Award Number: W81XWH-07-1-0259

TITLE: Exploiting the Immunological Effects of Standard Treatments in Prostate Cancer

PRINCIPAL INVESTIGATOR: Brad H. Nelson, Ph.D.

CONTRACTING ORGANIZATION: British Columbia Cancer Agency
Victoria BC V8R 6V5
Canada

REPORT DATE: March 2009

TYPE OF REPORT: Annual

PREPARED FOR: U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT:

 X Approved for public release; distribution unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.
1. REPORT DATE (DD-MM-YYYY)	**2. REPORT TYPE**	**3. DATES COVERED (From - To)**
March 31, 2009 | Annual Report | 1 MAR 2008 - 28 FEB 2009

4. TITLE AND SUBTITLE
Exploiting the immunological effects of standard treatments in prostate cancer

5a. CONTRACT NUMBER
W81XWH-07-1-0259

5b. GRANT NUMBER
PC060159

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)
Brad H. Nelson, Ph.D.

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
British Columbia Cancer Agency,
2410 Lee Avenue,
Victoria BC V8R 6V5
Canada

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
US Army Medical Research and Material Command
Fort Detrick, Maryland
21702-5012

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
We previously demonstrated that hormone therapy (HT) and radiation therapy (RT) induce tumor-specific autoantibody responses in human prostate cancer, and this grant investigates the clinical significance of these findings. In Aim 1, the findings that HT induces autoantibody and T cell responses against PABPN1 in the Shionogi tumor model and that these immune responses are associated with inferior outcomes have recently been submitted for publication. We have also shown that the combination of HT+RT in this model leads to delayed tumor recurrence of a distal untreated tumor. Work is underway to determine whether similar antibody and T cell responses are seen in these mice and whether they too are associated with poor outcomes. In the human setting, we have tested known prostate cancer tumor antigens by ELISPOT and begun cloning our serologically-defined tumor antigens in order to test these against PBMCs collected from prostate cancer patients showing treatment-induced autoantibody responses (Aim 2). We have also continued to assemble cohorts of prostate cancer patients with recurrent versus non-recurrent disease at 5 years post-treatment (Aim 3). In summary, this study is progressing on schedule and is revealing unexpected results that we believe may be highly relevant to prognosis and treatment of prostate cancer.

15. SUBJECT TERMS
Tumor immunology, immunotherapy, prostate cancer, antibody, T cell, tumor antigen, hormone therapy, radiation therapy

16. SECURITY CLASSIFICATION OF:
<table>
<thead>
<tr>
<th>a. REPORT</th>
<th>b. ABSTRACT</th>
<th>c. THIS PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>U</td>
<td>U</td>
</tr>
</tbody>
</table>

17. LIMITATION OF ABSTRACT
UU

18. NUMBER OF PAGES
40

19a. NAME OF RESPONSIBLE PERSON
USAMRMC

19b. TELEPHONE NUMBER (include area code)
INTRODUCTION:

While much effort is being made to develop effective immune-based therapies for prostate cancer, there is little information available on whether standard treatments induce tumor-specific immune responses, which could potentially influence clinical outcomes. Radiation therapy causes inflammation associated with the expression of inflammatory cytokines, MHC molecules, B7 and other co-stimulatory molecules. Likewise, neoadjuvant hormone therapy has been shown to cause prominent T-cell infiltration of prostate tumors. Based on such findings, we asked whether radiation therapy (RT) and hormone therapy (HT), by causing tumor cell death in an inflammatory context, might induce tumor-specific immune responses in prostate cancer. Our preliminary results in the androgen-dependent murine Shionogi tumor model indicate that castration (the laboratory equivalent of HT) induces tumor-specific autoantibody responses in approximately 50% of animals. Moreover, parallel studies of human prostate cancer patients undergoing standard treatments at our institution indicate that HT and RT both induce tumor-specific autoantibody responses in up to 30% of patients, depending on the stage of disease and specific treatment. Based on these observations, we hypothesized that treatment-induced autoantibody responses in prostate cancer are accompanied by CD4+ and CD8+ T cell responses that potentially delay or prevent tumor recurrence.

This study has three specific aims:

Aim 1. To determine in the Shionogi mouse tumor model whether castration and brachytherapy induce autoantibody and T-cell responses that prevent or delay tumor recurrence.

Aim 2. To determine in human prostate cancer patients whether treatment-induced autoantibody responses are accompanied by tumor-specific CD4+ and CD8+ T-cell responses.

Aim 3. To determine whether tumor-specific autoantibody profiles differ in prostate cancer patients with recurrent versus non-recurrent disease.

BODY:

Aim 1. To determine in the Shionogi mouse tumor model whether castration and brachytherapy induce autoantibody and T-cell responses that prevent or delay tumor recurrence.

As described in the 2008 Annual Report, we identified poly(A) binding protein nuclear 1 (PABPN1) as the treatment-induced ~40 kDa antigen in our Shionogi model and used it to determine that autoantibody and T cell responses were associated with poorer outcomes in castrated mice bearing Shionogi tumors. A manuscript entitled “Castration induces autoantibody and T cell responses that correlate with inferior outcomes in an androgen-dependent murine tumor model” describing these results has recently been submitted to the
We have also completed a preliminary CD4 depletion experiment in the castration only setting. A total of 15 mice were used for this experiment. Seven mice served as controls and were injected with PBS x days prior to tumor injection. Eight mice were injected with 400 µg of anti-CD4 antibody (clone GK1.5) at -3, -1, +3 days relative to castration. An additional 200 µg of depleting antibody was injected weekly post castration. All mice were castrated when tumors reached 65-100 mm². Mice were re-injected with PBS or anti-CD4 antibody every 1 or 2 weeks. Flow cytometry on PBMCs from a subset of mice was performed to determine the efficacy of anti-CD4 depletion (Figure 1). PBMCs were stained with anti-CD3 to identify the T cell population (first panel, Figure 1 A-D) and with anti-CD4 (second panel, Figure 1 A-D). Results clearly show that the mice that were injected with PBS had healthy CD4+ T cell populations (~63% of the CD3+ population), whereas the CD4 depleted mice had virtually no CD4 T cells remaining (<1% of CD3+ T cells). We then compared the tumor growth between the PBS and CD4 depleted mice and found that there was a significant difference in the rate of recurrence between the two groups of mice (Figure 2). We will be repeating these experiments in the near future and expanding them to include depletion of the CD8+ T cells as well as CD19+ B cells. This will help us determine whether the poor outcomes seen in the castration only experiments are caused by the autoantibody or T cell immune response or whether the presence of PABPN1-specific autoantibodies and T cells are merely a marker of early tumor recurrence and poor prognosis.

Several additional mouse experiments were completed in the past year. While the experiments mentioned above focused only on castration, these experiments focused on the combination of castration and radiation therapy (in the form of brachytherapy) in the Shionogi model. These experiments were designed primarily to study the abscopal effect, described for ionizing radiation, where reduced tumour growth is observed outside of the field of radiation. It is thought that an immune-mediated mechanism is responsible for the abscopal effect.

The first set of castration+RT experiments was initiated to determine whether castration and brachytherapy led to delayed tumor recurrence of an untreated distal tumor. It was established in previous experiments that the number of I-125 radioactive seeds required to give optimal control of the primary tumor was 6, therefore this is the number of seeds used in the following experiments. Five experimental groups were established as follows:

<table>
<thead>
<tr>
<th>Group ID</th>
<th>Description</th>
<th># Mice</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Tx</td>
<td>No treatment</td>
<td>7</td>
</tr>
<tr>
<td>RT</td>
<td>six I-125 seeds only</td>
<td>7</td>
</tr>
<tr>
<td>Cx</td>
<td>Castration only</td>
<td>13</td>
</tr>
<tr>
<td>Cx+RT</td>
<td>Castration → Max. Regression → six I-125 seeds</td>
<td>13</td>
</tr>
<tr>
<td>Cx+RT@1/2</td>
<td>Castration → Partial Regression → six I-125 seeds</td>
<td>13</td>
</tr>
</tbody>
</table>

Cohorts of mice were implanted with two Shionogi tumors (one tumor per flank). No treatment was given in the No Tx group. In the RT group, 6 seeds were implanted in one tumor only once the tumor reached 65-100 mm². In the remaining groups, mice were castrated when tumors reached 65-100 mm². If the mice went on to receive radiation, seeds were implanted in only one (the primary) tumor at the point the tumor maximally regressed (Group Cx+RT) or when the
tumor partially regressed (Group Cx+RT@1/2). All mice were monitored for primary and distal tumor recurrence.

As expected, both primary and distal tumors in the No Tx group grew unchecked, whereas growth of primary tumors in the RT group was controlled. Distal tumors in the RT group grew at a rate similar to that seen in the No Tx group, indicating that no abscopal response was produced by RT alone in this setting. In the remaining groups, treated with castration alone or castration and radiation, radiation of the primary tumor had a clear effect on the rate of primary tumor growth, as expected (Figure 3A). Using Kaplan-Meier analysis we then compared the tumor-free survival between those three experimental groups (Figure 1B). As expected, when comparing primary tumor recurrence, addition of radiation leads to significant delays in tumor recurrence (Cx+RT vs Cx, p<0.001; Cx+RT@1/2 vs Cx, p=0.0009). When comparing distal tumor recurrence, evidence of an abscopal effect was seen in those mice who received radiation when their tumors regressed maximally after castration versus those that received only castration (Cx+RT vs Cx, p=0.0096) (Figure 3B). Interestingly, this abscopal effect was not seen in mice radiated when tumors only partially regressed after castration (Cx+RT@1/2 vs Cx, p=0.54), underscoring the importance of maximal tumor regression after castration. This is reminiscent of what is seen in the clinic with high-risk patients treated with HT+RT, where the best results are achieved if RT is given only after PSA nadir has been reached with HT.

The second set of castration+RT experiments included the use of Flt3 ligand, a potent stimulator of dendritic cells (DCs) and thought to be an important mediator of anti-tumour immune responses such as those needed for an abscopal effect. The hypothesis with this set of experiments was that administration of Flt3 ligand would enhance the immune-stimulatory effects of combined neo-adjuvant androgen withdrawal and brachytherapy (HT+BT) in mice to prevent or delay re-growth of the not only the primary irradiated tumour, but also the distal, non-irradiated tumour through an abscopal effect. To test the hypothesis 4 treatment groups were established as follows:

<table>
<thead>
<tr>
<th>Group ID</th>
<th>Description</th>
<th># Mice</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cx</td>
<td>Castration only</td>
<td>13</td>
</tr>
<tr>
<td>Cx+RT</td>
<td>Castration → Max. Regression → six I-125 seeds</td>
<td>13</td>
</tr>
<tr>
<td>Cx+Flt3L</td>
<td>Castration → Max. Regression → Flt3 ligand *</td>
<td>7</td>
</tr>
<tr>
<td>Cx+RT+Flt3L</td>
<td>Castration → Max. Regression → six I-125 seeds → Flt3 ligand **</td>
<td>19</td>
</tr>
</tbody>
</table>

* Flt3 ligand was injected once a day for 10 consecutive days 1 day following maximal regression of tumours
** Flt3 ligand was injected day 1 following implantation of I-125 seeds, for 10 consecutive days

Cohorts of mice were implanted with two Shionogi tumors (one tumor per flank). When tumors reached 65-100 mm², mice were castrated to induce regression of both tumors. When tumors had fully regressed, additional treatment was given as described above. In mice given brachytherapy, six seeds were implanted in one flank only at the site of the regressed tumor (primary tumor). All mice were monitored for recurrence of both the primary and distal tumors. To confirm in vivo DC expansion, we performed flow cytometry analysis on blood samples taken from the different groups at time points during and post administration of Flt3 ligand and stained for mAb against dendritic cells (FITC anti-CD11b and PE anti-CD11c). As expected, we observed an expansion of dendritic cells in mice treated with Flt3 ligand compared to mice treated with castration only (13% vs. 3% of CD11c* cells, 59% vs 29% CD11b* cells).
We then compared the tumor-free survival of both the primary and distal tumor between the different treatment groups (Figure 4). Figure 4A demonstrates a direct anti-tumour response against the primary tumour to brachytherapy, Flt3 ligand and the combined treatment compared to castration alone, however there was no additional survival advantage using the combination treatment compared to brachytherapy alone. Figure 4B also demonstrates a slight anti-tumour effect against the distal tumor using I-125 seeds (graph Cx vs Cx+RT), supporting an abscopal response with therapeutic radiation. However, the combination of I-125 radiation and Flt3 ligand failed to demonstrate an abscopal response or enhancement of abscopal response. This may be due to the timing of administration of Flt3 ligand with respect to I-125 implantation. Additional experiments will be performed which will include a change in timing of Flt3 ligand administration to what we believe would be the time at which maximal DC expansion would occur, followed shortly by exposure to therapeutic radiation using I-125 radioisotopes.

With regard to the Statement of Work for Aim 1, we have completed the majority of the proposed experiments. The work that is left to complete includes performing the immunological assays (Western blots, T cell assays) for both Shionogi experiments described above to determine whether immune responses (autoantibody and/or T cell responses) are associated with poorer outcomes as was seen in the castration only experiments or if the addition of radiation therapy in this setting leads to improved outcomes as is seen in the clinical setting. In addition we plan on repeating the Flt3 ligand experiments with optimized timing of Flt3 ligand administration and repeating the depletion experiments to determine the immunological mechanism responsible for the poor outcomes seen in the castration only experiments. These experiments should be completed in 2009.

Aim 2. To determine in human prostate cancer patients whether treatment-induced autoantibody responses are accompanied by tumor-specific CD4+ and CD8+ T-cell responses.

In order to investigate tumor-specific T cell responses in human prostate cancer, we collected large (200 ml) blood samples from the 16 prostate cancer patients who showed treatment-induced antibody responses against specific antigens, with emphasis on the four patients in which the treatment-induced antigen was cloned. We were able to collect the large volume of blood from 11 of these patients including the 4 patients from whom antigens were cloned. PBMCs were isolated from these patients and frozen for use in T cell assays. The remaining 5 patients were contacted and agreed to donate a large volume of blood in the future when needed.

To ensure that the ELISPOT methodology was working we decided to test five of our HLA-A2+ patients with HLA-A2-restricted peptides from three well-known prostate cancer antigens, including PSA, PSCA and NY-ESO-1. We included 2 positive controls, PHA, which should stimulate T cells non-specifically, and CEF peptide, a pool of peptides from 3 different common viruses that most people have had exposure to. The results showed that of the 5 patients tested, none had T cells specific to the PSA, PSCA or NY-ESO-1 peptides. This is not unexpected as the frequency of T cells against these antigens is low amongst prostate cancer patients in general (Figure 5). Three patients were positive for T cells against the CEF peptide and both patients stimulated with PHA were also positive, indicating that the assay is working in our hands.

In order to avoid having to map the CD8+ epitopes for each of our antigens, we have established an *in vitro* transcribed mRNA platform (ivt RNA), in which the antigen of interest is expressed in autologous antigen presenting cells (APCs) which process and display peptides regardless of HLA haplotype. We are currently cloning 6 treatment-induced antigens as summarized below (Note that ZNF707/PTMA was a double insert clone, thus each needs to be cloned individually in order to ascertain which one is the treatment-induced antigen):
Antigen Primers	Product Length (bp)	Status
PARP1 F: CAC CAT GCC GGA GTC TTC GGA TAA
R: CCA CAG GGA GGT CTT AAA ATT GA | 3042 | In progress
SDCCAG1 F: CAC CAT GAA GAG CCG CTT TAG CAC
R: TCT TGG TAT GCG GGC C | 3228 | In progress
ODF2 F: CAC CAT GTC TGC CTC ATC CTC AGG
R: CAC CTC CCC GTG CCT | 1915 | In progress
ZNF707 F: CAC CAT GGA CAT GGC CCA GGA
R: CAC CTC CCC GTG CCT | 1114 | In progress
PTMA F: CAC CAT GTC AGA CGC AGC GTG A
R: GTC ATC CTC GTC GGT CTT CT | 331 | Cloned successfully
CEP78 F: CAC CAT GAT CGA CTC CGT GAA GCT
R: GGA ATG CAG GTC CTT TCC AG | 2166 | In progress
SWAP70 F: CAC CAT GGG GAG CTT GAA GGA G
R: CTC GTG GGT CTT TCT TCC TTT CC | 1756 | Cloned successfully

Once all the antigens are successfully cloned, they will be transfected into autologous B cells, which will act as APCs to allow in vitro transcription and presentation of peptides. ELISPOT assays will then be performed to determine whether antigen-specific T cells are present in these patients.

With regard to the Statement of Work for Aim 2, we will be concentrating our efforts on completing the T cell assays in the human patients. This should be completed by the summer of 2009. We are also planning to construct the yeast display library over the summer of 2009 to facilitate cloning of the remaining treatment-induced antigens identified by Western blot. We have deferred screening of the remaining 79 patients until analysis of the initial cohort is complete.

Aim 3. To determine whether tumor-specific autoantibody profiles differ in prostate cancer patients with recurrent versus non-recurrent disease.

We have continued to collect blood from prostate cancer patients treated ~5 years ago and who have since recurred (n=17) or not recurred (n=43). Recruitment of recurrent patients continues to be a challenge thus we have expanded our search to include patients diagnosed in 2003-2004, as this now represents the 5 year time frame. In addition, the subjects in our initial cohort of 174 prostate cancer patients are approaching the 5 year anniversary since treatment. Thus, these patients may provide an additional resource for this Aim, with the added benefit of being accompanied with pre-treatment blood draws. With regard to the Statement of Work, we expect that we will be able to complete recruitment of these two groups within 6 months. During this time, as mentioned above, we plan to construct the yeast display library and then begin analysis of serum samples at the end of 2009.

KEY RESEARCH ACCOMPLISHMENTS:

- Treatment-induced autoantibody responses are seen in approximately ~30% of prostate cancer patients undergoing hormone therapy and/or radiation therapy (Nesslinger et al. Clin Cancer Res 2007;13:1493-1502).

- Castration-induced autoantibody and T cell responses are associated with poor outcomes in the murine Shionogi tumor model (Hahn et al. Submitted to Int J Cancer, March 2009).
• The combination of castration and brachytherapy led to a delay in tumor recurrence, evidence of an abscopal response, in the murine Shionogi tumor model.

• An in vitro transcribed mRNA (ivt RNA) platform has been established to allow analysis of CD8+ T cell responses regardless of HLA haplotype.

REPORTABLE OUTCOMES:

Manuscripts:

Book chapters:

Presentations:

Degrees Obtained:
Sara Hahn
Master of Science, Department of Biochemistry and Microbiology, University of Victoria
Thesis title: “The influence of host immunity on outcomes following hormone therapy for cancer”
Degree awarded: June 2008

CONCLUSION:

Both the murine and human portions of this study are progressing well and on schedule. The Shionogi experiments have produced some interesting and exciting results to date. We have recently submitted a manuscript detailing the castration only experiments in which we found that mice with autoantibody and T cell responses had poorer outcomes than those mice without an immune response. We have also found that the combination of castration and brachytherapy led to delayed tumor recurrence of a distal, unirradiated tumor in the Shionogi model, but only when the tumors had maximally regressed after castration. We are currently performing the immunological analyses to determine whether immune responses are associated with poor outcomes as was seen in the castration only experiments or whether the addition of brachytherapy leads to improved outcomes.
REFERENCES:

None

APPENDIX:

Manuscript: “Castration induces autoantibody and T cell responses that correlate with inferior outcomes in an androgen-dependent murine tumor model”

Please see following page for manuscript.
Castration induces autoantibody and T cell responses that correlate with inferior outcomes in an androgen-dependent murine tumor model

<table>
<thead>
<tr>
<th>Journal:</th>
<th>International Journal of Cancer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID:</td>
<td>draft</td>
</tr>
<tr>
<td>Wiley - Manuscript type:</td>
<td>Tumor Immunology</td>
</tr>
<tr>
<td>Date Submitted by the Author:</td>
<td></td>
</tr>
<tr>
<td>Complete List of Authors:</td>
<td>Hahn, Sara; BC Cancer Agency, Deeley Research Centre Nesslinger, Nancy; BC Cancer Agency, Deeley Research Centre Drapala, Robert; The Prostate Centre at Vancouver General Hospital Bowden, Mary; The Prostate Centre at Vancouver General Hospital Rennie, Paul; The Prostate Centre at Vancouver General Hospital Pai, Howard; BC Cancer Agency, Radiation Oncology-Vancouver Island Centre Ludgate, Charles; BC Cancer Agency, Radiation Oncology-Vancouver Island Centre Nelson, Brad; BC Cancer Agency, Deeley Research Centre</td>
</tr>
<tr>
<td>Key Words:</td>
<td>prostate cancer, immune response, tumor antigens, prognosis</td>
</tr>
</tbody>
</table>

John Wiley & Sons, Inc.
Castration induces autoantibody and T cell responses that correlate with inferior outcomes in an androgen-dependent murine tumor model

Sara Hahn1,2, Nancy J. Nesslinger2, Robert J. Drapala4, Mary Bowden4, Paul S. Rennie4, Howard H. Pai3, Charles Ludgate3, Brad H. Nelson1,2

1Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
2Trev and Joyce Deeley Research Centre, British Columbia Cancer Agency, 2410 Lee Ave, Victoria, BC, Canada
3Radiation Oncology Program, BC Cancer Agency-Vancouver Island Centre, Victoria, BC, Canada
4Prostate Centre at Vancouver General Hospital, Vancouver, BC, Canada

Grant support: Prostate Cancer Research Foundation of Canada, U.S. Department of Defense (W81XWH-07-1-0259), NSERC (CGS M – 317056 - 2005), British Columbia Cancer Foundation, and The Capital Region Prostate Centre (Victoria, BC).

Correspondence: Dr. Brad Nelson, BC Cancer Agency, 2410 Lee Avenue, Victoria, BC, V8R 6V5, Canada. Email: bnelson@bccancer.bc.ca
ABSTRACT

We recently reported that hormone therapy induces antigen-specific autoantibody responses in prostate cancer patients. However, the contribution of autoantibody responses to clinical outcomes is unknown. We used an animal model to test the hypothesis that hormone therapy-induced immune responses may be associated with delayed tumor recurrence. Male DD/S mice bearing established tumors from the androgen-dependent Shionogi carcinoma line were castrated to induce tumor regression. Tumor-specific autoantibody responses were measured by immunoblot, and the underlying antigen was identified by serological screening of a cDNA expression library. T cell responses were assessed by immunohistochemistry and IFN-γ ELISPOT. Following castration, 97% of mice underwent complete tumor regression. Of these, 72% experienced tumor recurrence 18-79 days post-castration, while the remaining 28% remained tumor-free for the duration of the experiment. In 55% of mice, castration induced autoantibody responses to an antigen identified as poly(A) binding protein nuclear 1 (PABPN1). Castration also induced PABPN1-specific T cell responses, which were highly correlated to autoantibody responses, and this was accompanied by dense infiltration of tumors by CD3+ T cells 1-2 weeks after castration. Unexpectedly, mice that developed autoantibody and T cell responses to PABPN1 showed a higher rate and shorter latency of tumor recurrence. In mice with recurrent tumors, T cell responses to PABPN1 were still detectable; however T cell infiltrates were restricted to the peripheral stroma of tumors. In conclusion, castration-induced immune responses are associated with inferior outcomes in the Shionogi carcinoma model, raising concerns about the influence of treatment-induced immune responses on clinical outcomes in humans.
INTRODUCTION

Prostate cancer is the most frequently diagnosed cancer in North American men and, despite improvements in early detection due to prostate-specific antigen (PSA) screening, it remains the second leading cause of cancer-related death among men. Standard surgical or radiation therapies (RT) are usually successful in controlling organ confined disease, however if tumors recur, the disease is typically systemic and hormone therapy (HT) remains the only treatment option. While HT is initially efficacious, patients eventually progress to castration-resistant disease, which is incurable. Thus, there is clear need for improved treatments to prevent the development or outgrowth of androgen-independent tumors.

While both HT and RT mediate direct killing of tumor cells, there is growing evidence that these treatments can also induce tumor-specific immune responses. Roden et al. demonstrated that androgen deprivation in tumor-free male mice increased the absolute number of T cells residing in peripheral lymphoid tissues, and also led to transient increases in T cell proliferation in response to T cell receptor stimulation. Moreover, HT induces apoptosis of tumor cells, and the resulting apoptotic bodies can serve as an efficient source of antigen to prime antigen-presenting cells (APCs). Indeed, Mercader et al. demonstrated that HT caused increased levels of APCs expressing the T cell co-stimulatory molecules B7.1 and B7.2 in human prostate cancer patients, which was accompanied by profuse infiltration of tumor tissue by CD3+ T cells. Similarly, external beam RT induces tumor cell necrosis and apoptosis, which when accompanied with inflammatory or other “danger” signals, can potentially provide both antigen and maturation signals to dendritic cells and other APCs. This in turn leads to the induction of CD4+ and CD8+ T cell responses, which can ultimately elicit an anti-tumor effect. Finally, we have recently shown that HT and RT induce autoantibody responses to a variety of tumor-associated antigens in 25-30% of prostate cancer patients. Despite the mounting evidence that HT and RT induce T and B cell responses, it is not yet known whether these immune responses influence clinical outcomes.

The murine Shionogi carcinoma model (SC-115) is a transplantable androgen-dependent tumor that, despite being of mammary origin, is used to study the conversion from androgen-dependent to androgen-independent neoplasia. Initially, Shionogi tumors are androgen-dependent such that surgical castration precipitates apoptosis and tumor regression in a highly reproducible manner, similar to that seen after androgen withdrawal in human prostate cancer.
patients. However, similar to human prostate cancer, the androgen-depleted environment gives rise to androgen-independent recurrent tumors in >80% of mice15-17. Furthermore, Shionogi tumor cells that survive hormone withdrawal, like human prostate tumor cells, up-regulate proteins implicated in cell survival and progression to androgen independence18. We recently showed that castration induces autoantibody responses to a ~40 kDa antigen in approximately 50% of Shionogi tumor-bearing mice, which is reminiscent of our findings in human patients, discussed above13. Thus, the Shionogi model provides an experimental system for studying the relationship between treatment-induced immune responses and outcomes. Here, we use this model to test the hypothesis that castration-induced immune responses may be associated with delayed tumor recurrence.

MATERIALS AND METHODS

SEREX screening

SEREX screening of a prostate cancer phage cDNA library was carried out as previously described13 using mouse sera diluted 1/400 in TBS/1% BSA. A donkey anti-mouse IgG alkaline phosphatase-conjugated antibody was used for secondary screening (Jackson ImmunoResearch Laboratories, West Grove, PA).

Cloning and purification of SEREX-identified antigens

To isolate full-length cDNA clones for antigens identified by SEREX, total RNA was extracted from 1 x 107 Shionogi tumor cells using the RNeasy Mini kit (Qiagen, Mississauga, Canada) and then 0.08 µg total RNA was synthesized into cDNA using SuperScriptTM II Reverse Transcriptase (Invitrogen, Burlington, Canada). PCR products were purified using the QIAquick Gel Extraction kit (Invitrogen, Mississauga, Canada), cloned into pENTRTM/D-TOPO® (Invitrogen Burlington, Canada) and transformed into One Shot® TOP10 chemically competent E. coli (Invitrogen, Burlington, Canada). Clones were verified by sequencing before sub-cloning into the E. coli expression vector pDESTTM 17 (Invitrogen, Burlington, Canada). Clones were transformed into BL21-AITM cells (Invitrogen, Burlington, Canada), and protein production was induced by addition of arabinose. After 2 hours, bacterial pellets were re-suspended in 5 ml of 30 mM Tris-HCl, pH 7.5, 500 mM NaCl, 20 mM imidazole, and 1 mM dithiothreitol. After one freeze-thaw cycle at -80 °C, bacteria were sonicated and centrifuged. Supernatants and pellets...
were analyzed by SDS-PAGE, and fractions containing the most protein were loaded onto a HiTrap IMAC FF nickel column (GE Healthcare, Piscataway, NJ) and purified by immobilized metal ion adsorption chromatography (IMAC) using the ÄKTA prime™ plus (GE Healthcare, Piscataway, NJ). Proteins were eluted by imidazole gradient. Fractions were pooled and dialyzed against 2 L of phosphate buffered saline (PBS) overnight at 4ºC.

Shionogi mouse model

Mice were maintained at the Animal Care Unit of the Jack Bell Centre. All protocols followed the guidelines of the Canadian Council for Animal Care and were approved by the Animal Care Advisory Committee of the University of British Columbia. Adult male DD/S mice were injected subcutaneously in the neck region with ~5 x 10^6 Shionogi carcinoma cells. When tumors reached ~8 mm x 10 mm in size, mice were castrated to induce androgen deprivation and subsequent tumor regression. Serial blood samples were collected from the tail vein before tumor inoculation, before castration, and then twice weekly following castration. Tumor size (length x width) was measured using micro calipers. Tumors were considered to have recurred once palpable. Unless otherwise indicated, mice were sacrificed when recurrent tumors reached approximately 10% of total body weight. On necropsy, terminal blood samples were collected by cardiac puncture. Tumors were removed and divided in two halves, which were flash frozen in liquid nitrogen or fixed in 10% formalin. Lymph nodes and spleen were processed into single-cell suspensions using the blunt end of a 5 mm syringe and a 40-µm cell strainer. Splenocytes were re-suspended in ACK lysis buffer (0.15 M NH₄Cl, 1 mM KHCO₃, 0.1 mM EDTA, pH 7.3). Lymphocytes and splenocytes were combined, counted, and frozen in 50%FBS/10%DMSO for long-term storage.

Immunoblotting of tumor lysates

Cytoplasmic protein lysate was made from intact Shionogi tumors pooled from 5 non-castrated mice. Frozen tumors were pulverized into a fine powder in liquid nitrogen, re-suspended in lysis buffer (1x Dulbecco's PBS, 0.01% Triton, protease inhibitor cocktail), homogenized through 18G and 21G needles, and then sonicated. Aliquots containing 400 µg of protein lysate were immunoblotted with mouse serum (1/500) followed by HRP-conjugated goat anti-mouse IgG (H+L; Jackson ImmunoResearch, West Grove, PA) as described previously.

John Wiley & Sons, Inc.
Flow cytometry

To isolate tumor-infiltrating lymphocytes, tumor fragments were pressed through a 40-µm membrane with the blunt end of a 5 mm syringe, and the resulting cell suspension was centrifuged and re-suspended in 0.5 ml of 1.0% BSA/PBS. Cells were stained in various combinations with the following fluorochrome-conjugated antibodies at 1/400 in 1.0% BSA/PBS: CD3-FITC, CD4-PE, CD4-PerCP, CD8-Cy-Chrome, and CD44-PE (Becton, Dickinson and Company, Oakville, ON). Isotype-matched fluorochrome-conjugated antibodies served as negative controls. Cells were analyzed on a BD FACSCalibur™ flow cytometry system (Becton, Dickinson and Company, Oakville, Canada) with FlowJo software (Tree Star, Inc., Ashland, OR).

IFN-γ ELISPOT assay

96-well MultiScreenHTS IP, 0.45 µm filter plates (Millipore, Billerica, MA) were pre-wet with 70% ethanol followed by three washes with sterile PBS. Plates were incubated overnight at 4ºC with 50 µl/well anti-mouse IFN-γ AN18 (10 µg/ml; Mabtech, Mariemont, OH). After three PBS washes, plates were blocked with T cell media (RPMI-1640 supplemented with 10% FBS, 1 mM sodium pyruvate, 2 mM L-glutamine, 100 µg/ml penicillin/streptomycin, and 25 µM 2-mercaptoethanol) for 2 hours at 37ºC. 3 x 10^5 splenocytes were added to each well. PABPN1 protein was added to a final concentration of 10 µg/ml. ConA was added to a final concentration of 2 µg/ml. T cell media was used as a negative control. Samples were run in triplicate. Plates were incubated for at least 20 hours at 37 ºC. After washing six times with PBS/0.05% Tween-20, 100 µl of biotinylated anti-mouse IFN-γ (diluted to 1 µg/ml in 0.5% BSA/PBS/0.05% Tween-20; Mabtech, R4-6A2, Mariemont, OH) was added to each well. Plates were left for 2 hours at 37 ºC and then washed 12 times with PBS/0.05% Tween-20. Avidin peroxidase complex (Vector Laboratories, Burlingame, CA) (100 µl/well) was added followed by a 1 hour incubation at room temperature. Plates were washed as above and then developed using the Vectastain AEC substrate kit (Vector Laboratories, Burlingame, CA) for approximately 5-10 minutes. Development was stopped by rinsing with tap water. Air-dried plates were sent to ZellNet Consulting, Inc. (Fort Lee, NJ) for enumeration of spots using an automated ELISPOT reader with KS ELISPOT Software 4.9 (Carl Zeiss, Thornwood, NY).
Immunohistochemistry

Formalin-fixed tumors were processed following standard methods and stained with hematoxylin and eosin (H&E). A tissue microarray (TMA) containing all experimental tumors was constructed using duplicate 1 mm cores and stained with mouse monoclonal antibodies against CD3 (Lab Vision, RM 9107, Fremont, CA), FoxP3 (eBioscience, 14-5773, San Diego, CA), Pax-5 (Lab Vision, Rb9406, Fremont, CA), and Granzyme B (Abcam, ab4059, Cambridge, MA). Scoring of the TMA was performed independently by two individuals who were blinded as to the experimental status of tumors. A score of 0 (no infiltration) to 3 (dense infiltration) was assigned to each tumor, and scores were averaged. A score of greater than 1 was considered positive for lymphocyte infiltration.

RESULTS

Castration induces autoantibody responses to PABPN1 in the Shionogi carcinoma model

We previously reported that castration of DD/S mice bearing Shionogi tumors induces IgG autoantibody responses to an unidentified ~40 kDa antigen in approximately 50% of animals. To facilitate cloning of this antigen by SEREX, we first determined whether the ~40 kDa antigen might have a human homolog, as this would allow use of a previously constructed cDNA expression library derived from human prostate cancer cell lines. To this end, we immunoblotted lysate from the human prostate cancer cell line LNCaP with serum from tumor-bearing, castrated mice that were positive for autoantibodies to the ~40 kDa antigen. A strong seroreactive band was seen at ~40 kDa, indicating the antigen seen in Shionogi tumor cells does indeed have a human homolog (data not shown). To identify the antigen, we screened approximately 2.3×10^4 clones of the human prostate cDNA expression library with mouse sera that were positive for autoantibodies to the ~40 kDa antigen. Four serologically reactive antigens were cloned. The corresponding recombinant proteins were immunoblotted with additional mouse sera that were known to be positive or negative for autoantibodies to the ~40 kDa antigen. The pattern of seroreactivity to one antigen, poly(A) binding protein, nuclear 1 (PABPN1), was identical to the pattern of seroreactivity to the ~40 kDa antigen from Shionogi tumor lysates (Figure 1A), suggesting PABPN1 was the correct antigen.
To confirm that PABPN1 was the ~40 kDa antigen identified in Shionogi tumor lysates, five male mice were immunized with recombinant PABPN1, and sera from immunized mice were used to probe Shionogi tumor lysate. The presence of a strong immunoreactive band at ~40 kDa confirmed that PABPN1 was indeed the 40 kDa antigen (Figure 1B).

By Western blot, PABPN1 was expressed at high levels in Shionogi tumor lysate, as well as normal liver, lung and uterine mouse tissues. By contrast, PABPN1 was not expressed in normal kidney, skeletal muscle or heart (Figure 1C). This is in accord with published data for human tissues, where PABPN1 is expressed at higher levels in liver, lung, and uterus compared to kidney, muscle, and heart.

Autoantibody and T cell responses to PABPN1

To establish the time course of autoantibody responses to PABPN1, a cohort of 33 mice bearing established Shionogi tumors were castrated, and serial blood samples were assessed for autoantibody responses to PABPN1 by immunoblotting. Overall, 18/33 mice (54.5%) had an autoantibody response to PABPN1, which appeared an average of 26 days post-castration (range 6-47 days post-castration). By contrast, autoantibodies to PABPN1 were not found in serum from tumor-bearing, non-castrated mice or castrated non-tumor-bearing mice (data not shown).

The fact that autoantibodies to PABPN1 were of the IgG subclass suggested the presence of an underlying T cell response. This was investigated by IFN-γ ELISPOT analysis of splenocytes. As expected, wild-type mice immunized with recombinant PABPN1 showed robust T cell responses to PABPN1, whereas non-immunized control mice showed no response (Figure 1D). Of 19 tumor-bearing castrated mice examined, 7 (36.8%) showed a strong T cell response to PABPN1. All of these mice also had an autoantibody response to PABPN1. Conversely, of the 12 mice that were negative for T cell responses to PABPN1, 11 were also negative for autoantibodies to PABPN1. Thus, there was high concordance between autoantibody and T cell responses in tumor-bearing, castrated mice. However, control mice showed a lower concordance between autoantibody and T cell responses. Specifically, non-tumor-bearing mice that underwent castration showed modest T cell responses to PABPN1 (Figure 1D). Thus, castration alone can induce T cell responses to PABPN1, but the effect is enhanced in tumor-bearing mice.
PABPN1 antibody and T cell responses are associated with early tumor recurrence

We next examined the relationship between castration-induced autoantibody responses and tumor recurrence. Following castration, 32/33 mice experienced complete tumor regression. Of these 32 mice, 72% (23/32) experienced tumor recurrence 18-79 days post-castration, while the remaining 28% (9/32) remained tumor-free for the duration of the experiment (77-92 days post-castration) after which they were sacrificed for analysis. Seventy percent (16/23) of mice with recurrent tumors had an autoantibody response to PABPN1, compared to only 11% (1/9) of mice that remained tumor-free (p=0.005, Fisher’s exact test). Accordingly, the mean tumor-free interval for mice with autoantibodies to PABPN1 was 24.5 days compared to 62.9 days for mice without autoantibodies to PABPN1 (p<0.0001, two-tailed unpaired t-test).

T cell responses to PABPN1 were assessed by IFN-γ ELISPOT using splenocytes harvested at the time of euthanasia. As before, mice with autoantibodies to PABPN1 had stronger T cell responses to PABPN1 (mean = 406 spot-forming cells/10^6 splenocytes, n=8) than mice without autoantibodies to PABPN1 (mean = 38 spot-forming cells/10^6 splenocytes, n=11). Accordingly, mice with recurrent tumors had stronger PABPN1-specific T cell responses (mean = 335 spot-forming cells/10^6 splenocytes, n=10) than mice without recurrent tumors (mean = 36 spot-forming cells/10^6 splenocytes, n=9). Kaplan-Meier analysis revealed a significant difference in time to recurrence between mice with and without PABPN1 antibody and T cell responses (Figure 2). Thus, contrary to our initial hypothesis, treatment-induced autoantibody and T cell responses to PABPN1 were correlated with inferior outcomes.

To investigate whether autoantibodies to PABPN1 promote tumor recurrence or merely serve as a marker of recurrence, we assessed the timing of autoantibody responses relative to tumor recurrence. In 8 of 16 mice whose tumors recurred, the autoantibody response was detected 5 or more days prior to tumor recurrence. However, in 6 of 16 mice, the autoantibody response was not detected until 2 or more days after tumor recurrence, making it unlikely that autoantibodies contributed directly to recurrence. In the remaining 2/16 mice, the autoantibody response was detected within one day of tumor recurrence, such that the temporal relationship could not be reliably discerned. Overall, these data are consistent with the notion that autoantibodies are a marker of tumor recurrence rather than an essential mediator of this process.
This finding led us to consider what other features of tumors might correlate with autoantibody status. The average tumor size at castration for those mice that went on to develop an autoantibody response was 82.4 mm2 compared to 79.7 mm2 for those with no response, suggesting that the size of the primary tumor did not influence subsequent autoantibody development (p=0.4963, two-tailed unpaired t-test). We then considered the rate of tumor regression after castration. In those mice that developed an autoantibody response, it took an average of 9.7 days for tumors to regress after castration compared to 6.8 days in those mice that did not develop an autoantibody response (p=0.049, two-tailed unpaired t-test). Although the temporal difference was only 3 days, this nonetheless suggests that slowly regressing tumors may be more likely to trigger autoantibody responses and, ultimately, to recur.

The unexpected finding that PABPN1-specific autoantibody and T cell responses were associated with inferior outcomes raised the issue of whether recurrent Shionogi tumors still expressed the target antigen PABPN1. We evaluated this issue by immunoblotting 15 recurrent tumors for expression of PABPN1. All recurrent tumors expressed PABPN1, and in most cases the level expression was similar to primary tumor (Figure 3).

T cell infiltration of Shionogi tumors after castration and upon recurrence.

Since mice with recurrent tumors had substantial PABPN1-specific T cell responses, and tumors still expressed antigen, we next investigated whether T cells trafficked to and infiltrated the tumor site. To this end, a time course experiment was performed in which 50 tumor-bearing mice were castrated and then groups of 10 mice were euthanized on Day 7 or 14 (while tumors were regressing); Day 28 or 35 (while tumors were recurring); or at later time points when recurrent tumors reached ~10% of the body weight. An additional 10 tumor-bearing mice were not castrated. By IHC, tumors from non-castrated mice had very few CD3+ T cells in tumor epithelium or stroma (Figure 4A - non-castrated). In contrast, on Days 7 and 14 post-castration, 12/18 tumors were densely infiltrated by CD3+ T cells (Figure 4A - Day 7 and Day 14). By FACS analysis averaged over three experiments, ~55% of tumor-infiltrating CD3+ T cells were CD8+, and ~24% were CD4+ T cells. Over 95% of T cells were CD44high, indicating an activated phenotype (data not shown). By contrast, very few tumor-infiltrating cells expressed Granzyme B as assessed by IHC, suggesting a paucity of mature cytolytic effector cells. Tumors were also examined by IHC for cells expressing FoxP3, a transcription factor expressed
by regulatory T cells (Tregs) \(^{21}\). Very few FoxP3+ cells were seen in tumors from non-castrated mice. In castrated mice, the number of tumor-infiltrating FoxP3+ cells was proportional to the number of CD3+ T cells (i.e., about 5-10%) (Figure 4B). Finally, tumors from castrated or non-castrated mice contained very few B cells, as assessed by IHC with an antibody to Pax-5 (data not shown) \(^{22}\).

In contrast to the regressing tumors described above, recurrent tumors contained relatively sparse CD3+ T cell infiltrates in tumor epithelium (Figure 4A - Day 28). Likewise, very few cells expressing FoxP3, Granzyme B or Pax-5 were seen (Figure 4B - Day 28 and data not shown). However, the peripheral and stromal regions of recurrent tumors showed dense accumulations of CD3+ T cells (Figure 4C). Thus, it appears that recurrent Shionogi tumors may avoid immune rejection by preventing the infiltration of T cells into tumor epithelium.

DISCUSSION

We recently showed that hormone and radiation therapy induce antigen-specific autoantibody responses in a significant proportion of human prostate cancer patients \(^{13}\), however, it is not yet known how these treatment-associated immune responses correlate with clinical outcomes. To address this question experimentally, we utilized the murine Shionogi carcinoma model, which exhibits treatment-induced autoantibody responses similar to those seen in human prostate cancer patients. We hypothesized that treatment-induced autoantibody responses would be associated with delayed time to tumor recurrence and prolonged survival. To investigate this hypothesis, we first cloned PABPN1, the antigen that underlies treatment-induced autoantibody responses in this model. In general, mice that developed PABPN1-specific autoantibodies after castration also developed PABPN1-specific T cell responses. Contrary to our hypothesis, the development of PABPN1-specific autoantibody and T cell responses was associated with more rapid and frequent tumor recurrences. Mice with recurrent tumors retained robust autoantibody and T cell responses to PABPN1, and PABPN1 was still expressed at high levels by tumor cells. Notably, however, recurrent tumors had greatly reduced lymphocytic infiltrates, with CD3+ T cells being restricted to peripheral stromal regions. These findings raise concern that treatment-induced immune responses may have a negative impact on clinical outcomes in prostate cancer patients.
Based on our results, we considered the possibility that treatment-induced autoantibody and T cell responses might somehow promote tumor recurrence. For example, B cells have been shown to play an essential role in inflammation-induced tumorigenesis in a murine epithelial cancer model. Furthermore, T cells can promote carcinogenesis in the setting of chronic inflammation. For example, in chronic hepatitis B and C infection, cytotoxic lymphocytes promote hepatocyte damage and fibrosis through direct cellular toxicity and the release of inflammatory cytokines. Likewise, T cells directed against Helicobacter pylori are thought to promote the development of gastric adenocarcinoma. However, the Shionogi model does not involve chronic inflammation nor primary carcinogenesis, therefore the relevance of these prior examples is unclear. In 6/16 cases from our study, autoantibody responses to PABPN1 appeared after recurrent tumors were detected, which seems incompatible with the notion that autoantibodies play a causative role in tumor recurrence. An alternative possibility is that autoantibodies are a marker rather than mediator of tumor recurrence. Indeed, the development of autoantibodies to PABPN1 was associated with tumors that regressed more slowly after castration. It may be that a slower rate of tumor regression allows sufficient time for antigen presentation to the immune system, resulting in autoantibody and T cell responses. Slowly regressing tumors may also be less androgen-dependent and hence more likely to recur. Such a model provides a plausible, indirect mechanism linking autoantibodies to tumor recurrence. Future studies will directly test these possibilities by depleting B and T cell subsets from mice and assessing the affect on tumor recurrence.

In addition to autoantibodies, we also detected robust T cell responses to PABPN1 by IFN-γ ELISPOT. Intriguingly, modest T cell responses to PABPN1 were also seen in tumor-free mice that underwent castration. Castration has been shown to increase levels of T cells in the peripheral lymphoid tissues of mice due to a loss of the immune suppressive effects of androgens. Thus, castration-induced T cell responses to PABPN1 may in part reflect the generalized homeostatic expansion of lymphocytes in response to androgen deprivation. The fact that even stronger T cell responses to PABPN1 develop in tumor-bearing mice suggests that tumor cell apoptosis further stimulates PABPN1-specific T cells through the release of soluble antigen and/or inflammatory factors. Castration-induced T cell responses were accompanied by the rapid and dense infiltration of tumor epithelium by CD3+ T cells by Day 7. The majority (55%) of these T cells expressed CD8, a smaller proportion (24%) expressed CD4+, and a minor
population (5-10%) expressed FoxP3. Intriguingly, hormone therapy of human prostate cancer also promotes T cell infiltration of tumors, although the clinical significance of this observation is not known. Likewise, in the Shionogi model, we were unable to assess the relationship between T cell infiltration of tumors and subsequent outcomes, since mice had to be euthanized on Days 7-14 in order for T cell infiltration to be assessed. However, when recurrent tumors were analyzed, T cells no longer infiltrated tumor epithelium, but rather were restricted to peripheral stromal regions. Collectively, our results indicate that Shionogi tumors are initially permissive to T cell infiltration, whereas recurrent tumors develop lymphocyte infiltration barriers. This suggests that the T cell response triggered by castration may create selective pressure for the development of immunologically resistant tumors upon recurrence. It will be interesting to assess whether recurrent human prostate tumors are similarly devoid of T cells.

PABPN1 is a ubiquitously expressed protein that is involved in the polyadenylation of mRNA in eukaryotes. Although PABPN1 has not been directly implicated in cancer, aberrant expansion of the trinucleotide repeat in a polyalanine tract of the PABPN1 gene causes oculopharyngeal muscular dystrophy, an autosomal dominant inherited disorder in humans. The role of PABPN1 in transcription may explain its high level of expression in Shionogi tumor cells. On the one hand, it may seem counter intuitive that a widely expressed protein such as PABPN1 would be a target antigen of castration-induced immune responses in the Shionogi model. However, Savage et al. described a naturally arising CD8+ T cell response against a peptide derived from histone H4, a ubiquitously expressed protein, in the murine TRAMP prostate cancer model. Moreover, in our study of treatment-induced autoantibody responses in human prostate cancer patients, many of the underlying antigens were widely expressed proteins. Thus, treatment-induced immune responses are not necessarily directed against tumor-specific proteins, but might instead involve a breakdown of peripheral tolerance to widely expressed self proteins, as occurs in many autoimmune conditions.

Our findings in the Shionogi model raise concerns about human prostate cancer, where treatment-induced autoantibody responses are seen in 20-30% of patients treated with hormone therapy and/or radiation therapy. The relationship between tumor-associated autoantibodies and clinical outcomes in humans is controversial. Autoantibodies to p53 have been associated with favorable outcomes in some studies, but not others. Autoantibodies to other target antigens have been associated with improved prognosis in melanoma, glioblastoma, gastric...
cancer and breast cancer. However, most of the above studies have examined autoantibodies present at the time of diagnosis, whereas our work in humans and the Shionogi model has focused on autoantibody responses that arise during treatment. If the present results translate to humans, then treatment-induced autoantibody and T cell responses may portend early recurrence. That said it may be possible to avert tumor recurrence by skewing the immune response towards a beneficial effector phenotype.
REFERENCES

FIGURE LEGENDS

Figure 1. Recognition of PABPN1 by serum antibodies and T cells from castrated mice.
A. Recombinant PABPN1 (10 µg) was immunoblotted with serum from mice that were known to be positive (+) or negative (-) for autoantibodies to the ~40 kDa antigen. The correlation between expected positives and negatives was high, although some expected negatives were weakly positive against purified PABPN1, likely reflecting the higher sensitivity of this assay owing to the use of recombinant PABPN1.
B. Shionogi tumor lysate was immunoblotted with sera from a naïve DD/S mouse and 5 mice that had been immunized with 100 µg of PABPN1 in incomplete Freund’s adjuvant. The presence of an immunoreactive band at ~40 kDa confirms that PABPN1 is the ~40 kDa antigen.
C. Western blot showing expression of PABPN1 in Shionogi tumor lysate as well as normal liver, lung and uterine tissues. Varying amounts of protein were loaded, depending on sample availability as follows: 20 µg Shionogi tumor lysate; 100 µg intestine, liver, muscle, liver; 50 µg heart, lung; 33 µg uterus. Serum from a PABPN1-immunized mouse was used as primary antibody. GAPDH served as a loading control.
D. Castration induces a PABPN1-specific T cell response, as measured by IFN-γ ELISPOT. Fresh splenocytes were used in all ELISPOT experiments. Representative data from a single mouse per treatment group is shown. PABPN1-specific T cells were highest in castrated tumor-bearing mice, followed by castrated non tumor-bearing mice. PABPN1-immunized mice served as a positive control, and non tumor-bearing, non-castrated DD/S mice served as a negative control. For each mouse, the sample was run in triplicate to produce an average and standard deviation.

Figure 2. Castration-induced autoantibody and T cell responses to PABPN1 are associated with tumor recurrence.
A. Kaplan-Meier curve comparing the time to recurrence of tumors in mice with (+) or without (-) autoantibodies to PABPN1.
B. Kaplan-Meier curve comparing the time to recurrence of tumors in mice with (+) or without (-) T cell responses to PABPN1.

Figure 3. Recurrent Shionogi tumors retain PABPN1 expression. PABPN1 expression was examined in 15 recurrent Shionogi tumors compared to one primary tumor (1º). Each lane was loaded with 20 µg tumor lysate and screened with serum from a PABPN1-immunized mouse. GAPDH served as a loading control.

Figure 4. CD3+ T cell infiltration of Shionogi tumors after castration.
A. Anti-CD3 staining of Shionogi tumors shows dense infiltration of CD3+ T cells beginning at Day 7 post-castration and...
reaching maximal levels at Day 14. By Day 28, when most of the tumors had recurred, CD3+ T cells were sparse (400x). B. Anti-FoxP3 staining of Shionogi tumors reveals that a minor subpopulation of CD3+ T cells expresses FoxP3 (400x). C. Representative recurrent tumors from mice sacrificed on Day 56 and Day 90 post-castration. Note that CD3+ T cells are largely restricted confined to the peripheral stroma of tumors (200x).
Figure 1

Hahn et al. Figure 1.

171x127mm (300 x 300 DPI)
Hahn et al. Figure 2.

A

- PABPN1 Ab
- + PABPN1 Ab

Tumour-free survival

Time to recurrence (days after castration)

p=<0.0001

B

- PABPN1 T cells
- + PABPN1 T cells

Tumour-free survival

Time to recurrence (days after castration)

p=<0.0001

Figure 2
127x211mm (600 x 600 DPI)
Hahn et al. Figure 3.

![Western Blot Image]

Figure 3
76x43mm (300 x 300 DPI)
Figure 4
116x215mm (300 x 300 DPI)
SUPPORTING DATA:

Figure 1:

A 116R2- PBS treated

B 116L1- PBS treated

C 117N- CD4 depleted

D 117L1- CD4 depleted

Flow cytometry data from CD4 depletion experiments. Mice 116R2 (A) and 116L1 (B) were injected with PBS only while 117N (C) and 117L1 (D) were treated with anti-CD4 antibody. PBMCs were isolated from whole blood at Day 66 post-tumor injection. Cells were stained with anti-CD3 and anti-CD4 antibodies for flow cytometric analysis. The first panel shows the total percent of CD3+ T cells and the second panel shows the percent of CD4+ T cells in the CD3+ population. Those mice mice receiving the CD4 depleting antibody have no CD4+ T cells remaining in the CD3+ T cell population whereas the control mice have a healthy CD4+ population, indicating that the depletion was successful.
Figure 2: Tumor measurements from the CD4 depletion experiment comparing the average tumor area of the PBS control mice and the CD4 depleted mice. A significant difference between the two groups is demonstrated.
Figure 3: Demonstrating an abscopal response in the Shionogi tumor model. Mice were injected with two Shionogi tumors, one per flank. Tumors were allowed to reach 65-100 mm² before all mice were castrated. Some mice received no additional treatment (Cx). A second group of mice received 6 I-125 pellet at the point of maximal tumor regression in the primary tumor only (Cx+RT) while the third group received 6 I-125 pellets when the tumors had only partially regressed (Cx+RT@1/2). Figure 3A shows the rate of tumor growth of the primary tumor and clearly demonstrates the efficacy of radiation on primary tumor growth. Figure 2B shows a Kaplan-Meier curve comparing the rate of tumor recurrence of both the primary and distal tumors. The clear advantage of adding radiation is seen in the primary tumors. In the distal tumors a significant survival advantage is seen in mice treated with Cx+RT, evidence of an abscopal effect. Note this advantage is lost if mice are radiated before the tumors have fully regressed.
Figure 4A

Tumor-free Survival of C vs C+RT

\(p < 0.0001 \)

Tumor-free Survival of C vs C+RT+Flt3L

\(p = 0.0068 \)

Tumor-free Survival of C vs C+RT+Flt3L

\(p < 0.0001 \)

Tumor-free Survival of C+RT vs C+RT+Flt3L

\(p = 0.7997 \)

Tumor-free Survival of C vs C+RT

\(p = 0.6159 \)
Figure 4: Kaplan-Meier analysis of tumor-free survival in mice treated with a combination of castration, brachytherapy and Flt3 ligand. A survival advantage is seen in the primary tumors of mice treated with a combination of Cx+RT, Cx+Flt3L and Cx+RT+Flt3L compared to Cx alone (Figure 4A). When examining the tumor-free survival of the distal tumors a slight, but significant advantage is seen in those mice treated with Cx+RT, as was noted in Figure 3. However, no additional survival advantage was seen with addition of Flt3L.
Figure 5: ELISPOT analysis of human prostate cancer patients stimulated with different prostate cancer antigen-specific peptides. Results show that none of the 5 patients tested had antigen-specific T cells against any of the 4 peptides tested. PHA was used as a non-specific T cell stimulant and shows a clear positive result in those 2 patients. In addition, three patients had T cells against the CEF peptide, demonstrating that the ELISPOT methodology worked.