Future of VTOL Aviation

DARPA

9 September 2009

Baldwin Technology Company, LLC
www.baldwintechnology.com
<table>
<thead>
<tr>
<th>1. REPORT DATE</th>
<th>2. REPORT TYPE</th>
<th>3. DATES COVERED</th>
</tr>
</thead>
<tbody>
<tr>
<td>09 SEP 2009</td>
<td></td>
<td>00-00-2009 to 00-00-2009</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. TITLE AND SUBTITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Future of VTOL Aviation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6. AUTHOR(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baldwin Technology Company, LLC, Shelton, CT, 06484-0941</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12. DISTRIBUTION/AVAILABILITY STATEMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approved for public release; distribution unlimited</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16. SECURITY CLASSIFICATION OF:</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. REPORT unclassified</td>
</tr>
<tr>
<td>b. ABSTRACT unclassified</td>
</tr>
<tr>
<td>c. THIS PAGE unclassified</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>17. LIMITATION OF ABSTRACT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Same as Report (SAR)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>18. NUMBER OF PAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
</tr>
</tbody>
</table>

Standard Form 298 (Rev. 8-98)
Prepared by ANSI Std Z39-18
Outline of presentation

- 2025 & 2035 scenarios / needs
- Mono Tiltrotor (MTR) features
 - Cargo/Utility
 - Attack
- Mono Tiltrotor advantages & benefits
- BTC business model
- Timeline
- Next steps
- References
Future VTOL Scenarios

- 2025: Fielded and battle tested capability
 - Precise discrete autonomous cargo moves
 - 4x400lbs/200kts/750nm/20k ft
 - 4x1000lbs/220kts/850nm/20k ft
 - Deliver and retrograde w/o MHE
 - From land or seabased distribution node

- 2035: Fielded capability
 - Capacity-based cargo moves
 - 1x20tn/260kts/1000nm/20k ft
 - ...or larger w/new engine program
Joint Multi-Role (JMR) Needs

- Increased capabilities across the board
 - Expand all VTOL missions
- Lower costs
 - Robust, common air machine
 - Modular interface to mission packages
- Maintain/enhance industrial base
 - Advance subsystem technologies (off-ramp)
 - Vendor competition over full JMR life-cycle
MTR Cargo/Utility Features

- Common drive system and tail assembly built from mature components & technologies
- Modular cargo pod
 - Joint Modular Intermodal Container
 - Pallet, cargo net, other...
- Modular, hinged, dry (no fuel) wing panels
 - Droop for maximum performance takeoff
 - Lock for cruise, for landing (, & for takeoff)

See videos and illustrations
MTR Common Features
MTR Unique Features

- Hardpoints for wing panels
- Actuator
- Bearings
MTR Cargo Features

- Wing Panel
- Struts
- Cargo Pod
MTR Attack Features

- Common drive system and tail assembly built from mature components & technologies
- Fixed, wet (fuel) wing with tip mounted AAM
- Eliminate cargo pod assembly
- Armaments supported by strut hardpoints
 - AGM
 - Cannons
 - Rockets

See videos and illustrations
MTR Attack Features
MTR Advantages

- In comparison to legacy helicopters for long range (750nm to 1000nm) cargo missions:
 - $\frac{1}{3}$rd of the baseline structural weight
 - $\frac{1}{3}$rd of the fuel burn
 - $\frac{1}{2}$ of the size (i.e. rotor diameter)
 - Nearly twice the speed

- Performance advantage due to system level architecture [not due to subsystem advances]
 - Large disk with minimal download in hover
 - Optimal wing and small frontal area in cruise
MTR Advantages (cont.)

- Common drive system and common hinged tail assembly for all missions and configurations...
 - Engines and gearbox
 - Hubs, blades, and controls
 - Tailboom, stabilizers, and control surfaces
 - Conversion actuator
- No reconfiguration of drive/tail assembly to re-missionize between cargo and attack roles
MTR Advantages (cont. 2)

- Mission packages are external to airframe
 - Relaxed cube constraints
 - Simple mechanical interface
 - Decouple from airframe program

- Modular airframe architecture
 - Disassembles for stowage and transport
 - Highly accessible components and sub-assemblies for maintenance actions
MTR Disassembly
MTR Benefits

- Breakthrough range/speed/payload using COTS components and technologies
- Reduced acquisition costs (weight of airframe)
- Reduced O&S costs (weight of fuel; modular)
- Reduced component S&T costs (COTS)
- Rapid reconfiguration between roles
 - Connect cables for cargo
 - Mount armaments for attack
BTC Business Model

- Licensee of MTR patents for MTR research
- Funded by US Government R&D contracts
 - All deliverable data licensed to US Gov't
 - Preference to publish all reports
- Ad hoc, world-class R&D teams for each SOW
- Primary focus is on MTR technical bona fides
- Responsive to Government needs while advancing the understanding of the MTR
- Positioned for future teaming arrangement(s)

Extreme Development speeds time to market.
MTR R&D Timeline

- 2004: MTR Concept Study (ONR)
 ➔ Breakthrough performance possible
- '05/06: 3000lbs payload design (AATD)
 ➔ Point design created
- '07/08: Demonstration and Validation (AATD)
 ➔ Function demonstrated on RC flight models
 ➔ Point design independently validated
- '09/10: Cargo UAS Operations Study (ONR)
 - Contract awards to Bell Helicopter & to BTC
Mono Tiltrotor (MTR)

Participants
➢ Army AATD – Ft Eustis; ONR
➢ Baldwin Technology Company (BTC) w/ Bell, GT, UMd, ARL, Eagle Aviation

Status and Plans
➢ ONR Conceptual Design Study – FY04
➢ AATD Concept/Prelim Design – FY05-06
➢ AATD Validation Activities – FY07-08
➢ ONR Operations Study - FY09-10

Technology [TRL 4]
➢ Pitch axis suspended load air vehicle
➢ Efficient hover and cruise connector
➢ Sustain battlefield from sea or ashore

Design
➢ 3000lbs load, 750nm, 200kts, UAS
➢ 2xT800, 52% struct. eff., Cruise L/D=10
➢ 25ft rotor, 30ft span
➢ Sized for MILVAN transportability
➢ Sized to transport JMIC
➢ Reconfigures into an attack aircraft

Research Contracts

<table>
<thead>
<tr>
<th></th>
<th>FY04</th>
<th>FY05</th>
<th>FY06</th>
<th>FY09</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>ONR</td>
<td>277</td>
<td>690</td>
<td>967</td>
<td>967</td>
<td></td>
</tr>
<tr>
<td>AATD</td>
<td>810</td>
<td>819</td>
<td>1629</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Benefits
➢ Breakthrough in vertical sustainment speed, range, and payload using COTS components and technologies
➢ 1/3 of structural weight & fuel compared to conventional helicopter at same range
MTR Next Steps

• For the first time in its development lifecycle, the MTR is becoming resource constrained
 – Very little funding was needed to answer basic questions regarding merit and value
 – MTR fundamentals are now understood, and commitment is needed to show operational potential to user community

• Will need Government support for TRL-5 demonstrations of suspended cargo pod and aerodynamic wing deployment using a medium lift UAS helicopter as a flying testbed
Selected References

- Mavriplis, D. J., Computational Drag Study for the Mono Tiltrotor Scaled Demonstrator (MTR-SD), March 2008.

Selected References(2)

Selected References (3)

