers are formed and destroyed by three-way collisions involving three monomers, or a monomer and
another dimer. (See, for example, [8].) This clustering effect in a fluid (e.g., gas or liquid) is a precursor to
a transition to a more condensed and/or ordered state of matter.

At a higher level of aggregation, knowledge bases are like liquids, which have a great deal of short-range
order with respect to the nearest-neighbor internuclear distances. Similarly, knowledge in a knowledge base
tends to be clustered in microtheories, such as those in the integrated knowledge base. (See, for example,
[28,31].)

A microtheory is a set of axioms that pertain to a particular domain and that are consistent within that
domain, but are not necessarily correct when used outside of that domain. Microtheories may be detailed
enough to be considered to be models, but not all models are microtheories. Some are expressed as systems
of equations.

Knowledge bases are analogous to liquids and model bases are analogous to solids. Knowledge-Base Man-
agement Systems (KBMSs) are analogous to containers for liquid that have access ports, such as valves and
openings. A model base is like a solid – something that can serve as a building material for more complex
systems. Domains within the solid are like models in the model base. By analogy, this implies that a large
KB with multiple microtheories could be considered to be a form of model base, where the microtheories
are the models. It also implies a higher degree of potential usefulness for model bases at a time in the future
when we can comprehend and manage them. Fig. 2 shows the relationship between different states of infor-
mation and expressiveness, tractability and how explicitly the data-relationships are expressed [11].

Gas ------------ Liquid ---------- Solid 
Low P ----------------------- High P 
High T ------------------------ Low T 

Low LRO ----------------------- High LRO

Fig. 1. Effect of variables on states of matter. P = pressure, T = temperature, LRO = long-range order [11].

Database --- Knowledge Base --- Model Base 
Low E --------------------------- High E 

High TDB --------------------------- Low TDB
Low DRE -------------------------- High DRE

Fig. 2. States of information and their associated variables. E = expressiveness, T = tractability, DRE = data relationship explicitness
[11].
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The expressiveness–tractability dichotomy [29] in information systems is expected to behave as pressure and
temperature in states of matter. A tractable DB is like a gas at high temperatures and low density where inter-
molecular forces do not provide much influence on the behavior of the gas. Intermolecular forces in matter are
analogous to relationships between entities in information systems. Where entities in a DB are disjoint, the DB
has few relations. At low P and high T, intermolecular forces do not dominate the behavior of the gas. A DB
analogous to this situation is less complex and more tractable [11,12].

In contrast, a KB can be designed and implemented in an information representation that is more expres-
sive than that of a DB. However, a KB with long and complicated rules can be opaque to human comprehen-
sion [30]. Thus, as expressiveness increases, tractability decreases [11,12].

3. Levels of information aggregation

The basic unit of information storage in a database is the data element [9]. Similarly, the basic unit of infor-
mation storage in a knowledge base is the axiom or assertion [10]. An assertion represents information stored
at a level of aggregation that is higher than that of a data element. This is because an assertion can involve
more than one data elements.

For example, X, A, and B can be stored as data elements in a relational database. (See, for example, [21].)
An analysis may be necessary to determine the relationship between these data elements. However, a knowl-
edge base may store the relationship explicitly using a ternary predicate. For example, the assertion could be
that X is between A and B. (For probabilistic knowledge bases, such as Bayesian networks, the information
aggregation issue is more complicated as the knowledge is stored in the network structure and in the condi-
tional probability table. See, for example, [15].)

A model base is a repository of models. Models represent a state of information aggregation that is at a
higher level than that of knowledge. Models show the relationship between knowledge in an explicit manner,
just as knowledge expresses the relationship between data elements explicitly. This relationship often is
expressed as an equation or a group of equations, a computer program that captures an algorithm or heuris-
tics, or in a variety of other ways depending on how the models are to be used.

What comes after model base in the DB–KB–MB progression? What happens when you aggregate models?
The periodic table of the elements enables chemists to predict the properties of elements that are not yet dis-
covered. Similarly, one can predict using analogical reasoning the next member in the DB–KB–MB series.
This should be an aggregation of models constructed in a useful manner to produce, what for lack of a better
term may be called a wisdom base (WB).

Information aggregation, when accomplished correctly to build an information system, is like an aggrega-
tion of atoms and molecules used to form a specific and definite physical structure. Just as a useful, solid object
with specific properties (such as a tool) will not consist of just any random or arbitrary aggregation of mol-
ecules, we need an exact, specific structure in an information system for that system to be useful for its
intended purpose. Similarly, any arbitrary aggregate of data will not necessarily constitute a knowledge base
and any arbitrary aggregate of knowledge, especially where disjoint, will not be likely to constitute a model
base.

4. States of information

Databases (DBs), knowledge bases (KBs) and model bases (MBs) are information repositories in which
information is stored in progressively higher levels of aggregation and complexity [10]. A database is a state
of information that consists of facts or figures structured according to a model that allows knowledge to be
stored implicitly and from which conclusions can be inferred [10,11]. At the lowest level of granularity, data
elements in databases are like individual molecules in gases. The behavior of gases at high temperature and
low pressure approaches that of an ideal gas in which molecules behave independently [2].

A knowledge base is of two types. A type-one knowledge base is a state of information that consists of a
collection of rules, axioms or assertions structured according to an ontology and a knowledge representation
that allows knowledge to be stored explicitly, and from which conclusions can be drawn using an inference
engine [12]. A type-two knowledge base is a structured acyclic graph, such as a Bayesian network that stores
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knowledge in its structure and in its associated conditional probability table. Most of the discussion on knowl-
edge bases in this paper is limited to type-one knowledge bases. A model base is a state of information that
consists of models, in which knowledge is aggregated either implicitly or explicitly [12]. A model base is struc-
tured according to a system that allows interactions and relationships between models to be exploited and
from which conclusions can be inferred using software tools. If the model itself is treated as a representational
formalism, then the distinction between types I and II knowledge bases blurs. This is similar to the principle of
duality in physics.

In databases the information is referential, in knowledge bases it is inferential, and in model bases, the infor-
mation is experiential. Although calculations and recursion can be accomplished through database queries, the
primary function of database is to serve as a reference. Similarly although a knowledge base can be used as a
reference by programming look-up tables into axiom format the strength and power of a knowledge base when
combined with an inference engine lies in its capability for inference. Finally, models can be understood by
applying them to tasks versus through theoretical explanation. This is especially true of probabilistic networks.
Thus, models provide experience just as databases provide reference and knowledge bases provide inference.

5. Examples

X, A, and B can be stored as data elements in a relational database. (See, for example, [21].) An analysis
may be necessary to determine the relationship between these data elements. However, a knowledge base
may store the relationship explicitly using a ternary predicate. For example, the assertion could be that X
is between A and B [11]. For probabilistic knowledge bases, such as Bayesian networks, the information aggre-
gation issue is more complicated as the knowledge is stored in the network structure and in the conditional
probability table [15].

To a first approximation, the states of information described above are isomorphic to states of matter.
Table 1 summarizes the comparison between the domains of matter and information. The information con-
tained in DBs, KBs, and MBs is in different states, or ‘‘states of information’’. The same information can
occupy different states in different information bases, just as molecules occupy different states of matter,
depending on temperature and pressure.

The state that the information occupies depends at least on the type of information base that stores the
data, the level of tractability of the information, and the level of expressiveness that the information manage-
ment system enables. For example, to express in a relational database the relationship between the lengths of
ships and their beams, the database administrator would create a table with at least the following attributes
(probably more), ship name, hull number, length and beam. The next step would be to fill the table with data
on actual ships. Upon inspection, it would be obvious that a ship’s length always exceeds its beam. This fact is
stored implicitly in the relational database and can be made more explicit by issuing the appropriate query
[11]. A database is a kind of knowledge base that allows a specific type of inference [10,29].

In contrast, to express the length–width relationship in a knowledge base, a knowledge engineer would
write an explicit assertion stating in the language of the knowledge-base representation the following axiom:
‘‘Always true: Length.ship > beam.ship’’. In a model base, this fact might be incorporated into a model that a
naval architect could use to design a ship with a hull that produces less drag than ships available today. The
length–beam relationship would be part of a model that describes the basic hull configuration. An equation
would relate the two as independent variables that determine, among other variables, the drag, degree of lam-
inar flow, and maximum hull speed. From a model base, one could understand in terms of water resistance,
why a ship is always longer than it is wide [11].

Data stored in databases the relations of which are in at least first normal form are analogous to molecules
in the gas phase. Even the terminology of information systems here is similar to that of chemistry (e.g., ele-
ment, atomic, etc.). The term data element implies that the information at that level cannot be broken down
further and thus possesses the property of atomicity. Databases and their management systems are analogous
to gas-handling systems with manifolds, gauges, valves, and gas cylinders. (See, for example, [7].) These aggre-
gates of molecules in the gas phase are analogous to correlated aggregates of data from database queries,
such as data in relations. Just as a dimer consists of two molecules that have the roughly same translational
trajectory between collisions, data aggregates in databases can be formed by ad hoc join queries that bring
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together data from two or more tables to satisfy what is frequently a specific, immediate, and temporary
requirement.

Proceeding to a higher level of aggregation, knowledge bases are like liquids, which have a great deal of
short-range order with respect to the nearest-neighbor internuclear distances. Similarly, knowledge in a knowl-
edge base tends to be clustered in microtheories, such as those in integrated knowledge bases. (See, for exam-
ple, [28,31].) A microtheory is a set of axioms that pertain to a particular domain and are consistent within
that domain, but are not necessarily correct when used outside of that domain.

Interestingly, in a crystalline solid, a ‘‘domain’’ is a region of the material in which long-range order per-
sists, and in which the location of one atom or molecule can be predicted with a high degree of accuracy given
the locations of other molecules. This is not the case for prediction concerning adjacent domains, where the
long-range order proceeds along an access with a different orientation. One cannot predict the position of an
atom across multiple domains with the same degree of certainty as is possible within a single domain.

6. Equations of state

Just as states of matter are not well defined, databases, knowledge bases, and model bases are not well-
defined concepts in general [10]. This becomes readily apparent when comparing and contrasting the states
of information. As long as the molecules under consideration are located far from phase interfaces, the states
of matter look better defined under some circumstances. Most of the difficulty with finding crisp definitions for
states of both matter and information arises when attempting to compare and contrast the different states at
their boundaries. The domain isomorphism between states of matter and states of information, which is sum-
marized in Table 1, enables us to understand why we have such difficulty in formulating crisp definitions for
terms like database, knowledge base, and model base in simple, succinct terms. (See, for example, [10].) Both

Table 1
Comparison of variables and observed phenomena for the domains of matter and information [11]

Variable or observation Matter Information

Smallest unit Atom or element Data element
State variable Pressure; chemical

potential
Expressiveness [11]

State variable Temperature Tractability [11]
Basic mass unit Atomic or

molecular weight
Importance or priority of data element for
maintenance, updates & integration purposes.
Assigned by database administrator per [17]

Phenomenon that correlates the behavior of entities Intermolecular
forces

Relationships between entities; semantic distance
between concepts in an ontology; interdependence of
variables

State of lowest order, not condensed Gas Database [11]
State of intermediate order, condensed fluid Liquid Knowledge base [11]
State of high order along multiple dimensions; state of high

potential usefulness as building material for tools
Solid Model base

State of extreme aggregation, density and complexity Neutron stars Wisdom base
Process that initiates gas–liquid phase transition; precursor

to state of higher aggregation, complexity, and local
order

Nucleation in
gases

Table creation, formation of semantically
heterogeneous groups [14]

Process that initiates liquid–solid phase transition;
precursor to state of higher aggregation, complexity, and
long-range order

Crystallization, or
seeding in liquids

Cluster generation in ontologies and in knowledge
bases; Seed concept identification [30,31]

Intermediate state between gas and liquid Critical mixture,
dense fluid

Storing data in a knowledge base or storing
knowledge in a database

Intermediate state between liquid and solid Liquid crystals Large, expressive knowledge bases that contain
many microtheories or clusters [28]

Integration mechanism Emulsifier Ontology [16]
Tendency to resist merging Immiscibility Disjunction [16]
Translational motion Diffusion Information transfer [16]
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state sets consist of members with fuzzy boundaries. Furthermore, cross-domain analogies are usually not
defining, but rather serve as heuristics guiding the evolution of one ontology from another.

So far, no one has developed an equation of state similar to the ideal gas law for a database. The follow-
ing considerations will be useful to take the first step in that direction. The ideal gas law is given by equation
[2]:

PV ¼ NkT ; ð1Þ
where P is pressure in atmospheres, V is volume in liters, N is the number of molecules (or atoms in the case of
noble gases) and T is the absolute temperature. The constant of proportionality, k, is Boltzmann’s constant,
which is equal numerically to 1.3623 · 10�21 l atm./molecule/deg. Ideal gases are assumed to consist of mol-
ecules that occupy no space and have no intermolecular forces.

Using this formula, consider an equation of state for a database. Suppose we redefine N as the number of
atomic data elements. We assume that TDB is a measure of tractability (analogous to temperature) and E is a
measure of expressiveness. E is analogous to P in a gas system (i.e., PDB = E). So TDB and E in a database
system are analogous to T and P, respectively, in a gas system. The choice of variables is appropriate for
two reasons.

First, two definitions of the verb, express, are ‘‘to force out by pressure’’ and ‘‘to subject to pressure so as to
extract something’’ [39]. Whereas this is not the same definition of ‘‘express’’ that ordinarily would be asso-
ciated with an information system, both information expressiveness and expression through pressure [39]
are about bringing something outside (in a form in which it can be observed, understood and used) that pre-
viously was inside (in a form less observable and useful).

Thus, expressiveness, E, in a database system is an appropriate analog for pressure, P, in a gas system. It is
reasonable to assume that the expressiveness of an information system would be directly proportional to the
amount of distinct and non-redundant information in it, although N is by no means the only factor to deter-
mine expressiveness [11]. E represents the richness of detailed ideas and concepts implicit in the data and the
ease with which they can be extracted. Issuing a query in a database is like opening a valve in a manifold that
holds fluid under pressure, ignoring the decrease in pressure that results from the change the amount of mate-
rial. (See Section 17.)

Second, P and T affect the volume of a gas in opposite directions. At constant N, an increase in P will
decrease V whereas an increase in T will increase V. Similarly, E and TDB work in opposite directions in a
database with the same number of data elements. As E increases at constant N, TDB decreases. E and TDB

were selected to account for the well-documented tradeoff between expressiveness and tractability that is like
a reciprocal relationship [29].

VDB is a volume-like entity that changes as E and TDB change at constant N. VDB is related to the scope, S,
of the database, i.e., the number of topics and level of detail of each topic:

V DB ¼ S: ð2Þ
Thus an equation of state for a database analogous the ideal gas law would look something like:

ES ¼ NkDBTDB: ð3Þ
As the scope of the database increases at constant N and TDB, the expressiveness, E decreases because in

this case, the information in the database must be spread out over a larger scope with less expressive detail in
any one specific area. If the scope, S, and number of data elements, N remain constant, as the expressiveness E
increases the tractability, TDB also increases. This is intuitive because to increase the expressiveness, one may
need to change in the database structure through, for example, normalization. This could lead to less confu-
sion about the entities that data elements describe. Alternately, in an effort to increase expressiveness without
increasing the size or scope of the database, the data themselves may have to be expressed more concisely and
clearly, thus increasing tractability, TDB.

Solving for kDB in Eq. (3), one arrives at an expression for kDB, which is like Boltzmann’s constant for data-
base systems:

kDB ¼ ES=NTDB: ð4Þ
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Whereas the ideal gas law is useful for understanding certain basic behavior of gases, in fact, no physi-
cally observable gas is an ideal gas. Similarly, whereas an ideal equation of state for information systems
analogous to the ideal gas law may be of some theoretical value, it is not of much practical use for some
systems because most, if not all, large databases and knowledge bases are replete with relationships between
the entities. These relationships are like intermolecular forces in gases that couple the behavior of the var-
ious entities, linking many interdependent variables together. Such linkage is very similar in some ways to
the coupling between molecules that occurs in viscous fluids. Here, momentum transfers easily from one spe-
cies to the next, thereby frustrating any hope of being able to treat most modern information systems with
the simplicity of an ideal-gas-like equation of state. Still, Eq. (4) invites us to examine the issue of metrics.
(Sections 8 and 12.)

The next simplest equation of state after the ideal gas law is the van der Waals equation (5) where Eq. (6)
defines the molar volume, R is the gas constant, and A is Avogadro’s number, which is 6.023 · 1023 molecules/
g molecular weight or mole [3]. In chemical systems, Avogadro’s, A, number is equal to the number of atoms
in a gram of hydrogen. It is a scaling factor between microscopic and macroscopic quantities of matter [11].
Constants, ‘‘a’’ and ‘‘b,’’ represent corrections for molecular size and intermolecular forces respectively, which
differ for each gas.

P ¼ RT =ðV � bÞ � a=V 2; ð5Þ
V ¼ ðAV Þ=N ; ð6Þ
R ¼ Ak: ð7Þ

Eqs. (8) and (9) give the database-systems analog of (5).

E ¼ ðADBkDBTDBÞ= V DB � bDBð Þ � aDB= V DBð Þ2; ð8Þ
V DB ¼ SADB=N : ð9Þ

ADB is like Avogadro’s number in that it could be related to scalability in databases. ADB will not, however,
have exactly the same meaning in the information context that Avogadro’s number has in the material
context.

Van der Waals constant, a, corrects for molecular size [11]. The constant, aDB, is the information-system
analog of the van der Waals constant that represents the increase in expressiveness of a database with com-
ment or text fields that allow for declarative information to be included in database format. Here, the size of
the field is analogous to atomic or molecular size.

Similarly, bDB is the information analog to the van der Waals constant that corrects for intermolecular
forces [11], which usually are attractive forces at long range. bDB is related to the degree to which relationships
between data elements have been made explicit. Whereas no metric for bDB has been developed, a low bDB

would indicate the presence of implicit or latent correlating relationships between data elements that have
not be made explicit. In a database characterized mainly by disjoint data elements bDB would be near zero,
like the ideal-gas case in which no forces are assumed to act between molecules. For example, dependence
is a form of correlation. If data elements were shown to depend on each another, that would tend to increase
bDB.

As bDB increases, E also increases, subject to the constraint that bDB must remain small compared to VDB

(and they can never be equal). Providing better documentation in the database about the relationships
between data elements can be conceptualized as an increase in bDB. This also leads to better expressiveness
of the database, as the database complexity approaches that of a knowledge base, where relationships are
more explicit. The process of deriving new data using relationships between existing data is very similar to
the generation of features in a database to aid in the knowledge-discovery process. (See, for example, [34].)

7. Heat of vaporization

As data relationships are characterized, the database approaches a knowledge base in which all information
can be expressed as declarative statements or axioms. This suggests the possibility of a phase transition. For
example, one can define the quantity, QIV, as the ‘‘work of database conversion’’, which is the direct analog of
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the thermodynamic quantity, Qvap, or heat of vaporization. For a van der Waals gas, Eq. (10) defines Qvap as
follows [4]:

Qvap ¼ a=b: ð10Þ
To a first approximation, for information systems, the work necessary to convert information between

knowledge base and database representations (e.g., KBMS M DBMS) is directly proportional to the number
of latent relationships in the data that need to be made explicit. QIV also is inversely proportional to the degree
of ‘‘disjointedness’’ of the information. Eq. (11) summarize the relationship and can be viewed as a measure of
the complexity of the information–representation conversion.

QIV ¼ aDB=bDB: ð11Þ
For high QIV, many relationships exist between data elements that necessitate explicit declarations in a cor-

responding knowledge base. For low QIV, the task of conversion is simpler either because relationships have
been made explicit or because fewer relationships exist, in which case the domains of related variables or
microtheories can be handled separately from each other. The concepts and usage of both aDB and bDB need
to be refined. Moreover, a way to measure overall disjunction in an information system is required.

8. Partial pressures and expressiveness

Expressiveness can occur along multiple dimensions, which, to a first approximation, can be conceptualized
as additive like partial pressures. An information system can be expressive in the following ways [12]:

• e1 – To a first approximation N, the number of data elements in an information system, could serve as a
reasonable estimate of e1.

• e2 – An information system is expressive if it supports high-resolution concepts by allowing the user to dis-
tinguish between entities when the differences are very small, i.e., the ontology is very rich because it allows
for many fine gradations of the same or similar concepts. For example, a paint manufacturer may have
many different names for different shades of blue. Here, the dimension of expressiveness, e2, could be esti-
mated by a quantification of the fan-out of entities at various levels in the ontology. It also could be char-
acterized by comparing several different information bases and rank ordering them according to the
magnitude of the just-noticeable differences that can be expressed.

• e3 – An information system can provide multiple synonyms for the same entity, thus increasing the prob-
ability that the system can support users from different backgrounds where different terminology is used to
express the same concept. Here, the dimension of expressiveness is synonomy. A simple way to measure e3
is to count synonyms.

• e4 – It can handle multiple query types, such queries that include negation, counterfactuals, and uncer-
tainty. An estimate of e4 is to count the number of query types that the information system supports.

Dalton’s law of partial pressures is stated as follows:

P ¼ p1 þ p2 þ � � � þ pn; ð12Þ
where p1, . . .,pn represent the partial pressure of each gas in the system and P is the total pressure.

Similarly, the total expressiveness of an information system can be considered to be the sum of the expres-
siveness along each dimension of expressiveness:

E ¼ c1e1 þ c2e2 þ � � � þ cnen; ð13Þ
where e1, . . .,en represent the partial measures of expressiveness along each dimension that is present in the
system, three of which are described above. Constants, c1, . . .,cn are included in (13) to make the equation
more flexible in that some dimensions of expressiveness may be more important than others, depending on
the application. In the absence of any other information, each of these constants can be set equal to 1. Eq.
(13) holds as long as the dimensions of expressiveness are orthogonal and all ei are obtained by counting
entities.
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9. Critical phenomena and nucleation

The liquid–vapor critical point is the temperature and pressure at which the interface between a liquid and
the vapor of that substance over the liquid disappears [2,4]. To observe critical phenomena experimentally,
partially fill an evacuated pressure vessel with a liquid at room temperature and seal the vessel. Heat the vessel
until the interface between the liquid and the gas above the liquid vanishes. The state of matter is not defined
clearly for a substance with a temperature above its critical point. It is a dense fluid that clearly is not a solid.
However, whether it is a liquid or a gas cannot be determined.

The information-system analog of critical phenomena is the database–knowledge base transition. A data-
base is a kind of knowledge base that allows for a specific type of inference [10]. Databases can be constructed
to store axioms and assertions as text fields. They also can contain the conditional probabilities associated
with Bayesian networks. Knowledge bases can be constructed to contain assertions that might also be
expressed very efficiently in tabular format. Under some circumstances, it may not be any easier to distinguish
a database from a knowledge base than it is to separate liquid from vapor above the critical temperature,
unless one examines the information representation and the query methods.

Information grouping can be compared to nucleation in matter. This area needs to be explored further.
Data grouping in databases [14], clustering in data streams [27] and axiom clustering [31] in knowledge bases
are analogous to nucleation in gases and crystallization in liquids respectively because they initiate phase tran-
sitions to states of information with longer-range order and correlation among information entities. This is
because these grouping techniques bring together data or knowledge in which the relationships between data
elements or axioms link the elements together in the cluster or group in a manner analogous to the way in
which intermolecular forces hold atoms or molecules together in condensed phases of matter.

10. Systems of liquid–liquid equilibrium

Some pairs of liquids are immiscible with each other under certain conditions that depend on temperature
and composition. They can become partly miscible or totally miscible if the temperature or composition
changes.

The liquid–liquid critical point is the temperature, Tc, and composition (i.e., mole fraction, xc,) at which the
liquid–liquid interface at equilibrium disappears and the two liquids become miscible with each other [2]. A
phase diagram specific to each liquid–liquid pair describes the behavior of the liquid with respect to critical
temperature and composition. In many systems of liquids, Tc occurs at the maximum, and in some systems,
Tc will occur at the minimum of the curve.

T

Tc = 65.9 ºC

L1 +  L2

Immiscible,
Two phases

Water xphenol Phenol

Miscible,
One phase

L1 L2

Fig. 3. Liquid–liquid phase diagram for water and phenol [2]. (‘‘xphenol’’ is the mole fraction of phenol).
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Figs. 3 and 4 illustrate the two cases, respectively. The critical temperature can be either an upper consolute
temperature as in Fig. 3 or a lower consolute temperature as in Fig. 4 [2]. On one side of the curve (L1 + L2),
the liquids are immiscible and an interface forms between the two, whereas on the other side of the curve, the
liquids are miscible and exist as a single phase.

The thermodynamics of the liquid pair is given by Eq. (14).

ua � u0a ¼ RT ln xa; ð14Þ
where xa is mole fraction of liquid ‘‘a’’ in the system, u0a is the chemical potential of the pure liquid, and ua is
that of the liquid in equilibrium with the other liquid. In liquids, the variable, u, can be conceptualized as a gas
pressure-like quantity, similar to vapor pressure. R is the constant of proportionality that was determined
experimentally.

11. Relation of liquid–liquid mixtures to information systems

Table 1 includes a comparison between the domains of matter and information when comparing integra-
tion between two information bases (DB or KB) to a system of two liquids.

Consider two KBs, ‘‘1’’ and ‘‘2’’ that are proposed for integration. Eq. (15) is the information-system ana-
log of Eq. (14). In (15) E0

1 is the expressiveness or ‘‘information potential’’ of KB1 in the integrated state, E1 is
the expressiveness or ‘‘information potential’’ of KB1 in the stand-alone state, and Tkb is the tractability of the
information system. x1kb is the fraction of information contributed from KB1. Ri, the constant of proportion-
ality like R in gases, will need to be determined experimentally:

E1 � E0
1 ¼ RiT kb ln x1kb: ð15Þ

Measures of E have been described [12] and x can be approximated by counting attributes in databases
(DBs) or axioms in KBs. Metrics for Tkb are explored in the next section.

Partial miscibility of two liquids is like two KBs that have been integrated at some levels but not at all lev-
els. In principal, this applies to mixtures of multiple components and the results can be generalized to systems
of multiple KBs. A method to measure disjunction in KBs needs to be developed in analogy with the immis-
cibility of liquids. Such a metric will need to be generalized to include heterogeneous information systems
types (e.g., systems that include both DBs and KBs) as well as information systems that include multiple com-
ponents of the same type.

Tc is not easy to predict or calculate from other characteristics of liquids, such as boiling points, freezing
points and molecular structure. Similarly, it is not envisioned that Tci, the critical tractability of information

L1 + L2

L1 L2

Water xtri. Triethylamine

T

Tc = 18.5 ºC Miscible,
One phase

Immiscible, Two 
phases

Fig. 4. Liquid–liquid phase diagram for water and triethylamine [3]. (‘‘xtri’’ = mole fraction triethylamine).
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integration, will be easy to predict or calculate theoretically. However, using approximate metrics for
tractability a method to measure Tci experimentally could be developed in analogy with Tc for liquid
systems.

12. Toward tractability metrics

Molecular motion gives rise to temperature T. In systems of molecules, different kinds of motion give rise
to various contributions to T. More specifically, heat is partitioned among orthogonal motion types that give
rise to the rotational, vibrational, and translation temperatures. The motion types are derived from the
orthogonal degrees of freedom of the atoms in each molecule. Each type of motion makes a separate contri-
bution, each of which can be calculated theoretically. However, experimentally using direct measurements, we
observe an overall T resulting from the contributions of all degrees of freedom. (Indirect spectroscopic means
must be used to determine the contributions to T from vibration and rotation, given sufficient spectral reso-
lution.) Similarly, a metric is needed for the information tractability in information systems analogous to
temperature.

Multiple aspects of tractability are possible. The overall tractability can include contributions from all
aspects. For example, it can include contributions from the various independent levels of integration (e.g.,
platform level, syntactic level and semantic level) [14]. These levels, which progress from the coarse grain (plat-
form) to the fine grain (semantic), may be compared in some ways respectively to the orthogonal motion types,
such as vibration, rotation and translation (also in decreasing order of granularity). Information system trac-
tability with respect to integration means that obstacles to integration at the various levels of integration are
overcome efficiently. Metrics are needed for each of these three main integration levels to determine in more
detail their contribution to the overall tractability.

Other aspects of tractability also may contribute to overall tractability, such as the aspect from the point of
view of the engineer who must integrate the information (efficiency of integration) and another from the point
of view of the user (ease of use). From the user’s perspective, tractability of an information system relates to
the steepness of the learning curve in understanding the information in the system and in using the system to
meet mission requirements. Consider Eq. (16) as a formula for information-system tractability in which T1 is
the contribution to the tractability from integration at the platform level; T2, the tractability at the syntactic
level; and T3, the tractability at the semantic level. T1, T2, and T3 pertain to the level of effort on the part of the
engineer. T4 can be added to represent the tractability contribution from the user’s viewpoint. The cn constants
are weighting factors that each can be set arbitrarily to 1 unless there is some a priori reason for making them
unequal.

T kb ¼ c1T 1 þ c2T 2 þ � � � cnT n: ð16Þ
As in the case of molecular systems in which the individual contribution of the various components to the

overall temperature are difficult to measure separately and directly, the contributions of the various aspects of
tractability also are not measured easily. However, they can be estimated. For example, T1, T2, etc. can be
estimated separately using a scale of, say, 1–10. For example, T1 is the tractability of the platform-level of inte-
gration, which includes basic hardware, network connectivity and protocol, operating systems, and transac-
tion management [14]. To get a full score of 10, no aspect of platform connectivity would be allowed to
decrease the efficiency or throughput of the system.

T2 is the tractability at the syntactic level of integration, which includes data structures, languages (e.g.
SQL, KQML) and constraints [13]. T3 is the tractability at the semantic level, which includes data-element
naming conventions, definitions, units, levels of granularity, precision [13], and ontology placement. T2 and
T3 also can be estimated in a similar manner to that of T1 including the various contribution to each Tn from
data structures, languages, semantic inconsistencies, etc.

T4 is the tractability from the point of view of the user. This includes ease of use, understanding, and task-
reduction time. The reliability of each platform also is a consideration as it relates to the perceived tractability
of integrated information. Using this system to estimate Tkb, the Tkb of one system can be compared to that of
another provided the individual components of Tkb are estimated using the same criteria. Absolute values of
Tkb may not be as useful or as meaningful.
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13. Diffusion and information transfer

One way to conceptualize the tractability is to note that two KBs at low tractability are like a two-phase
liquid–liquid system at equilibrium with an interface that allows little transfer to occur. Diffusion in liquid–
liquid systems can be compared to information transfer in information systems of multiple components. As
indicated in Table 1, the disjunction of information systems is analogous to immiscibility in liquid–liquid equi-
librium systems. Diffusion across the boundary between liquids is analogous to information transfer between
one information-system component and another.

For information systems there will be a level of tractability (given a certain relative amount of information
in each system) at which integration becomes very efficient. This gives rise to a critical tractability, Tckb, anal-
ogous to the critical temperature in liquid systems, Tc. At Tckb, diffusion-like information interoperability can
occur readily between the two components and the interface between them can be made transparent to the
user, just as the interface between two liquids vanishes at the critical temperature and composition as previ-
ously discussed.

If the interface allows little meaningful information transfer, few axioms from KB1 can be used in KB2.
Tractability is low here. The analog is the H2O–phenol liquid–liquid system depicted in Fig. 3 that results in
two phases at some concentrations below the critical temperature. Most of the time, information systems
are expected to behave more like the H2O–phenol phase diagram in Fig. 3 than the water–triethylamine
phase diagram depicted in Fig. 4. This is because in general, as tractability increases, the probability of
a two-phase system decreases and the information ‘‘miscibility’’ or the efficiency of information transfer
increases.

A method needs to be developed to determine if two KBs are miscible or in two phases. This is like asking if
the KBs are disjoint, and at what level in the underlying ontologies do they have concepts in common.

The example is given of two KBs as analogous to a system of two liquids, either miscible or immiscible,
depending on the degree of their molecular polarity (like the degree of disjunction in information systems).
In the case of a two-phase system of liquids, molecules of both types are exchanged across the liquid–
liquid interface so that some of liquid A dissolves in the B phase and some of liquid B dissolves in
the A phase.

Even partial miscibility can result in a two-phase system when A becomes saturated in B or vice versa.
Beyond the saturation mole fraction at constant temperature, increments of either component will not mix
but will result in a second phase appearing with an interface between the two phases. The saturation mole frac-
tion depends on temperature and measuring it at various temperatures gives rise to curves such as those
depicted in Figs. 1 and 2.

14. Disjunction metrics, ontology and miscibility

To a first approximation, disjunction in an information system is analogous to immiscibility in a multi-
liquid system. Other factors can produce a ‘‘two-phase’’ KB1–KB2 system if the knowledge representations
are very different. No axiom in A will appear to form useful clusters with the axioms in B. Today, this occurs
as microtheories in large KBs in which the domains are disjoint. However, if tractability is increased by
converting information from A into the knowledge representation of B, the two-phase system may become
a one-phase system consisting of A and B as miscible KBs like the miscible liquids.

Methods have been suggested to characterize, estimate, and eventually measure disjunction in information
systems [18], which is the analog of immiscibility of liquids. For example, consider two KBs, KB1 and KB2.
The higher (more general) level the ontology or KB structure that is necessary to find axioms or concepts in
common with another KB, the more disjoint (i.e., orthogonal or mutually random) two KBs are from each
other. One can count the levels starting from the leaves (most specific instance level) calling this level zero.
The next level is 1, etc. Therefore, one could say, for example, that an axiom from KB1 and another one from
KB2 are disjoint at the (3,5) level where 3 represents the level of generality/specificity in the ontology in KB1

that corresponds to level 5 in KB2. The higher the numbers, the more disjoint the axiom in KB1 is from the
axiom in KB2. This disjunction concept is captured in Eqs. (17) and (18), which apply to the single group of
three axioms from the example described above:
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DjðKB1ða3Þ;KB2ða5ÞÞ ¼ ð3; 5Þ; ð17Þ
DjðKB1ða3Þ;KB3ða8ÞÞ ¼ ð3; 8Þ: ð18Þ

Eqs. (17) and (18) are examples of the disjunction metric, Dj(x,y), that can be used to compare axioms in
KBs. Eqs. (17) and (18) can be used to compare the degree of disjunction between pairs of axioms from dif-
ferent databases. To use this metric, the ontology that pertains to each KB must be sufficiently complete to
locate the corresponding levels in the ontologies of the different KBs. Disjunction also is related to random-
ization in information systems. (See, for example, [19].)

Another way to express the disjunction metric is with Eqs. (19) and (20). Eq. (19) states that a concept at
level 3 of ontology for KB1 is equivalent to a corresponding concept at level 5 of ontology for KB2. Eq. (20) is
the analog of (19) in the case of KB1 and KB3.

ðKB1ða3ÞÞ ¼ ðKB2ða5ÞÞ; ð19Þ
ðKB1ða3ÞÞ ¼ ðKB3ða8ÞÞ: ð20Þ

Given (17) and (18), we can also write (21).

DjðKB2ða5Þ;KB3ða8ÞÞ ¼ ð5; 8Þ: ð21Þ
Similarly, given (19) and (20), we can also write (22):

ðKB2ða5ÞÞ ¼ ðKB3ða8ÞÞ: ð22Þ
Moreover, one can sum the axioms or concepts from one KB at level x that occur at level y in another KB and
divide by the total number of axioms at that level in each KB to calculate an overall disjunction metric,
Dj(1,x, 2,y) at the (x,y) level of comparison. Eqs. (23) and (24) express disjunction about an aggregate of axi-
oms or concepts. Integers, k and m are the total number of axioms or concepts at levels x in KB1 and y in KB2:

X
DjðKB1ðaxÞÞ; ðKB2ðayÞÞ ¼

X
ðx; yÞ; ð23Þ

Djð1; x; 2; yÞ ¼
X

ðx=k; y=mÞ: ð24Þ
The usefulness of these disjunction metrics will increase when a more standardized way to organize an

ontology is developed.
An example of partial miscibility in liquids is to dissolve small amount, say 5% of phenol in water and still

maintain a one-phase system, as shown in Fig. 3. In analogy with partial miscibility, if only a small amount of
information from one source (e.g., DB or KB) is integrated with another larger information base, this can be
approached in a tractable way just by performing exhaustive searches and comparisons.

When the sources are of comparable size and both are large, it becomes more difficult, if not impossible to
integrate these sources at all levels by manual and exhaustive means as this method of integration is not scal-
able. This situation corresponds to the two-phase side (L1 + L2) of the critical temperature in a liquid–liquid
equilibrium system. Within this boundary, which corresponds to the area below the curve in Fig. 3 and the
area above the curve in Fig. 4, liquids do not mix well with each other and two liquid phases result. In the
information analog, an information system will be difficult to integrate in this two-phase region, i.e., the infor-
mation systems will resist merging and the integration effort will be very intensive and in some cases not
resource efficient enough to pursue.

Emulsifiers are molecules with at least two active sites, one hydrophilic and the other hydrophobic. The
hydrophobic end of the emulsifier attracts the non-polar molecules (such as oils) and the hydrophilic end
attracts water. This enables hydrocarbons to dissolve in water. Depending on their structure and versatility,
an ontology used to accomplish information integration could be compared to an emulsifier with multiple
active sites.

15. Integration methodology

Data grouping [14] and axiom clustering [31] are important for both data and knowledge integration,
respectively. Groups of similar data elements or axioms should be formed early in the integration. This is anal-
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ogous to nucleation in liquids [12]. Grouping together similar entities in an information system can enhance
integration efficiency.

Various dimensions of clustering depend on the clustering criteria, such as the formation of semantically
heterogeneous groups [13,14], or grouping according to data categories [17]. Certain groups of data histori-
cally have been shown to exhibit more challenges to integration than others [17]. For example, administrative
data such as date record loaded, date record changed, security classification and observation point etc. tend to
be the data on which joins are based for application purposes [7]. Inconsistencies in these data will be noticed
sooner than data that are used less frequently. Therefore, clusters involving this information should be
formed. In an environment of limited resources, clusters in general should be selected to restrict the search
domain to only those data elements and table names that are most likely to contain errors and inconsistencies.
After information groups are formed, the integration should proceed at the ontological level.

Any good integration methodology will be able to handle special cases that arise due to anomalies in the
information representation and content. These are not necessarily errors themselves, but rather they are con-
ditions that could lead to errors. Ambiguous information representations can lead to erroneous integration
that can interfere with the tractability (i.e., understanding the meaning of information). The information sys-
tem analog of Fig. 4 illustrates how tractability can be higher in systems with components that are less
integrated.

A liquid system of water and triethylamine has a lower consolute temperature because the constituents
form a loosely bound compound that dissociates as the temperature is increased. The miscibility of water
and triethylamine depends on the presence of this compound. Usually this is not a good model for information
systems integration, Fig. 3 being the more likely case. However, some conditions in information systems are
analogous to the phase diagram of water and triethylamine.

Using the same representation for what actually are disjoint domains can invite the wrong kind of query
and lead to incorrect results that may look correct initially. For example, the abbreviations for distance units,
nanometers and nautical miles, are both ‘‘nm’’. Using a database example, suppose exactly the same data rep-
resentation for distance attributes were used in two tables, one of which described distances at sea and the
other pertained to light wavelengths. Due to the apparent domain similarity, an erroneous join on distances
could occur between a table that has ship speed data and a table describing the wavelengths of light from sig-
nals. The database management system would allow this meaningless join as legitimate unless additional soft-
ware prevented it. The join results would be like the compound formed between water and triethylamine at
lower temperatures. This apparent but false domain similarity occurs in many other cases in data standards
where partially or totally disjoint domains are specified explicitly in the same format. In both cases, external
factors serve as a context for the ‘‘reaction’’ or lack thereof.

16. Liquid crystals and long-ranger order

Liquid crystals are intermediate between liquids and crystalline solids [20,25,42,43]. Liquid crystals are
materials consisting of anisotropic molecules. These materials exhibit some characteristics of liquids and some
of solids [43]. Some researchers believe that liquid crystals represent a distinct state of matter that differs from
crystalline solids and isotropic liquids [43]. Liquid crystals are substances that have long-range order in one or
more physical dimensions, and only short-range order in the remaining dimensions. For example, nematic

liquid crystals consist of long molecules, the major axes of which are oriented in about the same direction
throughout a macroscopic domain, unlike an isotropic liquid in which the orientations of the molecules are
not well correlated.

Similarly, smectic liquid crystals [25] consist of molecules that exhibit not only long-range order with
respect to the orientations of the major molecular axes, but the molecular centers of mass are coplanar in a
given domain [43]. However, the position of each of molecules in one plane with respect to the molecules
in next plane is not correlated (ignoring average interplanar distance) and the layers can shear. Smectic liquid
crystals have structures that bear quite a bit of similarity to three-dimensional solids. However, a smectic
liquid crystal can be poured from one container to the next.

Other phases, such as a two-dimensional solid hexatic phase, as well as phase transitions such as two-
dimensional melting have been observed. (See, for example, [20].)
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The transition between liquid and solid corresponds to the transition from knowledge base to model base
states of information. A liquid crystal is analogous to a knowledge base with many microtheories, each of
which could be considered to be a model. As microtheories and domains of knowledge in knowledge bases
become more refined with the right kind of detailed knowledge, a knowledge base of this type can become
a de-facto model base.

17. Limitations of the methodology

First, analogies cannot be used to prove that any particular information system works better than any other
one. The main purpose of analogy in this context is to suggest new ways to view, measure, and characterize
information systems and to teach students about them. The use of analogy in general is not intended to be a
rigorous form of scientific inquiry in the absence of other methods of investigation.

Second, the analogy between states of matter and states of information is expected to break down at some
point. For example, T and P are well-known independent variables in a gas system of variable volume and
fixed number of molecules. However, their infodynamic analogs, TDB and E, are not nearly as well defined
and are not independent of each other in the same sense that T and P are independent. The analogy also
breaks down when one considers scalability issues.

For example, T and P are intrinsic variables, whereas TDB and E are extrinsic because TDB can decrease and
E can increase with the size of the information system. We have no information system in which the number of
data elements, axioms, or models comes anywhere near Avogadro’s number. Information systems are already
pushing the limits of tractability for N � 1023. So far, no one has demonstrated the database analog of Avo-
gadro’s number, ADB, has any particular significance, physical or otherwise.

A fundamental way in which matter and information differ is in their conservation and transfer (see Sec-
tion 6). Like energy, matter is conserved whereas information is not. When matter is transferred from one
location to another, there is a decrease in material in the former location and a corresponding increase in
the final location. However, information can be transferred without any loss of information at the origin
of the transfer.

Ultimately, the limitations of the analogy must be tested experimentally. Again, it suffices for purposes of
discovery that the analogies are, at best, of a heuristic nature [33–35].

18. Future research and applications

More work is needed in this area to answer many questions. First, will kDB be constant for all databases?
Secondly, if not, will the range of kDB be bounded in a predictable manner? How does one develop appropriate
metrics for tractability (TDB) and expressiveness (E)? Metrics techniques for knowledge bases have been the
subject of a study in the now-concluded DARPA High Performance Knowledge Base Project (see, for exam-
ple, [22]). This work continues today in the follow-on program, Rapid Knowledge Formation. It remains to be
seen how much of these results can be applied to database systems.

Information grouping as compared to nucleation in matter needs to be explored further. Data grouping [14]
in databases and axiom clustering [30,31] in knowledge bases are analogous to nucleation in gases and crys-
tallization in liquids, respectively, because they initiate phase transitions to states with longer-range order and
correlation among information entities. This is because these grouping techniques bring together data or
knowledge in which the relationships between data elements or axioms link the elements together in the cluster
or group in a manner analogous to the way in which intermolecular forces hold atoms or molecules together in
condensed phases of matter. This area is fertile ground for further investigation.

Furthermore, model bases may be properly viewed as knowledge bases where the representational formal-
ism has been extended in the form of a model. Just as the gas–liquid juncture becomes indeterminable above
the critical temperature, the distinction between database, knowledge base, and model base may lack defini-
tion above some critical complexity of representation.

The above discussion described some ways to measure expressiveness (E) but metrics need to be developed
for tractability. One possibility is to model tractability as the reciprocal of the time required to use or under-
stand information in the system. More work is needed in this area.
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The measurement of pressure seems quite trivial now, but this was not the case before the invention of the
pressure gauge. Similarly, the measurement of expressiveness in information systems seems elusive now, but
the future may prove otherwise.

More work is needed in the area of metrics for tractability and disjunction. The equations proposed in this
paper should be tested and validated with use cases. A standard ontological representation needs to be estab-
lished to enhance the value of disjunction metrics. Some liquid–liquid systems exhibit closed phase diagrams
with both upper and lower consolute temperatures [3]. It may be of theoretical interest to determine if any
information system exhibits analogous behavior and why. Solid–liquid equilibrium mixtures need to be
explored as the information-system analog of model-base integration.

In addition to new database metrics, infodynamics principles can be used as the basis of a teaching method
regarding the fundamentals of information systems for students already familiar with physical sciences.

By applying principles and properties of matter to information systems, scientists and engineers may be
able to predict properties of future information systems in a manner that is analogous to the way in which
we now predict the properties of future, undiscovered elements from knowledge of the periodic table. For
example, model bases, when designed, developed, maintained, and managed efficiently, ought to provide an
order of magnitude more modes of usage as an information system than either databases or knowledge bases.

19. Conclusion

Thermodynamics is but one domain from which we may draw analogical models for information systems.
Pertaining to the mapping process itself, if we can use models to enable tractable computation, what about the
tractability of the processes to find and verify those models? Clearly, one may proceed on an empirical basis –
finding simple solutions, reusing them, and extending them as appropriate. That is to say that representation,
including all processes of associative mapping, is evolutionary. This paper broadens one’s perspective. For
example, just as one may ‘‘borrow’’ from the chemical definition of simulated annealing in the formation
of glasses and apply it to the optimization of neural networks, one also may borrow from the miscibility of
two liquids based on their molecular polarity in the determination of segmentation in a knowledge base.
The key is knowing when and where to apply the transformation(s). Such mappings may be seen as heuristic
search, where the issue of representation is key. We believe that this paper has laid the foundation for asso-
ciative mapping as an ontology in its own right. Then, ontologies can map other ontologies. The resulting net-
work defines a randomization [19,33,35].
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