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ABSTRACT

The Lincoln Attitude Estimation System (LAES), a new tool being developed for the Space
Situational Awareness Group (SSAG) at MIT Lincoln Laboratory, integrates several existing
hardware and software systems, with a backward-smoothing extended Kalman filter (BSEKF). LAES
is intended to determine the rotational motion of a freely tumbling spacecraft from a sequence of
discrete-time radar images. The raw range-Doppler returns are collected using a ground-based
sensor, which is owned and operated by the SSAG, and processed into a set of range/cross-range
images. A three-dimensional geometric model is, through computer graphics procedures, displayed
on top of the two-dimensional radar images, enabling an analyst to rotate (and scale in cross-range)
the model in order to align it to the object’s image. Therefore, the orthographic projection matrix that
the computer graphics procedures computed to display the computer model, simultaneously describes
the projection of the object onto the radar image plane. These measurements are essentially
corrections to a nominal or baseline motion which had to be assumed in order to generate the images
in the first place. Combining the reference motion, which describes the orientation of the image plane
in inertial space, with the sequence of rotations describing the attitude of the spacecraft within the
image plane, yields the final set of attitude measurements which are then passed to the BSEKF for
processing. The existing free motion software currently in use within the Space Situational
Awareness Group makes two critical assumptions: 1) that that the spacecraft is a symmetric rigid
body and 2) that there are no disturbance torques acting on the spacecraft during the imaging period.
The Lincoln Attitude Estimation System removes these simplifying assumptions in favor of a more
flexible approach which is better suited for long-term studies of rigid body motion. Accordingly,
several additions have been made to the backward-smoothing extended Kalman filter, including the
addition of environmental torque models and an algorithm which generates an initial estimate for the
inertia tensor using the same geometric model used in the image-model matching process. The
BSEKF solves a nonlinear smoothing problem for the current and past sample intervals using
iterative numerical techniques. This approach retains the nonlinearities of a fixed number of stages
that precede the time of interest, and processes information from earlier stages in an approximate
manner. The algorithm has been tested using simulated and actual data from a challenging spacecraft
attitude estimation problem in which there is significant measurement noise, poor initial state
estimates, and highly nonlinear system dynamics. The filter compensates for this uncertainty through
concurrent estimation of the attitude and moment of inertia parameters. The filter has been
demonstrated to accurately and reliably converge on a motion solution in both types of test cases.

Thesis Advisor: USAF Colonel (Ret) John E. Keesee
Title: Senior Lecturer, Department of Aeronautics and Astronautics
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1. Introduction

1.1 Motivation

Attitude defines the orientation of a space vehicle relative to some fixed reference frame.
Every spacecraft carries a complement of instruments, called a payload, that must be directed in
some manner and whose operation is fundamentally dependent upon the spacecraft attitude.
Accordingly, determining and controlling the orientation of a space vehicle are two critical
processes which deliver value to the owner/operators of a given satellite system. When an
anomaly results in the breakdown of command, control, and communication between the vehicle
and operators on the ground, the various stakeholders of the system may turn to MIT Lincoln
Laboratory for assistance in trying to determine the state of their spacecraft. With an extensive
array of sensors, algorithms, techniques, and operational concepts at its disposal, the Space
Situational Awareness Group (SSAG) is uniquely equipped to help the operators of errant
spacecraft track and characterize the motion of their vehicle. With a set of externally-derived
telemetry values, it may be possible to identify and correct the problem so that the spacecraft can
be restored to normal operations. Whether Lincoln has been tasked to help recover anomalous
spacecraft or to provide intelligence and decision support tools to various government agencies,
the underlying need is ultimately for a system that can predict the future orientation of an
uncontrolled spacecraft in an accurate and timely manner. With nearly 50 years of experience in
the fields of orbit determination and advanced satellite imaging systems, Lincoln Laboratory’s
Space Situational Awareness Group is now looking to further extend its know-how into the
realm of attitude estimation. Given that this is an internal research and development effort being
done to provide the group with a new capability, the architecture is constrained by the hardware

and software systems currently in use at Lincoln. Thus, there is an explicit need for the
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architecture to properly interface with legacy systems as an add-on algorithm that can be
seamlessly incorporated into the greater suite of situational awareness tools.

Attitude estimation involves a two-part process: 1) approximation of a spacecraft’s
orientation from body measurements and known reference observations, such as line-of-sight
measurements to known stars, and 2) filtering the inherently noisy measurements in order to
arrive at a more refined estimate of the rotational motion of the spacecraft. Traditionally, attitude
is sensed via an array of onboard measurement devices, such as Earth horizon sensors,
magnetometers, or star sensors. The accuracy limit is usually determined by a combination of
hardware and processing procedures. The measurements they produce can then be combined
with models, in a number of different ways. One method uses a kinematics model propagated
with three-axis rate-integrating gyros. Since, the rates measured by gyro drift over time, three
more states are typically appended to the attitude state vector in order to determine this drift.
Another way involves combining the kinematics model with a dynamics model for the angular
rate. However, even a detailed dynamics model, such as Euler’s rotational equations, will have
inherent errors. For example, the moment of inertia matrix or initial angular velocity of the
spacecraft may not be well known. This is typically compensated for in filter designs by using
process noise, which in turn leads to challenges in “tuning” the filter. Throughout this thesis the
terms filter and estimator are used synonymously, because noisy measurements are involved.
Additionally, the term smoother is used to refer to a batch estimator algorithm, which is not
executed in real-time. Attitude prediction is the process of forecasting the future orientation of
the spacecraft by using dynamical models to extrapolate the attitude history. Here the limiting
features are the knowledge of the environmental torques and the accuracy of both the initial

estimate and mathematical model of the spacecraft dynamics.
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In the non-cooperative attitude estimation problem being considered in this thesis, a
much different approach is used to determine the orientation of a satellite. Two-dimensional
linear radar images are generated by Doppler processing the radar returns in each of the range
cells of a coherent wideband radar signal, the Doppler frequency of the center of mass being first
removed. This process results in a range-Doppler image. Assuming an initial motion for the
object relative to the radar line of sight enables the range-Doppler representation to be scaled to
form a range/cross-range image. Measurements of the attitude are then made by aligning the
projection of a three-dimensional computer graphics model (the wireframe) of the spacecraft
with each discrete radar image in a given pass. The rotations need to orient the wireframe model
in the radar image plane, in conjunction with the assumed nominal motion used to process the
returns, describe the orientation of the satellite in inertial space. Due to the significant
uncertainties and large measurement errors associated with a problem of this type, the backward-
smoothing extended Kalman filter (BSEKF) is used to filter the data. The BSEKF improves on
the traditional extended Kalman filter (EKF) by relinearizing a finite number of measurements in
the past when a new observation is processed. The filter has been shown to have superior
performance when the estimation problem contains severe nonlinearities that might significantly
degrade the accuracy or convergence reliability of other filters. The systems architecture
presented in this thesis will hereafter be referred to as the Lincoln Attitude Estimation System
(LAES) when describing the combination of remote-sensing/measurement-making techniques
and backward-smooth extended Kalman filter.

1.2 Overview of the Thesis

The overall purpose of this thesis is to present the unique challenges posed by using a

series of radar images as the basis for making attitude measurements and to evaluate the
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application of the backward-smoothing extended Kalman filter to the non-cooperative attitude
estimation problem. Since the measurements are made via independent, external observation
(i.e., there is no assistance from the satellite operator), the mass properties and internal dynamics
of the vehicle are completely unknown. Additionally, because the two-dimensional radar images
only provide range and range-rate information, the attitude and angular velocity of the spacecraft
can only be determined up to a rotation around the radar line of sight. While several simplifying
assumptions are necessary to overcome these difficulties, the existing software systems used by
the SSAG, goes so far as to presume that the spacecraft is a symmetric rigid body operating in a
torque-free environment. This is done in order to allow for closed-form motion propagation;
removing the assumption of spin-precession motion requires a system of ordinary differential
equations expressing Euler’s equations of motion. Use of the BSEKF, therefore, represents a
significant departure from the approach currently used to determine the rotational motion of a
freely tumbling spacecraft from a sequence of radar images. The Lincoln Attitude Estimation
System eliminates these critical restrictions, through the incorporation of a detailed set of
environmental torque models and simultaneous estimation of the moment of inertia parameters.
Consequently, another major aim of this thesis is to investigate the ability of the BSEKF to be
used in both short-term (single pass) and long-term (multi-pass) attitude prediction.

Chapter 2 provides background on rigid-body mechanics. The fact that nearly all globally
continuous and nonsingular representations of rotations have at least one redundant component,
has led to alternatives using an attitude parameterization which is either singular or redundant.
Thus, depending on the situation, it may be easier to describe the attitude in terms of a 3 X 3
matrix, three rotation angles, or by a four-dimensional vector (a quaternion). While several other

fundamentally different and often exotic choices also exist, Section 2.1 focuses on the three most

20



commonly used methods for expressing the orientation of an object in three-dimensional space.
The equations of motion of attitude dynamics can be divided into two sets: the kinematic
equations of motion and the dynamic equations of motion. Kinematics is the study of motion
irrespective of the forces that bring about that motion. The kinematic equations are a set of first-
order differential equations specifying the time evolution of the attitude parameters. These
equations, which contain the instantaneous angular velocity vector w, are considered in Section
2.2. This section also presents the relationship between the rate of change of a vector in an
inertial frame and its rate of change in a reference frame rotating with angular velocity w. In
Section 2.3, the angular momentum and moment of inertia tensor are precisely defined and the
relations between them presented. This is done in order to set up the dynamic equations of
motion, which express the time dependences of w. These are needed for both dynamic
simulations and attitude prediction whenever gyroscopic measurements of w are unavailable.

In Chapter 3, the non-cooperative attitude estimation problem is divided into its
constituent parts. First, the measurement process is described by considering how the raw range-
Doppler returns are collected via a ground-based sensor and processed into a series of discrete
range/cross-range images. A technique known as image-model matching is then used to
determine the attitude of the spacecraft within the radar image plane. Unfortunately, because of
the limited amount of information contained in the radar observations, the radar system of
equations is underdetermined. As will be discussed at the end of Section 3.1, the uncertainty in
the orientation of the radar image plane in inertial space severely complicates the attitude
estimation process. However, the details of how these challenges have been approached are the
subject of Chapter 4. In section 3.2, the filtering process is described, by looking at the various

attributes of the backward-smoothing extended Kalman filter. Because the BSEKF has properties
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similar to that of a sliding batch least-squares estimator, extended Kalman filter, and fixed
interval smoother, these three types of algorithms are covered in greater detail in Sections 3.2.2,
3.2.3, and 3.2.4 respectively. The remainder of the chapter is devoted to the specifics of the
BSEKF, with an emphasis on addressing the implementation and operational attributes of this
fairly complex algorithm.

Chapter 4 couples the radar equations developed in Section 3.2 with the dynamics
equations presented in Chapter 2. In addition to compiling a comprehensive set of governing
equations, the various legacy systems used by the Space Situational Awareness Group for motion
analysis are documented in Section 4.1. A description of the models and features which have
been added to the BSEKF is given is Section 4.2, along with an explanation of how the algorithm
has been integrated into the greater collection of motion analysis tools.

Chapter 5 presents the results of a truth-model simulation and set of real-life test cases
which have been used to assess the performance of the BSEKF. Sections 5.1 and 5.2 describe the
testing methodology for the two types of test cases, as well as initialization and filter tuning
procedures. Section 5.3 analyses the filtering results for a simulated dataset generated using the
algorithm’s own dynamics equations and torque models. Measurements have also been made
using an actual inactive satellite, imaged over several consecutive passes. The actual test cases
are divided into short- and long-term results, depending on whether the attitude estimation and/or
prediction was made using observations from a single pass or multiple passes (i.e., there is a
substantial time gap between the datasets). The results show the BSEKF is able to 1) accurately
and quickly converge on a motion solution for individual data passes, 2) overcome large initial
errors, 3) filter over long time gaps separating sequential passes, and 4) better predict the attitude

of spacecraft than existing motion analysis software.
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Chapter 6 summarizes the conclusions of the thesis and outlines future work to improve
the non-cooperative attitude estimation and prediction capabilities of MIT Lincoln Laboratory.
Appendix A outlines all the conversion formulas needed to transform between the different
attitude representations. Appendix B is a collection of miscellaneous equations which are used in
various sections throughout the document. Appendix C includes data handling procedures and
operating instructions for the Lincoln Attitude Estimation System. Appendix D provides Matlab
source code for implementing the backward-smoothing extended Kalman filter, the

environmental torque models, and the polyhedral mass properties algorithm.
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2 Mathematical Background

2.1 Attitude Representations

The attitude of a spacecraft is its orientation in space, expressed as a relation between two
coordinate systems. The overall motion of a rigid spacecraft is specified by its position, velocity,
attitude, and angular velocity. The first two quantities describe the translational motion of the
center of mass of the spacecraft and are the subject of orbit determination. The latter two
quantities describe the rotational motion of the body of the spacecraft about the center of mass
and are the subject of this thesis on spacecraft attitude — namely how it is determined and how its
future motion is predicted. While translational motion is fairly simple, rotational motion is much
more complicated, since there are no solitary point masses in attitude problems, and the
equations are both nonlinear and coupled. Although knowledge of the spacecraft orbit is
frequently required to describe the rotational motion of a vehicle, orbital mechanics in general is
outside the scope of this work. Accordingly, the dynamical coupling that exists between the two
will often times be ignored; the noticeable exception being the discussion provided in Section
2.3.4.3 on environmental torque models. Even in the instances where interdependence of the two
fields is most prevalent, it will be assumed that the time history of the spacecraft position is
known and has been supplied by some process external to the attitude determination and
estimation system.

Of the many ways to represent attitude, the most prolific and widely used include: 1) the
axis and angle of rotation; 2) the rotation matrix; 3) Euler angles; and 4) the quaternion. Because
attitude is more difficult to describe than position, it is often necessary to utilize multiple
representations in order to take advantage of a particular property that simplifies a specific part

of the problem. Accordingly, the ability to easily convert between each of these representations
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is of great importance and the equations for doing so are provided in Appendix A. Of all the
representations discussed in this chapter, the axis and angle of rotation appeal most to our
geometrical intuition of what constitutes a rotation and helps us to express mathematically what
the other rotations mean geometrically; otherwise they are of little practical use. The rotation
matrix is often constructed in order to transform vectors from one frame to another. Euler angles
are convenient for treating spinning spacecraft and archiving attitude, since there are only three
variables to record. Euler angles are also advantageous when trying to visualize rotations, but are
otherwise not very useful. The quaternion is the most convenient representation to use in
dynamical simulation of attitude, because it makes the best compromise between simplicity of
the kinematics and dynamics equations of motion and the dimension of the system (1 pp. 412 -
420).
2.1.1. Right-Handed Orthonormal Coordinate Systems

In order to uniquely describe the attitude of a rigid body, three external coordinates are
needed to specify the position of some reference point in the body (the origin) and three more are
needed to indicate how the body is oriented with respect to the axes of the external space. As
depicted in Figure 2.1, the configuration of a rigid body can be identified using two sets of
Cartesian coordinates, one fixed in the body and another parallel to the external axes, but with

the same origin as the body set of axes.
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Figure 2.1 Orientation of the body-fixed coordinate system (black x'y’'z’ axes) with respect to the
inertial reference frame (blue xyz axes)

An orthonormal basis is defined a set of three unit vectors {i j k} along the x, y, and z-
axis respectively, that are mutually orthogonal. Thus, the vectors of an orthonormal basis satisfy

the following scalar-product relations (2 p. 239):

i-j=i-k

=j-k=0
i-i=j-j=k-k=1

(2.1

Additionally, the bases that will be used are not only orthonormal but also right-handed; that is,

their vector products satisfy (2 p. 239):
ixXj=—jxi=k
jxk=-kxj=i (2.2)
kxi=—ixk=j

Given a physical vector r in three-dimensional space and an orthonormal basis {i j k},

coordinates x, y, and z can be found such that

r=xi+yj+zk (2.3)
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The components of r can be arranged into a column-vector of size 3 X 1 (matrix with n number

of rows and m number of columns):

X

z
If the physical vectors u and v are given in terms of an orthonormal basis as

u = uy i + uyj + usk (2.5)
and

v =vi+v,j+v3k (2.6)

then their column-vector equivalents are simply
Uy L1
u= [uz] and v = [172] 2.7)
Uz V3
The scalar or dot product of two column-vectors with respect to a common basis, may be
expressed as (2 p. 240)

T

u-v=uv= Uu,vq + U0, + u3173 (2.8)

where uT is the transpose of u; a 1 x 3 row vector of the form:
ul =[u; u, uz] (2.9)
Similarly, the column-vector representation of u x v, the vector or cross product, is simply (2 p.
240):
U V3 — UzVs
uxvs= [u3171 - u1173] = [u X]v (2.10)

UV2 — UV

where [u X] is defined to be the 3 x 3 matrix:

0 —Us U,
[ux] = [u3 0 —ull (2.11)
U, Uy 0

It is important to note that unless the coordinate system (i.e. the basis) is indicated, a
column-vector, typically denoted with a nonitalicized boldface character (v), is not strictly
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speaking, equivalent to a physical vector v. Consequently, the following work primarily utilizes
the column-vector representation — since vector operations can be replaced by matrix operations

— and references the relevant coordinate system using a subscript, such as
VU1
v, = ’4 (2.12)
V3 I

In the subsequent attitude estimation problem, the subscript I is used to represent the inertial
coordinate system and B the body-fixed coordinate system. Unless otherwise indicated, the
inertial reference frame used is the Geocentric Equatorial Coordinate System or Earth Centered
Inertial (ECI), which is typically designated with the letters IJK. As the name implies, this
system originates at the center of the Earth; the I axis points towards the vernal equinox; the J
axis is 90° to the east and lies in the equatorial or fundamental plane; and the K axis extends
along the Earth’s axis of rotation through the North Pole (3 p. 157). The body-fixed system is
called the Satellite Coordinate System and is given the letters X¥Z. The origin of this frame is
the satellite’s center of mass; the X axis is perpendicular to the YZ plane; the Y axis runs parallel
to some distinguishing feature on the spacecraft; and the Z axis is aligned with the longest

dimension of the vehicle or the axis of symmetry, as depicted in Figure 2.2 (4 pp. 8.9 - 8.10).

Figure 2.2 Convention used for the body-fixed reference frame (Satellite Coordinate System)
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2.1.2. Rotation (Direction-Cosine) Matrix
A rotation matrix is a matrix whose multiplication with a vector rotates the vector while
preserving its length. The special orthogonal group of all 3 x 3 rotation matrices is denoted by

S0(3). Thus if R € SO(3), then it possesses the following two essential properties (5 pp. 52 - 53):

det(R) = +1 (2.13)

and
R1=RT (2.14)
Rotation matrices for which detR = +1 are called proper and those for which detR = —1 are

called improper. While every orthogonal transformation preserves scalar products (maintains
right-angles), only proper orthogonal transformations preserve vector products and therefore
represent true rotations. Since every rotation leaves at least one axis unchanged (the axis of
rotation), improper transformations, which change the direction of every vector, are impossible
by means of a rotation (6 p. 5). Accordingly, improper matrices will not be discussed further,
since they are not rigid-body transformations.

The elements of a rotation matrix are referenced as follows:

(2.15)

11 T2 Ti3
R=[ T2 13| =|r21 T2 T23
31 732 7133

Additionally, the convention that will be used defines the rotation matrix that encodes the
attitude of a rigid-body to be the matrix that when pre-multiplied by a column vector expressed
in inertial coordinates yields the same vector expressed in the body-fixed frame (i.e. the matrix
which maps inertial coordinates into body-fixed coordinates). The following relations hold when
transforming vectors from one coordinates system to another (6 p. 5):

L1 1 Tz T3] [V1
Vg = Rv; = |V2| =|T21 Tz T23||V2 (2.16)
Vzlp 731 1

32 T33]11V3
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7 "1 N2
Vi=RTvg = |V2| =|T21 T2z
3

2

ri317 71
T3] |V2
33l 1V3lg

(2.17)

A coordinate rotation is therefore, a rotation about a single coordinate axis, x, y, or z, through an

angle ¢. The x-, y-, and z,-axes rotations are often numbered 1, 2, and 3 respectively and are

written as (6 p. 6)

1 0 0 7
R.(¢) =Ri(¢) = [0 cos(p) sin(¢)
[0 —sin (¢) cos (¢).
rcos (¢) 0 —sin (¢p)]
Ry(¢) =R(¢p)=| O 1 0
[sin(¢p) O cos (¢) |
[ cos () sin(¢p) O]
R,(¢) = R3(¢p) = |—sin(¢) cos(¢p) O
L0 0 1.

A sample rotation of this form is illustrated in Figure 2.3, which shows

axis by an angle ¢.

(2.18)

(2.19)

(2.20)

a rotation about the z-

e

A
‘l
o7
wpPb——m
. .
“““““
““““ r
L) “ . ’ X'l
G
: .
“““ )
Py > X
Z,1' X1

Figure 2.3 Rotation about the z-axis through an angle ¢p. Here x and y are the initial coordinate

axes and x’ and y’ are the final coordinate axes (6 p. 6)

A rotation matrix is often referred to as a direction cosine matrix, because the elements of

this matrix are the cosines of the unsigned angles between the body-fixed axes and the inertial
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axes. Denoting the inertial axes with (x, y, z) and body-fixed axes with (x', y', z') , let 8, ,, be
the unsigned angle between the x’-axis and the y-axis. In terms of these angles, the rotation

matrix may be written as (6 p. 6)

cos(@xr,x) cos(@xr,y) cos(er,Z)
R =cos(8,:,) cos(6,r,) cos(6,,) (2.21)
cos(Gzr,x) cos(Gzr,y) cos(Gzr,Z)

To illustrate this with a concrete example, consider the case shown in Figure 2.3. Here 6,/, =

T

T .
Oy =@, 01y =5— ¢, 0y, = §+ ¢, 0,1, =0, and 6,1, 3 = 0y, 3+ = <. Therefore, equation

(2.21) can be rewritten as (6 p. 6)

R = |cos((m/2) + ¢) cos(¢) cos(m/2) —sin (¢) cos(¢p) 0O (2.22)
cos(m/2) cos(m/2) cos(0) 0 0 1

cos(¢) cos((m/2) — ¢) COS(n/Z)] [ cos (¢) sin(p) O
This is the same result that is presented in equation (2.20).
For an arbitrary rotation through an arbitrary angle ¢ about an axis a, Euler’s formula is
given by (2 p. 246)
Ra(¢) = cos(¢p) I + (1 — cos(¢))aa” — sin(¢) [a x] =
cos(¢p) +af(1—cos(¢))  a1a,(1— cos(¢)) + azsin(p) ajaz(1 — cos(¢)) — a, sin(¢)

a;a:(1 = cos(®)) —azsin(¢p)  cos(p) +a3(1—cos(¢))  azasz(l—cos(¢)) + a; sin(¢)
aza;(1 = cos(®)) + ay sin(¢) azaz(1— cos(p)) —aysin(p)  cos(¢) + af(1 — cos())

(2.23)
where a=[a1 a; az]T and [ax] is given by equation (2.11). Since the determinant of
equation (2.23) is always +1, rotation matrices are proper orthogonal and every rotation can
therefore, be expressed as a rotation about a single axis. This result is known as Euler’s
Theorem. The axis of rotation has two free parameters, and the angle of rotation is a third

parameter. Consequently, rotations are characterized by three independent parameters, which
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means that the nine elements of R must be subject to the six constraints, expressed in equation
(2.14) (2 p. 246).

The successive application of two rotation matrices is equivalent to a third orthogonal
transformation which can be considered as the product of the original two operators. For
example (7 p. 144)

Vg = Ry, (¢2)Ra, ($1)V; = Vg = Raja (P2, 1)V, (2.24)
where R, (¢,) is the first rotation matrix, R,,(¢;) is the second rotation matrix, R,,,, (¢, ¢1) 1s
the combined linear transformation which takes a vector v from inertial coordinates to body-
fixed coordinates. It is important to note that matrix multiplication is not commutative and
therefore, (7 p. 144)

R,,($2)R,, (1) # Ry, (P1)R,, (P2) (2.25)
Thus, the final coordinate system depends upon the order of application of the operators.
However, matrix multiplication is associative; in a product of three or more matrices the order of

the multiplications is unimportant (7 p. 145):

(Ra, (1)Ra, ($2)) Ray($3) = Ra, ($1) (Ra, ($2)Ra, ($3)) (2.26)
The convention that will be used to annotate the proper order for each rotation sequence or
combined rotation matrix is illustrated by equation (2.24) and requires matrices be multiplied
from right to left.
2.1.3 Euler Angles
The Euler angle representation is defined by three successive rotations through angles ¢,
¢,, and ¢ about coordinate axes a,, a,, and a;. Accordingly, an a;-a,-a; Euler angle sequence
would be one in which the first rotation is an angle ¢, about the a,-axis, the second rotation is an

angle ¢, about the a,-axis, and the third rotation is an angle i about the az-axis (8 p. 763). The
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particular sequence used is to some extent arbitrary since the initial rotation could be taken about
any of the three Cartesian axes. In the subsequent two rotations, the only limitation is that no two
successive rotations can be about the same axis. Consistent with the manner in which
consecutive rotation matrices are written (applied from right to left), the combined rotation
matrix is then given by (2 p. 246)

Ragaza1 (b3, d2, d1) = Ra3 (¢3)Ra2 (¢2)Ra1 ($1) (2.27)
where the three rotation-axis column vectors, a;, a,, and as;, must be chosen from the set

consisting of the three unit column vectors aligned with one of the body axes

1
u =0
0

While one could also write the transformation matrix in terms of four or more rotations,

0 0
, Uy = [1], and uz = [0] (2.28)
0 1

since rotations can be completely characterized by three parameters, three rotations about an
appropriately chosen set of body axes are sufficient. This of course is the great advantage to
using Euler angles — minimal dimensionality — the attitude can be efficiently stored and
expressed using just three values, as opposed to the four parameters need for an axis and angle
representation or the nine components required to construct the direction-cosine matrix.

For notational conciseness and to mitigate confusion, each of these angles is traditionally
given a unique symbol ¢80y and will typically be arranged in a three-dimensional vector called

the Euler angle vector, defined by

]
E=|o (2.29)

P

There are 12 distinct conventions available for defining the Euler angles (in a right-handed
coordinate system), which divide equally into two types: those whose rotations take place

successively about each of the three coordinate axes and those in which the first and third
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rotations occur about the same axis, but the second is about one of the other two axes (8 p. 763).
The two most frequently used of each type are the 1-2-3 and 3-1-3 Euler angle sequences. For
illustration purposes, the 3-1-3 Euler angle rotation will be used extensively throughout this
section, though both representations play a significant role in the attitude estimation problem
presented in subsequent chapters. For this reason, the relevant conversion equations for both are
provided in Appendix A for quick reference and comparison purposes.

Following the notation used in equation (2.24), the function which maps the 3-1-3 Euler
angle vector to its corresponding rotation matrix is

R313(1/J' 0, ¢) = R3(¢)R1(9)R3(¢) =

[ cos () sin (@) 011 0 cos () sin(¢p) O
—sin () cos () O [0 cos (f) sin (9)] [—sm (¢) cos (¢>) 0
L0 0 1110 —sin(8) cos(8) 1

[ cos(¢) cos(y) — sin(¢) cos(8) sin(y) sin(¢) cos(@) + cos(¢) cos(8) sin(yp)  sin(8) sin(yP)
— cos(¢) sin(yp) — sin(¢) cos(@) cos(yp) —sin(¢) sin(y) + cos(P) cos() cos(yp) sin(f) cos(y)
| sin(¢) sin(8) — cos(¢) sin(6) cos(0)

(2.30)
The sequence presented above is started by rotating the initial system of axes, xyz, by an angle ¢
counterclockwise about the z-axis, and the resultant coordinate system is labeled x'y’z’, as shown
in the first block of Figure 2.4. In the second stage, the intermediate axes, x'y’z’, are rotated
about the x'-ais counterclockwise by an angle 6 to produce yet another intermediate set, the

a1

x''y"'z" axes. Finally, the x"'y"'z"" axes are rotated counterclockwise by an angle i about the z"'-

III III 1

axis to produce the desired x system of axes.
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Figure 2.4 Rotations defining the 3-1-3 Euler angle rotation sequence

Unfortunately, the Euler angles are not a well-behaved representation of attitude. Like all
the parameterizations of this type, the 3-1-3 series has singularities at nutation values of 8 = nx
for n = + integer value or 0. At these points, changes in spin and precession constitute the same
motion. Intuitively, singularities arise, in this case, from the indistinguishability of changes in the
first and third Euler angles when the second Euler angle is at the critical values just mentioned.
For rotation types, such as the 1-2-3 Euler angles, that do not have a repeated axis of rotation,

singularities occurs at 8 = §+ nr for n = % integer value or 0, because for these values of 9, the

¢ and ¢ angles have similar effects (5 p. 74). Thus, to avoid the singularity problem, one must

resort to using two sets of Euler angles and occasionally switch from one set to the other; doing
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so, however, requires large numbers of trigonometric functions to be computed, negating the
benefits derived from being able to represent attitude with a minimal number of parameters. In
the case of spinning spacecraft, two of the Euler angles, 8 and i, can be chosen to be the
spherical angles of the spin axis (z-axis) and the remaining Euler angle ¢ the angle of rotation
about the spin axis. In such situations, the spin axis is generally stable and confined to some
small region about a nominal direction. Two of the Euler angles then have limited periodic
variation, whereas the third tends to have an almost constant rate. Thus, in the case of spinning
spacecraft, the singularity can be avoided and the angles do not experience complications.
2.1.4. The Quaternion

The deficiencies in the Euler angle representation have led many in the attitude field to
use unit quaternions as a parameterization of the attitude of a rigid body. The relevant functions
of unit quaternions have no singularities and the representation is well-suited to integrating the
angular velocity of a body over time. However, using unit quaternions also have some
disadvantages, namely that the four quaternion parameters do not have intuitive physical
meaning, since they express rotations in four-dimensional space, and that a quaternion must have
unity norm to be a pure rotation. The unit norm constraint, which is a quadratic in form, is
particularly problematic if the attitude parameters are to be included in an optimization, as most
standard optimization algorithms cannot encode such constraints (5 p. 169).

The quaternion is free of the analytical complexity that Euler angles typically encounter
and only has one additional component. The quaternion can be defined as a 4 x 1 vector with the

form (2 p. 250):
q1
_[971_ 1[4
o [3)- | e
44
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where

q1
q= [‘Iz] = sin(¢/2)Aa, q, = cos (¢/2) (2.32)
q3

The unit-column vector 4 is the axis of rotation, and ¢ is the rotation angle. Additionally, q is the
vector component of the quaternion and g, is the scalar component. Because a four-dimensional
vector is used to describe three dimensions, the quaternion components are not independent from
each other and must satisfy a single constraint given by (6 p. 14)

q'q=q7 +qi+a3+q5 =1 (233)
Other useful equations which will be referenced throughout this thesis include those for the

adjoint, norm, and inverse of the quaternion, which can each be written as follows (6 p. 14):

—q1
—_ [N _|"49
o[- | 0
ds
lall = Ja? + a3 + % + a3 235)
L_
=— 2.36
T Tl (2:50)

The quaternion has several advantages over the rotation matrix as a representation of
attitude. First, it has fewer elements (four instead of nine), so it requires less storage. Second,
there are fewer constraints (one instead of six). Third, unlike the Euler angles, which cannot be
merged easily when one combines rotations, the composition rule for the quaternion is very
straightforward and requires fewer multiplications (16 instead of the 27 needed for rotation
matrices) (2 p. 251). Fourth, if, because of accumulated numerical round-off error, the quaternion

loses its’ orthogonality, the constraint can be easily reinforced by simply replacing g with (2 p.

252)
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q (2.37)

Finally, due to the redundant fourth term, the quaternion also has the advantage of being free of
singularities. Apart from the overall sign, only one quaternion is needed to characterize a given
attitude (2 p. 251).

The attitude matrix is related to the quaternion by (2 p. 250)

A(Q) = (g5 — a1y + 299" — 2q4[q x] =

@ —q5—q5+q: 209192 + 9493) 2(q193 — q492)
200291 — qu93) —45+q5—aq5+a;  2(9293 + quq1) (2.38)
2(93q1 + 9492) 20932 — q491)  —q2 —q3 +q% + q}

where 1,,, 1s a 4 x 4 identity matrix and [q Xx] is the cross-product matrix defined by

0 —-gq3 ¢
[ax]=]g9s 0 —q1 (2.39)
- 41 0

For small angles the vector part of the quaternion is approximately equal to half angles.
If q is the quaternion of the first rotation and q’ is the quaternion of the second rotation,
then the combined rotation is represented by q”, where (2 p. 251)

v 49+ 9.9'—q' X q
ol , , 2.40
T =99 [ 749 — 9 - q (2.40)

The upper right part of the expression gives the vector component q"”’, while the lower part gives
the scalar component ¢q;'. The composition rule for the quaternion is not unique, since the sign
could have been changed on the rightmost element of equation (2.40). The sign convention used
in the above equation is the one generally accepted and most convenient. The quaternion
multiplication is not commutative and may be written more compactly as the second quaternion
post-multiplied by a matrix-valued function of the first quaternion. That is, (6 p. 14)
a'q=0Q(q")q=0Q(qq (241)
a9’ = Q(9)q' = Q(q')q (242)
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where the quaternion matrix function Q(q) is defined by
qs 43 —q2 0

| 793 4a 91 92
QD =|¢q, —q. g q (2.43)

—q1 —q2 —q3 44
and the closely related conjugate quaternion matrix function Q(q) is defined by

94 —q3 2 1
93  4a —q1 92

QD =|-¢q, ¢ qu qs (2.44)
—q1 —q2 —q3 Q4
Substituting equation (2.34) into equations (2.43) and (2.44) yields
Q@ =Q)" (2.45)
Q@ =" (2.46)

Therefore, the quaternion composition rule may be written as (9 p. 759)

a1 93 —92 d1|rqq
a —q3 9@ @1 9|4
= (q)q = (2.47)
T =da=0da= g ~q @ a||%
as —q; —q5 qil%
and the quaternion difference rule can be expressed as follows:
ql q> q1 TTq,
" _ .1 _ P T 1 q2 q4 —q1 4 qé
9 =q949 - Q(CI) q = qél |:—q2 q1 qa CI3] qé (248)
qy —q1 —q2 43 Q4 q4

where q” is now the quaternion that is needed to transform between the first and second
quaternion rotations, q and q' respectively, and can be thought of as the change or difference in

attitude.
2.2 Rigid Body Kinematics

Attitude kinematics is the fundamental description of how a change in orientation with

time is characterized and is inherently tied to a spacecraft’s angular velocity (2 p. 252). Consider
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a rigid body rotating about some axis n and with a vector v that is fixed in the rotating body

frame, as shown in Figure 2.5.

.

d¢

v(t+ dt)
v(t)

Figure 2.5 Change of a rotating vector over time (10 p. 516)
The rate of change of the vector v over time t is given by the derivative (10 p. 515)

d__dp
V= E(n X V) (2.49)

where d¢/dt is the angular rate through which the body has rotated about the instantancous axis

n. Thus,
d¢
w = E (ll) (250)
which is the angular velocity of the body (10 p. 515). Since a right-handed orthonormal basis

fixed in the inertial frame does not change with time, the derivative of the inertial components of

v are simply the inertial components of the temporal derivative of v, given by (10 p. 515)

d
EVI = w, X VI (2.51)

41



Conversely, the components of v with respect to a basis fixed in the body reference frame are

constant since the vector is rotating with the body itself. Hence, (10 p. 516)

d
— Vg =0 (2.52)

2.2.1 Kinematics Equation for the Rotation Matrix

At any instant, the orientation of a rigid-body can be specified by an orthogonal
transformation, the elements of which may be expressed in terms of some suitable set of
parameters. As time progresses, the orientation will change, and hence the matrix of
transformation will be a function of time and may be written as R(¢t). If the body axes are chosen
such that they align with the space axes at the time t = 0, then the transformation is initially

simply the identity transformation:

1 0 0
R(0)=13;3=|0 1 0 (2.53)
0 0 1

At any later time, R(t) will in general differ from the identity transformation, but since the
physical motion must be continuous, R(t) must be a continuous function of time (7 p. 156).
Differentiating both sides of the expression (and suppressing the explicit time dependence) (7 p.
172):

vp(t) = R()v;(¢) (2.54)

leads to

d —(dR) +rE (2.55)
dt B \gc )V dac ! :

Substituting in equations (2.51) and (2.52) allows equation (2.55) to be rewritten as:

0= (ER) v, + R(w, X V) (2.56)
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Using the fact R is a proper orthogonal matrix, the definition of the cross-product matrix, and the
associative property of matrix multiplication enable equation (2.56) to be further reduced until

one finally arrives at:

d
ER = —[w X]R =

1 Tz Ti3 0 —w3 w71 Tz T3
To1 Tap Tog|=—|ws 0 —wq||T21 T22 T2 (2.57)
T31 T3z Ta3 wy; W 0 Ilr31 732 T33
which is the kinematics equation for the rotation matrix. This result enables the general

expression relating the time derivatives of the representations of vectors in two frames in the

following manner (2 p. 254):

d
—vVg =—wg XVg+R

T (2.58)

"
2.2.2 Kinematics Equation for the Euler Angles
While it is often convenient and/or necessary to express the angular velocity vector in
terms of the Euler angles and their time derivatives, the kinematic relationship for this
parameterization is more complicated than that of the rotation matrix. While a finite rotation
cannot be represented by a single vector, the same objection does not hold if only infinitesimal
rotations are considered. An infinitesimal rotation is an orthogonal transformation of coordinate
axes in which the components of a vector are almost the same in both sets of axes — i.e. the
change is exceedingly small (7 p. 173). The general infinitesimal rotation associated with w can
be considered as consisting of three successive minute rotations with angular velocities wg = ¢,
wg = 6, and wy, = 3. Consequently, the vector w can be obtained as the sum of the three separate
angular velocity vectors with respect to the body-fixed coordinate frame, given by (10 p. 513)
wp = Wy + wp + wy = Pa; + 0a, + Ya, (2.59)
Unfortunately, the directions wgy, wg, and wy are not symmetrically positioned with the same

basis: wg is along the inertial z-axis, wg is along the line of nodes in the intermediate body
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frame, while w,, alone is along the body z'"'-axis. However, a set of rotation matrices can be used
to transform the representations of the Euler axes with respect to the intermediate bases into
representations with respect to the final body axes. Carrying out the necessary transformations
leads to (2 p. 256)

wp = Paz + OR,, (Y)a; + dRa, W)Ra, (O)ay (2.60)
where the unit column vectors a;, a,, and a; are the representations of the three Euler axes with
respect to the intermediate bases and take on any of the three values given by equation (2.28),
depending on which Euler angle sequence is being employed.

For the 3-1-3 Euler angle sequence, equation (2.60) becomes (7 p. 174)

—sin(yy) sin(8) cos(y) || o (2.61)

Wy 0 cos(y) sin(8)sin(@)][¥
ER
w3l |1 0 cos(6) é

The inverse of the combined rotation matrix above results in a formula for converting an angular

velocity vector into a vector of Euler angle rates (6 pp. 10 - 11)

2] sin(8) cos(y)  —sin(0) sin(y)

P 1 |~ cos(8) sin(y) cos(8) cos(yp) sin(8)]|w,
= Sin(@) 0 [wzl (2.62)
¢ sin(y) cos(y) 0 w3

For the 3-1-3 series, the Euler angle rates become infinite when sin(8) = 0 even though the
angular velocity vector may be finite. This is yet another indication of that the Euler angles are
singular. This problem can be corrected or avoided by simply using a different sequence of Euler
angles, say, 1-2-3, in calculations when this condition is approached. A set of 3-1-3 Euler angles

may be written as a function of a set of 1-2-3 Euler angles according to (6 pp. 13 - 14)
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¢
E133(R313(4,6,9)) = [9]
Yli2s

atan2(cos(¢) cos(8) sin(yp) + sin(¢) cos(yp), — sin(¢) cos(8) sin(yy) + cos(¢) cos(y))
= —asin(sin(8) sin(y)) (2.63)
atan2(sin(8) cos(y), cos(8))

However, the 1-2-3 series is not trouble-free either. In this case, the singularity arises when
cos(8) = 0. Consequently, one must alternate between two sequences of Euler angles to
represent the attitude as it changes. This problem is inherent in the Euler angles but is absent in
the rotation matrix and the quaternion, which are both well-behaved at all attitudes.
2.2.3 Kinematics Equation for the Quaternion

The time derivative of the unit quaternion is the vector of quaternion rates, and like the
rotation matrix, has a very simple form. The quaternion rates, denoted by ¢q, are related to the

angular velocity. The functions that map a unit quaternion and its temporal derivative to the

angular velocity in inertial and body-fixed coordinates are wg, defined by (6 p. 16)

Wy G 9 —@ —qqu| T
[wzl =2[—q3 9a 41 —qzl 12 (2.64)
w3lg 92 —4q1 492 —qj 23

4

The inverse mapping, from the angular velocity and the unit quaternion to the quaternion rates,

are given by (6 p. 16)

C.h 1 94 493 —q2 —qlT w1

% =§[—q3 s 1 —qz] [(Uz] (2.65)
23 92 —q1 qs —q3l lwsly

4

or equivalently as (10 p. 512)

p 41 0 w3 —w; W] rqq
lrwx] o 2| _ 1l —w3 O Wy W2 |q;
—g == =>|l== 2.66
dt 1 21 —w 0] 1 q3 2| W2 —wp 0 w3 q3 ( )
q'4_ _(1)1 _(1)2 _(1)3 O B q4-
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The kinematic equation for the quaternion is linear in the elements of both wgz andq. This
simplifies numerical integration. For this reason and the simple method of correcting
normalization errors, the quaternion is the preferred representation for simulation studies.
2.3 Rigid Body Dynamics

Attitude dynamics is concerned with the motion of a body in the presence of applied
torques and a complete description of the attitude motion of a spacecraft depends on the
treatment of both the dynamical and kinematical aspects (10 p. 510). A particular reference point
in the rigid body is usually sought, such that the problem can be split into two separate parts, one
purely translational and the other purely rotational about the point. For bodies without a fixed
point, the most useful reference point is almost always the center of mass. Unfortunately,
rotational motion is much more complicated than translational motion. In translational motion,
the force-free case leads to movement which has constant linear velocity. For a body with an axis
of symmetry, the force-free attitude motion is nontrivial but can be expressed using
trigonometric functions. If however, a totally asymmetric rigid body is considered, even torque-
free rotational motion requires elliptical integrals for its description (7 p. 184).
2.3.1 Angular Momentum and the Properties of the Inertia Tensor

When a rigid body moves with one point stationary (typically taken to be the center of

mass), the total angular momentum (L) about that point is (10 p. 516)

n
L= Z m;r; Xv; (267)
i=1

where m;, i = 1,..n, are the component masses comprising the rigid body, and r; and v; are the
radius vector and velocity, respectively of the i*? particle relative to the given point. Since r; is a

fixed vector relative to the body, the velocity with respect to the space set of axes arises solely
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from the rotational motion of the rigid body about the fixed point according to the formula (10 p.
516)
Vi=wXr; (268)

Hence, equation (2.67) can be written as (2 p. 275)

L= m; [Ti X ((l) X Ti)] (269)
2

and then fully expanded to (7 p. 187)

2 .2
n wxmi(ri — X ) - a)ymixiyi — W, M;X;Z;
— 2 — 2 2
L= Z mi[or? —ri(r; - ®)] =| —oymyix; + o,m(rF — y2)—w,myiz; (2.70)
i=1 —wymzix; — wymyz;y; + w;m(rf — zf)

The angular momentum vector is therefore related to the angular velocity by a linear
transformation that can be summarized as (2 p. 276):
L=Iw (2.71)

In this equation I is the inertia tensor, a symmetric matrix with the form (7 p. 187) and (10 p. 518):

Lix Ixy Lz rl? - xiZ —XiYi —XiZ }’2 + z? —Xy —XZ
Ip=|bx Ly bLyp|=|-yx; ri-y} —yiz |mi=[| —yx x*4+2z2 —yz | dm
Izx Izy I, —ZiX; —Z;y; 1"l2 — Ziz —ZzX —zy x? + y2 B
(2.72)

where the center expression appears in the form suitable if the rigid body were composed of
discrete particles; and the right side, is the more appropriate form for continuous bodies, where
the summation is replaced by a volume integration and the particle masses become a mass
density. The diagonal elements of I are called the moments of inertia and the off-diagonal
elements are called the products of inertia. Unlike the operator of rotation, I will have
dimensions — mass times length squared (kg-m?) — and is not restricted by any orthogonality
conditions (7 p. 188). Since, the angular momentum of a rigid body about its center of mass

depends on the mass distribution, only the inertia tensor is needed in order to properly describe
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its attitude dynamics. It should also be noted that for rigid bodies, the mass density in body
coordinates is constant. Therefore, it is preferable to work in the body-fixed referenced frame,
where the inertia tensor will be invariable over time (2 p. 276).

From the defining equation given by equation (2.72), it can be seen that the components
of the tensor are symmetrical. This means that, while the inertia tensor will in general have nine
components, only six of them will be independent — the three along the diagonal plus three of the
off-diagonal elements (2 p. 276). The inertia coefficients depend both upon the location of the
origin of the body set of axes and upon the orientation of these axes with respect to the body.
This symmetry suggests that there exists a set of coordinates in which the tensor is diagonal with
the three principal values I;, I,, and I5. In this system, the components of L would involve only

the corresponding components of w, thus (10 pp. 519 - 520)

L, L 0 017w
‘LZ] = [0 I, 0] [(Uz] (2.73)
L, 0 0 Lllws

Transformation of the inertia tensor from one right-handed orthonormal basis to another
with the same origin can be done with the following simple equation:

I' = RIRT (2.74)
where I’ is the inertia tensor in the new coordinate frame and R is the proper rotation matrix
connecting the two bases. This rotation can be expressed in terms of the Euler angles ¢, 8, and ¢
as shown in equations (A.1) and (A.2). A proper choice of these angles will transform I into its
diagonal form

I, 0 0
r= [o I, o] (2.75)
0 0 I

where I, I,, and I3 (which are the eigenvalues of I) are referred to as the principal moments of

inertia and the directions x', y’, and z’ defined by the rotation matrix in equation (2.74) are called
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the principal axes of the inertia tensor (7 p. 196). The three principal values of the moment of
inertia tensor can be found by solving the following cubic equation for the values of I that arise

from the determinant of (7 p. 197)

Ixx =1 Ixy Ixz
Ly Ly—-1 L, [=o0 (2.76)
sz Izy Izz -1

The principal moments of inertia cannot be negative, because as the diagonal elements in
the principal axes system they have the sum of squares. For one of the principal moments to
vanish requires that the body’s axis of symmetry pass through the origin. Since the inertia tensor
is positive definite, negative values on the diagonal indicate a mass distribution which is
physically impossible. While this may seem inconsequential, the existing software system used
to generate free-motion solutions at Lincoln Laboratory does not discard state estimates which
may result in negative values on the diagonal of the inertia matrix. Such physically unrealistic
motion solutions have been encountered during the course of this research effort and are a strong
indicator that all is not well.

2.3.2 Euler’s Equation

For the rotational motion about the center of mass, the direct Newtonian approach leads

to a set of expression known as Euler’s equations of motion. In the inertial coordinate frame the

torque N acting on a rigid body is related to the angular moment through the formula (2 p. 277)

d

NI:E

L (2.77)

Conversely, the derivatives with respect to axes fixed in the body leads to (10 p. 521)

d d d
ELI = ELB + wB X LB = Ra(¢)NI = ELB + wB X LB (278)

which, after applying the rotation matrix R,(¢) to transform the torque from inertial to body-
fixed coordinates, results in Euler’s equation
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_LB = —wB X LB + NB (279)

Substituting equation (2.71) into the above equation, results in the following dynamics equation
(10 p. 522):

Ny = Lo, — wyw3(l; — I5)

Ny = L, — wzw (I3 — Iy) (2.80)

N3 = Lo —w,w(I; — 1)

which can be rearranged into

%w I [— X (@) + N] (2.81)

However, equation (2.81) is not complete and must be combined with one of the kinematical
relationships for the rotation matrix, Euler angles, quaternion, or some other attitude
representation.
2.3.3 Torque-Free Motion of a Symmetric Rigid Body
Assuming that the spacecraft body axes are aligned with the principal axes of the inertia
tensor and that the torque acting on the spacecraft is zero (N = 0), enables Euler’s equations to
be rearranged/rewritten as (2 p. 278):
Lo+ (3 —L)w,w; =0
L, + (I, — I3)wsw, = 0 (2.82)
Lo+ (I - I)ww, =0
As is described extensively in References (1), (6), (9), and (11), these equations are solvable
only in terms of the Jacobian elliptic integrals and for the special case of a symmetric spacecraft
(I; = I, # I3), these become
Loy = (3 — Dw,ws

Iz(l:)z = (11 - 13)(03(01 (283)
13(1:)3 =0
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which are now solvable in terms of simple trigonometric functions. Since w4 is constant, it can
therefore be treated as one of the initial conditions of the problem. The remaining two equations

can now be written (7 p. 206)

w1 = Qw,

b, = e, (2.84)

where Q is the angular frequency

Q= (’1; 3) w3 (2.85)

Elimination of w, in equation (2.84) leads to a differential equation for simple harmonic motion
@, = w, (2.86)
with the typical solution (10 p. 525)
w; =Acos(Q)t (2.87)

where t is the time and A is the amplitude of the precession given by

A= fwf + w3 (2.88)

The corresponding solution for w, can be found by substituting this expression for w;, back into
the first part of equation (2.84) to produce:

w, = —Asin(Q) t (2.89)
The solutions for w; and w, show that the angular velocity vector has a constant magnitude and
rotates uniformly about the z-axis of the body with the angular frequency Q — which is ultimately
equivalent to the spin rate ¥ (10 p. 490). Consequently, in the body coordinate frame, the angular
velocity and angular momentum vectors cone about the spacecraft symmetry axis with an

angular precession rate ¢ and half-cone angle 8, where (11 pp. 491 - 492)

A
tan(@) = o (2.90)
3
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Having determined the angular velocity, one can begin the process of describing the attitude
motion. In order to simplify the problem conceptually, the angular momentum axis is typically
aligned with the inertial z-axis, using a rotation matrix generated with the 3-1-3 Euler angles
sequence. The body reference angular momentum is (10 p. 536)

L = |LI(R313(¥, 6, $)us)
cos(¢) cos(y) — sin(¢) cos(#) sin(y) sin(¢) cos() + cos(¢) cos(@) sin(yp)  sin(@) sin(y)

— cos(¢) sin(y)) — sin(¢) cos(8) cos(yp) —sin(¢) sin(y) + cos(p) cos(@) cos(yp) sin(@) cos(yh)
sin(¢) sin(0) — cos(¢) sin(B) cos(8)

= |L]

:

|L| sin(8) cos(y) (2.91)

[ILI sin(@) sin(y)
B |L] cos(8)

where |L| is the magnitude of the angular momentum vector in body coordinates. Thus, in body
coordinates, two of the Euler angles become spherical angles of the angular momentum vector.
Because wjy is a constant, it follows that the coning angle is also a constant, and the coning rate 6

is equal to zero. Accordingly, the kinematics equation for the Euler angles becomes (2 p. 280)

0 cos(y) sin(@)sin(y) ][ ¢ sin(8) sin(y)
wg =0 —sin(®) sin(8) cos@)||0[= [ sin(6) cos(y) (2.92)
1 0 cos(6) ¢ ¢ cos(9) + P
Recalling that I; = I,, enables Ly = Izwg to be written as
sin(8) sin(y) I, 0 07[¢sin(8)sin(y) I (¢ sin(8) sin(¥))
|IL]| [sin(8) cos(¥) | = [ I 0] ¢ sin(8) cos(@) | = [I.( sin(8) cos(@)) (2.93)
cos(6) 0 0 LI ¢cose) +v I;( cos(8) + )
Solving the first line of equation (2.93) for the precession rate ¢ yields
6=t 2.949)
L

which, along with the last row of equation (2.92), can be substituted into equation (2.93) in

order to find the spin rate 1, according to (10 pp. 537 - 538)
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L] cos(8 . Lws + Ly , I, —1
=]| ()+¢=33 1¢: 1 3

3 I I v= (T) @s (2.95)

. I, — I3\ . I —1

P = (¥> ¢ cos(0) = (¥> |L| cos(@)
I 1,13

This result is exactly the same as what was given in equation (2.85) for the angular frequency Q.

Thus, for the torque-free motion of a symmetric rigid body, the Euler angle rates are all constant,

and the solution for the attitude in terms of the Euler angles is (2 p. 280)

¢ = H(AD) + ¢q
6 =6, (2.96)
P = P(AD) + P

where ¢ is the precession angle, ¢, is the initial precession direction (x-initial), ¥ is the spin
angle, 1, is the initial spin direction (z-initial), and At is the change in time. The most important
point of this discussion is that, in the inertial reference frame, the direction of the angular
momentum remains fixed, and the spin axis and angular velocity vector cone about it. Thus, a
point on the spin axis describes a circle in inertial space. An observer fixed in the space axes
would see w move on the surface of a space cone and correspondingly, an observer fixed in the
body would see the angular velocity vector move on the surface of a body cone, as depicted

below (2 p. 281).
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Figure 2.6 Torque-free motion of a symmetric rigid body (spin-precession motion) (11 p. 492)

If one regards the body and space cones as those swept out by the angular velocity vector
with respect to the body’s z-axis and the angular momentum vector, respectively, then one cone
must roll over (or within) the other, with the angular velocity vector representing the line of
contact between the two. If the moment of inertia about the symmetry axis is less than that about
the other two principal axes, then the body cone will be outside the space cone; and conversely,
when the moment of inertia about the symmetry axis is the greater value, the body cone rolls
around the inside of the space cone. In either case, the physical description of the motion is that
the direction w of precesses in time about the axis of symmetry of the body (11 pp. 491 - 493).
2.3.4 Attitude Prediction and Simulation

Though the environmental torques that operate on the spacecraft are generally quite
small, they cannot be ignored, since they act over a very long period of time. Similarly, while it
is often the case that the difference between two principal moments of inertia is small compared
with the difference of these from the third, the spacecraft is never exactly symmetric (even for

the second-order moments which make up the inertia tensor). Accordingly, a major focus of the
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architecting process has been devoted to developing and integrating more refined models into the
filtering algorithm in order to overcome these invalid underlying assumptions and perform multi-
pass attitude prediction. Since the primary guess that initiates the measurement sub-process
describes the motion of the spacecraft in terms of these body-symmetric, torque-free Euler angle
parameters, it is necessary to switch to a more flexible representation. As has been mentioned
before, the best choice is the unit quaternion, whose kinematic equation is linear and which
satisfies only a single constraint that is easy to enforce.

Furthermore, accurate prediction of the time evolution of the attitude of a spacecraft
requires three things: 1) a refined set of initial conditions (the output of the filtering sub-process
discussed in the next chapter), 2) specifying the differential equations governing the rotational
motion of the spacecraft (outlined in the preceding sections), and 3) a method of solution (12 p.
558). The dynamic and kinematic equations of motion are taken as a set of coupled differential
equations and integrated using one the methods described in Section 2.3.4.1. The integration
state vector x, consists of the attitude quaternion and three angular velocity body rates or angular
momentum components. Given the nature of the problem, the method of solution is necessarily
constrained to dynamic modeling, since the only other option is gyro modeling, which consists of
using rate sensors or gyroscopes onboard the spacecraft to replace the dynamic model such that
only the kinematic equations need be integrated. To properly integrate both the set of equations,
requires detailed models be developed in order to estimate the physical characteristics of the
spacecraft and external disturbance torques. Both the attitude estimation and prediction
components of the overarching system architecture make use of different aspects of the models

and algorithms described in the subsequent sections.
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2.3.4.1 Numerical Integration Methods

Once the appropriate differential equations for attitude propagation have been
established, it is necessary to choose a method for solving them. Because exact closed-form
solutions of the complete equations to be integrated are almost never available, an approximation
method is needed. The approach discussed in this section is direct integration using standard
methods of numerical analysis. The equations of motion of attitude dynamics are a set of first-

order coupled differential equations of the form

dx
Fri f(t,x) (2.97)

where f is a known vector function of the scalar t and the vector x. For simplicity, only the single
differential equation dx/dt = f(t,x) will be considered in this section, since the extension to
coupled equations is fairly straightforward. Numerical algorithms will not give a continuous
solution x(t), but rather a discrete set of values x,, (n = 1,2, ...) that are approximations to x(t) a
specific times t, = t, + ns, where the parameter s is called the integration step size. Values of
x(t) for arbitrary times can be obtained by means of interpolation (Matlab function interp). For
interpolation equations and procedures, please consult References (13) and (14). A minimum
requirement on any algorithm is that it converge to the exact solution as the step size is
decreased, that is,
£i_r)r5 X, = x(t,) (2.98)
where the number of steps n, is increased during the limiting procedure in such a manner that
ns = t, — t, remains constant.
Three important considerations in choosing an integration method are truncation error,
round-off error, and stability. Truncation error, or discretization error, is the difference between

the approximate and exact solutions x, — x(t,), assuming that the calculations in the algorithm
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are performed exactly. According to Reference (15), “if the truncation error introduced in any
step is of order sP*!, the integration method is said to be of order p.” Round-off error is the
additional error resulting from the finite accuracy of computer calculations due to “fixed word
length”. An algorithm is unstable if errors introduced at some stage in the calculations (from
truncation, round-off, or inexact initial conditions) propagate without bound as the integration
proceeds. Truncation error is generally the limiting factor on the accuracy of numerical
integration; it can be decreased by increasing the order of the method or by decreasing the step
size. It is often useful to vary the step size during the integration, particularly if the
“characteristic frequencies of the problem change significantly”; the ease with which this can be
done depends on the integration method used (12 p. 560). The computation time required is
usually proportional to the number of function evaluations, i.e., calculations of f, = f(t,, x,,) that
are required. Clearly, decreasing the step size increases the number of function evaluations for
any fixed integration algorithm.

Two categories of integration techniques are commonly employed. In one-step methods,
the evaluation of x,,, requires knowledge of only x, and f,. Multistep methods, on the other
hand, require information about previous values x,, and f,,, for some number of values m < n as
well. One-step methods are widely used, due to the fact that they are relatively easy to apply —
only x, and f, are needed as initial conditions — and the step size can be changed as necessary,
without any additional computations. The most common one-step approach includes the classical
R-stage Runge-Kutta method (15 p. 561)

Xp41 = Xp + 5@(ty, Xp, S) (2.99)
The increment function ¢ is a weighted average of R evaluations of f(t,x) at different points in

the integration interval and is given by (15 p. 561)
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R
Oltn ) = ) crly (2.100)

r=1

subject to the following constraint (15 p. 562)

R
Z ¢ =1 (2.100)
r=1
k, = f(t,x) (2.101)
r—1
kr=f <t + sa,, x + SZ brsks> r=23,..,R (2.102)
s=1
r—1
a, = Z b, r=23,..,R (2.103)
s=1

The different choices of the parameters ¢, and b, define the different methods. Note that an R-
stage method involves R function evaluations. The constants are always chosen to give the
maximum order (and thus the maximum truncation error) for a given R; this order is R for
R=1,2,3,4,R—1 for R=5,6,7; and <R — 2 for R = 8. For this reason, fourth-order four-

stage Runge-Kutta methods are the most popular and take the following form (16 p. 603)

Xpyq = X + %(k1 + 2k, + 2ks + ky) (2.104)
ki = f(tn xn) (2.105)

k, = f(t, + 0.5s,x,, + 0.5sk,) (2.106)

kz = f(t, + 0.5s,x, + 0.5sk,) (2.107)
ky = f(t, + s,x, + sk3) (2.108)

The algorithm summarized by equations (2.104) — (2.108) is utilized extensively in the attitude
estimation problem described in Chapter 4, along with the Matlab function known as ode45,
which uses the Dormand—Prince method for solving ordinary differential equations (17). The

method is a member of the Runge—Kutta family of ODE solvers, which uses seven stages, but
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only six function evaluations per step to calculate fourth- and fifth-order accurate solutions. The
difference between these solutions is then taken to be the error of the (fourth-order) solution.
This error estimate is very convenient for adaptive step size integration algorithms.

A k-step multistep integration method has the form (16 p. 610)

k k-1
Xn+1 = SZ Bifn+1+j-k Z AjXn+1+j-k (2.109)
j=0 j=0

where different choices of the parameters a; and f; define alternative methods, and determine the
number of back values of f, and x,,. One drawback of these methods is that they are not self-
starting; some other method, often a Runge-Kutta, must be used to calculate the first k values of
f» and x,. Another disadvantage is that the step size changes are more difficult than for single
step methods; additional back values must be available if the step size is increased, and
intermediate back values must be calculated by interpolation if the step size is decreased. The
most commonly used k-step algorithms utilize a procedure in which an explicit method (8; = 0),
known as a predictor, calculates x,,4; then f,,, is evaluated and an implicit method (ﬁj *0),
known as a corrector in this application, is used to obtain a refined value of x,,,, followed by a
second evaluation of f,,,; using the new x,,,. The chief advantages of a predictor-corrector pair,
such as the Adams-Bashforth-Moulton algorithm, is that only two function evaluations are
needed per integration step and the difference between the predicted and corrected values of x,, 44
give an estimate of the truncation error and can be used for step size control. This is in contrast to
the Runge-Kutta methods, for which the step size changes are relatively easy, but estimates of
truncation error are difficult to obtain. The 4™-order Adams-Bashforth-Moulton pair is given by
(16 p. 627)

Predictor (explicit)
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S
Xpn+1 = Xp T ﬁ(ssfn —59fn-1+37fn-2 — 9fn-3) (2.110)

Corrector (implicit)

Yns = X + 57 Ofnan + 19 = Sy + fu2) (2111)
This specific algorithm is implemented in the Matlab function odell3 (17). Higher order
methods are also widely used and, unlike higher order Runge-Kutta methods, cost only
additional storage space and not additional function evaluations.

In choosing an integration method, the factors of programming complexity, computer
storage requirements, execution time, and computational accuracy must all be considered. For a
specific application where the characteristic frequencies of the system are known to be nearly
constant, a fixed-step method is appropriate. If the step size is limited by variations in the driving
terms rather than by integration error (noisy input and/or low-accuracy requirements) or if
function evaluations are relatively inexpensive, a Runge-Kutta method is preferred. If on the
other hand, the integration step is set by integration error or function evaluations are expensive, a
predictor-corrector method is better. Adams methods are favored in this class because they
combine good stability properties with relatively low computer storage requirements and
programming complexity. Because predictor-corrector algorithms provide an automatic estimate
of local truncation error, they are the preferred variable-step methods. According to Reference
(12), the best general-purpose integration methods currently available are programs with
variable-step and variable-order Adams-Bashforth-Moulton integrators.
2.3.4.2 Geometric Satellite Model

The mass, center of mass, and inertia tensor for a solid, simple polyhedron of constant

mass density require computing volume integrals VInt; of the type (18 p. 536)
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Vint; = J p(x,y,z)dV (2.112)
14

where V is the volumetric region of integration and dV is an infinitesimal measure of volume.
The function p(x,y,z) is a polynomial selected from 1, x, y, z, x2, y2, z2, xy, xz, and yz. We are
interested in computing these integrals where V is the region bounded by a simple polyhedron. A
volume integral may be reduced to a surface integral via the Divergence Theorem (18 p. 537)

Vint; =Jp(x,y,z)dV=JV-f(x,y,z)dV= J n- f(x,y z)dA (2.113)
4 4 A

where A is the boundary of the polyhedron, dA is an infinitesimal measure of surface area, the
function f(x,y,z) is chosen so that V- f(x,y,z) = p(x,y,2z), and the vector n denotes outward-
pointing, unit-length surface normals. The choices for f are given in the following table (19 pp. 2
-5):

Table 2-1 Function values for volume integration

Vint p(x,y,2) f(x,2) q(x,y,z) c
0 1 (x,0,0) (x,0,0) 1
1 x (x2/2,0,0) (x2,0,0) 1/2
2 y (0,y%/2,0) (0,y%,0) 1/2
3 z (0,0,2%2/2) (0,0,22%) 1/2
4 x? (x3/3,0,0) (x3,0,0) 1/3
5 y? (0,y*/3,0) 0,y%,0) 1/3
6 z? (0,0,2z3/3) (0,0,z%) 1/3
7 xy (x2y/2,0,0) (x%y,0,0) 1/2
8 Xz (0,z%x/2,0) (0,2%x,0) 1/2
9 yz (0,0,y%z/2) (0,0,y%2) 1/2

The wireframe model created in the software program known as X-Based Enhanced
Lincoln Interactive Analysis System (XELIAS) and used primarily in the measurement making
process — described extensively in Section 3.1.3 — can also be leveraged to generate an initial
estimate for the inertia matrix and center of mass. The geometric model can be decomposed into

a set of matrices consisting of vertex coordinates and the order in which they should be
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connected to create planar faces. The polyhedron surface is, thus, a union of thousands of
triangular faces, so the surface integrals are effectively integrals in various planes. Projection of
the faces onto coordinate planes is used to set up yet another reduction in dimension (19 p. 3).
The figure below shows an example patch model for a simple cube shaped rigid body and the

projection of a particular triangular facet into the uv plane.

v

?(O,lal) (lal,l)

A

Figure 2.7 Patch model of a simple geometric shape
Green’s Theorem, the two-dimensional analog of the Divergence Theorem, is employed
to reduce the planar integrals to line integrals around the boundary of the projected faces. After
the complicated integrals have been decomposed into their simplest form, they can be evaluated,
combined, and propagated backward to evaluate the original ones. The integrals to be calculated
have thus far been reduced to the form (19 p. 4)

Vint, = f p(x,y,2)dV = Z(np-l) f Fx,y,2)dA = CZ(nF°l) f q(x,y,2)dA (2.114)
F F

v FeA FeA

where np is the outward-pointing, unit-length normal to face F, I is a unit vector aligned with
either the i, j ,or k axis, c is the constant denominator values (1, 1/2, or 1/3) of the function f,
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and the function g(x,y, z) are the corresponding numerator variables of f presented in Table 2-1.
If the triangular facets are counterclockwise ordered and have vertices p; = (x;, y;, z;), where i =

1,2, or 3, then two of the vector edges e connecting the three points are given by

ex px px ex px
eyl =|py| —|Py| and |ey| =[Py
€z 1 Pz 2 Pz 1 €z 2 Pz 3

A parameterization of the face projected into the uv plane is depicted in Figure 2.7 and can be

Px
—-[py] (2.115)
p21

expressed mathematically as (18 p. 541)

px ex ex
plu,v) =|pPy| +uley| +v|ey (2.116)
Pzl ezl ez1,

where u > 0 and v > 0, and u + v < 1, the infinitesimal measure of surface area is given by (18 p.
542)

dA = |e, X e,|dudv (2.117)
and the outward pointing unit-vector perpendicular to the face is

e; Xe,

ny = —— 2.118
T leg x eyl ( )
Therefore, the integrals in equation (2.114) can be reduce to (19 pp. 7 - 8)
11-v
Vint; = f p(x,y,z)dV = CZ:(e1 X e, - l)f f q(x(u,v),y(u,v),z(u,v))dudv (2.119)
14 Fea 00

where x(u,v), y(u,v), and z(u,v) are the components of the parameterization in equation
(2.116). Computing the integrals on the right-hand side of equation (2.119) has been done using
the symbolic toolbox provided as part of the Matlab software program and yields the following

set of equations (19 pp. 9 - 10):
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(np ) [ xaa =2, )
F
o f PdA=2h (D f x4 = 21,00

() [ 28 =100 e [ yda= 2250
F F

(np - k) f 22dA = :—;fz(x) (np - k) f 23dA = %]g(x) , (2.120)
F F
(ng - 0) f x?ydA = % (3191 (%) + 729:(x) + y393 (x))
F

(g ) [ 32708 = 22 (2101 0) + 29,0 + 23950))
F

(ng - k) f z%xdA = %(9&91(2) +%292(2) + x393(2))
F

where the common subexpressions, f and g, required in the surface integrals may be obtained by

means of some additional factoring and are listed below using a place holder variable w. (19 pp.

8-9)
a,(w) = Y wliw} (2.121)
; 0o W1
folw) = 1and f,(w) = a,(W) + wyfp,_;(w) forn > 1 (2.122)
iw)=wy+w; +w, =[wy +w]+w, (2.123)

f2(w) = w} +wowy +wE +wafy(w) = [[WE] + wylwo +wi}| + wol i)} (2124)
fs(wW) = w§ + wiwy + wow? + wi + wafo(w) = wolwd} + wi{wd + wows + wit + w,{f, (W)}
(2.125)
giw) = Lw) + wify (W) + wi = {LW)} + w; (L (W)} + wy) (2.126)
The square brackets [ ] indicate that the subexpression is computed and saved in terms of

temporary variables for later use, while the curly braces { } indicate the subexpression was
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computed earlier and can be accessed from the cache. Finally, the mass m, center of mass vector
¢, and inertia matrix I can be assembled by first substituting the result of each component of
equation block (2.120) back into equation (2.114) to solve for the volume integrals Int; and then

entering the outcome into (19 p. 2):

m = Vint, (2.127)
1 Vint,
Cp = (—) Vint, (2.128)
M7 [Vint,l
Iy
Vints + Vintg — m(c2,, + c2,,) —VInty; + MCyyCmy —VIntg + M€y Cony
= —=VInt; + MCpxCmy Vint, + Vintg — m(c2, + cZy) —Vintg + mcyyCmz
—VIntg + MCpzCimx —Intg 4+ MCppyCpmz Vint, + VInts — m(cZy + c2,)
(2.129)

As will be describe in greater detail in Section 4.3.2 the initial guess for the inertia matrix
parameters is then calculated through singular value decomposition and back solving for the
parameters that correspond to the moment of inertia matrix generated using the process described
above.
2.3.4.3 Environmental Torques

Environmental torques are naturally occurring body disturbances that impact the attitude
of a spacecraft independent of any action it may take. To numerically integrate Euler’s equations,
the torque must be modeled as a function of time and the spacecraft’s position and attitude. As
was mention in the chapter introduction, in general, orbit and attitude are interdependent and
nowhere is this union more evident than when analyzing the effects of environmental torques.
For example, in a low altitude Earth orbit, the attitude will affect the atmospheric drag on the
vehicle, which will impact the semi-major axis and eccentricity of the orbit; conversely, the orbit

establishes the spacecraft position which determines both the atmospheric density and the
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magnetic field strength which will, in turn, affect the attitude. However, since only the impacts to
attitude are of consequence to the subsequent problem, orbital information is always taken as
input and the affects of attitude on orbit are overlooked. Even though this unilateral look at
environmental torques enables the complex dynamics involved to be dramatically simplified, the
non-cooperative nature of the problem implies that certain physical characteristics of the
spacecraft, such as the coefficient of drag and surface reflectivity, will either need to be inferred
through external observation or reasonably estimated. Even with such an approach, several other
critical assumptions and approximations are required in order to reduce the modeling effort to a
manageable level.

The objective of this section is to briefly outline the conventional models used to describe
the dominant sources of attitude disturbance torques, which include the Earth’s gravitational and
magnetic fields, solar radiation pressure, and atmospheric drag. The relative importance of each
of these torques to a given attitude prediction problem is a function of the vehicle’s size, shape,
mass, mass distribution, and altitude.
2.34.3.1 Gravity-Gradient Torque

All nonsymmetrical objects of finite dimension in orbit are subject to a gravitational
torque because of the variation in the Earth’s gravitational force over the object. Since there
would be no gravitational torque in a uniform gravitational field, the magnitude of the force from
the Earth is not constant but varies roughly as R~2, where R is the distance from the geocenter
(12 p. 566). The general expression for the gravity-gradient torque Ngg on a spacecraft of
arbitrary shape and using a nonspherical Earth model can be expressed as (12 p. 567)

3u

Noo = Ts]

Rx (I-R) (2.130)
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where I is the inertia tensor, R is the position vector of the spacecraft’ s center of mass with
respect to the Earth’s geometric center, and u = GM, = 398600.5 km3/sec? is the Earth’s
gravitational constant. From equation (2.130), several general characteristics of the gravity-
gradient torque may be readily inferred: 1) the torque is normal to the local vertical, 2) the torque
is inversely proportional to the cube of the geocentric distance, and 3) the torque vanishes for a
fully-symmetric spacecraft (i.e. the principal moments of inertia are all equal) (2 p. 283). Because
the Earth is not perfectly spherical it becomes necessary to calculate general potential function

for the Earth and the gravity-gradient tensor (20 pp. 128 - 129)

g1 Y1z s
Gr = (921 922 923] (2.131)

931 Y32 Yalp

The elements of which are given by

g11 = F[1 = 3(R;?)] + F{1 — 5[R,* + R3*] + 35(R,*)(R3%)} (2.132)
922 = F[1 = 3(R;?)] + F{1 — 5[R2* + R5*] + 35(R;%)(R5%)} (2.133)
gss = F[1 — 3(R3%)] + {3 — 30(R5?) + 35(R;5*)} (2.134)
g1z = g21 = 3O RIRy) + F{-5(R)D(R) + 35(R1) (R (R5)?} (2.135)
g13 = ga1 = 3O RDR3) + F{—5R)(R3) + 35(R1)(R3)(Rg)?} (2.136)
g1z = g21 = —3(O R (R3) + F{-5(R2)(Rs) + 35(R2)(R3)(R3)?} (2.137)

where r is the vector from the center of the Earth to the satellite the terms common to each

component of the gravitational tensor, R, I, and F are given by

r ry /Il
R=ro= /|7l (2.138)
A | VY
s _H
= (2.139)
_ R.\?
F = (1.5)],F (m) (2.140)



It is important to note that the gravitational tensor is referenced to the Earth Centered
Earth Fixed (ECEF) reference frame [GEN], denoted by the subscript F rather than the Earth
Centered Inertial (ECI) coordinate system which uses the subscript I. As the name implies, the
ECEF coordinate system is fixed to the rotating Earth, with an origin at the center of the Earth
and fundamental plane that runs through the equator. The principal direction G axis is aligned
with the Greenwich meridian (0° longitude), the N axis runs through the North Pole, and the E
axis points towards the East (3 p. 158). In order to transform between the ECEF and ECI
coordinate frames, one need only rotate about the z-axis by the Greenwich Mean Sidereal Time
8,4, which is the angle in degrees measured from the vernal equinox to the Greenwich meridian,
as depicted in Figure 2.8 (3 p. 189).

Local I\_Ieri(lian

Figure 2.8 Spherical Angles: Greenwich mean sidereal time 84, longitude 4, and right ascension a

The rotation angle can be calculated using the following set of equations (3 pp. 191 - 193):

8, = 6,0 + 1.002737909359795(360°)(D) (2.141)
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= (Day Numb 1)+(hr)+(min)+( ik ) (2.142)
- \Way fumber 24) " \1240/ " \86400 ‘

040 = Mmod360(100.4606184 + [36000.770053(T)] + [0.00038793(T2)] — [2.6 x 10~8(T?)]) deg
(2.143)

D — 2451545.0
_U ) (2.144)

36525

where D is the total elapsed time in solar days (please see Table B-1 in Appendix B for
information on calculating day numbers) and 6,4, is the Greenwich Mean Sidereal Time, both
from the epoch 1 January 00:00:00 of the year of interest. In equation (2.144), JD is the Julian
date, which is the interval of time measured in days from the epoch 1 January 4713 B.C,,
12:00:00 and can be calculated using equation (B.1) in Appendix B. Having converted solar time
into the proper sidereal angle, the coordinate transformation for the gravitational tensor can then

be found in the following manner (3 p. 173):

Gi1 Gz Gi3
G; = R3(0,)GrRY(0,) = |G21 Gaz  Gas
Gz1 G3p Gzl

cos( ) —sin( ) 0
= sm( ) cos( ) 0

1

Gaq 22 Ga3 —sm( ) cos( ) 0 (2.145)
31

G11 12 G13] lcos( sin(6y) 0

and the gravity gradient torque is then given by (21 p. 15)

Nge1 (22 — I33)Gag + (G33 — Gop) I3 + 112G13 — 136Gy
Ngez| = [Uz3 = 111)G13 + (G11 — G33)li3 + 3Gz — 121G23 (2.1406)
Negslp  [(T11 — 122)G1z + (Gaz — G1)iz + I51Gaz — 152G |

2.34.3.2 Magnetic Torque

Magnetic torques results from the interaction between the spacecraft’s residual magnetic
field and the geomagnetic field. For near Earth spacecraft at altitude greater than 500 km,
magnetic torques are often the principal disturbance affecting spacecraft attitude. The magnetic

torque Ny is typically expressed as (12 p. 575)
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m,B; —m3B,
mgB; —m B
myB, —m,B;

Ny=mxB= (2.147)

where m is the effective magnetic moment of the spacecraft in A-m? and B is the geocentric
magnetic flux density with unit of Wb/m2. In order to minimize errors in evaluating the magnetic
torques, the magnetic field of the Earth was computed from the spherical harmonic model and
Gaussian coefficients gy and hj;', obtained from the 10th generation international geomagnetic
reference field (IGRF) database created by the National Oceanic and Atmospheric
Administration (NOAA) (22). The Gaussian coefficients are determined empirically by a least-
squares fit to measurements of the field and include terms through 13™ order and degree. Since
the atmosphere is essentially nonmagnetic, the equations for the geocentric field intensity
components may be expressed in terms of the magnetic flux density B, according to (20 pp. 117 -

118) and (23 p. 783), as

n
R n+2 de 0
By =- Z (—m> (gnt cos(mA) + hyt sin(mA)) 29( ) (2.148)
n=1 m=0 r
Nmax n m R n+2
B= ) > s (TR) (g singnd) — R cos(ma)) BT(O) 2.149)
sin(®)\ r
n=1 m=0
Nmax n R nt2
By = Z Z (n+1) (Tm> (g7 cos(md) + hiit sin(ma)) B(6) (2.150)
n=1 m=0

where R,, is the mean radius of the Earth (6371.2 km), as opposed to the Earth’s equatorial radius R,
which is given as 6378.137 km. Additionally, the Schmidt-normalized associated Legendre
functions B*(@) and their derivatives may be evaluated from the following recursive formulas

(23 pp. 775 - 776)

PJ(©) =1
dP{ (@) 0 n=m=0 (2.151)
e
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2n—1

PI(©) = |——PiZ{()sin(®)
n=mx1 (2.152)
n _ n-1
dPZ é@) = ann ! [dpnéé(g) sin(®) + P=1(6) cos(@)]
m 2n—-1 m [(n—1)2 — m2 .
PM(®) = ﬁ [Pn—l(g) cos(@) — m—1 Pn—z(g)]
=0
dpy(©) | 2n—1 [dPRy(®) o L. oo Ja—Dr—mzarm,@][" -
© G| ae OO = Pma(®)sin(®) - e

(2.153)

In this set of equations ©, A, and r are the colatitude (/2 — latitude), longitude, and range of the
spacecraft respectively; values for which can be easily obtained by generating the corresponding
report in the software program Satellite Tool Kit (STK). A detailed set of directions for creating
the necessary text file is provided in Appendix C. The desired principal axis components of the
geomagnetic field are expressed in terms of a basis in which the R axis always points from the
Earth’s center along the radius vector towards the satellite as it moves through the orbit. The T
axis points in the direction of the velocity vector and is perpendicular to the radius vector and the
N axis is normal to the orbital plane (3 pp. 162 - 163). In order to transform from the Satellite
Orbit Coordinate System [RTN] coordinate system (given the subscript S) to the ECI frame,
requires that the longitude A be converted into right ascension a (also known as Local Sidereal
Time), using the values found in equations (2.141) — (2.144) and the simple formula (21 pp. 34 -
35)

a=1+0, (2.154)

the combined rotation matrix can then be expressed as

B, cos(®) 0 — sin(®) B,
B; = R,(a)R,(0)Bs = [B;| =|[sin(®)sin(a) cos(a) cos(®)sin(a)||B: (2.155)
B3l,  [sin(®) cos(a) —sin(a) cos(®) cos(a)|LlBslg
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23433 Aerodynamic Torque

Aerodynamic torque is created by the impact of rarefied air particles with the satellite
surface and depends primarily on the atmospheric density at a given altitude. At altitude below
about 800 km the aerodynamic torque is generally the most important of environmental
disturbance torques. The force due to the impact of atmospheric molecules on the spacecraft
surface can be modeled as an elastic impact without reflection, in which the incident particle’s
energy is generally completely absorbed upon collision (12 pp. 573 - 574).

As was discussed in Section 2.3.4.2, the surface area of the satellite can be decomposed
into simple geometric shapes, enabling the aerodynamic force acting on each individual shape
making up the vehicle’s body, to be considered independently and summed together in order to
find the total torque. Because the resultant forces on any given panel of the spacecraft acts at the
center of pressure of the exposed surface area, the same geometric model used in estimating the
moment of inertia matrix, can also be used to locate the corresponding centroid of each triangular

facet that comprises the satellite as depicted in Figure 2.9 (12 p. 574).
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Figure 2.9 Aerodynamic drag acting at the centroid of each surface element
This approach avoids time-consuming repetitive evaluation of surface integrals by taking
advantage of the regular geometry of the panels and the fixed orientation of each surface element
with respect to the center of mass/center of rotation. If spacecraft is characterized as being a

finite collection of surfaces, then the acrodynamic torque N4 can be written as (2 pp. 285 - 286)

to the Center of Pressure (R)

> Y
Center of Pressure (CoP)
[Centroid of the Surface A]

n
1
N,= _ECDPZAi(ni -v)(1; X v)
i=1

and the summation is over that part of the spacecraft for which n; - v > 0, that is, the portion of
the spacecraft surface facing into the wind. In the above equation, Cp is the drag coefficient
(which is assumed to be 2 since no measured value is available), p is the atmospheric density, r;
is the position vector to the center of pressure of the it! surface, measured from the center of

mass, v is the velocity vector in ECI coordinates obtained from STK, 4; is the area of the it
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surface element, and n; is the outward pointing unit-vector, normal to the surface element. For a
flat surface, if there are no shadowing effects, the center of pressure is located at the geometric
center (centroid) of the face.

Unfortunately, the calculation of aerodynamic torques is in general, not very accurate,
due to large uncertainties in the atmospheric density, drag coefficient, and shadowing effects.
Furthermore, at altitudes above 200 km, the atmospheric density is sensitive to solar activity,
which may cause the lower atmosphere to expand, with sometime severe consequences (20 pp.
109 - 110). In order to mitigate errors to the greatest extent possible, values for the atmospheric
density and the solar flux F10.7, are computed using the NRL-MSISE-2000 Atmospheric Model
and Space Physics Interactive Data Resource (SPIDR), respectively. The NRL-MSISE-2000
model uses the daily F10.7 value, the orbital parameters of the satellite (namely the latitude,
longitude, and altitude), and characteristics of certain atmospheric molecules, to compute the
neutral temperature and density of the Earth’s atmosphere over a fixed time interval. To obtain p
values at specific observation times in a given pass requires the use of interpolation, which can
be done using the Matlab function interpl. For more detailed information on the density model
used in this thesis, consult Reference (24).

2.34.34 Solar Radiation Torque

Radiation incident on a spacecraft’s surface produces a force which results in a torque
about the satellite’s center of mass. The surface is subject to radiation pressure or force per unit
area equal to the vector difference between the incident and reflected momentum flux. Because
the solar radiation varies as the inverse square of the distance from the Sun, the pressure is
essentially altitude independent for spacecraft in Earth’s orbit (12 p. 570). The major factors

determining the radiation torque are the intensity and spectral distribution of the incident
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radiation, the geometry of the surface and its optical properties, and the orientation of the Sun
vector relative to the spacecraft (20 pp. 129 - 130). Though electromagnetic radiation is also
reflected by and emitted from the Earth and its atmosphere, these contributions to the overall
torque are small and will, therefore, be ignored. The solar radiation torque, from a geometrical
standpoint, is very similar to the aecrodynamic torque, except that the incident particles are
photons rather than air molecules. Radiation from the Sun may be either completely absorbed,

specularly reflected, or diffusely reflected, as shown in Figure (2.10) (12 p. 571).

Absorption Specular Reflection Diffuse Reflection

Figure 2.10 Absorption and Reflection of Incident Radiation
The probabilities of each of these occurrences are called the coefficients of absorption, specular
reflection, and diffuse reflection, and satisfy
Cates+cg=1 (2.157)
The total solar torque Ngg acting on a collection of planes about the center of mass of the

spacecraft is the vector sum of the individual torques calculated by (12 p. 572)

n
NSR =sinix

i=1

- %Ai(ni 's) [(1 —c)s+2 (cs(ni +s) + %Ca) ni]] (2.158)

where F, is the solar constant (1400 W/m?), ¢ is the speed of light (3 x 108 m/sec), r; is the
position vector to the center of pressure of the i*® surface, measured from the center of mass, s is
the unit vector pointing from the spacecraft to the Sun obtained from STK, along with the solar
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intensity s; (a percentage value, typically 100% or 0%, that changes as the satellite passes in and
out of eclipse), 4; is the area of the i'h surface element, and n; is the outward pointing unit-
vector, normal to the surface element. Again the summation is limited to that part of the surface

for whichn; - s > 0.
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3 Attitude Determination and Estimation

For some applications, it is useful to determine the attitude of a spaceborne object over
time, via non-cooperative means. For example, suppose a satellite’s attitude control system has
failed and the satellite is in an uncontrolled tumble. The satellite owners wish to operate on the
satellite to retrieve data or restabilize the object if possible. In many cases, the telemetry reveals
nothing pertinent to the unstable motion or the communication link between the satellite and
ground station may be severed or degraded, rendering the traditional array of onboard sensors
unusable. Fortunately, from inverse synthetic aperture radar (ISAR) images of the target, the
Space Situational Awareness Group is able to obtain attitude measurements helpful in the motion
analysis. However, these measurements are generally not obtained in a straightforward manner,
as considerable processing of the raw radar data is needed to form usable images for the attitude
measurement process (known as image-model matching). Given the unconventional manner in
which the attitude is being sensed in this particular problem, considerable attention is given in
this chapter to understanding how the images are generated and the nature of the observations
that can be derived from them.

A filtering algorithm is needed to calculate the motion of the object from the inherently
noisy radar measurements and establish the uncertainty in the obtained motion solution. Since
the dynamics equations are nonlinear, it is highly unlikely that a closed-form solution to the
system exists. Additionally, since the number of images yielding measurements exceeds the
minimum number necessary to solve for the unknown quantities characterizing the motion, the
problem is said to be overdetermined. It is therefore useful to employ some sort of nonlinear
least-squares procedure. While a number of least-squares estimators exist, the backward-

smoothing extended Kalman filter (BSEKF) has been selected, due to the unique challenges
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presented by the ISAR attitude measurements and nonlinear system dynamics. As will be
discussed in greater detail in the subsequent sections, the BSEKF possesses the attributes of a
number of different algorithms. Also, the filter has been shown to have significantly better
convergence reliability and accuracy when compared against other leading algorithims in the
field, namely the extended Kalman filter (EKF) and unscented Kalman filter (UKF), for
estimation problems that start with large initial attitude or attitude rate errors. In the final phase
of the entire process, output displays describe the computed motion to the analyst and make
predictions about the future attitude of the spacecraft. With this critical external information, it
may be possible for operators to then identify the source of the anomaly, develop resolution
plans, and hopefully, reestablish communication with their valuable space asset.

Figure 3.1 summarizes the critical objects and processes involved in attitude
determination and estimation. While by no means comprehensive, this high-level diagram forms
the basis for much of what will be covered, not only in this chapter, but throughout the remainder
of the thesis. Those algorithms and techniques of particular importance to the subsequent

discussion have been highlighted and referenced by section.
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Figure 3.1 Decomposition of the attitude estimation process into relevant sub-processes and
different types of sensors/measurement techniques and data filters/estimators

3.1

The Measurement Process

Radar images are formed by coherently combining many observations of an object, called

the target, over a range of frequencies and viewing geometries. The imaging process is coherent

in that it uses the phase as well as the amplitude of the target echoes. Anything that degrades

system coherence also degrades the quality of the final image. One such item is uncorrected

radial target motion, which causes the radar echoes to be shifted in range. These shifts may be

removed from the signal during the imaging process using a technique called motion

compensation. A high level of precision in the measurement of the satellite’s translational and

rotational motion is needed to implement motion compensation with the required accuracy. In

order to achieve the necessary precision, the radar data itself can be used to refine the orbital and

attitude estimates in an algorithmic process called autofocus.
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At a fundamental level, radar imaging techniques attempt to extract information about the
spatial arrangement of a target’s various scattering components from the radar echoes. That
information is encoded in differences in the returns as a function of frequency and viewing
geometry. The amount of information contained in the variations over frequency is limited by the
frequency span, or bandwidth, of the transmitted waveform. Similarly, the amount of information
contained in the variations over viewing geometry is limited by the span of the viewing angle.
Imaging of satellites from the ground falls into a class of problems in which target motion
accounts for most of the change in viewing geometry over the observation period. Such target-
imaging situations are given the name inverse synthetic aperture radar (ISAR). The term inverse
is used to emphasize the importance of target motion, in contrast to synthetic aperture radar
(SAR), where platform motion accounts for most of the change in viewing geometry over the
observation period. From the ISAR perspective, radar imaging constructs a map of the target’s
complex scattering amplitude from the collection of radar returns, each of which is a projection
of that function at a specific rotation angle. The description of radar imaging in terms of
projections, and the fundamental insight that description provides, forms the basis of the range-
Doppler imaging algorithm.

The collection of algorithms used by the Space Situational Awareness Group to generate
and process radar images is known as the Advanced Radar Imaging Environment Software
(ARIES). For the purposes of this thesis project, only a basic understanding of how the raw radar
returns are used to form images is needed. The intent is to provide a sufficient amount
background in the image generation process in order to support more critical discussions
concerning: 1) how the attitude measurements are made and 2) the challenges associated with

using radar imagery as the basis for what’s called image-model matching. To that end, the
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subsequent sections will focus on the FFT radar-Doppler imaging technique, general motion
compensation methods, and the specifics of the measurement making process.
3.1.1 Inverse Synthetic Aperture Radar Basics

An inverse synthetic aperture radar system coherently combines signals obtained from a
single ground-based aperture as it observes a rotating target. The rotational motion of the target
provides the aspect change needed to approximate the result that could otherwise only be
achieved by a larger antenna aperture (25). Consider the simplified ISAR system depicted in

Figure 3.2.
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Figure 3.2 A simple ISAR system consisting of a coherent wideband radar sensor imaging a satellite
(26 p. 15)

This simple two-dimensional system includes a radar transmitter/receiver, a medium through
which the radar signal propagates, and an obje