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Abstract 

There have been a number of previous successful efforts that show how fuzzy logic 
concepts have homomorphic-like stochastic correspondences, utilizing one-point cov- 
erages of appropriately constructed random sets. Independent of this and fuzzy logic 
considerations in general, boolean relational event algebra (BREA) has been introduced 
within a stochastic setting for representing prescribed compositional functions of event 
probabilities by single compounded event probabilities. In the special case of the 
functions being restricted to division corresponding to pairs of nested sets, BREA re- 
duced to boolean conditional event algebra (BCEA). BCEA has been successfully ap- 
plied to issues involving comparing, contrasting and combining rules of inference, 
especially for those having differing antecedents. In this paper we show how, in a new 
way, not only BCEA, but also more generally, RCEA, can be applied to provide ho- 
momorphic-like connections between fuzzy logic quantifiers and classical logic relations 
applied to random sets. This also leads to an improved consistency criterion for these 
connections. Finally, when the above is specialized to BCEA, a novel extension of crisp 
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boolean conditional events is obtained, compatible with the above improved consistency 
criterion. 
© 2002 Elsevier Science Inc. All rights reserved. 

Keywords: Fuzzy logic quantifiers; Boolean relational event algebra; Boolean condi- 
tional event algebra; One point coverages; Random sets: Fuzzy conditional sets 

1. Introduction 

While certain foundation issues still remain, probability theory and its ap- 
plications in conjunction with classical logic reasoning—even in a small sample 
size and/or subjective framework—have proven to be extremely useful tools in 
data fusion and related problems. A basic common direction of work that has 
evolved over the years among the authors of this paper is: a wide variety of 
real-world man-machine issues that have arisen in both military and non- 
military decision-making contexts can actually be fully successfully treated by 
standard probability theory and classical logic procedures, but utilizing new 
mathematical tools for expressing how standard probability theory can be so 
utilized. This is in contrast with many past and current views (either implicitly 
or explicitly expressed, e.g., in much of the artificial intelligence community, 
such as in [1]) that standard probability theory and classical logic are not 
adequate to treat these problems, and that, consequently, new forma! logics 
and procedures incompatible with classical logic and standard probability 
theory are needed. In particular, the thesis of our past work has been to show 
how the tools of: (i) boolean conditional event algebra (BCEA) can be used to 
address appropriately in an ordinary probability setting problems of com- 
paring and contrasting—as well as fusing and further analyzing in a rigorous, 
but implementable context—rules of inference [2]: (ii) more generally, boolean 
relational event algebra (I3REA) can be used to compare or combine models of 
information input and output based upon "forcing functions" of probabilities 
of contributing events, such as weighted averages, negative exponentiation, or 
other simplifying numerical function of probabilities [2]; (iii) one point cov- 
erages of appropriately determined random sets (OPCRS) can be used to 
represent fuzzy logic modeling of information in an ordinary probabilistic 
setting, in order to further analyze, contrast, or combine such fuzzy logic 
models—especially those involving natural language information—with prob- 
abilistic-based information models. See, e.g.. [2-5]; (iv) a second order bayesian 
probability approach (i.e., a bayesian approach where the relevant probabili- 
ties themselves are randomized) can be used to establish a fully rigorous and 
implementable probability logic that both extends classical entailment, is 
compatible in many ways with commonsense reasoning. In turn, this has led to 
the successfully solution of a number of long-open issues concerning the res- 
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olution of disparities between certain valid classical logic reasoning schemes 
and apparently straightforward probabilistic generalizations of these that 
seemingly become completely invalid. This includes the well-known schemes of 
transitivity, contraposition, and strengthening of antecedent, among many oth- 
ers. For an algorithmic form of this tool called Complexity-Reducing Algo- 
rithm for Near Optimal Fusion (CRANOF), see, e.g., [6], It is expected that the 
first three tools BCEA, BREA, and OPCRS can be used to extend further the 
already wide applicability of CRANOF. To this end, [7] shows some prelimi- 
nary applications of CRANOF to tracking and correlation of targets, in- 
cluding cyber-space intrusion and security issues. 

In this very brief paper, we show two basic concepts connected with the 
above direction of work: (i) a simple motivating example for use of RCEA that 
can, in turn, be utilized in conjunction with CRANOF; (ii) an outline of how 
RCEA can be used in a new way to justify further in a rigorous sense the use of 
OPCRS in representing fuzzy logic; concepts. More specifically, it is shown how 
a ubiquitous form of fuzzy logic quantification can be naturally interpreted in 
corresponding "pure" probabilistic terms. 

Often, when only some of the relevant relations and events contributing to 
the understanding of a complex stochastic phenomenon are known, for pur- 
pose of simplicity, the output probability of the process may be modeled as a 
certain "forcing function" of the relevant input probabilities. Examples of such 
functions typically include weighted sums, products, divisions and condition- 
als, negative exponentiation, and various combinations of the above. When 
there is a multiplicity of choices for the forcing function determining the model 
at hand, the basic issue arises as to how to make the most appropriate choice, 
and hence, how to discriminate between choices, or equivalently, how to es- 
tablish relevant measures/(pseudo) metrics measuring degrees of similarity or 
contrast among candidate forcing functions. At first thought, it would appear 
that a natural choice of metric is simply some distance function operating upon 
functions, such as the standard lebesgue p-norms or the sup-norm. However, 
this does not take into account the interaction/overlap of the structure of the 
models. To see this briefly, as described in more detail in [2], consider first 
comparing two given events a, b in a boolean algebra B. Letting P : B —> [0,1] 
be some relevant probability measure, one choice in comparing the events is 
simply using the absolute difference 

dXf{atb)^\P{a)-P[b)\. (1.1) 

But, as is almost obvious, one can have dliP{a,b) quite small or even zero, 
yet a and /) may be quite different in size, shape and location. At the very least, 
what is needed is that the metric here should account for overlap between the 
events themselves, not overlap of just their external probabilities, yet proba- 
bility must also play a key role. A much more satisfactory metric (or 
pseudometric to be more precise) is dip, where 
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d2,P(a> b) =d P{aAb) = P(a'b) + P(abf) = P{a) + P(b) - 2 • P{ab),     (1.2) 

where we use, from now on, standard boolean algebra and probability nota- 
tion, with A being the usual symmetric difference operator of B. &—or omis- 
sion of any symbol, when no ambiguity arises—being the usual conjunction 
operator of B, (•)' being the usual complementation/negation operator of an 
event with respect to universal event Q in B, V being the usual disjunction 
operator of B, ^ representing the usual subevent relation over B, not to be 
confused with the same symbol applied to numerical inequalities, etc. Note 
that, while the compulation of d2,r{a.b) requires in part only knowledge of 
each P(a), P(b), it also utilizes, in a key way, knowledge of the interaction ab, 
and in turn, P{ab). An even more satisfactory metric between events a and b is 
the conditional probability of symmetric difference, given disjunction, i.e.. rf3P, 
where 

dXP{a,b)=d P(aAb\aVb) 

= (P{a) + P(b) - 2 • P{ab))/{P[a) + P{b) - P(ab)). (1.3) 

For other candidate metrics and further discussion, again sec [2]. Further- 
more, if one wishes for any reason to determine interactions or disjunctive 
probabilities or any probability measure of logical relations between events a. 
b, depending on the logical structures of a and b, one can use all of the standard 
laws/properties of boolean algebra and probability theory to determine such 
computations. Finally, if one wishes, the choice of probability measure P can 
be randomized (thus, introducing second order probability concepts-sec [6] for 
further discussion) and thus the above metrics become random variables with 
determined distributions, suitable here for testing of hypotheses, etc. This can 
be useful, when the choice of most appropriate P is not clear. 

2. A basic example—weighted averages 

Consider candidate Models 1, 2 with forcing functions in the form of some 
weighted average of probabilities: 

Model 1 :  P(C) =fl(P(a),P(h))=d (1/2) • P(a) + (1/2) • P(b) 

Model 2 :  P{D) = f2(P{a).P{b)) =d (1/3) • P(a) + (2/3) • P(b). 

A (very simplified) example of this can arise when a represents the event (or 
proposition) "enemy will utilize area A", b represents "weather will be clear*', c 
represents "enemy will take region B, according to Model 1*', and d represents 
"enemy will take region B, according to Model 2", where the assigned weights 
for each model are determined by different experts in the field, integrating the 
two chosen contributing probabilities. It can be readily verified thai natural 
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corresponding (but, by no means the only possible choices) relational events to 
Models 1,2 are 

ft*(a,b) =' axbx [0, 1] V* a x b' x [0, 1/2] V* d xhx [0,1/2], 

/;>,/>) =' axbx [0, 1] V a x b' x [0, 1/3] V* a x b x [0,2/3], 

denoting ordinary cartesian product by x, the real interval of numbers be- 
tween, and including, /• and s as [r,s] (provided r^s), and disjunction in a new 
boolean algebra (see below) by V. This is because of the following: Let 
(Q,B,P) be the given probability space, where a, b in boolean (or sigma) al- 
gebra B and P is used as in Eqs. (2.1) and (2.2). Then, construct the product 
probability space out of three factor probability spaces 

(Q,B,PY=d(Q*,B*,P*) 

=J (Q,B,P) ® (0,B,P) ® ([0, 1],5[0,1], no/,), (2.3) 

where #[0, 1] is the real borel field of sets over the unit interval and volt is 
ordinary one-dimensional lebesgue measure. Note the imbedding (i.e., iso- 
morphic injection that is probability-preserving) \ji: B —» B*, where, for all a 
in B, 

iff (a) =d a x Qx [0, 1]. (2.4) 

Nole also that using the mutual disjointness in Eq. (2.3), 

P*(f?(a,b)) = P{a) • P{b) + P(a) • P(b') • (1/2) + P(a') • P(b) • (1/2) 

= (\/2)-P(a) + (\/2)-P(b), (2.5) 

r[fi{fi,b)) - (1/3) • P(a) + (2/3) • P(b). (2.6) 

Hence, we can identify for Models 1 and 2 in Eq. (2.1) C with j\*(a,b) and D 
with fi{a,b), but where P on the left side of Eqs. (2.1) and (2.2) should really 
be replaced by P*. In this vein, \ji{a), \l/(b), f*(a,b), f%{a,b) all exist together in 
B*. Note also that the evaluations in Eqs. (2.6) and (2.7) hold, regardless of the 
choice of specific P or particular pair a, b in B. Apropos to the above results, 
while the imbedding images of a, b exist together with the f'(a,b) in B\ not 
only do a, h exist in B separate from f*(a,b), /2*(a,/j) in B*, but it is readily 
shown that, in general, there can be no events which play the same role as 
f*(a,b), /2*(a,i) also existing in B together with a, b. A special case of this is 
Lewis' triviality result [8] concerning conditional events (where the forcing 
function is arithmetic division operating upon nested pairs of events). For 
example, if for given a, b in B, with a ^ b, there is some c in B, with a, h, c fixed, 
so that for all choices of P Eq. (2.1) holds, easily is shown to lead to a con- 
tradiction. Hence, Eq. (2.1) holds for fixed c in B iff c = a = b. 



92 l.R. Goodman el al I Information Sciences 148 (2002) 87 96 

Returning to the use of the f.(a.b) here in representing the respective 
models, one can now determine a meaningful probability distance between 
them, such as 

d2J,(f{(a, b)j;(a, b)) = P*C/i*(a. b)Af2 (a, b)) 

= P*(f{'(a,b))+P'(f2*(a,b)) 

-2-P\f]'{aJ>)k\f:{a.b)) 

= fx(P(a),P(b))+f2(P(a),P(b)) 

-2-P*{j;{aJi)k:\q{a,b)). (2.7) 

using Eqs. (2.6) and (2.7). Next, the conjunction /]*(a, b)&*f2(a, b) must be 
determined. Using the very definitions in Eq. (2.2), noting their disjoint term 
forms, 

f;{a,b)k*f*(a,b) =axbx [0,1] V* a x b' x ([0, 1/2] n [0, 1/3]) 

V*«' xh ([0, 1/2] n [0,2/3]) 

= axbx [0,1] Vox b1 x [0, 1/3] 

VV x b x [0,1/2]. (2.8) 

In turn, using the product probability property of P*, 

FU;(«,b)k*fi(a,b)) = P(a) • P(b) + (1/3) • P(a) • P(b') 

+ {\/2)-P(a')-P{b). (2.9) 

Hence, substituting Eq. (2.9) into Eq. (2.7), finally yields 

d2,p-U7(a,b),f2%a,b)) = (1/2) • P(a) + (1/2) • P(b) + (1/3) • P(a) 

+ (2/3)-J»(&)-2-(P(a) •/>(*) 

+ (1/3)-P(a)-P(b') +(1/2)-P(a')-P(b)} 

= (1/6) • P(a) • /J(//) + (1/6) • TV) • W    (2-10) 

Note that if the naive distance function were used here, thus, not requiring 
any non-trivial application of BREA, 

</,.,,.(/>,fe),/2>,/>)) = TOW)) -P*(f;(a,b))\ 
= \fl(P(a),P(b))-f2(P(a),P(b))\ 

= (1/6)-\P(a)-P(b)\ 

= (\/6)-\P(ab')-P(a'b)\. (2.11) 

Finally, note that essentially all of the relational event forms involving a x b, 
a' x b, a x b', could be replaced by the more interactive events (avoiding car- 
tesian products) ab, a'b, ab' (but still retaining the cartesian products with the 
real interval events). In that interpretation, we have analogously 
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{Q,B,Py = (Q,B,P)9([0,l],B[0,l],voli), 

/; (a, b) ='' ah x [0, 1] V ah' x [0, 1/2] V* a'b x [0, 1/2], 

f;{a, b) =•* ah x [0, 1] V* ah' x [0, 1/3] V* a'b x [0,2/3], 

tkr(Jl(a,b)j;(a,b)) = (1/6) -PK) + (1/6) • P(«'/)). 

(2.12) 

The above example leads to the general definition of a relational event and 
associated concepts: 

Suppose // is a positive integer, there is a non-vacuous set H C [0, 1]" and a 
function / : 77 -» [0, I] such that for each given (non-trivial) probability space 
(Q,B,P), there is another probability space (Q,B,P)" = (i2*,5*,P*) (usually 
constructed out of appropriately determined cartesian products, as in the 
above example, etc.), and a non-vacuous set K C B" and mapping/' : K —> B*, 
such that the relational event equations hold: 

(i) there is an imbedding tp : B —> B* (isomorphic-probability preserving). 

(ii) f{P{a],..., a,,)) = P*{f{a\,... ,a„)), for all (au... ,a„) in A". 

(2.13) 

Thus, for the basic weighting average example above, fj(a,b) are special cases 
off'(ci\,...,a„) in Eq. (2.13). 

3. Homomorphic-like representations of fuzzy logic and fuzzy quantification 

Theorem 1. Let C be any given ordinary finite set (^ 0) and oc\,... ,<x„ : C —* 
[0, 1] be any given fuzzy set membership functions. Let cop : [0, l]c x • • • x 
[0, l]c —> [0, I] (n factors) be any copula. Thus, there is a probability space 
(Q,B,Pcop) and random sets S(aj, cop) : Q —» Power(C) such that the OPCRS 
holds [5] 

PcoP{x in a./) = <Xj(x),    for all x in C, j = 1,..., n. (3.1) 

Also, let f : H —» [0, 1] be any function representing some fuzzy logic 
quantification, where non-vacuous 77 C [0,1]", such as in the case of n — 1, for 
"very", "'most", etc. Suppose also the relational event equations hold here for 
this choice of/ where all event //-tuples ((x, in S(ai,cop)),..., (x„ in S(<x„, 
cop))) are in K, for any choice of ai,..., a„ above and any x\,..., x„ in C. Then, 
the following homomorphic-like relations hold 

CP(/*((-vi in S(a,,cop)), • • •, {x„ in 5(a„,cop)))) 

= f{PcoP(x\ in 5(ahcop)),.. .,PcoP(x„ in 5(«„,cop))) 

= /(a, (JT, ),..., <n,(x.)). (3.2) 
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In particular, choosing the fuzzy sets a, to be ordinary membership func- 
tions of crisp sets cij C C, i.e., a, = 0(a/), j = !,....«, 0 being the usual or- 
dinary set membership functional, then regardless of choice of cop, Pcop = P. 
each ^((^(a^.cop) = a, and Eq. (3.2) specializes to 

P*(/*(A'I in «,),..., (jr„ in «„)) = <K/'*U/|,... ,<*,))(*!,... ,x„) 

= /(P(xi in a,) P(x„ in a,,)) 

= /(<K<*i)(*i) </>(«»)(*»))• (3.3) 

As a basic application, consider briefly the BCEA form for any a, b 
in B, for f(P{ab),P{b)) = P(ab)/P{b), where, f(s. t) = s/t = s/[\ - (1 - /)] = 
]CfeoO - t)' • s, taking s = P(ab) and l — P(b) suggests a natural algebraic 
counterpart, i.e., relational event, being the boolean conditional event 

f*(a, b) ='' {a\b) ='' \J(b' x • • • x b1 xa). (3.4) 
J=°        j factors 

Indeed, it can be readily verified that when we choose the product proba- 
bility space 

{Q,B,Py =" {Q',B'.Pt) ='' (J2,B,P)®°° =d (Q,B,P) x (Q,B,P) x ••• 

(3.5) 

with the imbedding i// : B -» P\ where here ip(a) = (a\Q), for any a in B, 
the relational event equation holds, for any choice of probability measure 
P : B - [0,1), 

P*((a|6)) = P(a|6),    for P(6) > 0. (3.6) 

For additional desirable algebraic and numerical properties of BCEA, sec 
[9]. Choose any radial symmetric copula (see [10], where also the essentially 
equivalent concept of survival copula is provided) cop: [0, 1]( x [0,1]   —> [0, 1] 
and   define   copula   cop,,:   ([0, l]c x [0, if) x ([0, l]c x [0, if) x • [0, 1], 
where for any x\.x2,xy,... in C, 

cop0(x,,x2,xj,...) ='' cop(xi,.\-2) • cop(x3.x4) • • • (3.7) 

Choose (Q,B,P)" =d (Q,B,P,op) x (Q,B,Pmp) x • • • Then, for any fuzzy set 
membership functions a, R : C —» [0,1], define fuzzy conditional event (a|/5) : 
C x C x C x > [0,1] given as 
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(cc\p)mpo(xl,x2>x,,...) 

-'£( li(cop(l-i8(*,), l))-cop(«(xJ+i)J(xJ+l))) 
I (I  \ i-\ 

v      ; 

, (I i~\ 

= Pc;p[Or(And(x,- in (S(p\cop),)')) 

(»= 1....../) and (.v/H in S(/J,cop) nS(a,cop))], 
indicating independent identical copies of the random sets 

by subscript /, 

= F^((xux2,x3,...) in (S(a, cop)|S(& cop))). (3.8) 

Next, a basic consistency relation holds when we specialize a = <j){o), ji = 
</>{b), for crisp sets a, A C C, Eq. (3.8) reduces to the form of the ordinary 
membership function of the conditional event expansion of (a\h) as in Eq. (3.4). 
Finally, with appropriate modifications, all of the above can used as inputs to a 
wide variety of tracking and data fusion problems as in [7]. 
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