
 1

ADVANCED ALGORITHM FOR OPTIMAL SENSOR-TARGET AND 
 WEAPON-TARGET PAIRINGS IN DYNAMIC COLLABORATIVE ENGAGEMENT 

 
 

Z. R. Bogdanowicz*,  N. P. Coleman 
Armament Research, Development and Engineering Center (ARDEC) 

Picatinny Arsenal, New Jersey 07806 
 
 

ABSTRACT 
 
In this paper we introduce a new algorithm for 

assigning sensors and weapons to targets in the dynamic 
environment, where sensors, weapons, and targets are 
allowed to move freely (but predictably) over a certain 
region of a battlefield. In addition, we determine when 
such an assignment should be executed. This new 
algorithm for Sensors/Weapons And Targets pairings is 
named SWAT.  In SWAT the optimization component 
Swt_opt is derived from the well-known auction 
algorithm and produces an optimal solution. 

 
 

1. INTRODUCTION 
 

Sensor-target and weapon-target (or briefly 
sensor/weapon-target) pairings in general are difficult 
optimization problems. These problems, however, are 
critical to the outcome of modern battles in net-centric 
warfare, which profoundly depends on the intelligent 
usage of all available sensors and weapons maximizing 
their effectiveness. The main difficulty of assigning 
sensors and weapons to a set of identified targets stems 
from the potential dependence of weapons on sensors 
(Bogdanowicz and Coleman, 2007). At the same time, 
smart weapons (i.e., weapons that depend on the 
information obtained from sensors) are expected to play 
an increasingly more dominant role in the net-centric 
warfare of the future.  

 
In the dynamic environment, where sensors, 

weapons, and targets are mobile, this problem becomes 
even more difficult due to uncertainties involved in 
predicting where all entities will reside at a particular 
instance of time in the future. It also raises a problem of 
scheduling the engagement of the targets. However, the 
sensor/weapon-target pairing problem can be simplified to 
the well-known assignment optimization problem in 
mathematics (Bertsekas, 1990, 1992a, 1992b; Castanon, 
1993; Galil, 1986; Hopcroft and Karp,1973; Micali and 
Vazirani, 1980). We have shown that for practical 
sensor/weapon-target pairings in a static environment 
(i.e., without mobile sensors, weapons or targets), an 
algorithm based on the well-known auction algorithm 
should be considered a preferred choice (Bogdanowicz 
and Coleman, 2007). 

In this paper we introduce a new algorithm for 
assigning sensors/weapons to targets in the dynamic 
environment, where sensors, weapons, and targets are 
allowed to move freely (but predictably) over a certain 
region of a battlefield. This new algorithm for 
Sensors/Weapons And Targets pairings is named SWAT 
and its exact optimization component Swt_opt is derived 
from the auction algorithm (Bertsekas, 1990 1992a, 
1992b; Bogdanowicz et al., 2004a, 2004b, 2005, 2007; 
Castanon, 1993). 

 
 SWAT consists of three main components, which are 

described in Sections 4 through 6. The main focus in this 
work is on optimization component Swt_opt that we 
describe in Section 6. 

 
 

2. ASSUMPTIONS 
 

We assume that all the sensors S, weapons W, and 
targets R are given along with their respective parameters 
and initial locations. The planning time horizon into the 
future T is also given. So, T represents the time interval in 
which the engagement of sensors/weapons with targets 
should take place. Based on the movement characteristics 
of the units (i.e., sensors, weapons, and targets), we 
assume that the preprocessor called Predictor accurately 
predicts the location of these units at time t, T ≥ t > 0.  
Furthermore, for a given sensor-weapon-target triplet 
(i,j,k) we assume that the preprocessor called Evaluator 
establishes the precise benefit bi,j,k of assigning a given 
sensor-weapon pair (i,j) to target k., which represents a 
rational number. Based on this combined input, SWAT 
determines an optimal assignment of sensors/weapons to 
targets (i.e., an assignment that maximizes the total 
benefit ∑

i,j,k
bi,j,k) along with the proposed engagement 

time t, where T ≥ t > 0. To do this, SWAT utilizes the 
optimizer called Swt_opt defined in Section 6.3. 

 
To perform the optimization we assume that time 

progresses in discrete and equal steps, where δ denotes 
the time interval corresponding to a step under 
consideration. If a sensor/weapon can be simultaneously 
assigned into many targets, or a target can be 
simultaneously targeted by many sensors/weapons, then 
the transformation based on the following four rules 
applies. 
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    Rule 1:  If sensor i can be assigned to m targets then 
such a sensor can be decomposed into m pseudo-sensors 
si,1, si,2, …, si,m such that each pseudo-sensor si,j, m ≥ j ≥ 1, 
can be assigned to at most one target. In addition, if the 
benefit of assigning sensor/weapon (i,j) into target k 
equals  bi,j,k then the benefit of assigning a corresponding 
pseudo-sensor remains bi,j,k. 
 
    Rule 2:  If weapon i can be assigned to m targets then 
such a weapon can be decomposed into m pseudo-
weapons wi,1, wi,2, …, wi,m such that each pseudo-weapon 
wi,j, m ≥ j ≥ 1, can be assigned to at most one target. In 
addition, if the benefit of assigning sensor/weapon (i,j) 
into target k equals  bi,j,k then the benefit of assigning a 
corresponding pseudo-weapon remains bi,j,k. 
 
    Rule 3:  If target i can be assigned by up to to m sensors 
then such a target can be decomposed into m pseudo-
targets ri,1, ri,2, …, ri,m such that each pseudo-target ri,j, m 
≥ j ≥ 1, can be assigned by at most one sensor. In 
addition, if the benefit of assigning sensor/weapon (i,j) 
into target k equals  bi,j,k then the benefit of assigning a 
corresponding pseudo-target remains bi,j,k. 
 
    Rule 4:  If target i can be targeted by up to to m 
weapons then such a target can be decomposed into m 
pseudo-targets ri,1, ri,2, …, ri,m such that each pseudo-target 
ri,j, m ≥ j ≥ 1, can be targeted by at most one weapon. In 
addition, if the benefit of assigning sensor/weapon (i,j) 
into target k equals  bi,j,k then the benefit of assigning a 
corresponding pseudo-target remains bi,j,k. 
 

Furthermore, if the number of sensors is different 
from the number of weapons (or targets) then it can be 
translated to a symmetric input (for SWAT and for       
Swt-opt) in a straightforward way by augmenting it with 
pseudo-sensors or pseudo-weapons (or pseudo-targets)  
with benefit values set to zero. So, without loss of 
generality we can assume that SWAT and its optimizer 
Swt_opt are supplied with a symmetric input, where every 
sensor/weapon can be assigned exactly once to a target 
and vice versa. Let n be the number of sensors, which 
equals the number of weapons, and which equals the 
number of targets. Let bmax be the maximum benefit of 
assigning a sensor/weapon pair to a target.  Because every 
benefit bi,j,k is a rational number then there exists an 
integer that converts bi,j,k to integer b’i,j,k through 
multiplication. Let C be the smallest such integer, i.e., 
b’i,j,k  =  bi,j,kC, where b’i,j,k is integer. 

 
 

3. SOFTWARE ARCHITECTURE 
 
An architecture that supports SWAT consists of the 

following key active components: 
 
(a) Translator1, 

(b) Predictor, 
(c) Evaluator, 
(d) Optimizer (Swt_opt Algorithm), 
(e) Translator2, 

 
where Translator1 represents preprocessor, while 
Translator2 represents postprocessors of the assignment 
optimization problem realized by Predictor, Evaluator, 
and Optimizer. 
 

In particular, Translator1 takes available weapons and 
sensors, and given targets, and based on its internal 
Knowledge Base (KB) it generates intermediate results 
that describe the status of weapons/sensors/targets at the 
initial instance of time. Translator2 takes the outcome of 
optimization produced by Optimizer and reports the 
optimal weapon/sensor-target assignment along with the 
proposed time t when such assignment should be 
executed, where tmax ≥ t ≥ tmin. More detailed functionality 
of these components is described in Sections 4-6, and an 
architecture based on them is shown in Fig. 1.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Fig. 1 – Architecture for 
the dynamic sensor/weapon-target pairing 
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4. LOCATIONS PREDICTION IN SWAT  
 

One of the first steps in our SWAT algorithm relies on 
predicting the locations of weapons, sensors, and targets 
at a future time. Let t0 be an initial time under 
consideration for weapons/sensors/targets, and let T be a 
planning time horizon for them into the future. Let t0, t1,  
…, tr be the time instances such that the following 
relations are satisfied. 

t1-t0 =tmin ,                               (1) 

tr =T ,                                      (2) 

ti+1-ti =δ ,                                 (3) 

 tmin >  δ,                                     (4) 
for  r > i  ≥ 1. 
 

For given i, r > i  ≥ 1, Predictor in SWAT determines 
the locations of sensors and weapons at time ti -β, where β 
≥ 0 and t1 > β,  (Fig. 1). In addition, Predictor determines 
the locations of targets at time ti. For given i let L(S,W,R) 
be the predicted list of locations of sensors/weapons at 
time ti - β, and targets at time ti.  So, we can say that 
Predictor generates L(S,W,R), which we denote by 
Predictor(S,W,R,KB,ti) → L(S,W,R). That is, Predictor 
generates L(S,W,R) based on the given sensors S, weapons 
W, targets R, knowledge base KB, and a time instance ti 
(example in Fig. 2). 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2 - An example of establishing L(S,W,R) and 

corresponding preferred benefits 

5. BENEFIT EVALUATION IN SWAT 
 

Let r ≥ k ≥ 1. The benefits of assigning weapons and 
sensors  to  targets  will  be  affected  by  the  locations  of      
weapons/sensors at time tk - β, and targets at time tk, and 
they will change for different values of tk. For example, 
consider three sensors, three weapons, and three targets 
from Fig. 2. We consider here a scenario in two 
dimensions (x,y) only, where sensors s1, s2, s3 are assumed 
stationary, and weapons/targets w1, w2, w3, r1, r2, r3 are 
moving only in x direction.  Fig. 2a represents an initial 
(at time t0) set of locations for S,W,R.  Fig. 2c illustrates 
Predictor’s set of locations of S,W,R at time ti > t0, and 
Fig. 2b illustrates Predictor’s set of corresponding 
locations of S,W,R at time ti-β. Based on the S,W locations 
in Fig. 2b and R locations in Fig. 2c Predictor generates 
list of locations L(S,W,R) illustrated in Fig. 2d. Based on 
KB and L(S,W,R) from Fig. 2d Evaluator determines the 
benefits for B, i.e., Evaluator(L(S,W,R),KB) → B. In 
addition, if the best benefits for the assignments are 
determined exclusively by the shortest distances between 
sensors/weapons and targets, then Evaluator determines 
the best benefits that correspond to the edges in Fig.2d.  
 

In this work we assume that Evaluator(L(S,W,R),KB) 
generates the benefit values, which are the rational 
numbers in B (recall Section 2). This assumption should 
not diminish the practicality of  SWAT. 

 
 

6. OPTIMIZATION IN SWAT 
 

The purpose of the optimizer is to take the given 
weapons/sensors/targets along with a corresponding 
benefit matrix describing the benefits of assigning 
weapon/sensor pairs to targets, and to find an optimal 
assignment (i.e., an assignment that maximizes the total 
benefit of assigning weapon/sensor pairs to the targets).  

 
6.1 Mathematical Formulation 

 
Consider nn ×2  benefit matrix A, where each row 

corresponds to a unique combination of sensor-weapon 
pair, and each column corresponds to a unique target  
(Fig. 3). 
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Fig.3 – Benefit matrix A 
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In addition, each element ai,j in A is a nonnegative 

rational number, which represents a benefit of assigning 
row i to column j, and consequently a benefit of assigning     
i’th sensor-weapon pair to j’th target.  We can now arra-
nge our benefit matrix as follows. Let k

jiji ba ',',' =  where 
i’ = (i-1)n+j and j’ = k. Then we have 
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Fig.4 – Benefit matrix B 

with rational benefits 
 

Let XBC ×= , where 2],[ nnjixX ×= . If sensor i and 

weapon j are assigned to target k then 1',' =jix , where    

i’ = k and j’ = (i-1)n + j. Otherwise 0',' =jix . The prob-

lem is to find matrix X that maximizes Tr(C) and which 
satisfies the following rules: 

 
(1) Each sensor is assigned exactly once. 
(2) Each weapon is assigned exactly once. 
(3) Exactly one sensor is assigned to a target. 
(4) Exactly one weapon is assigned to a target. 

 
So, we can state the optimization problem as follows: 
 

∑
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6.2  Why Exact Algorithm 

 
To solve an assignment optimization problem in 

SWAT focused on sensors, weapons and targets, we might 
first consider if it makes sense to use an exact 
optimization algorithm vs. an approximate heuristic. 
Since the number of sensors, weapons and targets in 
realistic battlefield scenarios should run up to the 
hundreds, we estimate that an exact optimization 
algorithm should perform time-efficiently (i.e., in order of 
tens of seconds). Hence, our attention should be focused 
on finding an exact optimization algorithm for the 
assignment problem for this range. 

 
One of the better-documented exact optimization 

algorithms for an assignment problem is the auction 
algorithm (Bertsekas, 1990, 1992b; Castanon, 1993). For 
the above input size an algorithm derived from the 
auction algorithms should run in order of seconds, as it 
has been shown in (Bogdanowicz and Coleman, 2007). 
Furthermore, the bidding and assignment phases of such 
derived algorithm are highly parallelizable (Bertsekas, 
1992b), which makes it scalable. That is, the bidding and 
the assignment can be carried out for all sensors, weapons 
and targets simultaneously, which could extend the range 
of input to thousands of sensors, weapons and targets and 
beyond. 

 
Finally, the nature of sensor-target and weapon-target 

pairings should allow a benefit scaling, which could 
produce matrix B with all integral benefits bij (Section 
6.3). This in turn could further improve the performance 
of auction-based algorithms. In fact, this is the key for an 
efficient implementation of any auction algorithm. 

 
For much larger input sizes one could also consider 

variants of the interior point algorithm (Adler et al., 1989; 
Todd, 1992). However, such inputs would be rather rare 
for sensor/weapon-target pairing in the real world. In 
addition, one could still address this class of problems 
with the parallel implementation of an auction-based 
algorithm. 

 
 

6.3 Swt_opt Algorithm 
 

 Assume that the weapons/sensors/targets are given 
along with matrix X and the corresponding arranged 
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benefit matrix B from Fig. 4. The benefits k
jib ,  in matrix 

B are all nonnegative rational numbers, and elements xi,j 
in matrix X are all equal zero. 
 

In B each row corresponds to a unique sensor/weapon 
combination and each column corresponds to a target. 
That is, bij represents a benefit of assigning i’th distinct 
sensor/weapon combination to target j. Such a translation 
requires O(n3) operations. So B has n2 rows and n 
columns, and represents the only input to our Swt_opt 
algorithm, which executes predominantly as a standard 
auction algorithm. It assigns n out of n2 rows to n columns 
in B with the following exceptions. 

 
a) If sensor si and weapon wj are currently assigned 

to target rk, based on the best bid (i.e., siwj rk), 
then si’wj’ rk’ is not considered for assignment 
to target k’, k’ ≠ k if either i=i’ or j=j’. This 
assures that a sensor/weapon or target is not 
assigned more than once in an optimal solution. 

 
b) Based on the best siwj rk assignment a second 

best assignment for target k’, k’ ≠ k is determined 
by si’wj’ rk’, where i’=i. This allows calculation 
of a penalty cost for auction bids. 

 
 Swt_opt algorithm for sensor/weapon-target pairings 

can be presented in 12 steps as follows. 
 

______________________________________________ 
 

Step 1:  Initialize ε < n
1 , m=1, v1 = … = vn = 0, and   

w1 = … = wn = 0. 
 
Step 2:  Transform B; B  B’ nnjib ×= ][ '

, , where '
, jib  is 

integer for n ≥ i ≥ 1,  n ≥ j ≥ 1 . It follows by 
B:= B’. 

 
Step 3:  If there exists unassigned sensor im, so 
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             Otherwise,  STOP. 
 
 Step 4:  Select j1, k1 such that 
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jikj wbvb −− . 
 
Step 5:  Select j2, k2 such that 
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Step 6: Set ),min(:
1
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k

jik
k

ji wbvb −−=ϕ  - 
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2
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Step 7: Update εϕ ++= ),max(:
111 jkk wvv . 

 
Step 8: Update 

11
: kj vw = . 

 
Step 9: If 1',' =jix  for i’ = k1, j’≠ j1 (mod n) then 

0:',' =jix . 
Step 10: If 1',' =jix  for i’ ≠ k1,  j’≡ j1 (mod n) then 

0:',' =jix . 

Step 11: If 1',' =jix  for  i’ = k1,  j’≡ j1 (mod n) then 

0:',' =jix . 

Step 12: Set 1:
11 )1(, =+− jnikx , m := m+1 and return to 

Step 3. 
__________________________________________________________ 

 
Steps 1-2 in Swt_opt represent initialization steps. A 

minimum bidding increment parameter ε is set to ε<1/n 
(for example ε can be set to 0.0099 if n = 100). This set-
up assures that any complete assignment generated by our 
algorithm is optimal (Bogdanowicz et al., 2005). In Step 2 
arranged benefit matrix B is scaled up by multiplying it by 
scalar C, so every element b’i,j in the transformed matrix 
B’ becomes an integer. This scaling is possible because 
elements bi,j in B are the rational numbers. It is an 
essential step for making Swt_opt time-efficient. 

 
 In Swt_opt a single iteration is defined by Steps 3 

through 12. In particular, i’th bid corresponds to a bid in 
the auction algorithms and is executed in Swt_opt by 
sensor i on one of n targets, and having n weapons to its 
disposal. In Step 3 it is determined if there exists an 
unassigned sensor in m’th iteration. If such a sensor im 
exists then it is considered for assignment in iteration m.  
Selection of such a sensor would depend on specific 
implementation of Swt_opt. For example, a lowest 
indexed unassigned sensor can be chosen. In Step 4 the 
best triplet (i,j1,k1) (i.e., triplet identifying 
sensor/weapon/target) for assignment is determined for 
given sensor i = im. Similarly, in Step 5 the second best 
triplet (i,j2,k2) for assignment is determined for given 
sensor i. Then in Step 6 a penalty φ is calculated, which 
expresses the difference between the best assignment and 
the second best assignment of the current sensor i to a 
target.  This penalty is added in Steps 7, 8 to variables vk1, 
wj1 associated with a target and weapon being assigned in 
the current iteration. It follows by resetting the 
assignment flags xi’,j’ in Steps 9 through 11 for the 
weapons/targets being unassigned in the current iteration. 
Finally, in Step 12 an assignment flag xk1,(i-1) n+j1 is set that 
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corresponds to a sensor/weapon/target pairing being 
assigned in the current iteration.  The iterations in Swt_opt 
continue as long as not all sensors are assigned. 

 
Consider now the worst-case running time complexity 

of accomplishing an optimal assignment. The assignment 
problem can be modeled with a complete bipartite graph 
G=(V,E), where the number of vertices |V(G)|=n2+n and 
the number of edges |E(G)|=n3 in G. Let ai,j be a benefit 
of assigning vertex vi to vertex vj if a corresponding edge 
(i,j) exists in G. Let bmax=max(i,j)∈E(G)aij.  Because B 
consists of the rational numbers only then there exists an 
integer that converts B to B’, where B’ consists of only 
integers. Let C be the smallest such integer. Without loss 
of generality consider B’ as an input to Swt_opt, which 
means that integer Cbmax represents the largest benefit in 
B’. The total number of iterations in which a target 
receives a bid is no more than (Cbmax +ε)/ε. In addition, 
each iteration of Swt_opt involves a bid by a pair of a 
single sensor along with the best available (unassigned) 
weapon.  So, the total number of iterations is no more 
than n times (Cbmax +ε)/ε, and since ε < 1/n and every bid 
requires O(n2) operations, the worst running time of the 
algorithm is 

 
O(n4Cbmax).                                 (9) 

 
To illustrate the optimization scenario for Swt_opt 

consider an arranged benefit matrix B from Fig. 4 for n=3 
and with the following values: 
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Sensor-weapon pair siwj corresponds to column     

3(i-1)+j, and target rk corresponds to row k in BT above, 
where n ≥ i ≥ 1, n ≥ j≥ 1, n ≥ k ≥ 1. Note, scaling (i.e., 
Step 2 in Swt_opt) is not needed here. The sequence of the 
assignments executed by Swt_opt based on this instance 
of B is as follows: 

 
Iteration 1:               s1 w2→r2 , 
Iteration 2:               s2 w3→r1 , 
Iteration 3:               s3 w3→r2 , 
Iteration 4:               s1 w1→r3 , 
Iteration 5:               s2 w2→r1 . 
 
In Swt_opt i’th iteration corresponds to columns    

3(i-1)(mod 9)+1, 3(i-1)(mod 9)+2, and 3(i-1)(mod 9)+3  
in BT. The final optimal assignment generated by Swt_opt 
in this case can be represented by incomplete bipartite 
graph in Fig. 5, where left bipartition (i.e., vertices siwj) 
corresponds to rows and right bipartition (i.e., vertices rk) 
corresponds to columns in B. 

   
Fig. 5- Bipartite incomplete graph representing 

sensor/weapon-target final assignment 
 
 

7.  SWAT ALGORITM 
 

Based on Predictor, Evaluator and Swt_opt com-
ponents described in the previous sections, we can now 
present the SWAT algorithm for the optimal assignment of 
sensors/weapons to targets. The input to SWAT consists of 
sensors S, weapons W, targets R, and a Knowledge Base 
KB.  We also assume that parameters tmin, T, and δ defined 
in Section 4 are given, they satisfy (1-4), and they are 
included in KB. In addition, as we discussed in previous 
sections, |S| = |W| = |R| = n.  Let L(S,W,R) be the list of 
locations of sensors, weapons and targets at a time 
corresponding to an intended hypothetical engagement.  
SWAT can be executed in 7 steps as follows. 
_________________________________________ 

 
Step 1:  Initialize Copt := 0, t := tmin and                       

X := Xopt := 0. 
 
Step 2:  If t ≤ T then execute Steps 3 through 7.  

Otherwise, Report(topt,Xopt,KB) and STOP. 
 
Step 3:  L(S,W,R) := Predictor(S,W,R,KB,t). 
 
Step 4:  B := Evaluator(L(S,W,R),KB). 
 
Step 5:  X := Swt_opt(B,X). 

 

Step 6:  If opt

n

i
ii Cc >∑

=

2

1
,max  then 

ttopt =: , ∑
=

==
2

1
,max:;:

n

i
iioptopt cCXX .  

Step 7:  Set t := t+ δ, X :=  0 and return to  Step 2.  
__________________________________________ 
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s3w2 

s3w3 
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SWAT starts with initialization in Step 1. The main 
iterations are defined by Steps 2 through 7, where Step 2 
assures that there are at most T/δ such iterations. In Step 3 
Predictor generates a list of locations for S, W, T; i.e., 
Predictor(S,W,R,KB,t)→ L(S,W,R). In Step 4  Evaluator 
takes L(S,W,R),  and based on sensors/weapons/targets 
parameters from KB it establishes matrix B = nnjib ×2][ ,  

(Evaluator(L(S,W,R),KB)→ B) with all rational elements 
jib , .  In Step 5 Swt_opt algorithm first scales up B→ B’, 

so every element b’i,j in the transformed matrix B’ 
becomes an integer.  Then Swt_opt algorithm reassigns 
B:=B’ and optimizes sensor/weapon-target pairings, i.e., 
Swt_opt(B,X) → X. Step 6 tests if the sensor/weapon-
target pairings found in the current iteration are optimal. 
If they are optimal then the engagement time t and 
optimal assignment X are saved ; i.e., t→ topt, X→ Xopt. In 
Step 7 an engagement time t is updated and 
sensor/weapon-target pairings X is reset.  SWAT 
terminates in Step 2 if t > T. In this case, a postprocessor 
Report(topt,Xopt,KB) takes saved engagement time topt 
along with the optimal sensor/weapon-target pairs found 
Xopt and generates an appropriate report based on KB. 
 

In SWAT we can assume that Step 5 dominates Step 3 
(i.e., Swt_opt(B,X) dominates Predictor(S,W,R,KB,t)) if 
the time horizon T is within a certain limit; when it’s not 
too large. Otherwise, the prediction process becomes 
more computationally expensive and Predictor might 
dominate Swt_opt. Consider the worst-case running time 
complexity of SWAT when Swt_opt dominates Predictor. 
Evaluator in Step 4 evaluates n2 x n elements of B with a 
fixed amount of time per element. So, Evaluator in SWAT 
requires O(n3) operations. On the other hand, based on (9) 
derived in Section 6, Swt_opt requires O(n4Cbmax) in the 
worst case, where integer Cbmax represents the largest 
benefit in B obtained after scaling. So, each iteration in 
SWAT requires at most O(n4Cbmax). Based on relations (1-
4) there are at most T/δ iterations defined by Step 2 in 
SWAT.  Hence, if  Swt_opt dominates Predictor the worst 
execution time of SWAT is 

 
 O(n4Cbmax T/δ).                           (10) 

 
 

CONCLUSIONS 
 

In this paper we introduced the novel algorithm named 
SWAT for optimized pairing of sensor-weapon pairs with 
targets at proposed time t ≤ T, where T represents the 
planning time horizon. SWAT can significantly enhance 
the effectiveness and lethality of collaborative 
engagement of multiple targets in modern battlefields. 
Our algorithm consists of three main components - 
Predictor, Evaluator, and Optimizer - that were described 
in Sections 4-6. In this work we focused most attention on 
Optimizer (i.e., exact Swt_opt algorithm) that we 

described in Section 6.3.  More research is anticipated 
(and needed) on the design and implementation of 
Predictor and Evaluator, which by their own right are the 
challenging problems. In particular, Evaluator requires 
establishing the benefits for every sensor/weapon-target 
combination. The difficulty here lies in establishing 
correct/realistic relative values of such benefits. One 
possible source for establishing such benefits might be 
Joint Munitions Effectiveness Manual (JMEM), but this 
covers only weapon-target pairings. Another possibility 
would be to employ a human domain expert who would 
manually enter benefits for sensor/weapon-target 
combinations to the specialized KB system. 

 
For limited time horizon T, which has to be 

empirically determined for given scenario(s), the time 
complexity of Swt_opt dominates the time complexities of 
Predictor and Evaluator. So, the expected running time 
for SWAT in such a case is O(n4Cbmax T/δ).  

 
Computational results for independent sensor/weapon-

target pairings (Bogdanowicz and Coleman, 2007) based 
on the modified algorithm implemented in O(n3Cbmax) 
indicate that for n ≤ 120 such an algorithm requires, on 
the average, a few seconds to execute. This in turn 
suggests that Swt_opt introduced in this work should 
perform well (i.e., order of seconds) for inputs defined by 
n ≤ 100.  So, for the small unit (e.g., squad or platoon) 
network lethality and collaborative engagement, Swt_opt 
(and hence SWAT) should perform efficiently. This 
performance of Swt_opt, however, needs to be studied and 
verified. For n  much greater than 100 (e.g., support for 
collaborative engagement on brigade level) either a good 
heuristic approach or the distributed implementation of 
Swt_opt algorithm could be a critical factor to yield high 
performance. In particular, implementation of Swt_opt for 
parallel computing seems to be well suited here.  
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