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ANALYSIS AND SIMULATIONS OF OPTICAL RECTIFICATION AS A
SOURCE OF TERAHERTZ RADIATION

I. INTRODUCTION

Diode pumped laser systems based on chirped pulse amplification [1] are capable of

delivering millijoule sub-picosecond pulses at repetition rates as high as 10 kilohertz. These

compact and efficient lasers can be used to generate high average power terahertz (THz)

radiation if an efficient photonic downconversion scheme can be found.

Photonic downconversion is a set of methods whereby optical or infrared radiation is

converted to a lower frequency due to the effects of the second order susceptibility present

in anisotropic materials. With an appropriate pump source and nonlinear medium these

methods can be used to generate THz radiation [2, 3, 4, 5, 6, 7, 8, 9, 10, 11]. The con-

version efficiency achieved by these methods scales with several parameters, including the

pump intensity, the interaction length, the absorption losses, the nonlinearity, and the phase

mismatch.

Ultimately, achieving breakthrough conversion efficiencies cannot be achieved simply by

tuning parameters such as laser power or interaction length. In fact, in the regime where

many experiments operate, the conversion efficiency is fundamentally limited by the Manley-

Rowe relation to a value given by

"7MR = (1)
?M -- As

where A, is the wavelength of the signal being generated and AP is the wavelength of the

pumping radiation. In the case of Ref. [9], for example, AP = 1.06 pm and A. = 300 pm

so that r/MR =- 0.33%. This low value can only be exceeded by designing a system which

operates in a regime where the assumptions of the Manley-Rowe relation do not hold. One

such assumption is that the radiation consists of three discrete frequencies. By operating in

a regime where the bandwidth of the pump radiation is comparable to the signal frequency,

it may be possible to obtain conversion efficiencies exceeding r1MR.

In this report we consider utilizing ultra-short laser pulses to efficiently generate THz

radiation via a phase matched optical rectification process. Optical rectification generates

radiation with a center frequency approximately equal to the inverse of the pulse length

of the pump laser. If the spot size of the laser is many THz wavelengths in diameter, the

process can be phase matched by angle tuning in a suitable crystal.

Manuscript approved July 19, 2005.
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II. TECHNICAL BACKGROUND

A. Normalizations

We use a system of units normalized as follows. The unit of time is wT' where WT -

27r x 1012 rad/s. The unit of length is C/WT, where c is the speed of light. The unit of mass

is the electronic mass, m, and the unit of charge is the electronic charge, ej. The unit of
density is nT - m4/4-re 2. Note that this results in the peculiarity that the unit of particle

number is NT - mc3 /4lrwTe 2 . To determine the value of a normalized quantity in either SI

or gaussian units, multiply the normalized quantity by the value given in Table I. For the

case of SI units, we define the permittivity of free space, Co - 8.85 x 10-12 F/m, and the

impedance of free space, 770 - 377 Q.

B. Coordinate System

Two natural coordinate systems arise when considering laser propagation in a crystal.

In one coordinate system the description of the interaction with the crystal is simplified,

while in the other the description of the laser propagation is simplified. The former will

be described by the "crystal basis" defined by the unit vectors (u, v, w). The latter will

be described by the "laser basis" defined by the unit vectors (x, y, z). We will consider the

laser basis to coincide with the standard basis.

In a general coordinate system, the linear response of the electronic polarization P to an

applied field E is given by the tensor equation Pi = XjjEj (we use the Einstein summation

convention). By definition, Xij is diagonal in the crystal basis. Furthermore, for uniaxial

crystals two of the diagonal elements are equal. By convention the two equal elements are

XUU = XvV. In this case, radiation with a polarization component in the w direction is called

an extraordinary wave, while radiation with no polarization components in the w direction

is called an ordinary wave.

The laser basis is defined such that the central wavevector of the laser points in the z

direction. The orientations of x and y with respect to the laser polarization can only be

made meaningful after specifying the relation between the laser basis and the crystal basis.
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TABLE I: Normalization

Quantity

Time

Length

Density

Particle Number

Electric Field

Magnetic Field

Current Density

Charge Density

Polarization

Susceptibilitya

Susceptibility ( 2 nd order)

Susceptibility (3rd order)

Energy

Energy Density

Power

Fluence

Intensity

Two Photon Coefficient

aFor the SI units, we use the convention whereby co is not absorbed into the susceptibility; i.e., P = coXE.

The laser basis and the crystal basis are connected by a rotation operator

T = Ry(-O)Rz(-¢) (2)

where 14 and Rz represent right-handed rotations about the y

explicitly,

cos 0 cos -cos 0 sinq5

T = sin q cos €

sin 0 cosq5 -sin 0 sin

- sin 0

0

Cos 0

and z axes. Written out

) (3)

Symbol SI Unit

-1
UT

C/WT

nT Comw• 2 e2

eomC3 /lUTe2

ET mC-T / e

mwT/e

nTeC

nTe

nTeC/UT

1

1/ET

1/E
mc

2

mc 2nT

mc 2UT

ST/CIT

cgs Unit

-1
UT

2U /41rC2
C UO)T

mc 3 /4-TrWTe
2

mcUT/ e

nTeC

riTe

nTeC/WT

1/47r

1/4WET

1/47ET2

mc
2

mc 2n nT

inc2 T

cET2/4'7rUT

cET/47r

WT/CIT

Unit Value

159 fs

47.8 ,m

1.24 x 1016 cm-3

1.35 X 10'

107 MV/cm

35.7 T

59.5 A/cm 2

0.0020 C/cm3

9.5 x 10-8 C/m 2

9.3 x 10-i m/V

8.7 x 10-21 m 2/V 2

8.19 X 10-14 j

1.02 kJ/cm
3

0.52 W

4.83 J/cm2

3.04 x 1013 W/cm 2

0.0069 cm/GW
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Physically, the operator T corresponds to the following procedure. Position the crystal such

that the crystal basis coincides with the laser basis. Rotate the crystal -0 about the z axis,

then rotate it -0 about the y axis. With this procedure, waves polarized in the x-direction

are extraordinary waves while waves polarized in the y-direction are ordinary waves.

Mathematically, the operator T takes a vector expressed in the crystal basis and gives

the same vector expressed in the laser basis:

ALB = TACB (4)

Here, the subscript CB refers to the crystal basis and the subscript LB refers to the laser

basis. If the basis vectors themselves are expressed in the standard basis , they satisfy

(u, v, w) = T(x, y, z) (5)

An operator L is transformed according to

LLB = TLcBT-' (6)

Because T is an orthogonal matrix, its inverse can be computed simply by taking the trans-

pose

T- 1 = TT (7)

C. Timescale Separation and Laser Frame

Numerical models of optical rectification can be made more efficient by taking advantage

of the large time-scale separation between the laser frequency and the THz frequency. This is

done by averaging over the fast laser oscillations, but not the much slower THz oscillations.

Let the real valued laser field be denoted 4, and the real valued THz field by Ej. The

complex amplitude of the laser field, Si, is then defined by

S= §i(wot-koz) + C.C. (8)
2

The demand on computing resources can be minimized by solving only for the complex

envelope Si which varies much more slowly than the real valued field Si. A similar notation

will be used for all other quantities. For example, the electronic polarization is similarly

decomposed into the rapidly varying part, denoted by the real valued Pi and complex valued

Pi, and the slowly varying part, denoted by Pi.
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Further computational advantage can be gained by carrying out the calculations in a

Galilean frame of reference moving at the group velocity of the laser pulse. In this frame

of reference, the independent variables become r = z and T = t - n 9 z. The corresponding

differential operators transform according to

z =, - fgdr (9)

at = Or (10)

The group index, often called /31, is given by

g = n•(o) + cio (11)

dw ww

The utility of this coordinate system arises from the fact that for short pulses propagating

in the forward direction a., < aT. By dropping terms containing a9 from the propagation

equations one obtains equations that can be integrated without the restrictive Courant

condition that would otherwise apply.

D. Boundary Conditions

When a light pulse enters a dielectric the spatial length of the pulse and the relative

strength of the electric and magnetic fields are changed. Suppose the dielectric is anti-

reflection coated. Then the energy in the dielectric can be equated with the energy in the

vacuum. The energy of the pulse in vacuum is

= E2dV (12)

where we used E, = By, dV is a volume element, and the integral is over all space. The

energy in the dielectric is

Ud= d(E• dB• d E P)"dV (13)

It is easy to show using Maxwell's equations that if the index of refraction is no, then

jBdl = olEdl (14)

Using P = (n, - 1)Ed then gives

Ud-= JnoEddV (15)
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By equating Ud and Uv, and taking into account that in the dielectric the pulse is spatially

compressed by a factor no, we conclude that

E 2 n oE 2v 0 d

V n

(16)

(17)

It follows that the Poynting vector E x B is conserved as the pulse passes from vacuum

into the dielectric. By expanding the Poynting vector we obtain a formula for the average

intensity in the dielectric:

__ I Ed 12
2

(18)

Here Ed is the complex envelope described above. It should be noted that this intensity takes

into account the movement of the energy associated with the material's dipole moment. The

rate of power flow associated with the fields only is given by

(!field)
_ (1 + no)l&dj24n0

E. Dispersionless Linear Propagation in a Uniaxial Crystal

Suppose the linear susceptibility tensor in the crystal basis is given as

XO

XCB - U

0

0 0

0 X)

Then Eq. (6) gives it in the laser basis as

XLB -

X11 0 Xc

0 Xo 0

Xc 0 X33

(20)

(19)

(21)

Xl -- Xo cOS2 0 + Xe sin 2 0

Xc = (xo - X) cos 0 sin 0

X33 Xe cos2 0 + Xo sin2 0

where

(22)

(23)

(24)
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Note that there is no dependence on 0, as expected for a uniaxial crystal. The exact wave

equation for the electric field in a perfect insulator is

(v2 - a2 E =a P + V (V. E) (25)

Note that in an anisotropic medium the divergence term cannot be neglected. Taking the

one dimensional limit, and using Pi = XjjEj, we obtain three equations in three unknowns:

~(a 9t a) Ex = at (XiiEx + XcEz) (26)

(z &- 2) E=Xo&t Ey (27)

- -2Ez = a2 (XcEx + X33Ez) (28)

The equation for Ez can be solved immediately giving

Sz XC Ex (29)
S-X33

This results in two independent propagation equations for the transverse components:

(a 2 - ) a =E 0 (30)

-Z _ n2 2) EY =0 (31)

where we defined
I cos 2 0 + sin 2 0(32)

n 2 n2  in2

i0  0o
0n = 1+ Xo (33)
2 1 + Xe (34)

Physically, no is the index of refraction for waves polarized in the y-direction and no is the

index of refraction for waves polarized in the x-direction. Because no is independent of 0,

the y-polarized waves are called ordinary waves. Because 'no has an angular dependence, the

x-polarized waves are called extraordinary waves.

F. Nonlinear Polarization Vector

The second order nonlinear polarization vector is related to the electric field through a

third rank tensor which is usually given in the crystal basis. By writing out the components

of the second order polarization given by

p,(2) + p.(2)-Xikk ++
i S ijk Ej +ýj) Ek +(35)
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we obtain formulas for 7)(2) and p(2 ) in terms of the usual contracted tensor elements:

X ~~dil d12 d13 d14 d15 d16  E1
p() =T d21 d22 d23 d24 d25 d26  (36)

pz2) d31 d32 d33 d34 d35 d36 J £w + c.c.
S:•8•+ c.c.

S', + C. C.

SuEu

x(2) di d12 d13 d14 d15 d16 \ ~SvEv

7p(2) = 4T d2 1 d22 d23 d24 d25 d 26  SrEw (37)
p7(2) d31 d32 d33 d34 d35 d 36 J + ± Eu

8Eu~ + SvEu
,&,E• + &,E•

Given a particular propagation geometry the nonlinear susceptibility tensor can be re-

duced to a scalar denoted by deff. Unlike the linear susceptibility, deff is a function of both

0 and q even for a uniaxial crystal. The term "uniaxial" is in this sense a misnomer since

the crystal is only uniaxial in the linear approximation. Calculation of deff by hand is time

consuming, but by implementing the following procedure using symbolic math software it

can be determined easily. Consider first the slowly varying second order polarization vector.

Express the six element column vector from Eq. (36) in terms of the laser field components

expressed in the laser basis. For example, in place of S, put

T-1 Sy 0 (38)

\ z 0

Next, multiply out Eq. (36) given the contracted tensor elements for the crystal of interest

(fortunately most of the elements will usually vanish). Also, it is usually a good assump-

tion that the longitudinal field components can be neglected compared to the transverse.

Next, determine which polarization components are of interest given the phase matching

constraints. For type I phase matching there are two possibilities. In the first case, the THz

wave is an ordinary wave and Eq. (36) will reduce to

p( 2) = deff(0,1 )I'Fx 2 (39)
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In the second case the THz wave is an extraordinary wave and Eq. (36) will reduce to

p(2) = deff (0,q$)jF'Y 12 (40)

For type 11 phase matching, there are two more possibilities. They are as follows:

p(2) - (O 8'~ + c.c.)

p(2) = deff (Oýq5)(XS8Y + C.C.)

(41)

(42)

Note that although we have used the symbol deff four times, in each case the angular de-

pendence is different. The procedure for computing the value, of deff to use for the rapidly

varying polarization is exactly analogous, with the caveat that the factor of 4 from Eq. (37)

is niot absorbed into deff.

III. DESCRIPTION OF SIMULATION CODE

A. Propagation Equations for the Laser

For the rapidly varying time scale, we account for dispersion by regarding the elements

of the susceptibility tensor as operators of the form

00 (-i)k

k=O &qwk atk (43)

which satisfy the equation

Pi = ý3.E (44)

Usually the operators are known in the crystal basis, in which case the laser basis operators

can be computed in a way exactly analogous to the dispersionless case:

kii = 'ý Cos 10 + Xe' sin2 0

= (Z~- k~)cos 0 sin 0

X33 = e COS 2 0 + ý, sin 2 0

(45)

(46)

(47)

The wave equation for the complex laser field is obtained by inserting Eq. (8) and the

corresponding form for P into Eq. (25). In the one-dimensional limit this gives

[(a, - iko) 2 _ (at + iWO)2] ex = (at + iw0o)2-px48 (48)
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[(Oz - iko) 2 - (at + iWo)2] 8?, = (at + iWo)2pV (49)

Sz = -PZ (50)

The polarization components are given by the operator equations

Px = k1iix + kcsz + Sx (51)

Py = Os + SV (52)

Pz = XcEx + X33Sz + Sz (53)

where Si represents all nonlinear contributions to the polarization.

Combining the equations for the x and z components involves an operator inversion. The

exact equation for the z-component is

(1 + 33)gz = -%8$• - S$ (54)

To invert the operator on the left hand side, first define

33 + Xy33 (Wo) (55)

-0 (-i)k k X33 o (56)
Y-1 -k! &wk &tkk=1lW

so that
(n 2 (57)33 + ý) -Ez = -ýCEx - Sz (7

Far from any resonances, << n 2. In this case, iteratively multiplying by the conjugate of

the operator on the left gives

Ez = -C('s$ + zS) (58)

where to second order
1 • •2I S S24 + - (59)

n33 n433 33

The propagation equations for the ordinary and extraordinary waves are then

[(az - ik/) 2 - (at + iWO)2] ex = (at + iw-O) 2 [(IIi- _02),c -x _0cSz + Sx] (60)

[(a - iko) 2- (at + Wo)2] g, = (at + iWO) 2(kog8 + Si) (61)
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B. Propagation Equations for the THz Wave

For the THz field, dispersion is not introduced by regarding the susceptibility as an

operator, but rather by coupling the field to a population of harmonic oscillators. The

propagation equations can be written down immediately by taking the laser propagation

equations, replacing the susceptibility operators with the corresponding constants, taking

0= , wo = 0, k0 = 0, and by substituting Si + Hi for Si. The result is

(aZ n 2~a2) E. = a&2 [-4 (Sz + Hz) + Sx + Hx(62)

(a9Z _ n 2a~2) E'Y = 9t ( S' +Hff) (63)

where Si represents all nonlinear contributions to the polarization, and Hi is the polarization

due to the harmonic oscillators. The harmonic oscillator polarization is most conveniently

computed in the crystal basis where each component satisfies an independent equation of

the form

(at2 + Vta + Q2) Ht = Pi Et (64)

Here the index i refers either to the u, v, or w coordinate, pi is the coupling strength for

the given polarization, vi is the damping constant for the given polarization, and Q2 is the

resonant frequency for the given polarization. Once Hi is found in the crystal basis it can

easily be expressed in the laser basis using HLB = THCB.

Physically, the polarization term Hi represents the coupling of the THz radiation to

the vibrations of the crystal lattice. In practical terms, however, what is usually given is

the susceptibility and its derivatives with respect to frequency. The parameters pi and Qj

can be computed from this information by a second order matching of dispersion relations.

Suppose the dispersion information for ordinary waves is given by a susceptibility X and its

derivatives. Then the parameters for the propagation equations are
-( X// I )--1

Q2 = Q2=W2 2w, (X- X0) (6Uo = 1 + X- / o- (66)

Pu- PV = (X- X0 )(Q2 - w2) (67)

Here, the prime denotes differentiation with respect to angular frequency with evaluation at

W.s. The parameter w, can be any frequency in the THz range where X and its derivatives

are known. The case for Xe, Q1, and Pw, is exactly analagous.
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C. Numerical Solution of the Propagation Equations

1. Time Centering and Discrete Grid

Numerical solution of the propagation equations is carried out by differencing the propa-

gation equations on a discrete grid. The "spatial" grid corresponds to the coordinate T and

the "time" levels correspond to the coordinate q/. The electric field vectors Ej and 8i are

evaluated at the same spatial grid points (i.e., a staggered spatial grid is not used). At the

beginning of a simulation cycle, the laser fields 8i are known at time levels n and n + 1. The

THz fields E2 are known at time levels n + 1/2 and n + 3/2. The simulation cycle consists

of advancing the laser fields to time level n + 2 and the THz fields to time level n + 5/2.

The laser fields are advanced first. The laser fields from time level n are used to implicitly

advance the linear part of the propagation equation. The laser fields from time level n + 1

and the THz fields from time levels n + 1/2 and n ± 3/2 are used to include the nonlinear

part as an explicitly known, centered, source term. The THz fields are advanced second.

The THz fields at n + 3/2 and the laser fields at n + 2 are used in the explicit advance of

the THz fields to time level n + 5/2.

2. Laser Propagation

Expanding the equations for the laser evolution results in a large number of terms. To

handle this complexity we utilize symbolic math software to automatically generate the code

needed to advance the Eqs. (60) and (61). The procedure utilized by the software program

is as follows. First, make the substitutions a, = a,7 - rigor, 9t = (9, and ko = wono. Next,

expand the equations throwing out all derivatives higher than the first order in ?j and the

second order in T. Next, substitute difference operators for the differential operators as

follows:

9 - [(i + 1, n) + 8(i + 1, n r 2)]- [8(i 1, n) + 9(i 1, n r 2)] (68)
4AT

2 - [ +(i+ 1, n) + 9(i 1,I n + 2)] - 2[8(i, n) + -(i, n + 2)] + [8(i - 1, n) + 9(i - 1, n + 2)]
2A-F2

(69)
[8(i + 1,rni+2) -9(i- 1, n+ 2)]- [(i + 1, n) - (i- 1, n)] (70)

4ALqAT
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8(i,ri±+2) -8S(i,ri) (71)

Here 8 is either electric field component, i is the grid cell, n is the "time" level, AT is the

cell size and A7 is the timestep. The resulting equation will always take the form

T 1 8(i'- 1, ri+2)±T28E(i, ri+ 2) +T 3 (i±1, n±2) = K 1 8('- 1,nr)+K 28(i,nr)±K38(i-i-,nr)-FC

(72)
Note that the nonlinear terms are contained in C and are centered since they are known

at time level n + 1. The final outputs from the symbolic math software are expressions for

Ti, Ki, and C. To eliminate transcription error, it is best to have the software generate the

expressions in a format compatible with the programming language being used for the sim-

ulation so that the expressions can be pasted directly into the code. Once these expressions

are in the code a standard tridiagonal algorithm can be used to advance %i.

3. THz Propagation

Rewriting the THz propagation equations in terms of the laser frame coordinates and

taking a2 -- 0 gives

(v0&, + aT) Ex 07- -X [ (Sz+Hz)+Sx+Hx1 (73)

(Voar + a-r) Ey -= - [S9 2 HY] (74)
ng 0

where

- 2ng (75)
rio - n

2rin (76)

The equation for the lattice vibration in the laser frame is

(a2+V, 2H = piE2  (77)

The nonlinear polarization Si is computed from the laser field using Eq. (36).

The problem is to advance Ei from timestep n + 3/2 to timestep n + 5/2 given that we

know Hi at timestep n + 3/2 and Si at timestep n + 2. Since Hi is effectively a function of
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Ej, the equations for Ej can be put in the form of the flux conservative initial value problem

0,TEi a-TFF(E 2) where

= E. _ S. + H. - xc(Sz + H)/rn3  (78)
vo(ri2 - n2)

Fy - E_ Sv + H (79)Vo Vo (n2- no2)
These can be solved using the standard Lax-Wendroff method where Hi is regarded as a

function of Ej and Si is regarded as constant.

4. Longitudinal Fields

Although the longitudinal fields do not appear explicitly in the propagation equations,

they are needed to compute the nonlinear source terms and the lattice vibrations. In the

laser advance, the nonlinear source terms Si are needed at time level n + 1, and therefore

all the components Si and E2 are also needed at time level n + 1. These will be available

provided all the components including S, were advanced to time level n + 2 on the previous

cycle. To accomplish this, we first advance E,, as described above, and then use the linearized

Eq. (58) to estimate S,:

Sz r -C;&8X (80)

In the THz advance, the lattice vibrations Hi depend on the longitudinal field Ez. Therefore,

at the midpoint of the Lax-Wendroff calculation we estimate Ez based on the slowly varying

analog of Eq. (58):

Ez ~xcEx + Hz + S (81)
1 + X33

We then recalculate Hi based on this new field. At the end of the Lax-Wendroff calculation,

we repeat this procedure twice in order to iteratively improve the accuracy of both Ez and

Hi for use during the next cycle.

5. Magnetic Field and Energy Diagnostic

Although the magnetic field is not needed to advance the propagation equations, it is

useful for diagnostic purposes. In particular, it can be used in the calculation of the energy
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contained in the laser oscillations and the THz oscillations so that the conversion efficiency

can be calculated, and energy conservation can be verified.

For the magnetic field associated with the laser energy, we first compute the linear part

of the polarization using Eq. (44) and then use

16 -- sy+ = (82)
ng

y = E(83)

Bz = 0 (84)

which is an approximation based on Ampere's law. Note that dispersion can affect the

proportion of energy carried by the magnetic field. Remembering the summation convention,

the energy density carried by the fast laser oscillations is

Uf-+ (85)
4 8

For the magnetic field associated with the THz energy, the linear part of the polarization

can be found from

PX= (n'~ - 1) Ex + Hx (86)

= = (n 2 - i) Ey + Hy (87)

Z = -Ez (88)

The THz magnetic field can then be computed from expressions exactly analogous to those

for the laser field. The energy density can then be computed using

Y_- EzE2 + BiBi + EjP(u,= 2 (89)

IV. ANALYSIS OF OPTICAL RECTIFICATION

A. Driving Terms for Gallium Selenide

To date, the conversion of optical to THz power has been most efficient when Gallium

Selenide (GaSe) was used as the nonlinear material [9]. We therefore use GaSe as an example

in all that follows. The symmetries of the GaSe lattice require that all components of the

nonlinear susceptibility vanish except for d16 , d21, and d22. Furthermore, d16 - d21 = -d 22 ý
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50 x 10-12 m/V. Using the technique outlined in section II F, the transverse components

of the slowly varying nonlinear polarization vector can be determined to have the following

dependence on the applied laser field and the crystal orientation:

p(2) - d 16 cos 0 [- cos 2 0 sin 3q5,S 12 + sin 301. 12 + cos 0 cos 30(SNxE, + S*$y)] (90)

p(2) =d16 [cos2 Ocos30JSx12 - cos301Sy12 + cos0sin30($Sxy* + $y)] (91)

Typically, because of phase matching considerations, only one of the six driving terms from

the above two equations will be important. Furthermore, it is virtually always the case that

in order for phase matching to be achieved, the driving term must contain the polariza-

tion component orthogonal to the driven term. Hence, the expressions for the polarization

components can usually be reduced to one of the following:

p(2),I d cosOsin3q& '1 2  (92)

p(2),1 - d16 cos 2 0 cos 305 12  (93)

p( 2)'II d COS2 0 COS 30(ExS; + E*.y) (94)

p(2),X =d16 cos 0 sin 30(Sx+; + S8Ey) (95)

Here, the superscripts I and II refer to type I and type II phase matching, respectively. The

definition of type I phase matching is that the driving term contains only one polarization

component. The definition of type II phase matching is that the driving term contains both

polarization components.

In the case of the nonlinear polarization at the laser frequency, the expressions for the

transverse components are

-p(2) - 4d16 [cos2 0 cos 3q (&xEy + $yEx) - cos 0 sin 30 (spEX cos 2 0 - SE')] (96)

p( 2) = 4d16 [cos 3q (s•Ex cos 2 0 - SyEy) + cos0sin3q (ExEy + $yEx)] (97)

For type I phase matching, these can be reduced to one of the following:

p)(2)'I - 4d16 cos 2 0 cos 3¢$• Ey (98)

p(2), 1-= 4di6cos 0 sin 309,Ex (99)
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B. Phase Matching Condition and THz Evolution

An expression for the signal produced by optical rectification in the presence of an ar-

bitrary phase mismatch can be found if pump depletion and dispersion are neglected. In

the case of a type I interaction, dropping the dispersive terms from Eq. (73), and assuming

S, < S, gives

(vOn + -) Ex 2 deft 2 (100)

where for a GaSe crystal

deff = d 16 cos 0 sin 34 (101)

Making a second coordinate transformation Z = q and T = T r-/vo gives

OzEx - deffT
2ng&TI&YI (102)

The integral representation of Ex is

Ex = ef - ang J'o 12 £dZ' (103)

The integral cannot be solved in this form because Sy is a function of both T and Z. However,

if pump depletion and dispersion are neglected, Sy is independent of rq. We therefore rewrite

the integral as

Ex Jf )•(T)JvodT-' (104)

which can be solved immediately. Defining c = ry/vo we obtain

= deff (T8y12- 8 (7_ 6) 12) (105)
E 2ng

For finite c, as the propagation distance q increases the two terms in Eq. (105) become well

separated in time and the peak signal amplitude converges to the finite value

deff I 12
Epeak - jn 2 -- 92[ •7 > VOTL (106)

where So is the peak electric field of the laser pulse and T-L is the laser pulse length. Con-

vergence of the signal to a finite value is not characteristic of a phase matched interaction.

The case where e = 0 can be analyzed by expanding Eq. (105) in powers of c:

deff r +0• ýL• _) 1
Ex 7e2- ('&6 C +... IC()Y (107)

2Tig 2! 3!,
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FIG. 1: Angle tuning curve for optical rectification in GaSe using 800 nm radiation as the pump.

Substituting c = 0 then gives a signal amplitude that grows indefinitely with rq. The phase

matching condition is therefore 6 = 0. The waveform of the signal in this case is just the

derivative of the laser envelope. For a typical laser pulse shape, the signal will be a single

cycle pulse with center frequency w, = 7r/TL.

A more physically revealing form of the phase matching condition is

=o(w,) = ng(wo) (108)

In other words, the phase velocity of the THz radiation must equal the group velocity of

the laser pulse. This condition arises because the phase of the source (i.e., the nonlinear

polarization wave) at a given point is determined by the derivative of the envelope of the

laser pulse at that point. Therefore the phase of the source stays synchronous with the

phase of the THz wave when the laser envelope moves at the THz phase velocity. Fig. 1

shows the phase matching angle in GaSe as a function of signal wavelength for an 800 nm

pump laser. The curve was calculated by solving no(w,) = nrg(wo) using the GaSe dispersion

relation from Ref. [12].

For a perfectly phase matched interaction, the signal amplitude can always be increased
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FIG. 2: Time dependence of the THz electric field after 1 cm of propagation for two matching

conditions. The solid line is the THz field for a negligible phase mismatch of 0.01%. The dashed

line is the THz field for a mismatch of 2.0%. The dotted line shows the magnitude of the complex

envelope of the laser field.

by increasing the interaction length, q. In the case of a significant phase mismatch, Eq. (106)

suggests that Epeak could still become large if either 8E012 or deff are large. Unfortunately, as

discussed in section IV D, 8o012 is limited by the two-photon absorption process. On the other

hand, media with very large values of deff, such as electric field biased AlGaAs quantum wells

and GaAs/AlGaAs asymmetric quantum wells [13, 14], might make it possible to generate

large amplitude THz waves without the need for phase matching.

As an example of a phase matched interaction, consider the generation of 1.0 THz radi-

ation in GaSe using a pump intensity of 1 GW/cm2 . The signal frequency fixes the laser

pulse length to TL = 500 fs. Figure 2 shows the time dependence of the THz electric field as

computed from Eq. (105) evaluated after 1 cm of propagation for two matching conditions.

The solid line corresponds to 0 = 28.1' which gives ng(wo) - no(ws)j/ng(wo) = 0.01%. The

dashed line corresponds to 0 = 20.0' which gives rng(wo) - no(ws•)$/ng(wo) = 2.0%. The
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FIG. 3: Instantaneous frequency shift Aw/wo of the pump after 1 cm of propagation in GaSe in

the case where dispersion is neglected. The intensity of the pump is 1 GW/cm2 .

dotted line shows the laser envelope on a different scale. As expected from the expansion

solution, the matched case is approximately the time derivative of the Laser envelope. In the

mismatched case, the time separation between the positive and negative polarity portions of

the pulse increases with propagation distance, but the signal amplitude remains constant.

C. Pump Depletion and Pulse Compression

The effect of the signal field on the laser is to deplete the laser energy and compress

the laser pulse. Assuming perfect type I phase matching (n, = no = rig) and neglecting

dispersion allows the propagation equation for the laser to be reduced to

(a2 - 2ng9,2 - - 2iwongan7) 8Y = (pr + iwo) 2SY (109)

Assuming 9, < wo, XcSz/n2a3 < S,, and -* 0, this can be further simplified to

asy = 2iw° de SyfEx (110)
ng
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A first order perturbation analysis of this equation gives

Ey 8 so - 2w10 qdtr oE. (111)

n.

where go is the initial laser field. Inserting Eq. (107) for E, and taking E = 0 gives

= go (I + iYd 2 -2r lso02) (112)Sy $o1 n--- eff/

The argument of the factor in parenthesis gives the instantaneous phase shift. Taking the

time derivative of this phase gives the instantaneous frequency shift

/Aw _ 2dAw - r2 -ef a o2 (113)

The instantaneous frequency shift is plotted in Fig. 3 for the same parameters that were used

in Fig. 2. The frequency shift is proportional to the second derivative of the laser envelope.

It is instructive to consider the frequency shift just derived in terms of an analogy with

self phase modulation. In self phase modulation, the nonlinear polarization is p( 3) - C181 2S,

where S is any component of the laser field and C is a factor independent of 8. This leads to

an intensity dependent refractive index n3 = nr +C181 2 /2n,, where n, is the linear part of the

refractive index. This leads to a frequency shift proportional to &T 18 2. In the present case,

the nonlinear polarization is p( 2) = 4deffES = K(D9 Ig12)8, where K is a factor independent

of 8. The intensity dependent refractive index in this case is n 2 = ni + K(aJf81 2)/2n,.

Comparing n 2 and n 3 makes it obvious that if n 3 leads to a frequency shift proportional to

09[IE2, then n 2 leads to a frequency shift proportional to 0&'l82.

A photon kinetic picture [15, 16] can be used to show that in the presence of group

velocity dispersion, the frequency shift induced by the THz field causes a portion of the

laser pulse to compress. Let T' = t - nrIz' where z' is the coordinate of a photon in the

Lagrangian (as opposed to Eulerian) picture. The motion of the photon is then described

by
di- 2Aw (114)
d•q

where h(wo + Aw) is the energy of the photon and /32 is the usual group velocity dispersion

coefficient defined as the second order term in the sequence

&= - (now) (115)
aw~
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FIG. 4: Length of GaSe crystal needed to maximally compress an 800 nm wavelength pump pulse.

After the pulse propagates a distance L, a photon initially at T' = 0 moves to

T L7T =o f2Awdrl (116)

We approximate Aw by evaluating Eq. (113) at T = 0 and using for the initial pulse shape

o= Sooexp (21n2) (117)

This procedure assumes that T' «< TL. In this case, the photon position is

(118)
' 81n2 132w0 d 82 4F2

3 /32 7-2

The sign of 032 is usually positive, which means that the downshifted photons at the center

of the pulse will tend to drift toward the upshifted photons at the front of the pulse. An

estimate of the point of maximum compression can be obtained by setting T' = --TL/2 and

solving for L. This gives

(3 /2 1 )1/316 In 2 / 2w0 d 2f8020
Lcomp -- TL (119)
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The compression length as a function of pump intensity is shown in Fig. 4 for the same

parameters that were used in Fig. 2. For a GaSe crystal, /2 • 4 x 10-16 seconds for 800 nm

radiation.

D. Two Photon Ionization

The highest intensity useful for optical rectification is reached when the electron hole

plasma becomes dense enough to reflect THz radiation. It can be shown that the absorption

of radiation due to ionization processes and carrier scattering is described by

D9 U a n , - ri 9hi (120 )

U% Z eT

where Uj is the energy required to bring an electron from the valence to the conduction

band, ne is the free electron density, and ch is the cross section for hole scattering. Hole

scattering leads to collisional losses through inverse bremstrahlung. For GaSe, the bandgap

energy is Eg = 2.0 eV, and crh r 5 x 10-17 cm 2 [17]. For 800 nm light, the photon energy is

about 1.55 eV, so ionization occurs via a two photon mechanism, and Uj = 3.1 eV. In this

case, the free electron density evolves according to

Oane /312 (121)
OT U2

where / is the usual two-photon absorption coefficient. For GaSe, / • 0.558 cm/GW for 800

nm radiation and a 1 ps pulse length [18]. The maximum intensity useful for the generation

of THz radiation is the intensity for which the free electron density reaches the critical

density

wcrit = W 2 (I+ +* 1- a) (122)ncrit M • 7t-h - m yt

where w is the frequency of the THz radiation, m* is the effective mass of an electron, m* is

the effective mass of heavy holes, m* is the effective mass of light holes, and oa is the fraction

of holes that are heavy holes. For GaSe, m* • 0.2. To obtain an estimate of the maximum

useful intensity, we combine Eqs. (121) and (122), take the laser pulse length to be 500 fs,

assume a & 1 and m >» m*:

Ima= (W2M 
1/2

Imx -L e = 2.1 GW/cm 2 (123)
\-F
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TABLE II: Simulation Parameters

Quantity

Crystal

Dispersion Parameters

Lattice damping constant

Two photon ionization coefficient

Laser Intensity

Laser Wavelength

Laser Pulselength

Signal Frequency

Phase Matching Configuration

Phase Matching Angle

Azimuthal rotation

Laser Polarization

THz Polarization

Value

GaSe

See Ref. [12]

V = 125 GHz

03=0

1 GW/cm 2

Ao = 800 nm

"rL = 500 fsec

1.0 THz

Type I

0 - 28.1'

= 30'

ordinary

extraordinary

It should be noted that at this intensity the electron-hole plasma will significantly modify

the dispersion relation for the THz radiation which will in turn modify the phase matching

condition. In addition, the value of Imax given in Eq. (123) will be substantially reduced if

the value of / measured in earlier experiments [19, 20] is used.

V. SIMULATIONS

The simulation model described in section III extends the regime of validity of the anal-

ysis in that it self-consistently includes dispersion of both the THz and laser pulses, pump

depletion, and THz losses due to vibrational damping. In this section, we compare the anal-

ysis with simulation results obtained using different sets of approximations. The parameters

used are given in Table II.

First, the analytical result shown in Fig. 2 is reproduced by running the simulation with

dispersion neglected. The simulation results are shown in Fig. 5. The two results are almost

i
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FIG. 5: Simulation with dispersion turned off showing agreement with the analytically predicted

THz waveforms in the case of a phase-matched and non-phase-matched interaction (cf. Fig. 2).

indistinguishable. Note that pump depletion was not neglected, but its effect was minimal

due to the low conversion efficiency over 1 cm of propagation.

From the same simulation, a comparison can be made with the analytical prediction for

the frequency shift from Fig. 3. The corresponding simulation result is shown in Fig. 6. The

simulation data is displayed as a Wigner transform of the laser electric field. The Wigner

transform is characterized by the following properties: (i) when integrated over time it gives

the frequency spectrum of the pulse (ii) when integrated over frequency it gives the time

domain representation of the pulse (iii) it becomes a photon distribution function in the

limit of geometric optics. The frequency shift indicated by the Wigner transform is similar

to the instantaneous frequency shift from Fig. 3.

As an additional check, Fig. 7 shows the energy gained by the THz radiation and the

energy lost by the laser pulse for the same simulation used to generate Figs. 5 and 6. The

simulation conserves energy to a high degree of accuracy.

Next, the simulation is repeated with dispersion included, and the propagation distance
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FIG. 7: Energy conservation in the case of zero dispersion.

is extended far enough to observe saturation of the conversion efficiency. The damping

constant associated with the lattice vibrations is set to v = 125 GHz in order to give an

absorption coefficient consistent with Ref. [6]. The conversion efficiency as a function of

propagation distance is shown in Fig. 8. A conversion efficiency of 1.5% is obtained before

saturation occurs at about z = 5 cm. Note that the Manley-Rowe limit is exceeded by about

a factor of 5. The THz waveform at z = 5 cm is shown in Fig. 9. The waveform departs
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FIG. 8: Energy conservation with dispersion and vibrational damping.

from the single cycle pulse characteristic of optical rectification because of the dispersive

terms Hi.

Finally, Fig. 10 shows the laser pulse shape at four propagation distances. As localized

frequency shifts develop, pulse compression occurs at the head of the pulse due to group

velocity dispersion. In this case, the point of maximum compression occurs at about z = 2.1

cm, which is about twice the analytical prediction from Fig. 4. The fact that the group

velocity and pulse shape both change during the course of the interaction causes the phase

mismatch to increase with increasing z. This eventually leads to saturation of the conversion

efficiency. It should be noted that in this example the two-photon ionization rate increases

by about a factor of 12 as the laser propagates from z = 0 cm to z = 2 cm. At the same

time, the pulse length is is reduced by a factor of 5. The electron hole plasma, therefore, is

about twice as dense at z = 2 cm than at z = 0 cm. This could strongly affect the results,

and will be the subject of future study.

VI. SUMMARY

Optical rectification of short laser pulses in nonlinear crystals can generate high peak

power THz radiation. The GaSe crystal appears to be promising for this application due to

its high nonlinearity, low losses, and favorable phase matching characteristics. Analysis and
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FIG. 9: Time domain waveform of the THz signal after 5 cm of propagation

simulations both indicate that an 800 nm laser pulse with a pulse width of 500 fs can be

phase matched in GaSe to produce 1.0 THz radiation with a peak power of about 1 MW. The

conversion efficiency saturates at about 1 percent due to frequency shifts in the laser pulse

which cause it to compress and accelerate. Also, it should be noted that the configuration

considered here requires that index matching materials be used to couple radiation into

and out of the GaSe crystal. In the future, the electron-hole plasma will be incorporated

directly into the simulation model so that its effects on the conversion efficiency can be more

accurately determined.
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FIG. 10: Temporal shape of the laser pulse evaluated at four propagation distances. Note that the

increasing laser intensity will increase the two-photon ionization rate.
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