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ABSTRACT 
 
Chemical and physical properties of 

nitroaromatic and nitramine explosives were related 
to their molecular structure with the objective of 
predicting types, sites and rates of reactivity as well 
as prediction of transformation intermediate and final 
products, stability, and toxicity potential. 
Understanding these relationships is intrinsic to the 
development of computational chemistry (CC) 
protocols for basic research into new compounds as 
well as for specific applications to military sites.   
Our comparisons manifested new trends in 
fundamental relationships of these energetic 
compounds, including emergent compounds and their 
reactivities in the environment.   

 
 Three classes of nitro compounds of military 
interest were compared computationally and verified 
spectroscopically:  i) nitroaromatic: trinitrotoluene 
(TNT) and derivatives; ii) cyclic nitramines: 
hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and 
octahydro-1,3,5,7-tetrazocine (HMX); and iii) cage 
nitramine: 2,4,6,8,10,12-hexanitrohexaazoiso-
wurtzitane (CL-20).  Hypothesis and methodology 
were extended to include emerging nitro compounds: 
dinitroanisole (DNAN); octonitrocubane (ONC); and 
tetranitrotetra-aminocubane (TNTAC).   

 
1. INTRODUCTION 

 
1.1 Background 
  

Widespread presence and potential toxicity 
of nitro compounds, their derivatives, and products of 
their environmental transformation require CC 
prediction and analysis of chemical/physical 
properties in relation to molecular structure as well as 
development of new CC protocols applicable to 
emerging compounds of military interest [Kholod, 
Y., et al., 2008; Qasim, M., Kolod, Y. et al., 2007; 
Qasim, M., Moore, B., 2007]. 
 

1.2 Goal 
 
 The hypothesis that the environmental fate 
and effects of energetic materials can be predicted 
from their molecular structures was applied to 
emerging compounds. Thus, the theme throughout 
this research comprised defining direct relationships 
between molecular structure and quantum chemical 
calculations as related to chemical and physical 
properties.  These properties dictate chemical and 
physical reactivities, as in the scheme below: 

 
Structure → quantum mechanical 

predictions → physical and chemical properties → 
reactivities. 

 
2. APPROACH 
 
Since CC in combination with experimental 

verification is useful both in proving concepts and 
ascertaining the chemically feasible, our 
methodology involved a theoretical approach and 
spectroscopic support.  Values generated via 
Advanced Chemistry Development (ADC/LABS) 
were added as supplemental verification and for 
providing context to our research.   

 
Theoretical study involved MOPAC  

quantum mechanical and classical force field 
mechanics to predict most likely bond lengths and 
angles, heat of formation, steric energy, dipole 
moments, solvent accessibility and electrostatic 
potential surfaces, partial charges and 
HOMO/LUMO energies. Since compounds of similar 
structures were compared, MOPAC gave reliable 
information quickly with accuracy corresponding to 
the requirements of these comparisons [Qasim, M., 
Moore, B. et al., 2007]. Correlations between 
compound chemical/ physical properties and 
molecular structure were then examined to discover 
possible trends. 
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Spectroscopic tools included:  
i) UV/Vis to measure rates and reactions of 
nucleophilic / base  reactions   of   nitro   compounds;  
ii) Stopped Flow (SF) to follow rates of reaction 
intermediates to alkaline hydrolysis.  UV/Vis and SF 
also verified selected CC data for chemical feasibility 
and were used to distinguish trends evinced by 
reactivities of these explosives. 
 

3. RESULTS 
 

Both tables and figures generate 
observations of trends pertaining to their subject 
compounds.  For example, as seen in Figs. 1 and 2, 
SF shows that HMX is less reactive than RDX, and 
Table 1 reveals that this reactivity trend can also be 
seen from the HMX larger HOMO/LUMO gap as 
well as from the SF rates of reaction to alkaline 
hydrolysis.  
 
Table 1.  MOPAC Quantum Mechanical 
calculations                                    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2. Advanced Chemistry Development 
(ACD/LABS) physical property results  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The following trends in properties and reactivities 
can be seen from Table 2. 
 

LogP:  RDX, HMX, TNT, TNA and CL-20 
all have low LogP values, indicating aqueous 
solubility and, thus, possibility of ground water 
contamination.  ONC and TNTAC have high LogP 
values, indicating hydrophobicity.   

 
Henry’s Law:  TNT, TNA and ONC have 

low Henry’s Law constants, indicating that they tend 
to remain in the gaseous phase, whereas RDX, HMX, 
TNTAC and CL-20 have higher Henry’s Law 
constants, indicating easier dissolution. 

 
Density:  As predicted, RDX, HMX, TNT 

and TNA have lower densities than the cage 
molecules ONC, TNTAC and CL-20. 

Orbital 
Levels Gap
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Heat of 
Formation 
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 Three different comparisons were made 
within each class of compounds: a) nitramine (RDX 
and HMX); b) nitroaromatic (TNT and TNA); c) 
cage nitro compounds (TNTAC, CL-20 and ONC). 

 
a) RDX/HMX:  Based on CC alone, HMX is 

less reactive than RDX, as revealed by the larger 
HMX HOMO/LUMO gap.  The HMX larger size is 
represented by its higher heat of formation, larger 
molar volume, larger parachor and greater surface 
tension.    HMX contains an additional nitrogen in its  
ring system as well as an additional nitro group 
attached to that nitrogen.  This results in HMX 
having higher steric energy due to HMX collapsing 
back on itself.  HMX is more polar than RDX as seen 
by its larger dipole charge and higher polarizability 
due to the increased number of nitrogens in the 
molecule.  Both molecules are highly similar in their 
LogP, pKa, index of refraction and density.  
Comparisons of RDX and HMX charges are 
represented in Fig. 3. Noticeable changes are seen 
between the negative oxygen atoms of RDX and 
HMX. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Alkaline hydrolysis of RDX via sodium 
hydroxide (NaOH) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure  2. Alkaline hydrolysis of HMX  

 

RDX HMX 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Comparison of charge densities for RDX 
and HMX 

 
b) TNT/TNA:  TNA is more sterically 

hindered than TNT due to the oxygen of the methoxy 
group.  This oxygen also gives TNA a larger dipole 
charge and causes a decrease in the heat of formation. 
TNA is slightly less reactive than TNT due to 
interaction between the hydrogen atoms of the 
methoxy group with the oxygens of the nitro groups.  
It is also less reactive with environmental media due 
to more electrons in the π system.  The TNA methoxy 
group inductively stabilizes the molecule.  The TNA 
methoxy group also renders TNA a larger molecule 
than does the methyl group of TNT.  This is evident 
in larger molar volume, parachor and average mass 
data.  Spectroscopic studies were conducted using 
2,4-dinitroanisole because of its classification as an 
emerging compound of military interest.  
Nucleophilic reactions carried out via alkali 
hydrolysis at various concentrations of NaOH were 
performed using TNT and DNAN and are 
represented by the corresponding UV/Vis and SF 
spectra, Figs. 4 and 5.  SF spectra of TNT and DNAN 
show mirror-image correspondence of 
appearance/disappearance of final products.  Further, 
SF spectra show alkali hydrolysis rates of TNT 

Stopped Flow:  30 ppm RDX + Various 
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are expected in DNAN because of the methoxy’s 
effect to the ring compared to the methyl of TNT. 
Also, the additional nitro group found in TNT 
increases the rate of the alkali hydrolysis reaction.   

 

effect to the ring compared to the methyl of TNT. 
Also, the additional nitro group found in TNT 
increases the rate of the alkali hydrolysis reaction.   

 
  
  
 
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  

 
 

 
 
 

 
 

Figure 4. UV/Vis and Stopped Flow spectra of 2,4-

 

 

 

 

 
 

 
igure 5. UV/Vis and Stopped Flow spectra of 
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             TNT                                TNA 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Comparison of charge densities for TNT 
and TNA 

TNAN, not physically available, was studied 
via CC to compare the methoxy group on its ring vs. 
the methyl group on the ring of TNT. DNAN was 
studied due to military interest as to its possible 
replacement of TNT  

 
c)  TNTAC/CL-20/ONC:  Of the cage 

nitroaromatics, TNTAC is more sterically hindered 
than either CL-20 or ONC.  ONC is the least reactive, 
as seen by the HOMO/LUMO gap.  Also, ONC is 
almost impossible to form as seen by its high heat of 
formation.  ONC has the smallest dipole moment 
when compared to the other cage explosives.  This is 
due to its molecular symmetry.  This symmetry 
renders ONC susceptible to free radical attack as 
opposed to electrophilic attack.  ONC structure 
allows for a much larger surface area.  However, CL-
20 has greater molar volume and a larger parachor 
than the others.  TNTAC has much more surface 
tension and is far more dense than the other 
molecules.  All three molecules possess high MM2 
and heat of formation, which is due to the cage effect 
and the crowdedness of the nitro groups branching 
from the main ring system. 
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Figure 7. Comparison of charge densities for  
TNTAC, CL-20, and ONC comprise Figure 7. 
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O ( 1 7 ) - 0 . 4 1 0 6
N ( 1 8 ) 0 . 5 2 3 0

C h a rg e s
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4.  CONCLUSIONS 
 
  

From observing a), b) and c), it can be 
generalized that most physical property values are 
dependent on molecular size.  Data demonstrated that 
small changes in molecular structure can greatly 
affect the chemical/physical properties of a molecule.   
 

This study resulted in predicting potential 
transformation trends in reactivity with 
environmental media.   

 
ACD/LABS provided correlation and 

context to our combined use of CC and spectroscopic 
tools. In summary, this study, through comparing our 
CC, ACD/LABS, and spectroscopic data—thereby 
examining trends—proved hypothesis and revealed 
specific ways in which molecular structure is related 
to physical and chemical properties.   

 
Basic understanding was provided of 

nitramine, cage nitramine and nitroaromatic 
compounds of military interest, including emergent 
nitro compounds and their potential interactions with 
the environment.    Discovering trends due to 
molecular structure, also to type, position and size of 
substituents contributes to:  i) basic and applied 
research into new energetics; ii) bases for 
development of new CC protocols; and iii) 
development of applications specific to military sites 
and purposes.   
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