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Limitations of MD simulation

• Discrepancy between MD simulation and experimental 
results

1. Length Scale

- Recent billion atoms simulation (1 x 1 x 1 µm for metal)
- Most of MD simulation is nanometer scale (In many case, using only a 

small part of actual specimen for simulations)

2. Time scale

- Most MD simulation’s  time step is femto second
- Current time step extending methods can increase time step about 
factor of 15 

•Necessity to increase length and time scale of MD simulations
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Method and framework

• Equivalent crystal lattice method

• New inter-atomic potential parameters
- Tersoff potential (T3)

• Comparison of properties
- C11, C12, C44, Bulk modulus, Total lattice energy.

• Time step calculations
- Maxwell-Boltzman distrubution

• Simulation details
- Construction of suprtcells, NST ensemble, 
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Equivalent crystal lattice method

- Lattice parameters: 
5.43, 10.86, 108.6, and 
1086 Å

-Number of atoms in the 
unit cell are the same

--Fraction coordinates in 
the unit cell are the same

-Potential parameters are 
found by minimizing F
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Nobs is the number of observables, ftar and fcalc are the target and calculated values of 
the observables, and wi is the weight factor for the given observables
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Parameters for Tersoff potentials

Lattice
Constant 5.43Å (T3) 10.86Å 108.6Å 1086Å

A (eV) 1830.8 9911.8 9682272.8 12256245358.6 

B (eV) 471.18 2500 2500000.0 2846954605.4 

λ
1

(Å-1) 2.4799 1.2125 0.1195 0.01235

λ
2

(Å-1) 1.7322 0.8166 0.08071 0.008282

α 0 0 0 0 

n 0.78734 0.78734 0.78734 0.78734 

β 1.0999E-06 1.0999E-06 1.0999E-06 1.0999E-06

n 0.78734 0.78734 0.78734 0.78734 

c 100390 100390 100390 100390 

d 16.218 16.218 16.218 16.218 

h -0.59826 -0.59826 -0.59826 -0.59826 
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Results comparison

Properties
Target values 

(experimental)

Tersoff (T3) New potential

Lattice parameters(Å)

5.43 Å 10.86 Å 108.6 Å 1086 Å

C11 (GPa) 165.7 142.5 (14) 137.0 (17) 134.86 (18.6) 136.6 (17.5)

C12 (GPa) 63.9 75.4 (18) 70.0 (9.7) 68.13 (6.63) 73.5 (15)

C44 (GPa) 79.6 69 (13.3) 67.42 (15) 67 (15.8) 64.8 (18.6)

B  (GPa) 98 98 (0.0) 98.5 (0.6) 90.37(7.7) 94.5 (3.5)

Lattice E (ev) 

-37.36 (5.43Å) 
-298.88 (10.86Å) 
-298880 (108.6Å) 

-298880000 
(1086Å) 

-37.04(0.9) -289.4 (0.14) 298387 (0.1) -298935530(0.05) 

Atomic mass 28.0855 28.0855 224.684 224684 224684000
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Silicon nanowires Simulation detail

Supercell
size

5.43 Å 10.86 Å 108.6 Å 1086 Å

4x4x32 2.17x2.17x17.36 nm
(4096)

4.34x4.34x34.8 nm
(4096)

43x43x348 nm
(4096)

0.43x0.43x3.48µm
(4096)

8x8x32 4.34x4.34x17.36 nm
(16384)

8.7x8.7x34.8 nm
(16384)

87x87x348 nm
(16384)

0.87x0.87x3.48µm
(16384)

16x16x32 8.7x8.7x17.36 nm
(65536)

17.4x17.4x34.8 nm
(65536)

174x174x348 nm
(65536)

1.74x1.74x3.48µm
(65536)

- Applying tensile load constant strain rates: 
0.01%/step and 0.001%/step

- NST ensemble (Constant particles, temperature, stress)

- Temperature : 300K, Nose-Hoover thermostat
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Simulation results between 5.43 and 10.86Å equivalent lattice

(a) strain rate 0.01%/step (b) strain rate 0.001%/step

Dimension: 4.34 x 4.34 x 17.36 nm
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Fracture results between 5.43 and 10.86Å equivalent lattice

strain rate 0.001%/step

5.43 Å 10.86 Å

Dimension: 4.34 x 4.34 x 17.36 nm
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Properties
Predictor variables

Diameter
Surface 

area
Volume

Surface to 
volume ratio

Young’s 
modulus

0.14 0.10 0.15 -0.74

Fracture 
stress

0.30 0.25 0.26 -0.85

1  
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Statistical analysis: Coefficient of correlation (R)

- The surface to volume ratio is most critical factor
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Young’s modulus transition diameter (Si nanowire)

Discrepancy b/w current MD 
and experiments

-Current MD predicts 4-30nm for 
transition diameter (Park et al., 
MRS bulletin, 34, 2009) 

-Experiments measured100nm  
for transition diameter (Li et al. 
Appl.Phys.Lett, 83,2003 qnd Han 
et al. adv. Mater.,19, 2007)

-Our simulation predicted around 
100nm for transition diameter
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Polysilicon simulation detail (Number of atoms and sizes)

5.43 Å 10.86 Å 108.6 Å 1086 Å

8 grains 49356 
(101x101x101 Å)

49356
(202x202x202 Å)

49356
(2020x2020x2020 Å)

49356
(20200x20200x20200 Å)

64 grains 48058
(101x101x101 Å)

48058
(202x202x202 Å)

48058
(2020x2020x2020 Å)

48058
(20200x20200x20200 Å)

- Constructed bulk polysilicon and surfaced polysilicon

- Applying tensile load with constant strain rates: 
0.01%/step and 0.001%/step

- NST ensemble (Constant particles, temperature, stress)

- Temperature : 300K, Nose-Hoover thermostat
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(a)Young’s modulus with strain rate 
0.01%/step 

(b) Young’s modulus with strain rate 
0.001%/step

(c) fracture stress with strain rate 
0.01%/step

(d) fracture stress with strain rate 
0.001%/step

Number of grain and surface effect on properties

- With the same surface to volume ratio (same dimension), number of 
grain changes the Young’s modulus: Grain size effect  
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Comparison with experiments 

-Koskinen et al. measured 
fracture stress with various 
grain size 
- Inverse Hall-Petch mechanism

- Our results agree with 
Koskinen’s experiments
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- Our fracture stresses are converted assuming typical  experimental strain rate 2E-3/sec

σ : stress,       : strain rate, m : strain rate sensitivity index 
(                                                               )

ε�

0.0474 0.112,  avgerge 0.079m m≤ ≤ =



Multiphysics Labs @ Notre Dame (htMultiphysics Labs @ Notre Dame (http://www.nd.edu/~vtomar)tp://www.nd.edu/~vtomar)

Limit of surface and grain size effects on polysilicon

strain rate 0.01%/step

- Grain size effect and surface effect is decreasing and converge to 0 !!

- About 1 µm of the grain size and 23 µm3 of specimen size are the limit 
above which the Young’s modulus and fracture stress is not influenced 
by grain size as well as surface for polysilicon

- Agree with experiments by Fancher et al. , J. Mater. Sci., 36, 2001,  
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Fracture transition from brittle to ductile with surfaces 

-Surfaces make materials 
more ductile when compared 
to bulk materials

-Slip induced fracture is 
observed inside grain

(a) bulk polysilicon

(b) surfaced polysilicon 

101 x 101 x 101 Å 8 grain polysilicon 
with strain rate 0.001%/step 



Multiphysics Labs @ Notre Dame (htMultiphysics Labs @ Notre Dame (http://www.nd.edu/~vtomar)tp://www.nd.edu/~vtomar)

Fracture behaviors for equivalent lattices

-Fracture initiation, 
propagation, final pattern are 
identical b/w 5.43 Åand 10.86 Å

-Fracture initiations are 
identical  for all lattices

-Temperature s are higher than 
300K  for 108.6Å and 1086Å

64 grain bulk polysilicon with 
strain rate 0.001%/step 

(a) 5.43 Å lattice
(b) 10.86 Å equivalent lattice
(c) 108.6 Å equivalent lattice
(d) 1086 Å equivalent lattice
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Intergranula vs. transgranula depending on strain rate

Sz2 gs1sr1 and  sr2 -
surface

202 x 202 x 202 Å 8 grain 
surfaced polysilicon with 
strain rate with 10.86Å
equivalent lattice
(a) 0.01%/step (b) 
0.001%/step 

-Fracture propagation 
depends on strain rate

-Mostly, intergranula 

-Transgranula 
observed(a) (b)
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Conclusion

• By using equivalent crystal lattice method, 
• Time step increased about factor of 500

(From 0.001 to 0.5fs)
• Length scale increased factor of 200 

(5.43 Å to 1086 Å)

• The surface to volume ratio is the most important factor at 
nanometer and micron scale

• MD simulation results are more close to experiments if 
actual specimen dimension is used for MD simulations

- Young’s modulus transition diameter (Si nanowire)
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Conclusion

• MD simulations of polysilicon with grain sizes ranging from 
3.4nm to 1.3 µm are made possible using equivalent lattices

•Inverse Hall-Petch mechanism is observed for polysilicon
- Agrees with experiments, opposite to metals and alloys 

• The Young’s modulus is not influenced by grain size when 
grain size is larger than 7nm for bulk polysilicon

- Verified by DFT calculations

• The Young modulus is strongly influenced by grain size for 
surfaced polysilicon

•The existence of surfaces make materials more ductile when 
compared to  bulk materials


