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ABSTRACT 

The Lincoln Attitude Estimation System (LAES), a new tool being developed for the Space 
Situational Awareness Group (SSAG) at MIT Lincoln Laboratory, integrates several existing 
hardware and software systems, with a backward-smoothing extended Kaiman filter (BSEKF). LAES 
is intended to determine the rotational motion of a freely tumbling spacecraft from a sequence of 
discrete-time radar images. The raw range-Doppler returns are collected using a ground-based 
sensor, which is owned and operated by the SSAG, and processed into a set of range/cross-range 
images. A three-dimensional geometric model is, through computer graphics procedures, displayed 
on top of the two-dimensional radar images, enabling an analyst to rotate (and scale in cross-range) 
the model in order to align it to the object's image. Therefore, the orthographic projection matrix that 
the computer graphics procedures computed to display the computer model, simultaneously describes 
the projection of the object onto the radar image plane. These measurements are essentially 
corrections to a nominal or baseline motion which had to be assumed in order to generate the images 
in the first place. Combining the reference motion, which describes the orientation of the image plane 
in inertial space, with the sequence of rotations describing the attitude of the spacecraft within the 
image plane, yields the final set of attitude measurements which are then passed to the BSEKF for 
processing. The existing free motion software currently in use within the Space Situational 
Awareness Group makes two critical assumptions: 1) that that the spacecraft is a symmetric rigid 
body and 2) that there are no disturbance torques acting on the spacecraft during the imaging period. 
The Lincoln Attitude Estimation System removes these simplifying assumptions in favor of a more 
flexible approach which is better suited for long-term studies of rigid body motion. Accordingly, 
several additions have been made to the backward-smoothing extended Kaiman filter, including the 
addition of environmental torque models and an algorithm which generates an initial estimate for the 
inertia tensor using the same geometric model used in the image-model matching process. The 
BSEKF solves a nonlinear smoothing problem for the current and past sample intervals using 
iterative numerical techniques. This approach retains the nonlinearities of a fixed number of stages 
that precede the time of interest, and processes information from earlier stages in an approximate 
manner. The algorithm has been tested using simulated and actual data from a challenging spacecraft 
attitude estimation problem in which there is significant measurement noise, poor initial state 
estimates, and highly nonlinear system dynamics. The filter compensates for this uncertainty through 
concurrent estimation of the attitude and moment of inertia parameters. The filter has been 
demonstrated to accurately and reliably converge on a motion solution in both types of test cases. 
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1.      Introduction 

1.1     Motivation 

Attitude defines the orientation of a space vehicle relative to some fixed reference frame. 

Every spacecraft carries a complement of instruments, called a payload, that must be directed in 

some manner and whose operation is fundamentally dependent upon the spacecraft attitude. 

Accordingly, determining and controlling the orientation of a space vehicle are two critical 

processes which deliver value to the owner/operators of a given satellite system. When an 

anomaly results in the breakdown of command, control, and communication between the vehicle 

and operators on the ground, the various stakeholders of the system may turn to MIT Lincoln 

Laboratory for assistance in trying to determine the state of their spacecraft. With an extensive 

array of sensors, algorithms, techniques, and operational concepts at its disposal, the Space 

Situational Awareness Group (SSAG) is uniquely equipped to help the operators of errant 

spacecraft track and characterize the motion of their vehicle. With a set of externally-derived 

telemetry values, it may be possible to identify and correct the problem so that the spacecraft can 

be restored to normal operations. Whether Lincoln has been tasked to help recover anomalous 

spacecraft or to provide intelligence and decision support tools to various government agencies, 

the underlying need is ultimately for a system that can predict the future orientation of an 

uncontrolled spacecraft in an accurate and timely manner. With nearly 50 years of experience in 

the fields of orbit determination and advanced satellite imaging systems, Lincoln Laboratory's 

Space Situational Awareness Group is now looking to further extend its know-how into the 

realm of attitude estimation. Given that this is an internal research and development effort being 

done to provide the group with a new capability, the architecture is constrained by the hardware 

and software systems currently in use at Lincoln. Thus, there is an explicit need for the 
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architecture to properly interface with legacy systems as an add-on algorithm that can be 

seamlessly incorporated into the greater suite of situational awareness tools. 

Attitude estimation involves a two-part process: 1) approximation of a spacecraft's 

orientation from body measurements and known reference observations, such as line-of-sight 

measurements to known stars, and 2) filtering the inherently noisy measurements in order to 

arrive at a more refined estimate of the rotational motion of the spacecraft. Traditionally, attitude 

is sensed via an array of onboard measurement devices, such as Earth horizon sensors, 

magnetometers, or star sensors. The accuracy limit is usually determined by a combination of 

hardware and processing procedures. The measurements they produce can then be combined 

with models, in a number of different ways. One method uses a kinematics model propagated 

with three-axis rate-integrating gyros. Since, the rates measured by gyro drift over time, three 

more states are typically appended to the attitude state vector in order to determine this drift. 

Another way involves combining the kinematics model with a dynamics model for the angular 

rate. However, even a detailed dynamics model, such as Euler's rotational equations, will have 

inherent errors. For example, the moment of inertia matrix or initial angular velocity of the 

spacecraft may not be well known. This is typically compensated for in filter designs by using 

process noise, which in turn leads to challenges in "tuning" the filter. Throughout this thesis the 

terms filter and estimator are used synonymously, because noisy measurements are involved. 

Additionally, the term smoother is used to refer to a batch estimator algorithm, which is not 

executed in real-time. Attitude prediction is the process of forecasting the future orientation of 

the spacecraft by using dynamical models to extrapolate the attitude history. Here the limiting 

features are the knowledge of the environmental torques and the accuracy of both the initial 

estimate and mathematical model of the spacecraft dynamics. 
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In the non-cooperative attitude estimation problem being considered in this thesis, a 

much different approach is used to determine the orientation of a satellite. Two-dimensional 

linear radar images are generated by Doppler processing the radar returns in each of the range 

cells of a coherent wideband radar signal, the Doppler frequency of the center of mass being first 

removed. This process results in a range-Doppler image. Assuming an initial motion for the 

object relative to the radar line of sight enables the range-Doppler representation to be scaled to 

form a range/cross-range image. Measurements of the attitude are then made by aligning the 

projection of a three-dimensional computer graphics model (the wireframe) of the spacecraft 

with each discrete radar image in a given pass. The rotations need to orient the wireframe model 

in the radar image plane, in conjunction with the assumed nominal motion used to process the 

returns, describe the orientation of the satellite in inertial space. Due to the significant 

uncertainties and large measurement errors associated with a problem of this type, the backward- 

smoothing extended Kaiman filter (BSEKF) is used to filter the data. The BSEKF improves on 

the traditional extended Kaiman filter (EKF) by relinearizing a finite number of measurements in 

the past when a new observation is processed. The filter has been shown to have superior 

performance when the estimation problem contains severe nonlinearities that might significantly 

degrade the accuracy or convergence reliability of other filters. The systems architecture 

presented in this thesis will hereafter be referred to as the Lincoln Attitude Estimation System 

(LAES) when describing the combination of remote-sensing/measurement-making techniques 

and backward-smooth extended Kaiman filter. 

1.2 Overview of the Thesis 

The overall purpose of this thesis is to present the unique challenges posed by using a 

series of radar images as the basis for making attitude measurements and to evaluate the 
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application of the backward-smoothing extended Kaiman filter to the non-cooperative attitude 

estimation problem. Since the measurements are made via independent, external observation 

(i.e., there is no assistance from the satellite operator), the mass properties and internal dynamics 

of the vehicle are completely unknown. Additionally, because the two-dimensional radar images 

only provide range and range-rate information, the attitude and angular velocity of the spacecraft 

can only be determined up to a rotation around the radar line of sight. While several simplifying 

assumptions are necessary to overcome these difficulties, the existing software systems used by 

the SSAG, goes so far as to presume that the spacecraft is a symmetric rigid body operating in a 

torque-free environment. This is done in order to allow for closed-form motion propagation; 

removing the assumption of spin-precession motion requires a system of ordinary differential 

equations expressing Euler's equations of motion. Use of the BSEKF, therefore, represents a 

significant departure from the approach currently used to determine the rotational motion of a 

freely tumbling spacecraft from a sequence of radar images. The Lincoln Attitude Estimation 

System eliminates these critical restrictions, through the incorporation of a detailed set of 

environmental torque models and simultaneous estimation of the moment of inertia parameters. 

Consequently, another major aim of this thesis is to investigate the ability of the BSEKF to be 

used in both short-term (single pass) and long-term (multi-pass) attitude prediction. 

Chapter 2 provides background on rigid-body mechanics. The fact that nearly all globally 

continuous and nonsingular representations of rotations have at least one redundant component, 

has led to alternatives using an attitude parameterization which is either singular or redundant. 

Thus, depending on the situation, it may be easier to describe the attitude in terms of a 3 X 3 

matrix, three rotation angles, or by a four-dimensional vector (a quaternion). While several other 

fundamentally different and often exotic choices also exist, Section 2.1 focuses on the three most 
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commonly used methods for expressing the orientation of an object in three-dimensional space. 

The equations of motion of attitude dynamics can be divided into two sets: the kinematic 

equations of motion and the dynamic equations of motion. Kinematics is the study of motion 

irrespective of the forces that bring about that motion. The kinematic equations are a set of first- 

order differential equations specifying the time evolution of the attitude parameters. These 

equations, which contain the instantaneous angular velocity vector <w, are considered in Section 

2.2. This section also presents the relationship between the rate of change of a vector in an 

inertial frame and its rate of change in a reference frame rotating with angular velocity <w. In 

Section 2.3, the angular momentum and moment of inertia tensor are precisely defined and the 

relations between them presented. This is done in order to set up the dynamic equations of 

motion, which express the time dependences of <w. These are needed for both dynamic 

simulations and attitude prediction whenever gyroscopic measurements of <w are unavailable. 

In Chapter 3, the non-cooperative attitude estimation problem is divided into its 

constituent parts. First, the measurement process is described by considering how the raw range- 

Doppler returns are collected via a ground-based sensor and processed into a series of discrete 

range/cross-range images. A technique known as image-model matching is then used to 

determine the attitude of the spacecraft within the radar image plane. Unfortunately, because of 

the limited amount of information contained in the radar observations, the radar system of 

equations is underdetermined. As will be discussed at the end of Section 3.1, the uncertainty in 

the orientation of the radar image plane in inertial space severely complicates the attitude 

estimation process. However, the details of how these challenges have been approached are the 

subject of Chapter 4. In section 3.2, the filtering process is described, by looking at the various 

attributes of the backward-smoothing extended Kaiman filter. Because the BSEKF has properties 
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similar to that of a sliding batch least-squares estimator, extended Kaiman filter, and fixed 

interval smoother, these three types of algorithms are covered in greater detail in Sections 3.2.2, 

3.2.3, and 3.2.4 respectively. The remainder of the chapter is devoted to the specifics of the 

BSEKF, with an emphasis on addressing the implementation and operational attributes of this 

fairly complex algorithm. 

Chapter 4 couples the radar equations developed in Section 3.2 with the dynamics 

equations presented in Chapter 2. In addition to compiling a comprehensive set of governing 

equations, the various legacy systems used by the Space Situational Awareness Group for motion 

analysis are documented in Section 4.1. A description of the models and features which have 

been added to the BSEKF is given is Section 4.2, along with an explanation of how the algorithm 

has been integrated into the greater collection of motion analysis tools. 

Chapter 5 presents the results of a truth-model simulation and set of real-life test cases 

which have been used to assess the performance of the BSEKF. Sections 5.1 and 5.2 describe the 

testing methodology for the two types of test cases, as well as initialization and filter tuning 

procedures. Section 5.3 analyses the filtering results for a simulated dataset generated using the 

algorithm's own dynamics equations and torque models. Measurements have also been made 

using an actual inactive satellite, imaged over several consecutive passes. The actual test cases 

are divided into short- and long-term results, depending on whether the attitude estimation and/or 

prediction was made using observations from a single pass or multiple passes (i.e., there is a 

substantial time gap between the datasets). The results show the BSEKF is able to 1) accurately 

and quickly converge on a motion solution for individual data passes, 2) overcome large initial 

errors, 3) filter over long time gaps separating sequential passes, and 4) better predict the attitude 

of spacecraft than existing motion analysis software. 
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Chapter 6 summarizes the conclusions of the thesis and outlines future work to improve 

the non-cooperative attitude estimation and prediction capabilities of MIT Lincoln Laboratory. 

Appendix A outlines all the conversion formulas needed to transform between the different 

attitude representations. Appendix B is a collection of miscellaneous equations which are used in 

various sections throughout the document. Appendix C includes data handling procedures and 

operating instructions for the Lincoln Attitude Estimation System. Appendix D provides Matlab 

source code for implementing the backward-smoothing extended Kaiman filter, the 

environmental torque models, and the polyhedral mass properties algorithm. 
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2       Mathematical Background 

2.1     Attitude Representations 

The attitude of a spacecraft is its orientation in space, expressed as a relation between two 

coordinate systems. The overall motion of a rigid spacecraft is specified by its position, velocity, 

attitude, and angular velocity. The first two quantities describe the translational motion of the 

center of mass of the spacecraft and are the subject of orbit determination. The latter two 

quantities describe the rotational motion of the body of the spacecraft about the center of mass 

and are the subject of this thesis on spacecraft attitude - namely how it is determined and how its 

future motion is predicted. While translational motion is fairly simple, rotational motion is much 

more complicated, since there are no solitary point masses in attitude problems, and the 

equations are both nonlinear and coupled. Although knowledge of the spacecraft orbit is 

frequently required to describe the rotational motion of a vehicle, orbital mechanics in general is 

outside the scope of this work. Accordingly, the dynamical coupling that exists between the two 

will often times be ignored; the noticeable exception being the discussion provided in Section 

2.3.4.3 on environmental torque models. Even in the instances where interdependence of the two 

fields is most prevalent, it will be assumed that the time history of the spacecraft position is 

known and has been supplied by some process external to the attitude determination and 

estimation system. 

Of the many ways to represent attitude, the most prolific and widely used include: 1) the 

axis and angle of rotation; 2) the rotation matrix; 3) Euler angles; and 4) the quaternion. Because 

attitude is more difficult to describe than position, it is often necessary to utilize multiple 

representations in order to take advantage of a particular property that simplifies a specific part 

of the problem. Accordingly, the ability to easily convert between each of these representations 
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is of great importance and the equations for doing so are provided in Appendix A. Of all the 

representations discussed in this chapter, the axis and angle of rotation appeal most to our 

geometrical intuition of what constitutes a rotation and helps us to express mathematically what 

the other rotations mean geometrically; otherwise they are of little practical use. The rotation 

matrix is often constructed in order to transform vectors from one frame to another. Euler angles 

are convenient for treating spinning spacecraft and archiving attitude, since there are only three 

variables to record. Euler angles are also advantageous when trying to visualize rotations, but are 

otherwise not very useful. The quaternion is the most convenient representation to use in 

dynamical simulation of attitude, because it makes the best compromise between simplicity of 

the kinematics and dynamics equations of motion and the dimension of the system (1 pp. 412 - 

420). 

2.1.1.   Right-Handed Orthonormal Coordinate Systems 

In order to uniquely describe the attitude of a rigid body, three external coordinates are 

needed to specify the position of some reference point in the body (the origin) and three more are 

needed to indicate how the body is oriented with respect to the axes of the external space. As 

depicted in Figure 2.1, the configuration of a rigid body can be identified using two sets of 

Cartesian coordinates, one fixed in the body and another parallel to the external axes, but with 

the same origin as the body set of axes. 
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•> y 

»• v 

Figure 2.1 Orientation of the body-fixed coordinate system (black x'y'z' axes) with respect to the 
inertial reference frame (blue xyz axes) 

An orthonormal basis is defined a set of three unit vectors {i   j   k] along the x, y, and z- 

axis respectively, that are mutually orthogonal. Thus, the vectors of an orthonormal basis satisfy 

the following scalar-product relations (2 p. 239): 

= i. ir = n 
(2.1) 

i-j = i-k=j-k = 0 
i-i= j • j = k-k = l 

Additionally, the bases that will be used are not only orthonormal but also right-handed; that is, 

their vector products satisfy (2 p. 239): 

ixj = —jxi = k 
jxk = -kxj = i 
kxi = —ixk=j 

(2.2) 

Given a physical vector r in three-dimensional space and an orthonormal basis {i   j   k], 

coordinates x, y, and z can be found such that 

r = xi + yj + zk (2.3) 
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The components of r can be arranged into a column-vector of size 3x1 (matrix with n number 

of rows and m number of columns): 

r = (2.4) 

(2.5) 

(2.6) 

If the physical vectors u and v are given in terms of an orthonormal basis as 

u = uxi + u2j + u3k 

and 

v — vxi + v2j + v3k 

then their column-vector equivalents are simply 

u =  u2   and v =  v2 (2.7) 
u3\ [v3_ 

The scalar or dot product of two column-vectors with respect to a common basis, may be 

expressed as (2 p. 240) 

U • V = UTV = %17-L + u2v2 + u3v3 (2.8) 

where uT is the transpose of u; a 1 x 3 row vector of the form: 

uT = [ut    u2    u3] (2.9) 

Similarly, the column-vector representation ofuxv, the vector or cross product, is simply (2 p. 

240): 

U X V = 

u2v3 - U3V2 

uzvx - uxv3 

uxv2 - u2v1 

= [u x]v (2.10) 

where [u x] is defined to be the 3 x 3 matrix: 

[ux] = 
0     -u3     u2 

u3      0      —Uj 
u2     ut        0 

(2.11) 

It is important to note that unless the coordinate system (i.e. the basis) is indicated, a 

column-vector, typically denoted with a nonitalicized boldface character (v), is not strictly 
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speaking, equivalent to a physical vector v. Consequently, the following work primarily utilizes 

the column-vector representation - since vector operations can be replaced by matrix operations 

- and references the relevant coordinate system using a subscript, such as 

V/ = 

v1 

v3\ 
(2.12) 

In the subsequent attitude estimation problem, the subscript / is used to represent the inertial 

coordinate system and B the body-fixed coordinate system. Unless otherwise indicated, the 

inertial reference frame used is the Geocentric Equatorial Coordinate System or Earth Centered 

Inertial (ECI), which is typically designated with the letters IJK. As the name implies, this 

system originates at the center of the Earth; the / axis points towards the vernal equinox; the / 

axis is 90° to the east and lies in the equatorial or fundamental plane; and the K axis extends 

along the Earth's axis of rotation through the North Pole (3 p. 157). The body-fixed system is 

called the Satellite Coordinate System and is given the letters XYZ. The origin of this frame is 

the satellite's center of mass; the X axis is perpendicular to the YZ plane; the Y axis runs parallel 

to some distinguishing feature on the spacecraft; and the Z axis is aligned with the longest 

dimension of the vehicle or the axis of symmetry, as depicted in Figure 2.2 (4 pp. 8.9 - 8.10). 

Figure 2.2 Convention used for the body-fixed reference frame (Satellite Coordinate System) 
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2.1.2.   Rotation (Direction-Cosine) Matrix 

A rotation matrix is a matrix whose multiplication with a vector rotates the vector while 

preserving its length. The special orthogonal group of all 3 x 3 rotation matrices is denoted by 

50(3). Thus if R € 50(3), then it possesses the following two essential properties (5 pp. 52 - 53): 

det(Ä) = ±1 (2.13) 

and 

R1 = RT (2.14) 

Rotation matrices for which detÄ = +1 are called proper and those for which detT? = — 1 are 

called improper. While every orthogonal transformation preserves scalar products (maintains 

right-angles), only proper orthogonal transformations preserve vector products and therefore 

represent true rotations. Since every rotation leaves at least one axis unchanged (the axis of 

rotation), improper transformations, which change the direction of every vector, are impossible 

by means of a rotation (6 p. 5). Accordingly, improper matrices will not be discussed further, 

since they are not rigid-body transformations. 

The elements of a rotation matrix are referenced as follows: 

R = pi    r2    r3] = 
»11 ri2 *13" 

r2i r22 r23 

r3i r32 r33. 

(2.15) 

Additionally, the convention that will be used defines the rotation matrix that encodes the 

attitude of a rigid-body to be the matrix that when pre-multiplied by a column vector expressed 

in inertial coordinates yields the same vector expressed in the body-fixed frame (i.e. the matrix 

which maps inertial coordinates into body-fixed coordinates). The following relations hold when 

transforming vectors from one coordinates system to another (6 p. 5): 

VB   = ÄV;  => v2 

v3] B 

Tll *12 *13" Vi • 

*21 r22 r23 v2 

731 r32 r33. v3. 
(2.16) 
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\Vl] 
Tll      r12      r13 

i [Vll 

V/ = = RTvB => v2 = r21      r22      r23 v2 

M i r31      r32      r33. M 
(2.17) 

A coordinate rotation is therefore, a rotation about a single coordinate axis, x, y, or z, through an 

angle 0. The x-, y-, and z,-axes rotations are often numbered 1, 2, and 3 respectively and are 

written as (6 p. 6) 

**(*) = *i(0) = 

Ky«0 = «2(0) = 

Äz(0) = Ä3(0) = 

10 0    - 
0     cos (0)     sin (0) 
0    —sin (0)    cos (0). 

cos (0)    0    —sin (0) 
0 10 

.sin (0)    0     cos (0) 

cos (0)     sin (0)    0' 
—sin (0)    cos (0)    0 

0 0 1- 

(2.18) 

(2.19) 

(2.20) 

A sample rotation of this form is illustrated in Figure 2.3, which shows a rotation about the z- 

axis by an angle 0. 

y 
4 k 

• 

• • * 

* 

>i' 
L 0 J 

= R »(*) >i 
L 0 J x' 

.•*  x'i 

z, z'                   XI 

Figure 2.3 Rotation about the z-axis through an angle </>. Here x and y are the initial coordinate 
axes and x' and y' are the final coordinate axes (6 p. 6) 

A rotation matrix is often referred to as a direction cosine matrix, because the elements of 

this matrix are the cosines of the unsigned angles between the body-fixed axes and the inertial 
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axes. Denoting the inertial axes with (x, y, z) and body-fixed axes with (x', y', z') , let 9x>y be 

the unsigned angle between the x'-axis and the y-axis. In terms of these angles, the rotation 

matrix may be written as (6 p. 6) 

R = 

cos(ö*',x)    cos(,Bx',y)    cos(9x',z) 

cos(öy'z)    cos(öy'y)    cos(öy'z) 

cos(dz',x)      cos(ez',y)      cos(dz',z). 

(2.21) 

To illustrate this with a concrete example, consider the case shown in Figure 2.3. Here 9X< x = 

6y/y — 0, 6xt y = - — cj), 9y< x = - + 0, 9Z'Z = 0, and &z',{x&} = ^{x^.z' = "" Therefore, equation 

(2.21) can be rewritten as (6 p. 6) 

R = 

cos(0) cos((7r/2) — <p)    cos(7r/2) 

COS((7T/2) + (p) cos(0) cos(7r/2) 

cos(7r/2) cos(7r/2) COS(0) 

cos (0)     sin (0)    0 
-sin (0)    cos (0)    0 

0 0 U 
(2.22) 

This is the same result that is presented in equation (2.20). 

For an arbitrary rotation through an arbitrary angle 0 about an axis a, Euler's formula is 

given by (2 p. 246) 

ßa(0) = cos(0) / + (1 - cos(0))aaT - sin(0) [a x] = 

cos(0) + a|(l — cos(0)) a1a2(l — cos(0)) + a3 sin(0) axa3(l — cos(0)) — a2 sin(0) 

02^(1 — cos(0)) — a3 sin(0) cos(0) + a|(l — cos(0)) a2a3(l — cos(0)) + a± sin(0) 
a^a^l — cos(0)) + a2 sin(0)    a3a2(l — cos(0)) — ax sin(0)        cos(0) + a3(l — cos(0)) 

(2.23) 

where a = [%    «2    az\T and [a x]  is given by equation (2.11).  Since the determinant of 

equation (2.23) is always +1, rotation matrices are proper orthogonal and every rotation can 

therefore, be expressed as a rotation about a single axis. This result is known as Euler's 

Theorem. The axis of rotation has two free parameters, and the angle of rotation is a third 

parameter. Consequently, rotations are characterized by three independent parameters, which 
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means that the nine elements of R must be subject to the six constraints, expressed in equation 

(2.14) (2 p. 246). 

The successive application of two rotation matrices is equivalent to a third orthogonal 

transformation which can be considered as the product of the original two operators. For 

example (7 p. 144) 

vß = Ra2 (02)Äai (0i)v/ => vB = Ra23l (02,00V/ (2.24) 

where Rai(0i) is the first rotation matrix, Äa2(02) is the second rotation matrix, Äa2ai(02,0i) is 

the combined linear transformation which takes a vector v from inertial coordinates to body- 

fixed coordinates. It is important to note that matrix multiplication is not commutative and 

therefore, (7 p. 144) 

Ka2 (02)fiai (0i) * Äai (0i)Äa2 (02) (2-25) 

Thus, the final coordinate system depends upon the order of application of the operators. 

However, matrix multiplication is associative; in a product of three or more matrices the order of 

the multiplications is unimportant (7 p. 145): 

(fiai(0l)Äa2(02))ßa3(03) = *ai(0l) (Aa2(02)*a3(03)) (2-26) 

The convention that will be used to annotate the proper order for each rotation sequence or 

combined rotation matrix is illustrated by equation (2.24) and requires matrices be multiplied 

from right to left. 

2.1.3    Euler Angles 

The Euler angle representation is defined by three successive rotations through angles 01? 

02, and 03 about coordinate axes al5 a2, anda3. Accordingly, an AZ-SL2-SL\ Euler angle sequence 

would be one in which the first rotation is an angle 0X about the a^axis, the second rotation is an 

angle 02 about the a2-axis, and the third rotation is an angle 0 about the a3-axis (8 p. 763). The 
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particular sequence used is to some extent arbitrary since the initial rotation could be taken about 

any of the three Cartesian axes. In the subsequent two rotations, the only limitation is that no two 

successive rotations can be about the same axis. Consistent with the manner in which 

consecutive rotation matrices are written (applied from right to left), the combined rotation 

matrix is then given by (2 p. 246) 

Ka3a2ai (4>3. +2. +l) = Ka3 (<J>3)fia2 (+2)^ (*l) (2-27) 

where the three rotation-axis column vectors, al5 a2, and a3, must be chosen from the set 

consisting of the three unit column vectors aligned with one of the body axes 

UT  = 

1 0 
0 ,u2 = 1 

.0. 0 
, and u3 = (2.28) 

While one could also write the transformation matrix in terms of four or more rotations, 

since rotations can be completely characterized by three parameters, three rotations about an 

appropriately chosen set of body axes are sufficient. This of course is the great advantage to 

using Euler angles - minimal dimensionality - the attitude can be efficiently stored and 

expressed using just three values, as opposed to the four parameters need for an axis and angle 

representation or the nine components required to construct the direction-cosine matrix. 

For notational conciseness and to mitigate confusion, each of these angles is traditionally 

given a unique symbol cpOxp and will typically be arranged in a three-dimensional vector called 

the Euler angle vector, defined by 

E = (2.29) 

There are 12 distinct conventions available for defining the Euler angles (in a right-handed 

coordinate system), which divide equally into two types: those whose rotations take place 

successively about each of the three coordinate axes and those in which the first and third 
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rotations occur about the same axis, but the second is about one of the other two axes (8 p. 763). 

The two most frequently used of each type are the 1-2-3 and 3-1-3 Euler angle sequences. For 

illustration purposes, the 3-1-3 Euler angle rotation will be used extensively throughout this 

section, though both representations play a significant role in the attitude estimation problem 

presented in subsequent chapters. For this reason, the relevant conversion equations for both are 

provided in Appendix A for quick reference and comparison purposes. 

Following the notation used in equation (2.24), the function which maps the 3-1-3 Euler 

angle vector to its corresponding rotation matrix is 

/?313(0,0,0) = Ä3(^)Ä1(ö)Ä3(0) = 

cos (0)     sin (0)    0 
—sin (0)    cos (i//)    0 

0 0 1 

10 0 
0     cos (0)     sin (0) 
0    -sin (0)    cos (0) 

cos (0)     sin (0)    0 
—sin (0)    cos (0)    0 

0 0 1 

cos(0) cos(0) — sin(0) cos(0) sin(0)       sin(0) cos(0) + cos(0) cos(0) sin(0)      sin(0) sin(0) 
— cos(0) sin(0) — sin(0) cos(0) cos(0)    — sin(0) sin(0) + cos(0) cos(0) cos(0)    sin(0) cos(0) 

sin(0) sin(0) — cos(0) sin(0) cos(0) 

(2.30) 

The sequence presented above is started by rotating the initial system of axes, xyz, by an angle 0 

counterclockwise about the z-axis, and the resultant coordinate system is labeled x'y'z', as shown 

in the first block of Figure 2.4. In the second stage, the intermediate axes, x'y'z', are rotated 

about the x'-ais counterclockwise by an angle 0 to produce yet another intermediate set, the 

x"y"z" axes. Finally, the x"y"z" axes are rotated counterclockwise by an angle 0 about the z"- 

axis to produce the desired x'"y'"z'" system of axes. 
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Figure 2.4 Rotations defining the 3-1-3 Euler angle rotation sequence 

Unfortunately, the Euler angles are not a well-behaved representation of attitude. Like all 

the parameterizations of this type, the 3-1-3 series has singularities at nutation values of 0 = rut 

for n = ± integer value or 0. At these points, changes in spin and precession constitute the same 

motion. Intuitively, singularities arise, in this case, from the indistinguishability of changes in the 

first and third Euler angles when the second Euler angle is at the critical values just mentioned. 

For rotation types, such as the 1-2-3 Euler angles, that do not have a repeated axis of rotation, 

singularities occurs at 0 = - + rut for n = + integer value or 0, because for these values of 9, the 

0 and V angles have similar effects (5 p. 74). Thus, to avoid the singularity problem, one must 

resort to using two sets of Euler angles and occasionally switch from one set to the other; doing 
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so, however, requires large numbers of trigonometric functions to be computed, negating the 

benefits derived from being able to represent attitude with a minimal number of parameters. In 

the case of spinning spacecraft, two of the Euler angles, 6 and ip, can be chosen to be the 

spherical angles of the spin axis (z-axis) and the remaining Euler angle <p the angle of rotation 

about the spin axis. In such situations, the spin axis is generally stable and confined to some 

small region about a nominal direction. Two of the Euler angles then have limited periodic 

variation, whereas the third tends to have an almost constant rate. Thus, in the case of spinning 

spacecraft, the singularity can be avoided and the angles do not experience complications. 

2.1.4.   The Quaternion 

The deficiencies in the Euler angle representation have led many in the attitude field to 

use unit quaternions as a parameterization of the attitude of a rigid body. The relevant functions 

of unit quaternions have no singularities and the representation is well-suited to integrating the 

angular velocity of a body over time. However, using unit quaternions also have some 

disadvantages, namely that the four quaternion parameters do not have intuitive physical 

meaning, since they express rotations in four-dimensional space, and that a quaternion must have 

unity norm to be a pure rotation. The unit norm constraint, which is a quadratic in form, is 

particularly problematic if the attitude parameters are to be included in an optimization, as most 

standard optimization algorithms cannot encode such constraints (5 p. 169). 

The quaternion is free of the analytical complexity that Euler angles typically encounter 

and only has one additional component. The quaternion can be defined as a 4 x 1 vector with the 

form (2 p. 250): 

.q4. 
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where 

q = = sin(0/2)ä, q4 — cos (0/2) (2.32) 

The unit-column vector ä is the axis of rotation, and 0 is the rotation angle. Additionally, q is the 

vector component of the quaternion and q4 is the scalar component. Because a four-dimensional 

vector is used to describe three dimensions, the quaternion components are not independent from 

each other and must satisfy a single constraint given by (6 p. 14) 

qTq = ql + q\ + q\ + q\ = 1 (2.33) 

Other useful equations which will be referenced throughout this thesis include those for the 

adjoint, norm, and inverse of the quaternion, which can each be written as follows (6 p. 14): 

* = Lq] = 
q4 

II4II = J<?i2 + ql + ql + ql 

-i _ 

Ml 

(2.34) 

(2.35) 

(2.36) 

The quaternion has several advantages over the rotation matrix as a representation of 

attitude. First, it has fewer elements (four instead of nine), so it requires less storage. Second, 

there are fewer constraints (one instead of six). Third, unlike the Euler angles, which cannot be 

merged easily when one combines rotations, the composition rule for the quaternion is very 

straightforward and requires fewer multiplications (16 instead of the 27 needed for rotation 

matrices) (2 p. 251). Fourth, if, because of accumulated numerical round-off error, the quaternion 

loses its' orthogonality, the constraint can be easily reinforced by simply replacing q with (2 p. 

252) 
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q± = 7 
(2.37) 

q'q 

Finally, due to the redundant fourth term, the quaternion also has the advantage of being free of 

singularities. Apart from the overall sign, only one quaternion is needed to characterize a given 

attitude (2 p. 251). 

The attitude matrix is related to the quaternion by (2 p. 250) 

A{q) = (ql ~ Iql2)l4x4 + 2qqT - 2q4[q x] = 

r<7i - <?2 - <Zs + <74 2(q1q2 + q4q3) 2(q1<73 - q4q2) 

2(q2<7i - <?4<73)    -ql + ql~ql + ql     Uq2q3 + <?4<7i) 
2(<73<h + q^q-i) 2(q3q2-q4q1)        -ql - ql + ql + ql 

where 14X4 is a 4 x 4 identity matrix and [q x] is the cross-product matrix defined by 

(2.38) 

[qx] = 
0       -q3      q2 

<?3 0       -q1 

-<?2     qi       o 

(2.39) 

For small angles the vector part of the quaternion is approximately equal to half angles. 

If q is the quaternion of the first rotation and q' is the quaternion of the second rotation, 

then the combined rotation is represented by q", where (2 p. 251) 

q" = q'q = 
q'4q + q4q' -q'xq 

q'4q4 - q' • q 
(2.40) 

The upper right part of the expression gives the vector component q", while the lower part gives 

the scalar component q4. The composition rule for the quaternion is not unique, since the sign 

could have been changed on the rightmost element of equation (2.40). The sign convention used 

in the above equation is the one generally accepted and most convenient. The quaternion 

multiplication is not commutative and may be written more compactly as the second quaternion 

post-multiplied by a matrix-valued function of the first quaternion. That is, (6 p. 14) 

q'q = Q(q')q = Q(q)q' (2-41) 

qq' = Q(qW = Q(q')q (2.42) 
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where the quaternion matrix function Q(q) is defined by 

<?(<?) = 

and the closely related conjugate quaternion matrix function Q(q) is defined by 

r 94 9s -<?2 9i 

-<?3 94    9l 12 
92 ~9l   94 93 

"9l -<?2 -<?3 94 

r <J4 ~<J3 12 111 

93 94 ~9l 92 
-92 9l 94 93 

-9i -92 -93 94 

Substituting equation (2.34) into equations (2.43) and (2.44) yields 

0(9) = <2(9)T 

0(9) = Q(q)T 

Therefore, the quaternion composition rule may be written as (9 p. 759) 

q" = q'q = Q(q')q 

9i 
92 

93 

L94'J 

94 93 -92 9i 

-93 94 9i 92 

92 -9i 94 93 

-q'i _92 ~93 94 

r9n 
92 
93 
q4 

and the quaternion difference rule can be expressed as follows: 

q" = q'q-i = Q(q)Tq T„' 

9il • 94 -93 92 9r r [9i 
92' 93 94 -9i 92 92 

93' -92 9i 94 93 93 

94'J -9i -92 -9s 94- -94 

(2.43) 

(2.44) 

(2.45) 

(2.46) 

(2.47) 

(2.48) 

where q" is now the quaternion that is needed to transform between the first and second 

quaternion rotations, q and q' respectively, and can be thought of as the change or difference in 

attitude. 

2.2     Rigid Body Kinematics 

Attitude kinematics is the fundamental description of how a change in orientation with 

time is characterized and is inherently tied to a spacecraft's angular velocity (2 p. 252). Consider 
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a rigid body rotating about some axis n and with a vector v that is fixed in the rotating body 

frame, as shown in Figure 2.5. 

Figure 2.5 Change of a rotating vector over time (10 p. 516) 

The rate of change of the vector v over time t is given by the derivative (10 p. 515) 

d        d(p 
^v=dF(nxv) (2.49) 

where d(p/dt is the angular rate through which the body has rotated about the instantaneous axis 

n. Thus, 

d<t>, . 
"=dF(n) (2.50) 

which is the angular velocity of the body (10 p. 515). Since a right-handed orthonormal basis 

fixed in the inertial frame does not change with time, the derivative of the inertial components of 

v are simply the inertial components of the temporal derivative of v, given by (10 p. 515) 

—v7 = w,xv, 
dt 

1[ /s v7 (2.51) 

41 



Conversely, the components of v with respect to a basis fixed in the body reference frame are 

constant since the vector is rotating with the body itself. Hence, (10 p. 516) 

— vB = 0 (2.52) 

2.2.1    Kinematics Equation for the Rotation Matrix 

At any instant, the orientation of a rigid-body can be specified by an orthogonal 

transformation, the elements of which may be expressed in terms of some suitable set of 

parameters. As time progresses, the orientation will change, and hence the matrix of 

transformation will be a function of time and may be written as R(t). If the body axes are chosen 

such that they align with the space axes at the time t — 0, then the transformation is initially 

simply the identity transformation: 

1 0 0 
0 1 0 
0 0 1- 

fl(0) = l3X3=   0    1    0 (2.53) 
.0    0    1. 

At any later time, R(t) will in general differ from the identity transformation, but since the 

physical motion must be continuous, Ä(t) must be a continuous function of time (7 p. 156). 

Differentiating both sides of the expression (and suppressing the explicit time dependence) (7 p. 

172): 

vB(t) = R(t)v,(t) (2.54) 

leads to 

d id    \ d 
^v„ = (-R)v, + R-v, (2.S5) 

Substituting in equations (2.51) and (2.52) allows equation (2.55) to be rewritten as: 

0 = (^fi)v/ + Ä(6>/xv/) (2.56) 
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Using the fact R is a proper orthogonal matrix, the definition of the cross-product matrix, and the 

associative property of matrix multiplication enable equation (2.56) to be further reduced until 

one finally arrives at: 

— R = -[<yx]/?^ 
rll r12 r13 

^21 ^22 ^23 
r31      r32      r33 

0        —ü)3        0>2 

0 —&>! Otq 

0 

rll r12 r13 
r21 r22 r23 
r31      r32      r33 

(2.57) 
Lo)2      <^i 

which is the kinematics equation for the rotation matrix. This result enables the general 

expression relating the time derivatives of the representations of vectors in two frames in the 

following manner (2 p. 254): 

— vB = -<wß xvß+ß —v7 (2.58) 

2.2.2    Kinematics Equation for the Euler Angles 

While it is often convenient and/or necessary to express the angular velocity vector in 

terms of the Euler angles and their time derivatives, the kinematic relationship for this 

parameterization is more complicated than that of the rotation matrix. While a finite rotation 

cannot be represented by a single vector, the same objection does not hold if only infinitesimal 

rotations are considered. An infinitesimal rotation is an orthogonal transformation of coordinate 

axes in which the components of a vector are almost the same in both sets of axes - i.e. the 

change is exceedingly small (7 p. 173). The general infinitesimal rotation associated with <w can 

be considered as consisting of three successive minute rotations with angular velocities (o,p — 0, 

o)e — 6, and co^ = ip. Consequently, the vector <w can be obtained as the sum of the three separate 

angular velocity vectors with respect to the body-fixed coordinate frame, given by (10 p. 513) 

diB — (OQ + (oe + (Oip — cj)a1 + 0a2 + ipa3 (2.59) 

Unfortunately, the directions o)<^, coe, and o>^ are not symmetrically positioned with the same 

basis: 10$ is along the inertial z-axis, a>0 is along the line of nodes in the intermediate body 
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frame, while oty alone is along the body z'"-axis. However, a set of rotation matrices can be used 

to transform the representations of the Euler axes with respect to the intermediate bases into 

representations with respect to the final body axes. Carrying out the necessary transformations 

leads to (2 p. 256) 

a>B = i//a3 + 0fia3 (i/;)a2 + 0fia3 (t//)ßa2 (9)a± (2.60) 

where the unit column vectors a1? a2, and a3 are the representations of the three Euler axes with 

respect to the intermediate bases and take on any of the three values given by equation (2.28), 

depending on which Euler angle sequence is being employed. 

For the 3-1-3 Euler angle sequence, equation (2.60) becomes (7 p. 174) 

co1 

<J02 

(03 

0     cos(i/>)     sin(0) sin0/>) 

0 —sm(xp)    sin(0) cos(i//) 

1 0 cos(0) 

4 
9 

0J 
(2.61) 

The inverse of the combined rotation matrix above results in a formula for converting an angular 

velocity vector into a vector of Euler angle rates (6 pp. 10 - 11) 

sin(0) 

— cos(ö) sin(i/>)     cos(ö) COS(T/>)     sin(0) 
sin(ö) cos(i/»)      — sin(0) sin(^)        0 

sm(xfj) cos(xjj) 0 

0)X 

0)2 

co3 

(2.62) 

For the 3-1-3 series, the Euler angle rates become infinite when sin(ö) = 0 even though the 

angular velocity vector may be finite. This is yet another indication of that the Euler angles are 

singular. This problem can be corrected or avoided by simply using a different sequence of Euler 

angles, say, 1-2-3, in calculations when this condition is approached. A set of 3-1-3 Euler angles 

may be written as a function of a set of 1-2-3 Euler angles according to (6 pp. 13 - 14) 
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E123 («313 OM,0)) = 
123 

atan2(cos(0) cos(ö) sin(i/>) + sin(0) cosO/>), — sin(0) cos(ö) sin(i/>) + cos(0) COS(T//)) 

—asin(sin(0) sin(i//)) 
atan2(sin(0) cos(i^), cos(0)) 

(2.63) 

However, the 1-2-3 series is not trouble-free either. In this case, the singularity arises when 

cos(ö) = 0.  Consequently,  one must alternate between two  sequences of Euler angles to 

represent the attitude as it changes. This problem is inherent in the Euler angles but is absent in 

the rotation matrix and the quaternion, which are both well-behaved at all attitudes. 

2.2.3    Kinematics Equation for the Quaternion 

The time derivative of the unit quaternion is the vector of quaternion rates, and like the 

rotation matrix, has a very simple form. The quaternion rates, denoted by q, are related to the 

angular velocity. The functions that map a unit quaternion and its temporal derivative to the 

angular velocity in inertial and body-fixed coordinates are o>B, defined by (6 p. 16) 

= 2 
94      93      -R2      -<7i 
-<?3    94    9i    -q2 

92    -<h    94    -q3 

9i 

92 

93 
qAi 

(2.64) 

The inverse mapping, from the angular velocity and the unit quaternion to the quaternion rates, 

are given by (6 p. 16) 

Qi 
92 1 

93 ~2 
-94- 

94 <?3 ~12 —qt 

-<?3 94 9i -q2 

92    -Qi    94    -q3 

di1 

0)2 

o)3 

(2.65) 

or equivalently as (10 p. 512) 

dt 

"9i" -   0 U)3 -<Jd2 &>]/ •9i 

Ittox] 
2l -o) oH <J2 

93 

1 

~2 
-0)3 

ü)2 

0 
—ü)1 0 

0)2 

(x)3 

92 
93 

-94- —(ü± -0)2 -0)3 0 . B 
lq4 

(2.66) 
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The kinematic equation for the quaternion is linear in the elements of both o>B and q. This 

simplifies  numerical   integration.   For  this   reason   and  the   simple   method  of correcting 

normalization errors, the quaternion is the preferred representation for simulation studies. 

2.3     Rigid Body Dynamics 

Attitude dynamics is concerned with the motion of a body in the presence of applied 

torques and a complete description of the attitude motion of a spacecraft depends on the 

treatment of both the dynamical and kinematical aspects (10 p. 510). A particular reference point 

in the rigid body is usually sought, such that the problem can be split into two separate parts, one 

purely translational and the other purely rotational about the point. For bodies without a fixed 

point, the most useful reference point is almost always the center of mass. Unfortunately, 

rotational motion is much more complicated than translational motion. In translational motion, 

the force-free case leads to movement which has constant linear velocity. For a body with an axis 

of symmetry, the force-free attitude motion is nontrivial but can be expressed using 

trigonometric functions. If however, a totally asymmetric rigid body is considered, even torque- 

free rotational motion requires elliptical integrals for its description (7 p. 184). 

2.3.1    Angular Momentum and the Properties of the Inertia Tensor 

When a rigid body moves with one point stationary (typically taken to be the center of 

mass), the total angular momentum (L) about that point is (10 p. 516) 

= 2^ m^i x vt (2.67) L 
i=l 

where mh i = 1, ...n, are the component masses comprising the rigid body, and rt and vt are the 

radius vector and velocity, respectively of the ith particle relative to the given point. Since rt is a 

fixed vector relative to the body, the velocity with respect to the space set of axes arises solely 
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from the rotational motion of the rigid body about the fixed point according to the formula (10 p. 

516) 

vt = co x r-j (2.68) 

Hence, equation (2.67) can be written as (2 p. 275) 

i=i 

t = ^mi[riX((wxri)] 

and then fully expanded to (7 p. 187) 

n 

1 = 2^ mi[Mr2i ~ ri(ri • w)] = 

(2.69) 

i=l 

^xmi(rf - xf) ~ COylUiXiyi - (OzTTliXiZi 

-töxmiyiXi + a>yTnt(ij - y^-cOz^iViZi 

-cOxrriiZiXi - cOymiZiyi + cozmi{r2 - zf) 

(2.70) 

The  angular momentum vector  is  therefore  related to  the  angular velocity by  a  linear 

transformation that can be summarized as (2 p. 276): 

L = Ia> (2.71) 

In this equation / is the inertia tensor, a symmetric matrix with the form (7 p. 187) and (10 p. 518): 

/* = 
*xx 'xy 'xz 

r    2             2 r\ - xf -XiVi xizi y2 + z2 -xy —xz 
'yx lyy 'yz — -yi*i rf-yf -ytZi mj = / —yx x2 +z2 —yz 
*zx zy 'zz_ • ~zixi -ziyi r? -z? —zx —zy x2 +y2. 

dm 

(2.72) 

where the center expression appears in the form suitable if the rigid body were composed of 

discrete particles; and the right side, is the more appropriate form for continuous bodies, where 

the summation is replaced by a volume integration and the particle masses become a mass 

density. The diagonal elements of / are called the moments of inertia and the off-diagonal 

elements are called the products of inertia. Unlike the operator of rotation, / will have 

dimensions - mass times length squared (kg • m2) - and is not restricted by any orthogonality 

conditions (7 p. 188). Since, the angular momentum of a rigid body about its center of mass 

depends on the mass distribution, only the inertia tensor is needed in order to properly describe 
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its attitude dynamics. It should also be noted that for rigid bodies, the mass density in body 

coordinates is constant. Therefore, it is preferable to work in the body-fixed referenced frame, 

where the inertia tensor will be invariable over time (2 p. 276). 

From the defining equation given by equation (2.72), it can be seen that the components 

of the tensor are symmetrical. This means that, while the inertia tensor will in general have nine 

components, only six of them will be independent - the three along the diagonal plus three of the 

off-diagonal elements (2 p. 276). The inertia coefficients depend both upon the location of the 

origin of the body set of axes and upon the orientation of these axes with respect to the body. 

This symmetry suggests that there exists a set of coordinates in which the tensor is diagonal with 

the three principal values lt, l2, and /3. In this system, the components of L would involve only 

the corresponding components of a), thus (10 pp. 519 - 520) 

L" 

(2.73) 

Transformation of the inertia tensor from one right-handed orthonormal basis to another 

with the same origin can be done with the following simple equation: 

/' = RIRT (2.74) 

where /' is the inertia tensor in the new coordinate frame and R is the proper rotation matrix 

connecting the two bases. This rotation can be expressed in terms of the Euler angles (p, 9, and xp 

as shown in equations (A. 1) and (A. 2). A proper choice of these angles will transform / into its 

diagonal form 

riii \h 0 o- CO-y- 

h = 0 h 0 (02 

U3J .0 0 h- u-i. 

/' = 
\k 0 o- 

0 h 0 
.0 0 h- 

(2.75) 

where /l5 I2, and I3 (which are the eigenvalues of/) are referred to as the principal moments of 

inertia and the directions x', y', and z' defined by the rotation matrix in equation (2.74) are called 
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XX         ' *xy *xz 

'yx lyy-I 'yz 

*zx 'zy hz-l. 

the principal axes of the inertia tensor (7 p. 196). The three principal values of the moment of 

inertia tensor can be found by solving the following cubic equation for the values of / that arise 

from the determinant of (7 p. 197) 

*xx      ' *xy *xz 

= 0 (2.76) 

The principal moments of inertia cannot be negative, because as the diagonal elements in 

the principal axes system they have the sum of squares. For one of the principal moments to 

vanish requires that the body's axis of symmetry pass through the origin. Since the inertia tensor 

is positive definite, negative values on the diagonal indicate a mass distribution which is 

physically impossible. While this may seem inconsequential, the existing software system used 

to generate free-motion solutions at Lincoln Laboratory does not discard state estimates which 

may result in negative values on the diagonal of the inertia matrix. Such physically unrealistic 

motion solutions have been encountered during the course of this research effort and are a strong 

indicator that all is not well. 

2.3.2    Euler's Equation 

For the rotational motion about the center of mass, the direct Newtonian approach leads 

to a set of expression known as Euler's equations of motion. In the inertial coordinate frame the 

torque N acting on a rigid body is related to the angular moment through the formula (2 p. 277) 

Nt = ^Li (2.77) 

Conversely, the derivatives with respect to axes fixed in the body leads to (10 p. 521) 

— L, = —IB + <oB x LB => Aa(0)W, = — LB + a>BxLB (2.78) 

which, after applying the rotation matrix fia(0) to transform the torque from inertial to body- 

fixed coordinates, results in Euler's equation 
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— LB = -a>BxLB + NB (2.79) 

Substituting equation (2.71) into the above equation, results in the following dynamics equation 

(10 p. 522): 

Nt = /-L&)! - (o2u>3(I2 - h) 
N2 = I2(b2 - u^ih ~ h) (2-80) 

N3 = hu-3 ~ ^I^CI - h) 

which can be rearranged into 

d 
— a) = r1 [-co x (/<«) + N] (2.81) 
at 

However, equation (2.81) is not complete and must be combined with one of the kinematical 

relationships   for  the   rotation  matrix,   Euler   angles,   quaternion,   or   some   other   attitude 

representation. 

2.3.3    Torque-Free Motion of a Symmetric Rigid Body 

Assuming that the spacecraft body axes are aligned with the principal axes of the inertia 

tensor and that the torque acting on the spacecraft is zero QV = 0), enables Euler' s equations to 

be rearranged/rewritten as (2 p. 278): 

/!&>! + (/3 - I2)(o2(o3 = 0 
I2<b2 + (/i - /3)a>3a>1 = 0 (2.82) 
I3(l)3 + (/2 - Ijd)!(o2 = 0 

As is described extensively in References (1), (6), (9), and (11), these equations are solvable 

only in terms of the Jacobian elliptic integrals and for the special case of a symmetric spacecraft 

Oi = h * h)-, these become 

/i^i = (I3 - h)0i2(x)3 

I2d)2 = (/-L - I3)(o3(ot (2.83) 
I3d)3 = 0 
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which are now solvable in terms of simple trigonometric functions. Since u>3 is constant, it can 

therefore be treated as one of the initial conditions of the problem. The remaining two equations 

can now be written (7 p. 206) 

(Üi = flu), , ,N 

•             n (2-84) 

where fi is the angular frequency 

(U -3 
H = (^—)<o3 (2.85) 

Elimination of u>2 in equation (2.84) leads to a differential equation for simple harmonic motion 

G^ = n2^ (2.86) 

with the typical solution (10 p. 525) 

cot = A cos(H) t (2.87) 

where t is the time and A is the amplitude of the precession given by 

A =   \<til + u>\ (2.88) 

The corresponding solution for u>2 can be found by substituting this expression for <yl5 back into 

the first part of equation (2.84) to produce: 

&)2 = -A sin(n) t (2.89) 

The solutions for 6^ and o)2 show that the angular velocity vector has a constant magnitude and 

rotates uniformly about the z-axis of the body with the angular frequency Ü - which is ultimately 

equivalent to the spin rate xp (10 p. 490). Consequently, in the body coordinate frame, the angular 

velocity and angular momentum vectors cone about the spacecraft symmetry axis with an 

angular precession rate (p and half-cone angle 6, where (11 pp. 491 - 492) 

A 
tan(0) = — (2.90) 

0)3 
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Having determined the angular velocity, one can begin the process of describing the attitude 

motion. In order to simplify the problem conceptually, the angular momentum axis is typically 

aligned with the inertial z-axis, using a rotation matrix generated with the 3-1-3 Euler angles 

sequence. The body reference angular momentum is (10 p. 536) 

Lß = |L|(Ä313(^0,0)u3) 

= \L\ 
cos(0) cos(i/>) — sin(0) cos(0) sin(i/i)       sin(0) cos(i/0 + cos(0) cos(ö) sin(i/>)      sin(ö) sin(i/») 

— cos(0) sin(i/>) — sin(0) cos(0) COS(T//)    — sin(0) sin(j/>) + cos(0) cos(ö) cos(i/>)    sin(0) cos(i//) 
sin(0) sin(ö) — cos(0) sin(ö) cos(0) 

|L|sin(0)sin(i/)) 
|L|sin(0)cos(i/;) 

|L|cos(0) 
(2.91) 

where \L\ is the magnitude of the angular momentum vector in body coordinates. Thus, in body 

coordinates, two of the Euler angles become spherical angles of the angular momentum vector. 

Because <u3 is a constant, it follows that the coning angle is also a constant, and the coning rate 9 

is equal to zero. Accordingly, the kinematics equation for the Euler angles becomes (2 p. 280) 

(OR   = 

0 cos (t/0 sin(0) sin(i/>) "f <p sin(ö) sin(i/>) 
0 —sin 0/0 sin(ö) cos(jp) 0 = <p sin(ö) cos(ip) 
1 0 cos(0) A .   <p COS(Ö) + Tp 

(2.92) 

Recalling that It = I2, enables LB = IBa>B to be written as 

<p sin(ö) sin(i/>) 

0 sin(ö) cosO/0 

0cos(0) +xp 

sin(0) sin(i/>) h    0     0] 
sin(0) cos(xp) = 0    lx    0 

cos(0) .0     0    /J 

/1(0sin(0)sin(i/»)) 

/1(0sin(0)cos(i/;)) 

/3(0cos(0)+i/>) 

(2.93) 

Solving the first line of equation (2.93) for the precession rate <p yields 

rh       |L| 

h 
(2.94) 

which, along with the last row of equation (2.92), can be substituted into equation (2.93)   in 

order to find the spin rate xp, according to (10 pp. 537 - 538) 

0 
0 

.1. 
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Wcos(g)       .      736)3 + /^        .      A - /3\ ,, Q-> 
(o3= + \f} = =>0 =   —-— OJ3 (2.95) 

* = (^T^) *cos(0) = (^/T^)|i| cos(ö) 

This result is exactly the same as what was given in equation (2.85) for the angular frequency fi. 

Thus, for the torque-free motion of a symmetric rigid body, the Euler angle rates are all constant, 

and the solution for the attitude in terms of the Euler angles is (2 p. 280) 

0 = 0(At) + 0o 
6 = 90 (2.96) 

0 = xp(At) + 0o 

where 0 is the precession angle, 0O is the initial precession direction (x-initial), tp is the spin 

angle, 0O is the initial spin direction (z-initial), and At is the change in time. The most important 

point of this discussion is that, in the inertial reference frame, the direction of the angular 

momentum remains fixed, and the spin axis and angular velocity vector cone about it. Thus, a 

point on the spin axis describes a circle in inertial space. An observer fixed in the space axes 

would see co move on the surface of a space cone and correspondingly, an observer fixed in the 

body would see the angular velocity vector move on the surface of a body cone, as depicted 

below (2 p. 281). 
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Precession/Angular Momentum Vector 

Space Cone \ 

ConingAngle 

Precession Rate 

Angular Velocity Vector 

Body Cone 

Spin Vector 

Figure 2.6 Torque-free motion of a symmetric rigid body (spin-precession motion) (lip. 492) 

If one regards the body and space cones as those swept out by the angular velocity vector 

with respect to the body's z-axis and the angular momentum vector, respectively, then one cone 

must roll over (or within) the other, with the angular velocity vector representing the line of 

contact between the two. If the moment of inertia about the symmetry axis is less than that about 

the other two principal axes, then the body cone will be outside the space cone; and conversely, 

when the moment of inertia about the symmetry axis is the greater value, the body cone rolls 

around the inside of the space cone. In either case, the physical description of the motion is that 

the direction <u of precesses in time about the axis of symmetry of the body (11 pp. 491 - 493). 

2.3.4    Attitude Prediction and Simulation 

Though the environmental torques that operate on the spacecraft are generally quite 

small, they cannot be ignored, since they act over a very long period of time. Similarly, while it 

is often the case that the difference between two principal moments of inertia is small compared 

with the difference of these from the third, the spacecraft is never exactly symmetric (even for 

the second-order moments which make up the inertia tensor). Accordingly, a major focus of the 
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architecting process has been devoted to developing and integrating more refined models into the 

filtering algorithm in order to overcome these invalid underlying assumptions and perform multi- 

pass attitude prediction. Since the primary guess that initiates the measurement sub-process 

describes the motion of the spacecraft in terms of these body-symmetric, torque-free Euler angle 

parameters, it is necessary to switch to a more flexible representation. As has been mentioned 

before, the best choice is the unit quaternion, whose kinematic equation is linear and which 

satisfies only a single constraint that is easy to enforce. 

Furthermore, accurate prediction of the time evolution of the attitude of a spacecraft 

requires three things: 1) a refined set of initial conditions (the output of the filtering sub-process 

discussed in the next chapter), 2) specifying the differential equations governing the rotational 

motion of the spacecraft (outlined in the preceding sections), and 3) a method of solution (12 p. 

558). The dynamic and kinematic equations of motion are taken as a set of coupled differential 

equations and integrated using one the methods described in Section 2.3.4.1. The integration 

state vector x, consists of the attitude quaternion and three angular velocity body rates or angular 

momentum components. Given the nature of the problem, the method of solution is necessarily 

constrained to dynamic modeling, since the only other option is gyro modeling, which consists of 

using rate sensors or gyroscopes onboard the spacecraft to replace the dynamic model such that 

only the kinematic equations need be integrated. To properly integrate both the set of equations, 

requires detailed models be developed in order to estimate the physical characteristics of the 

spacecraft and external disturbance torques. Both the attitude estimation and prediction 

components of the overarching system architecture make use of different aspects of the models 

and algorithms described in the subsequent sections. 
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2.3.4.1 Numerical Integration Methods 

Once the appropriate differential equations for attitude propagation have been 

established, it is necessary to choose a method for solving them. Because exact closed-form 

solutions of the complete equations to be integrated are almost never available, an approximation 

method is needed. The approach discussed in this section is direct integration using standard 

methods of numerical analysis. The equations of motion of attitude dynamics are a set of first- 

order coupled differential equations of the form 

dx , 
— = f(t,x) (2.97) 

where f is a known vector function of the scalar t and the vector x. For simplicity, only the single 

differential equation dx/dt = f(t,x) will be considered in this section, since the extension to 

coupled equations is fairly straightforward. Numerical algorithms will not give a continuous 

solution x(t), but rather a discrete set of values xn (n = 1,2,...) that are approximations to x(t) a 

specific times tn = t0+ ns, where the parameter s is called the integration step size. Values of 

x(t) for arbitrary times can be obtained by means of interpolation (Matlab function interp). For 

interpolation equations and procedures, please consult References (13) and (14). A minimum 

requirement on any algorithm is that it converge to the exact solution as the step size is 

decreased,that is, 

limxn = x(tn) (2.98) 
s->0 

where the number of steps n, is increased during the limiting procedure in such a manner that 

ns = tn — t0 remains constant. 

Three important considerations in choosing an integration method are truncation error, 

round-off error, and stability. Truncation error, or discretization error, is the difference between 

the approximate and exact solutions xn — x(tn), assuming that the calculations in the algorithm 
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are performed exactly. According to Reference (15), "if the truncation error introduced in any 

step is of order sp+1, the integration method is said to be of order p." Round-off error is the 

additional error resulting from the finite accuracy of computer calculations due to "fixed word 

length". An algorithm is unstable if errors introduced at some stage in the calculations (from 

truncation, round-off, or inexact initial conditions) propagate without bound as the integration 

proceeds. Truncation error is generally the limiting factor on the accuracy of numerical 

integration; it can be decreased by increasing the order of the method or by decreasing the step 

size. It is often useful to vary the step size during the integration, particularly if the 

"characteristic frequencies of the problem change significantly"; the ease with which this can be 

done depends on the integration method used (12 p. 560). The computation time required is 

usually proportional to the number of function evaluations, i.e., calculations of fn — f(tn,xn) that 

are required. Clearly, decreasing the step size increases the number of function evaluations for 

any fixed integration algorithm. 

Two categories of integration techniques are commonly employed. In one-step methods, 

the evaluation of xn+1 requires knowledge of only xn and fn. Multistep methods, on the other 

hand, require information about previous values xm and fm for some number of values m < n as 

well. One-step methods are widely used, due to the fact that they are relatively easy to apply - 

only x0 and f0 are needed as initial conditions - and the step size can be changed as necessary, 

without any additional computations. The most common one-step approach includes the classical 

R-stage Runge-Kutta method (15 p. 561) 

xn+l = xn + S<p(tn, Xn, S) (2.99) 

The increment function <p is a weighted average of R evaluations of f(t,x) at different points in 

the integration interval and is given by (15 p. 561) 

57 



(p{tn,xn,s) = y  crkr (2.100) 
r=l 

subject to the following constraint (15 p. 562) 

R 

V cr = 1 (2.100) 
r=l 

k1=f(t,x) (2.101) 

kr — fit + sar,x + s y brsks 1   r = 2,3, ...,i? (2.102) 
s=l 

r-1 

ar = V/jrs   r = 2,3, ...,J? (2.103) 
s=l 

The different choices of the parameters cr and ftrs define the different methods. Note that an R- 

stage method involves R function evaluations. The constants are always chosen to give the 

maximum order (and thus the maximum truncation error) for a given R; this order is R for 

R = 1,2,3,4; R — 1 for R = 5,6,7; and < R — 2 for R > 8. For this reason, fourth-order four- 

stage Runge-Kutta methods are the most popular and take the following form (16 p. 603) 

xn+1 = xn + ^(k1 + 2k2 + 2k3 + /c4) (2.104) 
6 

fcl=/(tn^n) (2-105) 

k2 = /(tn + 0.5s, xn + 0.55/Ci) (2.106) 

k-i = f(tn + 0.55, xn + 0.5sk2) (2.107) 

k4 = f(tn + s,xn + sk3) (2.108) 

The algorithm summarized by equations (2.104) - (2.108) is utilized extensively in the attitude 

estimation problem described in Chapter 4, along with the Matlab function known as ode45, 

which uses the Dormand-Prince method for solving ordinary differential equations (17). The 

method is a member of the Runge-Kutta family of ODE solvers, which uses seven stages, but 
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only six function evaluations per step to calculate fourth- and fifth-order accurate solutions. The 

difference between these solutions is then taken to be the error of the (fourth-order) solution. 

This error estimate is very convenient for adaptive step size integration algorithms. 

A fc-step multistep integration method has the form (16 p. 610) 

fe fe-i 

xn+l — s yßjfn+1+j-k  y   ajxn+l+j-k (2.109) 
;=0 ;=0 

where different choices of the parameters cty and ßj define alternative methods, and determine the 

number of back values of fn and xn. One drawback of these methods is that they are not self- 

starting; some other method, often a Runge-Kutta, must be used to calculate the first k values of 

fn and xn. Another disadvantage is that the step size changes are more difficult than for single 

step methods; additional back values must be available if the step size is increased, and 

intermediate back values must be calculated by interpolation if the step size is decreased. The 

most commonly used fc-step algorithms utilize a procedure in which an explicit method (/?;- = O), 

known as a predictor, calculates xn+1; then fn+1 is evaluated and an implicit method (/?;- =£ O), 

known as a corrector in this application, is used to obtain a refined value of xn+1, followed by a 

second evaluation of fn+1 using the new xn+1. The chief advantages of a predictor-corrector pair, 

such as the Adams-Bashforth-Moulton algorithm, is that only two function evaluations are 

needed per integration step and the difference between the predicted and corrected values of xn+1 

give an estimate of the truncation error and can be used for step size control. This is in contrast to 

the Runge-Kutta methods, for which the step size changes are relatively easy, but estimates of 

truncation error are difficult to obtain. The 4l -order Adams-Bashforth-Moulton pair is given by 

(16 p. 627) 

Predictor (explicit) 
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*n+l = *n + ^(55/n " ^fn-1 + ^fn-2 " 9/n-s) (2.110) 

Corrector (implicit) 

*n+l =Xn+^ (9/n+l + 19/n " 5/n_! + /n_2) (2.111) 

This specific algorithm is implemented in the Matlab function odell3 (17). Higher order 

methods are also widely used and, unlike higher order Runge-Kutta methods, cost only 

additional storage space and not additional function evaluations. 

In choosing an integration method, the factors of programming complexity, computer 

storage requirements, execution time, and computational accuracy must all be considered. For a 

specific application where the characteristic frequencies of the system are known to be nearly 

constant, a fixed-step method is appropriate. If the step size is limited by variations in the driving 

terms rather than by integration error (noisy input and/or low-accuracy requirements) or if 

function evaluations are relatively inexpensive, a Runge-Kutta method is preferred. If on the 

other hand, the integration step is set by integration error or function evaluations are expensive, a 

predictor-corrector method is better. Adams methods are favored in this class because they 

combine good stability properties with relatively low computer storage requirements and 

programming complexity. Because predictor-corrector algorithms provide an automatic estimate 

of local truncation error, they are the preferred variable-step methods. According to Reference 

(12), the best general-purpose integration methods currently available are programs with 

variable-step and variable-order Adams-Bashforth-Moulton integrators. 

2.3.4.2 Geometric Satellite Model 

The mass, center of mass, and inertia tensor for a solid, simple polyhedron of constant 

mass density require computing volume integrals Vlntj of the type (18 p. 536) 
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Vint i = J p(x,y, z)dV (2.112) 

where V is the volumetric region of integration and dV is an infinitesimal measure of volume. 

The function p(x,y,z) is a polynomial selected from 1, x, y, z, x2,y2,z2, xy, xz, and yz. We are 

interested in computing these integrals where V is the region bounded by a simple polyhedron. A 

volume integral may be reduced to a surface integral via the Divergence Theorem (18 p. 537) 

Vint* = I p(x,y,z)dV = J V-f(x,y,z)dV = j n-f{x,y,z)dA (2.113) 
V V A 

where A is the boundary of the polyhedron, dA is an infinitesimal measure of surface area, the 

function f{x,y,z) is chosen so that V • f(x,y,z) = p(x,y,z), and the vector n denotes outward- 

pointing, unit-length surface normals. The choices for / are given in the following table (19 pp. 2 

-5): 

Table 2-1 Function values for volume integration 

Vint p(x,y,z) f(x,y,z) q(x,y,z) c 
0 1 (x, 0,0) (at, 0,0) 1 
1 X (*2/2,0,0) (*2,0,0) 1/2 
2 y (0,y2/2,0) (0,y2,0) 1/2 
3 z (0,0,z2/2) (0,0, z2) 1/2 
4 X2 (x3A0,0) (*3,0,0) 1/3 
5 y2 (0,y3/3,0) (0,y3,0) 1/3 
6 z2 (0,0,z3/3) (0,0, z3) 1/3 
7 xy (x2y/2,0,0) {x2y, 0,0) 1/2 
8 xz (0,z2x/2,0) (0,z2x,0) 1/2 
9 yz (0,0,y2z/2) (0,0, y2z) 1/2 

The wireframe model created in the software program known as X-Based Enhanced 

Lincoln Interactive Analysis System (XELIAS) and used primarily in the measurement making 

process - described extensively in Section 3.1.3 - can also be leveraged to generate an initial 

estimate for the inertia matrix and center of mass. The geometric model can be decomposed into 

a set of matrices consisting of vertex coordinates and the order in which they should be 
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connected to create planar faces. The polyhedron surface is, thus, a union of thousands of 

triangular faces, so the surface integrals are effectively integrals in various planes. Projection of 

the faces onto coordinate planes is used to set up yet another reduction in dimension (19 p. 3). 

The figure below shows an example patch model for a simple cube shaped rigid body and the 

projection of a particular triangular facet into the uv plane. 

w(0,l,D 

(0,0,1) 

(0,0,0-j 

(1,1,1) 

*     (1,0,0) 

(1,1,0) 

*« 

IlF 

Figure 2.7 Patch model of a simple geometric shape 

Green's Theorem, the two-dimensional analog of the Divergence Theorem, is employed 

to reduce the planar integrals to line integrals around the boundary of the projected faces. After 

the complicated integrals have been decomposed into their simplest form, they can be evaluated, 

combined, and propagated backward to evaluate the original ones. The integrals to be calculated 

have thus far been reduced to the form (19 p. 4) 

Vlntj = J p(x,y,z)dV = Y(nF • I) j f{x,y,z)dA = c Y(nF • l) J q(x,y,z)dA   (2.114) 
FeA FEA 

where nF is the outward-pointing, unit-length normal to face F, I is a unit vector aligned with 

either the i, j ,or k axis, c is the constant denominator values (1, 1/2, or 1/3) of the function /, 
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and the function q(x,y,z) are the corresponding numerator variables of/ presented in Table 2-1. 

If the triangular facets are counterclockwise ordered and have vertices pt = (x^y^zi), where i — 

1,2, or 3, then two of the vector edges e connecting the three points are given by 

(2.115) 

A parameterization of the face projected into the uv plane is depicted in Figure 2.7 and can be 

expressed mathematically as (18 p. 541) 

tix Px Px ex Px Px 
ey — Vy — Py and ey = Py — Py 

[ez\ l IPzl 2 \-Pz\ l [ez\ 2 IPzl 3 IPzl 

p(u,v) = 
\Pxl ex ex 
Py + u Cy + V Cy 

IPzl 1 [ez\ l [ez\ 
(2.116) 

where u > 0 and v > 0, and u + v < 1, the infinitesimal measure of surface area is given by (18 p. 

542) 

dA = \e1xe2\dudv (2.117) 

and the outward pointing unit-vector perpendicular to the face is 

ex xe2 (2.118) 
|e1xe2| 

Therefore, the integrals in equation (2.114) can be reduce to (19 pp. 7 - 8) 

1 l-v 

VIntj = I p(x,y,z)dV = c y (e1xe2-l)\   I    q(x(u, v),y(u, v),z(u, v))dudv   (2.119) 
V FeA 0   0 

where x(u, v), y(u,v), and z(u,v) are the components of the parameterization in equation 

(2.116). Computing the integrals on the right-hand side of equation (2.119) has been done using 

the symbolic toolbox provided as part of the Matlab software program and yields the following 

set of equations (19 pp. 9 - 10): 
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(2.120) 

(nF-i) J xdA = -±-f1(x) 
F 

(nF • i) J x2dA = j|/2(x)    (nF • i) J x3dA = ^/3(z) 
F F 

(nF •;) j y2dA = g/2(x)    (nF •;) J y3dA = ^/3(x) 
F F 

(nF • k) j z2dA = g/2(x)    (nF • ft) j z3dA = ^/3(x) 
F F 

(nF • i) J x2ycL4 = ^(yi5i O) + VidiM + VsSsW) 
F 

(nF •;') J y2zdA = — (z^iy) + z2g2{y) + z3g3(y)) 
F 

(nF • k) J z2xcL4 =—{x1g1(z) + x2g2{z) + x3g3(z)) 
F 

where the common subexpressions, / and g, required in the surface integrals may be obtained by 

means of some additional factoring and are listed below using a place holder variable w. (19 pp. 

8-9) 

i=0 

(2.121) 

/0(w) = 1 and fn(w) — an(w) + w2/n_1(w) for n > 1 (2.122) 

/i(w) = w0 + w1 + w2 = [w0 + wj + w2 (2.123) 

f2(w) — WQ + WQW-L + W
2
+ w2f1(w) —   [WQ] + w1{w0 + Wi} + w2{/1(w)}        (2.124) 

/3(w) = WQ + WQW± + w0wl + w3 + w2f2(w) = W0{WQ] + Wt{WQ + w0wt + wf} + w2{/2(w)} 

(2.125) 

gi{w) = f2(w) + M/iA(w) + w? = {/2(w)} + WiOfiiw)} + wt) (2.126) 

The square brackets [ ] indicate that the subexpression is computed and saved in terms of 

temporary variables for later use, while the curly braces { } indicate the subexpression was 
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computed earlier and can be accessed from the cache. Finally, the mass m, center of mass vector 

cm, and inertia matrix / can be assembled by first substituting the result of each component of 

equation block (2.120) back into equation (2.114) to solve for the volume integrals Int; and then 

entering the outcome into (19 p. 2): 

m = VInt0 (2.127) 

Vlnti 

VInt2 
VInt3 

(2.128) 

VInt5 + VInt6 - m(c^y + c^z) -VInt7 + mcmxcmy -VInt9 + mcmzcmx 

-VInt7 + mcmxcmy VInt4 + VInt6 - m(c^z + c^x) -VInt8 + mcmycmz 

-VInt9 + mcmzcmx -Int8 + mcmycmz VInt4 + VInt5 - m^* + c^y) 

(2.129) 

As will be describe in greater detail in Section 4.3.2 the initial guess for the inertia matrix 

parameters is then calculated through singular value decomposition and back solving for the 

parameters that correspond to the moment of inertia matrix generated using the process described 

above. 

2.3.4.3 Environmental Torques 

Environmental torques are naturally occurring body disturbances that impact the attitude 

of a spacecraft independent of any action it may take. To numerically integrate Euler's equations, 

the torque must be modeled as a function of time and the spacecraft's position and attitude. As 

was mention in the chapter introduction, in general, orbit and attitude are interdependent and 

nowhere is this union more evident than when analyzing the effects of environmental torques. 

For example, in a low altitude Earth orbit, the attitude will affect the atmospheric drag on the 

vehicle, which will impact the semi-major axis and eccentricity of the orbit; conversely, the orbit 

establishes the spacecraft position which determines both the atmospheric density and the 
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magnetic field strength which will, in turn, affect the attitude. However, since only the impacts to 

attitude are of consequence to the subsequent problem, orbital information is always taken as 

input and the affects of attitude on orbit are overlooked. Even though this unilateral look at 

environmental torques enables the complex dynamics involved to be dramatically simplified, the 

non-cooperative nature of the problem implies that certain physical characteristics of the 

spacecraft, such as the coefficient of drag and surface reflectivity, will either need to be inferred 

through external observation or reasonably estimated. Even with such an approach, several other 

critical assumptions and approximations are required in order to reduce the modeling effort to a 

manageable level. 

The objective of this section is to briefly outline the conventional models used to describe 

the dominant sources of attitude disturbance torques, which include the Earth's gravitational and 

magnetic fields, solar radiation pressure, and atmospheric drag. The relative importance of each 

of these torques to a given attitude prediction problem is a function of the vehicle's size, shape, 

mass, mass distribution, and altitude. 

2.3.4.3.1 Gravity-Gradient Torque 

All nonsymmetrical objects of finite dimension in orbit are subject to a gravitational 

torque because of the variation in the Earth's gravitational force over the object. Since there 

would be no gravitational torque in a uniform gravitational field, the magnitude of the force from 

the Earth is not constant but varies roughly as R~2, where R is the distance from the geocenter 

(12 p. 566). The general expression for the gravity-gradient torque NGG on a spacecraft of 

arbitrary shape and using a nonspherical Earth model can be expressed as (12 p. 567) 

WGC = ^Rx(/-R) (2.130) 
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where / is the inertia tensor, R is the position vector of the spacecraft' s center of mass with 

respect to the Earth's geometric center, and ß — GMe — 398600.5 km3/sec2 is the Earth's 

gravitational constant. From equation (2.130), several general characteristics of the gravity- 

gradient torque may be readily inferred: 1) the torque is normal to the local vertical, 2) the torque 

is inversely proportional to the cube of the geocentric distance, and 3) the torque vanishes for a 

fully-symmetric spacecraft (i.e. the principal moments of inertia are all equal) (2 p. 283). Because 

the Earth is not perfectly spherical it becomes necessary to calculate general potential function 

for the Earth and the gravity-gradient tensor (20 pp. 128 - 129) 

(2.131) 
0n 9l2 013" 

921 922 923 

931 932 933. 

The elements of which are given by 

g±1 = f [1 - 3(RX
2)] + f{l - 5[RX

2 + R3
2] + 35(R1

2)(R3
2)} 

g22 = r[l - 3(R2
2)] + r{l - 5[R2

2 + R3
2] + 35(R2

2
)(RS

2
)} 

g33 = r[l - 3(R3
2)] + r{3 - 30(R3

2) + 35(R3
4)} 

012 = 02i = -3(r)(R1)(R2) + r{-5(R1)(R2) + 35(R1)(R2)(R3)
2} 

013 = 03i = -3(f)(R1)(R3) + f{-5(R1)(R3) + 35(R1)(R3)(R3)
2} 

012 = 02i = -3(r)(R2)(R3) + f{-5(R2)(R3) + 35(R2)(R3)(R3)
2} 

(2.132) 

(2.133) 

(2.134) 

(2.135) 

(2.136) 

(2.137) 

where r is the vector from the center of the Earth to the satellite the terms common to each 

component of the gravitational tensor, R, f, and f are given by 

In 

ii/|r| 
r2/|r| 
r3/|r| 

r = J_ 
|r|3 

F=^(R) 

(2.138) 

(2.139) 

(2.140) 
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It is important to note that the gravitational tensor is referenced to the Earth Centered 

Earth Fixed (ECEF) reference frame [GEN], denoted by the subscript F rather than the Earth 

Centered Inertial (ECI) coordinate system which uses the subscript /. As the name implies, the 

ECEF coordinate system is fixed to the rotating Earth, with an origin at the center of the Earth 

and fundamental plane that runs through the equator. The principal direction C axis is aligned 

with the Greenwich meridian (0° longitude), the N axis runs through the North Pole, and the E 

axis points towards the East (3 p. 158). In order to transform between the ECEF and ECI 

coordinate frames, one need only rotate about the z-axis by the Greenwich Mean Sidereal Time 

0g, which is the angle in degrees measured from the vernal equinox to the Greenwich meridian, 

as depicted in Figure 2.8 (3 p. 189). 

Local Meridian 

Figure 2.8 Spherical Angles: Greenwich mean sidereal time 9g, longitude A, and right ascension a 

The rotation angle can be calculated using the following set of equations (3 pp. 191 - 193): 

9g = 8g0 + 1.002737909359795(360°)(D) (2.141) 
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(hr\     ( min \     /  sec  \ 
D = (Day Number - 1) +   —   +   -—-r   + (-—-—r) 

* V24/     V1440/     V86400/ 
(2.142) 

dg0 = mod360(100.4606184 + [36000.770053(7)] + [0.00038793(T2)] - [2.6 x 10-8(T3)]) deg 

T = 
(JD - 2451545.0) 

(2.143) 

(2.144) 
36525 

where D is the total elapsed time in solar days (please see Table B-l in Appendix B for 

information on calculating day numbers) and 6g0 is the Greenwich Mean Sidereal Time, both 

from the epoch 1 January 00:00:00 of the year of interest. In equation (2.144), JD is the Julian 

date, which is the interval of time measured in days from the epoch 1 January 4713 B.c., 

12:00:00 and can be calculated using equation (B. 1) in Appendix B. Having converted solar time 

into the proper sidereal angle, the coordinate transformation for the gravitational tensor can then 

be found in the following manner (3 p. 173): 

G, - R3{dg)GFRl{6g) 
"11 "12 "13 

^21 ^22 ^23 

^31      ^32      ^33-1/ 

cos(ög)    —sin(ö^)    0 

sin(0g)      cos(ö5)     0 
0 0 1J 

Gil G12 G13' 

G21 G22 ^23 

G31 G32 G33- F 

cos(#g)     sin (0g)    0 

-sin(0fl)    cos(05)    0 
0 0 1J 

(2.145) 

and the gravity gradient torque is then given by (21 p. 15) 

NGGI 

NGG2 

NGG3 

V22 — ^33)^23 + (^33 — ^22)^23 + ^12^13 — ^13^12 

U33 — hlJ^13 + (^11 — ^33)^13 + ^23^21 — ^21^23 

.Uli — ^22)^12 + (^22 — ^ll)^12 + ^31^32 — ^32^31 

(2.146) 

2.3.4.3.2 Magnetic Torque 

Magnetic torques results from the interaction between the spacecraft's residual magnetic 

field and the geomagnetic field. For near Earth spacecraft at altitude greater than 500 km, 

magnetic torques are often the principal disturbance affecting spacecraft attitude. The magnetic 

torque NM is typically expressed as (12 p. 575) 
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NM - m x B = 
m2B3 - m3B2 

m^ - mtB3 

171^2 - m2Bv 

(2.147) 

where m is the effective magnetic moment of the spacecraft in A • m2 and B is the geocentric 

magnetic flux density with unit of Wb/m2. In order to minimize errors in evaluating the magnetic 

torques, the magnetic field of the Earth was computed from the spherical harmonic model and 

Gaussian coefficients g• and h%, obtained from the 10th generation international geomagnetic 

reference field (IGRF) database created by the National Oceanic and Atmospheric 

Administration (NOAA) (22). The Gaussian coefficients are determined empirically by a least- 

squares fit to measurements of the field and include terms through 13th order and degree. Since 

the atmosphere is essentially nonmagnetic, the equations for the geocentric field intensity 

components may be expressed in terms of the magnetic flux density B, according to (20 pp. 117 - 

118) and (23 p. 783), as 

nmax    n „j.9 .    _ .   . 

B1 = - 2, 2, ("77    ^cos(mÄ) + K s[n(-mÄ» -J}ät1 (2-148) 
n=l 7n=0 

nmax    71 n+2 

Bl = Z Z ünTÖ) (T1
)      ^ Sln(mA) " K cos(m;i)) P•(0) (2"149) 

n=l m=0 

nmax    n n+2 

B3 = £ £ (n + 1) (^r)      (flff cos(mA) + /# sin(mA)) Pn
m(0) (2.150) 

n=l m=0 

where Pm is the mean radius of the Earth (6371.2 km), as opposed to the Earth's equatorial radius Re 

which is given as 6378.137 km. Additionally, the Schmidt-normalized associated Legendre 

functions P•(&) and their derivatives may be evaluated from the following recursive formulas 

(23 pp. 775 - 776) 

P°(9) = 1 ) 
dPo°(0) _    |n = m = 0 (2.151) 
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2n — 1 
W)- |^r^--1

1(e)sin(e) 

dPn
n(0)       Yin - 1 

mrcT\ — . P•(0) 

dPn
m(0)        2n - 1 

d0 J    2n 

2n-l 

dP^CQ)  . 
dQ 

sin(0) + P^lr1
1(0)cos(0) 

v 

>n = m > 1 (2.152) 

Vn2 — m2 

J(n - l)2 - m2 

p•!(e)cos(0)-v    ,  \ P• 2(0) 

d0 Vn2"^-^2 

dP„m_i(e) 
cos(9)-P^1(0)sin(0)- 

2n-l 

V(n-l)2-m2dPn"L2(0) 
>n > m > 0 

d0 v y       "_1V y      v y 2n-l d0 

(2.153) 

In this set of equations 0, A, and r are the colatitude (n/2 — latitude), longitude, and range of the 

spacecraft respectively; values for which can be easily obtained by generating the corresponding 

report in the software program Satellite Tool Kit (STK). A detailed set of directions for creating 

the necessary text file is provided in Appendix C. The desired principal axis components of the 

geomagnetic field are expressed in terms of a basis in which the R axis always points from the 

Earth's center along the radius vector towards the satellite as it moves through the orbit. The T 

axis points in the direction of the velocity vector and is perpendicular to the radius vector and the 

N axis is normal to the orbital plane (3 pp. 162 - 163). In order to transform from the Satellite 

Orbit Coordinate System [RTN] coordinate system (given the subscript S) to the ECI frame, 

requires that the longitude Ä be converted into right ascension a (also known as Local Sidereal 

Time), using the values found in equations (2.141) - (2.144) and the simple formula (21 pp. 34 - 

35) 

a = X + 9g (2.154) 

the combined rotation matrix can then be expressed as 

B7 = Ä1(a)Ä2(8)B5 

Bi cos(0) 0 -sin(0) 
sin(0) sin(a)      cos(a)      cos(0) sin(a) 
sin(0) cos(a)    — sin(a)    cos(0) cos(a) 

B1 

B2 
Bt 

(2.155) 
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2.3.4.3.3 Aerodynamic Torque 

Aerodynamic torque is created by the impact of rarefied air particles with the satellite 

surface and depends primarily on the atmospheric density at a given altitude. At altitude below 

about 800 km the aerodynamic torque is generally the most important of environmental 

disturbance torques. The force due to the impact of atmospheric molecules on the spacecraft 

surface can be modeled as an elastic impact without reflection, in which the incident particle's 

energy is generally completely absorbed upon collision (12 pp. 573 - 574). 

As was discussed in Section 2.3.4.2, the surface area of the satellite can be decomposed 

into simple geometric shapes, enabling the aerodynamic force acting on each individual shape 

making up the vehicle's body, to be considered independently and summed together in order to 

find the total torque. Because the resultant forces on any given panel of the spacecraft acts at the 

center of pressure of the exposed surface area, the same geometric model used in estimating the 

moment of inertia matrix, can also be used to locate the corresponding centroid of each triangular 

facet that comprises the satellite as depicted in Figure 2.9 (12 p. 574). 
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f enter of Pressure (C'oP) 

' Vector from the Center of Gravity     K'*""""««' *• Surface A] 
to the Center of Pressure (R) 

Figure 2.9 Aerodynamic drag acting at the centroid of each surface element 

This approach avoids time-consuming repetitive evaluation of surface integrals by taking 

advantage of the regular geometry of the panels and the fixed orientation of each surface element 

with respect to the center of mass/center of rotation. If spacecraft is characterized as being a 

finite collection of surfaces, then the aerodynamic torque NA can be written as (2 pp. 285 - 286) 

n 

NA = --CoP^AiOii • v)(r( x v) 
i=l 

(2.156) 

and the summation is over that part of the spacecraft for which n^ • v > 0, that is, the portion of 

the spacecraft surface facing into the wind. In the above equation, CD is the drag coefficient 

(which is assumed to be 2 since no measured value is available), p is the atmospheric density, rt 

is the position vector to the center of pressure of the ith surface, measured from the center of 

mass, v is the velocity vector in ECI coordinates obtained from STK, At is the area of the ith 
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surface element, and n; is the outward pointing unit-vector, normal to the surface element. For a 

flat surface, if there are no shadowing effects, the center of pressure is located at the geometric 

center (centroid) of the face. 

Unfortunately, the calculation of aerodynamic torques is in general, not very accurate, 

due to large uncertainties in the atmospheric density, drag coefficient, and shadowing effects. 

Furthermore, at altitudes above 200 km, the atmospheric density is sensitive to solar activity, 

which may cause the lower atmosphere to expand, with sometime severe consequences (20 pp. 

109 - 110). In order to mitigate errors to the greatest extent possible, values for the atmospheric 

density and the solar flux F10.7, are computed using the NRL-MSISE-2000 Atmospheric Model 

and Space Physics Interactive Data Resource (SPIDR), respectively. The NRL-MSISE-2000 

model uses the daily F10.7 value, the orbital parameters of the satellite (namely the latitude, 

longitude, and altitude), and characteristics of certain atmospheric molecules, to compute the 

neutral temperature and density of the Earth's atmosphere over a fixed time interval. To obtain p 

values at specific observation times in a given pass requires the use of interpolation, which can 

be done using the Matlab function interpl. For more detailed information on the density model 

used in this thesis, consult Reference (24). 

2.3.4.3.4 Solar Radiation Torque 

Radiation incident on a spacecraft's surface produces a force which results in a torque 

about the satellite's center of mass. The surface is subject to radiation pressure or force per unit 

area equal to the vector difference between the incident and reflected momentum flux. Because 

the solar radiation varies as the inverse square of the distance from the Sun, the pressure is 

essentially altitude independent for spacecraft in Earth's orbit (12 p. 570). The major factors 

determining the radiation torque are the intensity and spectral distribution of the incident 
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radiation, the geometry of the surface and its optical properties, and the orientation of the Sun 

vector relative to the spacecraft (20 pp. 129 - 130). Though electromagnetic radiation is also 

reflected by and emitted from the Earth and its atmosphere, these contributions to the overall 

torque are small and will, therefore, be ignored. The solar radiation torque, from a geometrical 

standpoint, is very similar to the aerodynamic torque, except that the incident particles are 

photons rather than air molecules. Radiation from the Sun may be either completely absorbed, 

specularly reflected, or diffusely reflected, as shown in Figure (2.10) (12 p. 571). 
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Figure 2.10 Absorption and Reflection of Incident Radiation 

The probabilities of each of these occurrences are called the coefficients of absorption, specular 

reflection, and diffuse reflection, and satisfy 

ca + cs + cd = l (2.1S7) 

The total solar torque NSR acting on a collection of planes about the center of mass of the 

spacecraft is the vector sum of the individual torques calculated by (12 p. 572) 

n _ _ 

NSR = si 2_j ri x  - -fAifai • s) (1 - cs)s + 2 (cs(n£ • s) + -cdJ n£J (2.158) 

where Fe is the solar constant (1400 W/m2), c is the speed of light (3 x 108 m/sec), rt is the 

position vector to the center of pressure of the ith surface, measured from the center of mass, s is 

the unit vector pointing from the spacecraft to the Sun obtained from STK, along with the solar 
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intensity st (a percentage value, typically 100% or 0%, that changes as the satellite passes in and 

out of eclipse), At is the area of the ith surface element, and rij is the outward pointing unit- 

vector, normal to the surface element. Again the summation is limited to that part of the surface 

for which n£ • s > 0. 
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3       Attitude Determination and Estimation 

For some applications, it is useful to determine the attitude of a spaceborne object over 

time, via non-cooperative means. For example, suppose a satellite's attitude control system has 

failed and the satellite is in an uncontrolled tumble. The satellite owners wish to operate on the 

satellite to retrieve data or restabilize the object if possible. In many cases, the telemetry reveals 

nothing pertinent to the unstable motion or the communication link between the satellite and 

ground station may be severed or degraded, rendering the traditional array of onboard sensors 

unusable. Fortunately, from inverse synthetic aperture radar (ISAR) images of the target, the 

Space Situational Awareness Group is able to obtain attitude measurements helpful in the motion 

analysis. However, these measurements are generally not obtained in a straightforward manner, 

as considerable processing of the raw radar data is needed to form usable images for the attitude 

measurement process (known as image-model matching). Given the unconventional manner in 

which the attitude is being sensed in this particular problem, considerable attention is given in 

this chapter to understanding how the images are generated and the nature of the observations 

that can be derived from them. 

A filtering algorithm is needed to calculate the motion of the object from the inherently 

noisy radar measurements and establish the uncertainty in the obtained motion solution. Since 

the dynamics equations are nonlinear, it is highly unlikely that a closed-form solution to the 

system exists. Additionally, since the number of images yielding measurements exceeds the 

minimum number necessary to solve for the unknown quantities characterizing the motion, the 

problem is said to be overdetermined. It is therefore useful to employ some sort of nonlinear 

least-squares procedure. While a number of least-squares estimators exist, the backward- 

smoothing extended Kaiman filter (BSEKF) has been selected, due to the unique challenges 
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presented by the ISAR attitude measurements and nonlinear system dynamics. As will be 

discussed in greater detail in the subsequent sections, the BSEKF possesses the attributes of a 

number of different algorithms. Also, the filter has been shown to have significantly better 

convergence reliability and accuracy when compared against other leading algorithims in the 

field, namely the extended Kaiman filter (EKF) and unscented Kaiman filter (UKF), for 

estimation problems that start with large initial attitude or attitude rate errors. In the final phase 

of the entire process, output displays describe the computed motion to the analyst and make 

predictions about the future attitude of the spacecraft. With this critical external information, it 

may be possible for operators to then identify the source of the anomaly, develop resolution 

plans, and hopefully, reestablish communication with their valuable space asset. 

Figure 3.1 summarizes the critical objects and processes involved in attitude 

determination and estimation. While by no means comprehensive, this high-level diagram forms 

the basis for much of what will be covered, not only in this chapter, but throughout the remainder 

of the thesis. Those algorithms and techniques of particular importance to the subsequent 

discussion have been highlighted and referenced by section. 
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Figure 3.1 Decomposition of the attitude estimation process into relevant sub-processes and 
different types of sensors/measurement techniques and data filters/estimators 

3.1     The Measurement Process 

Radar images are formed by coherently combining many observations of an object, called 

the target, over a range of frequencies and viewing geometries. The imaging process is coherent 

in that it uses the phase as well as the amplitude of the target echoes. Anything that degrades 

system coherence also degrades the quality of the final image. One such item is uncorrected 

radial target motion, which causes the radar echoes to be shifted in range. These shifts may be 

removed from the signal during the imaging process using a technique called motion 

compensation. A high level of precision in the measurement of the satellite's translational and 

rotational motion is needed to implement motion compensation with the required accuracy. In 

order to achieve the necessary precision, the radar data itself can be used to refine the orbital and 

attitude estimates in an algorithmic process called autofocus. 
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At a fundamental level, radar imaging techniques attempt to extract information about the 

spatial arrangement of a target's various scattering components from the radar echoes. That 

information is encoded in differences in the returns as a function of frequency and viewing 

geometry. The amount of information contained in the variations over frequency is limited by the 

frequency span, or bandwidth, of the transmitted waveform. Similarly, the amount of information 

contained in the variations over viewing geometry is limited by the span of the viewing angle. 

Imaging of satellites from the ground falls into a class of problems in which target motion 

accounts for most of the change in viewing geometry over the observation period. Such target- 

imaging situations are given the name inverse synthetic aperture radar (ISAR). The term inverse 

is used to emphasize the importance of target motion, in contrast to synthetic aperture radar 

(SAR), where platform motion accounts for most of the change in viewing geometry over the 

observation period. From the IS AR perspective, radar imaging constructs a map of the target's 

complex scattering amplitude from the collection of radar returns, each of which is a projection 

of that function at a specific rotation angle. The description of radar imaging in terms of 

projections, and the fundamental insight that description provides, forms the basis of the range- 

Doppler imaging algorithm. 

The collection of algorithms used by the Space Situational Awareness Group to generate 

and process radar images is known as the Advanced Radar Imaging Environment Software 

(ARIES). For the purposes of this thesis project, only a basic understanding of how the raw radar 

returns are used to form images is needed. The intent is to provide a sufficient amount 

background in the image generation process in order to support more critical discussions 

concerning: 1) how the attitude measurements are made and 2) the challenges associated with 

using radar imagery as the basis for what's called image-model matching. To that end, the 
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subsequent sections will focus on the FFT radar-Doppler imaging technique, general motion 

compensation methods, and the specifics of the measurement making process. 

3.1.1 Inverse Synthetic Aperture Radar Basics 

An inverse synthetic aperture radar system coherently combines signals obtained from a 

single ground-based aperture as it observes a rotating target. The rotational motion of the target 

provides the aspect change needed to approximate the result that could otherwise only be 

achieved by a larger antenna aperture (25). Consider the simplified ISAR system depicted in 

Figure 3.2. 
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Figure 3.2 A simple ISAR system consisting of a coherent wideband radar sensor imaging a satellite 
(26 p. 15) 

This simple two-dimensional system includes a radar transmitter/receiver, a medium through 

which the radar signal propagates, and an object of interest, called the target. For illustration 
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purposes, the complex satellite being imaged has been reduced to five point scatterers. The 

vector from the sensor to the satellite is called the radar line of sight (RLOS) and defines the 

range direction. In this two-dimensional case, the orthogonal direction is defined as the cross- 

range direction. The radar emits a burst of energy, called a pulse, which propagates through the 

medium to the target, interacts with the satellite scattering centers, and is reflected back to the 

radar. It is assumed that the distance to the target - the range - is sufficiently large for the 

wavefronts to be considered planar (27 pp. 2 - 3). According to Reference (28), this is equivalent 

to "assuming that the target is much smaller than a Fresnel zone radius in cross-range extent" - 

an assumption that dramatically simplifies the imaging algorithm. For the monostatic 

configuration shown in Figure 3.2, the radar receiver observes only the reflected part of the total 

scattered signal. The ideal point scatterers composing the spacecraft each produce an echo that is 

an exact replica of the transmitted waveform. The observed signal, called the range profile, is the 

sum of the individual echoes. The range profile begins with a reflection from the point on the 

target nearest the radar and ends with the reflection from the furthest point. The three points on 

the vertical line through the origin are at the same range from the radar, so their echoes add to 

form a single component in the range profile having three times the amplitude of that due to the 

single point. This illustrates the idea that range profiles are projections, or integrals of the 

target's complex scattering amplitude. More precisely, in two-dimensions the range profile is the 

result of integrating the complex scattering amplitude along lines in the cross-range direction. It 

is a complex amplitude signal, in the sense that magnitude and phase are preserved for use in 

coherent imaging process (26 p. 16). 

Note that the reflected energy from a single pulse yields a one-dimensional signal, called 

a radar cross section (RCS), which contains direct information about the locations of the target's 
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components in the range direction but no information about their positions in cross-range. Also, 

the bandwidth of the transmitted pulse determines the accuracy with which the locations can be 

measured in the range direction. Now, if the target is rotated, and another pulse it transmitted, the 

range profile may look like that plotted in the figure below. 
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Figure 3.3 A simple ISAR system in which the target attitude has changed (26 p. 17). 

As the satellite rotates, its radar cross section, or projection into the radar line of sight, changes. 

The difference between the range profiles, such as those illustrated in Figures 3.2 and 3.3, 

provides information about the locations of the target's scattering centers in the cross-range 

direction. If a number of range profiles are collected at various aspect angles, they can be 

processed to separate target components into appropriate range and cross-range locations (27 p. 

8). Note that the range and cross-range directions, defined with respect to the individual radar 

pulses, rotate with respect to the target. However, in most of the descriptions to follow, these are 

defined with respect to the image (where they are constant) and by the corresponding directions 

of the radar pulses that occur at the center of the target observation period. 

Returning to the Figure 3.3, the angle of the target coordinate frame relative to a 

stationary frame is called the aspect angle, and the total angular span over which data is collected 

is called the ISAR angular aperture. The aperture determines the cross-range resolution of the 
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final image, and the angular spacing between adjacent range profiles determines the 

unambiguous cross-range extent of the image area (28 p. 371). Thus far, an idealized picture of 

the radar imaging process has been presented. For three-dimensional targets, the axis of rotation 

is typically neither perpendicular to the radar LOS nor stationary with respect to the radar. The 

geometry of the configuration and the variations in the aspect angle due to changes in attitude 

during data acquisition in an actual system are most easily visualized by considering the system 

geometry from the perspective of the target spacecraft. To assist in the visualization, a 

preliminary coordinate frame is fixed to the target with an arbitrary orientation. That frame is 

then rotated, with respect to the vehicle, to obtain the target-fixed frame appropriate for imaging 

(this should not be confused with the body-fixed frame discussed in the previous chapter). In 

choosing the orientation of the target-fixed (image-plane) coordinate system, it is convenient to 

imagine a unit sphere fixed to the spacecraft at the center of mass. Then consider the point at 

which the line of sight vector intersects that sphere each time a radar pulse is transmitted. In 

operational ISAR systems, those pierce points generally follow some curved trajectory on the 

surface of the unit-sphere, as illustrated in Figure 3.4a (27 p. 13). The orientation of the target- 

fixed frame is depicted in Figure 3.4b and is chosen such that the xy plane provides an optimal 

fit to the intersection points, say, by minimizing the root-mean-square (rms) distance from the 

points to the plane. The y-axis is selected as the direction of the RLOS at the center of the 

aperture, also known as the angular span. The location of the pierce points can now be specified 

by two angles: the azimuthal or in-plane angle a and the polar or out-of-plane angle ß. The 

image is ultimately formed in the xy plane, where the x-axis defines the cross-range direction of 

the image, and the y-axis defines the range (27 p. 14). 
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Figure 3.4 Image plane orientation (27 p. 13) 

3.1.2    Radar Range-Doppler Imaging 

The Fast Fourier Transform (FFT) Range-Doppler imaging algorithm produces two- 

dimensional images of a three-dimensional object. This is appropriate if the out-of-plane angle ß 

remains sufficiently small, since the radar echoes then contain no information about the third 

orthogonal dimension. If the pierce points all lie in the xy plane (/? = 0), the distance from a 

point on the target to the radar is independent of the z-coordinate. When that happens, the radar 

is unable to resolve the target on the z-dimension. The resulting image can be thought of as a 

projection of the 3-D object into the image plane. The image value at each pixel is then the 

integral of the complex scattering amplitude and phase information of the target along the line 

through the pixel and perpendicular to the image plane (27 pp. 14 - 16). 

To understand how range profiles observed at different aspect angles can be combined to 

form an image, it is important to remember that they constitute projections of the target onto a 

line parallel to the radar LOS. For a three-dimensional object, the points in the ideal range profile 
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are integrals of the target's complex scattering amplitude and phase over planes perpendicular to 

the radar LOS. The observed range profile is then the convolution of the ideal range profile and 

the transmitted waveform. For two-dimensional imaging of a three-dimensional object, the target 

is resolved in the range and cross-range dimensions, but not the direction normal to the 

range/cross-range plane (28 p. 365). Again, the range direction is along the radar LOS at the 

center of the angular aperture. For an arbitrary target-rotation vector, cross range is normal to the 

plane defined by the LOS and the target-rotation vector. The unresolved third-dimension is 

therefore, normal to the LOS and in the plane defined by the line of sight and target rotation 

vector. 

The idea of using Doppler frequency shift of the target echo for imaging purposes is 

credited to Carl Wiley (29 p. 14). Classical range-Doppler theory describes imaging in terms of 

the range and Doppler-frequency history of points in the image area over the target observation 

period. Though wideband radars give excellent information along the radar LOS, cross-range 

information is inherently poor. Fortunately, the motion visible through Doppler enables 

information in the cross-range direction to be extracted. In the range-Doppler technique, points 

on the target are sorted into appropriate (x,y) bins based on their observed trajectories during the 

imaging period. In the range direction, the sorting is based on the distance from the radar to the 

target scattering points. The resolution is limited by radar bandwidth, since it determines the 

accuracy with which the distance can be measured (30 pp. 79 - 80). In the cross-range direction, 

the sorting is based on the Doppler frequency history of the points over the imaging period. More 

precisely, the ideal Doppler frequency histories of points in the image plane are compared, often 

through cross-correlation, with observed amplitude histories, along appropriate trajectories, in 

the radar data (30 p. 84). 
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As the satellite rotates about its center of mass, each scatterer on the target has a slightly 

different velocity relative to the radar. On the scale of the wavelength, the different range-rates 

between adjacent scatter points give rise to a corresponding phase variation in the received 

signal, known as a Doppler frequency shift. This shift, in units of Hertz, is given by (29 p. 8) 

0      2R 

where R is the range rate, 0 is the rate of change in the phase of the received signal, and A is the 

wavelength of the radar center frequency. It is important to note that in radar imaging, the sign 

for Doppler shift is opposite the usual convention, where a positive Doppler frequency 

corresponds to an approaching target and a negative Doppler frequency indicates a receding 

target (31 p. 551). The Doppler history is, therefore, generated as a target changes orientation with 

respect to the radar line of sight and is used to resolve targets into multiple Doppler bins. The 

received signal strength in each bin belongs at a particular distance (range) from the center of 

rotation of the object. The combination of received signal strengths in their resolved locations 

plus range resolution available from wideband waveforms gives a two-dimensional image of the 

target (29 pp. 8 - 9). Radar systems that employ continuous wave signals allow observation of the 

Doppler frequency shift directly. For pulse radar systems, however, the phase of the echo from 

the point target is a single sample of the phase function 0(t) at the time the pulse reaches the 

target. As expressed in equation (3.1), the Doppler frequency is then found from the time rate-of- 

change of the phase samples from the set of echoes collected during the imaging period. Since 

coherent pulsed radar systems measure phase directly, it is more convenient to describe the 

imaging procedure in terms of phase history rather than Doppler frequency history. The results, 

of course, can be written in terms of the Doppler frequency by differentiating the phase function 

(29 p. 10). 
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The phase history of a target can be described by considering a point in the image area, as 

depicted in Figure 3.5. 

LsoDoppler Planes Range (in) 
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Figure 3.5 Distance to a scattering point in the image area. As the target rotates, the distance R 
from the radar to a point (x, y) on the target varies sinusoidally with 0. The amplitude and phase of 

that sinusoidal range variation encode the range and cross-range location of the point (28 p. 364). 

The three-dimensional satellite has been projected into the xy plane, and is rotating with a 

uniform angular motion about the z-axis. A scatterer is offset from the origin A of a coordinate 

frame fixed to the target, by x in cross-range and y in range. The distance from the coherent radar 

to the point (x,y) is then (29 p. 10) 

R(t) = Ro + rsin(0) (3.2) 
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where R0 is the distance from the radar to the origin of the target-fixed coordinate frame, 

typically the center of mass, and (r, 0) are the polar coordinates of the scattering point. As the 

target rotates about point A through the aspect angle (0(t) = \oj\t), the distance to the point 

becomes (29 p. 10) 

R(t) = R0 + rsin(0 + dd) = R0 + rxsm(\co\t) + ry cos(Mt) (3.3) 

where t is the observation time (t = 0 being the time at the center of the aperture), rx and ry are 

the cross-range and range relative to the center of rotation, and \(o\ is the magnitude of the total 

angular velocity (composite of the orbit and rotation rate of the spacecraft) orthogonal to the 

RLOS. Equation (3.3) describes a unique trajectory for each point in the image area. Again, 

imaging involves matching point-target trajectories observed in the data to those described by 

equation (3.3). The resolution is determined by the minimum detectable difference in an 

observed trajectory. For coherent systems, the distance to the point target is determined from the 

radar signal phase, 0 = 47rR(t)/A. As a result, the accuracy of the trajectory measurement 

depends on the accuracy of the phase measurement (29 pp. 10 - 11). 

Since the phase measurement is somewhat ambiguous for many ranges, the reference 

trajectory R0 is typically removed, enabling the relative Doppler frequency, range, and cross- 

range of the returned signal to be rewritten as (29 pp. 10 - 11) 

2(R-R0)     2Mry                  2\<O\TX  .                 2Mrcos(Mt) 
/ = ~x = —~x—cos(wt) —sin(Mt) =  (3.4) 

ry — R - R0 = r sin(o)t) (3.5) 

rx = — = rcos(&)t) (3.6) 
/.Co 

Accordingly, the amount of Doppler shift is a function of the scatterer's distance from the 

satellite's center of mass. By analyzing the return radar signal in terms of range delay and 

Doppler frequency, the range and cross-range components of the position of the point scatterers 
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can be estimated. The surfaces of constant range are a set of planes parallel to the radar line of 

sight and one another, and the surfaces of constant Doppler are a set of planes parallel to the 

plane formed by the rotation axis and radar LOS (28 p. 370). 

The presence of the target rotation rate a> in equation (3.6) implies that in order to obtain 

a properly scaled image of the object, the magnitude of a> must be known. If the target is 

assumed to rotate at a constant angular velocity, scatterers will approach or recede from the radar 

at a rate depending only on their cross-range position. The generation of cross-range dependent 

Doppler frequencies can be sorted via a Fourier transform. This operation is equivalent to the 

production of a large synthetic aperture phased array antenna formed by the coherent summation 

of the receiver outputs for varying target/antenna geometries (26 p. 32). For small angles, an 

ISAR image is therefore, the two-dimensional Fourier transform of the received signal as a 

function of Doppler frequency and target aspect angle. If however, the target rotates through 

large angles, the Doppler frequency history of a scatterer becomes nonlinear, following a sine- 

wave trajectory (described in Figure 3.4) that cannot be processed directly by a FFT without 

smearing the Doppler spectrum and, thus, degrading the cross-range resolution (28 p. 388). 

Removal of the defocusing effects due to rotational motion is accomplished by applying a phase 

correction to the synthetic aperture and increasing the pulse repetition frequency to obtain an 

unambiguous Doppler extent. Another implicit assumption, which further complicates the entire 

process, is that the reference distance R0 from the radar antenna to the center of the target is 

known and constant. In applications where R0 is a function of time, the effect of time-varying 

range must be removed from the received signal in the radar receiver and/or processor (28 p. 

389). 
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3.1.2.1 Fast Fourier Transform Range-Doppler Imagery 

Expanding upon the example from the previous section, suppose that the target being 

imaged is composed of two scattering centers connected by a rigid bar. As the target rotates, the 

observed coherent radar data, as illustrated by the middle left image of Figure 3.6b, is a complex 

combination of Doppler from multiple scatterers over time. These Doppler histories are arranged 

into an xy grid, such that: 1) along the y-axis are the wideband range profiles indicating the 

relative location and intensity of scattering centers along the radar line of sight and 2) along the 

x-axis are the Doppler profiles indicates the relative velocity of scattering centers toward and 

away from the radar (25 p. 20). Therefore, for each range cell in the resulting range-time-intensity 

(RTI) grid, the aligned profiles constitute a new complex series, containing amplitude A and 

phase 0 information over time, according to Euler's equation (30 pp. 138 -139) 

ei(t> = cos(0) + i sin(0) (3.7) 

Ae»*\ln
=\•<£> (3.8) {Q = A sin(0) 

where / and Q are the in-phase and quadrature phasor of the signal, respectively, and are 

commonly referred to as the raw IQ -data. 
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Figure 3.6 Range- and Doppler-Time-Intensity histories for a rotating dumbbell. The received 
radar cross sections are organized such that range information is along the y-axis, time is on the x- 

axis, and amplitude and complex phase information are contained in the z-direction. 
(29 pp. 12 - 14) 

The Doppler frequency shifts over time are then sorted by means of weighted fast Fourier 

transforms (FFT) which essentially act as collection of narrow bandpass filters. Since 

narrowband filters achieve their sensitivity by integrating the input signal over a period of time, 
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the longer the integration time, the smaller the Doppler filter bandwidth and thus, greater the 

ability to resolve closely spaced frequencies in the cross-range direction (30 p. 127). This inverse 

relationship between the Fourier processing interval and Doppler resolution is the subject of the 

next section. The result of the FFT is depicted in the bottom right image of Figure 3.6b and 

clearly shows the separation of the received signal based on frequency. The weighting window 

that is applied before Fourier transformation, alters the resulting function by reducing sidelobes 

(secondary pulses of energy adjacent to the primary return), generally at the expense of widening 

the main lobe centered on the scatterer (30 p. 130). Combining the Doppler spectra for all range 

cells produces the desired two-dimensional range-Doppler images, as illustrated in the upper 

right-hand column of the figure above. Bright spots in the image correspond to energy scatterers 

on the satellite. Therefore, the radar image is essentially each scatterer's reflectivity mapped onto 

the range-Doppler plane, indicating the relative location along the radar LOS and the relative 

velocity of scattering centers toward and away from the ground-based sensor. 

The final step in the image generation process utilizes equation (3.6), which provides the 

critical relationship needed to convert the range-Doppler information into a series of discrete- 

time range/cross-range images for a given pass. Knowledge of the motion of the object enables 

the transformation of Doppler (velocity) into cross-range (length). The presence of the angular 

velocity term in equation (3.6) also indicates that consistent scaling of the imagery is heavily 

dependent on a priori information about the rotational motion of the target relative to the radar 

line of sight. In addition to properly scaling the images in the cross-range direction, the 

magnitude of the angular velocity |a>| is critical to selecting a proper integration time and pulse 

repetition frequency (29 p. 21). This term, in effect, has the single greatest impact on the attitude 

estimation  process,   given  the   fact  that  an  inaccurate   cross-range   extent  can  be   easily 
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misinterpreted as a change in satellite orientation when working with two-dimensional imagery. 

The mutual dependence of both the attitude measurements and image processing on the angular 

velocity estimate will become apparent in the subsequent sections. 

3.1.2.2 Range and Cross-Range Resolution 

Resolution in the range direction is achieved by conventional means using a series of 

short or long coded pulses which provide the size of a range resolution cell Ary, determined by 

the bandwidth B of the radar system according to the equation (28 p. 364) 

c 
2B 

Ary = • (3-9) 

where c is the speed of light. Accordingly, wider bandwidths result in finer range resolution. 

From equation (3.6) it follows that cross-range resolution Arx is achieved by measuring Doppler 

frequencies with a resolution of (28 p. 364) 

Af = —^- (3.10) 

Since a frequency resolution A/ requires a coherent processing time interval of approximately 

AT — 1/Af, the cross-range resolution is ultimately given by (28 p. 364) 

Ar* = 2^7 = 2^ (3-11} 

where Ad — coAT is the angle through which the object rotates during the coherent processing 

time.  Fine cross-range resolution implies coherent processing over a large Ad; however, 

equations (3.3) and (3.4) indicate that both the range and Doppler frequency of a particular point 

scatterer can vary greatly over such a lengthy processing interval (31 p. 549). This means that 

during an imaging interval sufficiently long to give the desired cross-range resolution, points on 

the rotating target may move through several resolution cells. Hence, the usual range-delay 

measurement and Doppler frequency analysis implied by equations (3.5) and (3.6) will result in 
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degraded imagery for the long integration time case (29 pp. 23 - 24). As shown in Figure 3.7, over 

or under estimating the Fourier integration time results in an apparent stretching or compressing 

effect in the resulting image. 

Cross-Range 
(Doppler) 

Resolution Cell 
i 0 

R.'A9 

AT = Integration Time 

Doppler Frequency (Hz) 

Figure 3.7 Impact of the imaging interval on Doppler resolution. Movement of the satellite during 
the FFT processing time span results in energy being distributed through multiple resolution cells, 

distorting the image (29 pp. 23 - 25). 

To avoid image degradation caused by motion through resolution cells while using the 

simple range-Doppler analysis described above, requires limiting the size of the coherent 

processing time AT. If one assumes a constant rotation rate and a radar LOS perpendicular to the 

axis of rotation, then there is no motion through a range resolution cell if AT < 2Ary/o)dx. 

Similarly, a Doppler resolution cell will occur if AT < {^X/dy)/oi, where dy and dx in this set of 

equations,  are the  maximum range  and cross-range  dimensions  of the  object (27 p.  9). 

Consequently, one must limit the resolution of the imaging system such that (27 p. 10) 

Arx
2 > Xdy/A (3.12) 
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Arx(Ary) > -^ (3.13) 

In general, the image scene dimensions are not the only parameters regulating the extent of the 

coherent processing interval and hence the cross-range resolution of conventional range-Doppler 

images. When the angular velocity is variable and/or the radar range directions are not coplanar 

in a coordinate system that rotates with the object, the constraint of no motion through a Doppler 

resolution cell may have to be modified to a more stringent one, leading to even smaller values 

of AT (20 p. 365). Often, a finer cross-range resolution is desired, and hence points in the object 

move through range and/or Doppler resolution cells during the coherent integration time. In this 

case, simple frequency analysis will yield degraded imagery; the effect of motion through 

resolution cells must be compensated by analyzing the rotational motion the target. This of 

course is the aim of attitude estimation and hence the direction from which the problem will be 

addressed in the subsequent chapters. 

3.1.2.3 Motion Compensation 

The objective of radar processing is to estimate the target's reflective density function 

from received baseband signal samples, the so-called frequency signature. Ideally, the target's 

range is known precisely and the spacecraft's orbital and angular motion are constant and known 

over the imaging pass. Under such ideal conditions, the extraneous phase term of the motion can 

be precisely removed, so that the reflective density function of the target can be obtained simply 

by taking the Fourier transform of the phase compensated frequency signatures. The process of 

estimating the target's range and removing the extraneous phase term is called focusing. 

In the IS AR imaging formulation of Section 3.1.2, it is assumed that the target remains at 

a constant range, and that the only motion is rotation with respect to the radar. In reality, the 

range to the center of mass of the satellite is time dependant, changing as the target passes 
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overhead. For satellite I SAR, the distance to the target may in fact change by several hundred 

kilometers during the data acquisition period. Errors in the estimate of the orbital flight track, or 

target trajectory, can significantly degrade cross-range resolution and thus the overall scaling of 

the radar image. Distance deviations due to over or underestimating the reference trajectory R0 

that is removed from the phase measurements result in a variation in the range delay to each 

point target that is larger than the range sample spacing, causing range migration (26 p. 34). This 

smearing of the signal energy over several range bins must be corrected prior to imaging. The 

relative range to each image grid point must be known to within some fraction of a wavelength 

over the integration period being used in order to obtain fine cross-range resolution. The need for 

such high-precision estimates of the target trajectory is common to all operational IS AR systems 

and is accomplished using a combination of range alignment and phase correction, collectively 

known as motion compensation (26 pp. 34 - 35). 

Removing the effects of translational motion from the radar signal is relatively 

straightforward. Initial estimates of the satellite trajectory can be obtained from published orbital 

information in the form of two line element sets, state parameters, and/or active tracking of the 

satellite. The state vector is then propagated forward in time using the numerical integration 

method discussed in Section 2.3.4.1. Furthermore, for each pulse return, we can extract measured 

range values based on a tracking algorithm. Fitting an orbit to the observed data is then done via 

a batch least-squares algorithm, the details of which are presented in Section 3.2.2. Subtracting 

the estimated trajectory from the measured trajectory produces a residual indicating the amount 

by which each range should be shifted in order to obtain the proper signal amplitude and phase 

data (25 pp. 15 - 17). The figure below summarizes this process. 

97 



A 

I Range Shift 
,.  •—*— ...         • 

V 
3-S                        -^Orbit 

DC 
S 
C5 

K 

Time 

Figure 3.8 Range alignment and phase correction are performed by means of an orbit fitting 
process(25 p. 15) 

If the radar echo is digitized directly, without down-conversion, motion compensation is 

accomplished by a simple time shift of the sampled waveform. In most radar systems, however, 

the signal is altered to minimize the required bandwidth of the recording system. Motion 

compensation then involves a time shift plus a phase shift to account for the phase change in the 

local oscillator (LO). The required phase shift A0 is constant over individual pulses and is given 

by (25 p. 18) 

4nfAR 
A0 = 2nfAt = (3.14) 

where AR is the range shift, At = 2AR/c is the corresponding time shift, and / is the LO 

frequency for homodyne receivers or the total frequency shift for heterodyne receivers. Removal 

of the bulk range variations - the variations in the distance from the phase center of the radar 

antenna to the origin of the target coordinate frame - does not change the imaging information 

content of the radar data. Since it is assumed that the wavefronts are planar, range variations do 

not affect the shape of the echo signal, only its strength and delay (25 pp. 18 - 19). The fact that 

the target is observed over a pass that is hundreds of kilometers long does not provide any direct 
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information for imaging. Again, it is only the rotation of the target with respect to the radar that 

produces the differences between the individual radar echoes, and thus, the information needed 

for imaging. A value for the maximum tolerable error in the satellite range estimates can be 

obtained by observing that the imaging procedure relies on coherent combination of the 

individual echoes (correlation of range-derived phase information over some coherent aperture) 

(26 p. 27). For this reason, the pulse-to-pulse coherence starts to degrade when the error in the 

range to the target is some fraction of the shortest wavelength in the transmitted waveform. Any 

error in knowledge of relative position Re will give rise to a phase error given by (26 p. 28) 

<t>e = —jf- (3.15) 

Therefore, while it is not possible to set a universal threshold on motion determination accuracy, 

by placing limits upon image quality and allowable phase error, one can roughly determine the 

maximum tolerable error in the flight track estimate and thus, the precision that must be 

maintained over the entire angular aperture. 

3.1.3    Image-Model Matching 

A radar image shows the projection of a three-dimensional object onto a two-dimensional 

plane. In the common viewing format, the vertical axis of the image is range and the horizontal 

axis is either range rate (Doppler) or cross-range. One purpose of radar images is to allow the 

analyst to determine the motion of a target from measurements of the radar image. Often 

measurements take the form of parameters expressing the alignment between a computer- 

graphics model of the target satellite and the underlying radar imagery. In order to obtain 

measurements of the attitude, an analyst is able to manipulate the computer generated model 

with respect to an initial coordinate frame, in order to precisely match the two-dimensional 

projection of the model with the discrete-time radar images of the satellite. Thus, the image- 
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model matching process attempts to align a wireframe model with fixed, known dimensions to 

the underling radar imagery through the use of three matching operations, as shown in Figure 

3.9: 1) translation, produces horizontal and vertical displacements used to indicate a new image 

center; 2) rotation, orients the model in three-dimensional space over the image in order to obtain 

a proper alignment; and 3) scaling, alters the horizontal extent of the radar image (cross-range 

compression or stretching) (4 p. 280). 

Figure 3.9 Alignment operations 

Once a precise fit has been made for each discrete image in the pass, the set of Euler angles used 

to rotate the wireframe model from some initial coordinate frame to its perceived 'true' attitude 

can be recorded and passed to the filtering algorithm for processing. When viewed in sequence, 

the images provide information about the rotational motion of the satellite over time. This 

additional information is critical in ensuring that the attitude of the vehicle has been properly 

determined. For example, working solely with the computer generated wireframe models can 

easily result in an optical illusion, in which the analyst experiences a change in perceived attitude 

due to the presence of multiple interpretations in the two-dimensional projection of the 

wireframe model. This flip in perspective is illustrated in Figure 3.10, and is easily resolved by 

simply switching to a solid representation of the satellite from time to time in order to ensure that 
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the alignment reflects the apparent orientation of the target. Additionally, while a lack of 

spacecraft symmetry complicates the overall dynamics of the problem, it does aid in the image 

model matching process, providing the distinguishing body features necessary to uniquely 

determine the attitude of the vehicle. 

Image-Model Misalig 

#       jfe 

Wireframe Rotation 

€>       » 

Potential Attitude U\ Potential Attitude #2 

) 1 

•     » 

Figure 3.10 Image-model matching process for a set of point scatterers arranged in a simple three- 
dimensional shape. 

3.1.3.1 Motion Ambiguity 

In order to convert the range rate to length along the cross-range axis of the radar image, 

either one must perform certain measurements on the image or have knowledge of the satellite's 

total angular velocity. An incorrect estimate for \co\ causes both improper scaling (cross-range 

deformation) and poor resolution (cross-range defocusing) which may lead to misinterpretation 

during the alignment process (measurement noise). The mutual dependence of the range-Doppler 

imaging and image-model matching processes on a priori knowledge of the angular velocity, 

results in a circular problem in which both require the same input (M) from one another in order 

to produce  their respective  outputs.  The  attitude  measurement process  operates  on the 
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assumption that the images are consistently scaled, and thus provide an accurate representation 

of the spacecraft's orientation at a given discrete-time; conversely, in order to generate highly 

resolved, well-focused, and precisely scaled radar images requires detailed information about the 

translational and rotational motion of the target with respect to the radar line of sight. 

Consequently, incorrect scaling introduces a major source of error into the attitude measurements 

since a compression or stretching of the two-dimensional image in the cross-range direction is 

virtually indistinguishable from a rotation about the axis aligned with the radar line of sight. 

The set of Euler angles that parameterize the image-model match can be easily converted 

into a rotation matrix Raiign using the methods discussed in Section 2.1.3. Since the Doppler axis 

has units of speed, the analyst also measures a scalar s to rectify the axis and thereby produce 

cross-range coordinates. The quantity s simply scales the image parallel to the Doppler axis, as 

shown in Figure 3.9. A single radar image measures the range to and range rate of individual 

points on the imaged object. Distance and velocities orthogonal to the radar LOS are not 

measured and therefore are, without external information, unknown. A particular motion was 

assumed in making the images, and the time of the imaging interval T depends on the motion. 

Let tcenter be the center of the imaging interval of duration T. The magnitude of the total angular 

velocity orthogonal to the radar LOS associated with the assumed, or nominal, motion at time 

tcenter is WnomI = |Py x <*>totai | (24 p. 45). The radar image plane is the two-dimensional 

subspace on which the three-dimensional rigid body is projected. It is useful when forming 

equations to summarize the image plane as a matrix. Defining the vectors 0)x = p   x (ototai and 

0)z = ü)y x ü)x enables the image plane matrix to be defined by a basis of unit vectors in the 

cross-range, range, and the out-of- plane directions, such that: P = [px Py Pz]. It is worth 

emphasizing that P is a function of both the orbit and angular velocity of the rigid body relative 

102 



to the sensor. Consequently, in the radar coordinate frame, the attitude of the satellite is PT A (32 

p. 46). Because a single image provides a single component of the angular velocity we only know 

that P(: ,2) = py (Matlab notation for the second column of a matrix) and that P is orthonormal. 

Often assuming an initial motion for an object is helpful in forming and understanding 

equations. As many objects may have a known nominal motion from which the target deviates 

occasionally, presuppose nominal attitude Anom and a>nom is reasonable. Thus, the true image 

plane matrix is given by (32 p. 50): 

Ptrue — Ry(ß)Pnom (3.16) 

the true image-plane matrix differs from the assumed one by a right-handed rotation of angle 8 

around the radar LOS. 

Suppose the analyst has performed an alignment of the computer model to the image of 

the target, obtaining a matrix Raagn. The initial orientation of the model in the nominal image 

plane is Pnom-^nom'-, the analyst's measurements indicate that in the nominal image plane, the 

object has orientation PnomAnomR align- We do not have knowledge of Atrue, but we can write 

(32 p. 50) 

"true^true ~ "nom^nom" align W-l/J 

Combining equations (3.16) and (3.17) yields the equation (32 p. 51) 

Atrue = Ry\ß)AnomRalign (3.18) 

Evidently, from a single image, one can determine the attitude of the satellite only up to a 

rotation around the radar line of sight. Intuitively, this fact is an immediate consequence of our 

ability to measure only range and range rate. A similar situation holds for o)totai = Morbit + <»>, 

where the component of the total angular velocity parallel to RLOS is entirely unknown. The 

analyst, by scaling the image along the Doppler dimension, has measured s — [\o)nom\/\Mtrue\] •> 
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which rectifies the cross-range axis and measures the magnitude of the total angular velocity 

projected onto the plane orthonormal to the RLOS, <wz, is known up to a rotation around the 

radar line of sight (32 p. 54): 

Ry(9)tOnom ,,z      _"yv 
'"true — 

where 0 has the same unknown value as before. 

(3.19) 
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Figure 3.11 Observation of a target's orientation relative to the radar image plane. The magnitude 
of the component of the angular velocity perpendicular to range can be inferred, while, the range 

component remains unknown. 

This ambiguity is inherent in all existing algorithms since no technique yet exists for 

making radar measurements that provide information beyond the RLOS ambiguity in each 

image. However, such measurements are not physically impossible. Returning to the conceptual 

framework developed in Section 3.1.1 for the geometry of the image plane, recall that if a unit 

sphere is fixed to the target's body coordinate system, as the object passes over the radar, the 

RLOS pierces the sphere at given latitude and longitude points. The set of observations over the 

duration of the pass can be summarized by a curve traced over the surface of the sphere, where 

each image represents a small piece of the curve and the image plane is an optimized fit to the 
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LOS vectors (26 pp. 18 - 19). What is of greatest importance here is that there is no reason for the 

image plane to be planar; more likely, it is gently curved. The geometry considered thus far 

ignores such curvature, and in effect rely on a set of equations which throw out independent 

measurements (i.e., the warping of the image plane). However, given enough bandwidth (range 

resolution), a high enough center frequency (Doppler frequency), a high enough pulse repetition 

frequency, and an accurate enough model, it is physically possible (though not necessarily 

practical) to measure the curve on the sphere (27 pp. 13 - 14). Knowledge of this nonlinearity in 

addition to initial conditions provides information about the true motion of the object, using 

measurements from a single image. Therefore, the ambiguity present in the current two- 

dimensional radar measurements is not essential and can be resolved in a more realistic manner 

by considering the motion revealed through making attitude measurements over a sequence 

images. Mathematically, meaningful assumptions yield additional independent equations to 

enable the calculation of unknown quantities that characterize the motion. 

It is important to reiterate that this discussion concerns the limitation in the amount of 

information that can be derived from considering the motion of the target in a single discrete- 

time radar image. When looking at the pass as a whole, the change in aspect angle provides 

different perspectives of the satellite which can, if sampled densely enough by the radar signal, 

be coherently combined to form an unambiguous three-dimensional image. The potential also 

exists for using multiple synchronized radar systems (bistatic radar) to image a given target at the 

same time. If no particular baseline motion is assumed, full attitude determination by these 

methods is only possible, if the object is imaged simultaneously by two radars with a significant 

angle between the lines of sight. The benefits and challenges that arise from using two or more 

geographically separated radar systems in generating three-dimensional radar images is being 
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investigated by the Aerospace Sensor Technology Group at Lincoln Laboratory. Additionally, 

research is currently being done in the Space Situational Awareness Group on automating the 

attitude measurement making process using a minimum bounding box technique (see References 

(33) and (34)). While both of these research efforts will likely have a considerable impact on the 

ISAR attitude sensing and measurement making process, they are for the time being beyond the 

scope of the problem being considered in this thesis. For more information on these advanced 

radar imaging and computer automation methods, readers are encouraged to consult References 

(28) and (35) respectively. 

3.2     The Filtering Process 

In deterministic attitude methods the same number observations as variables is used to 

obtain one or more discrete attitude solutions. In contrast, state estimation methods for attitude 

determination use the partial derivatives of the observables with respect to a collection of solved- 

for parameters (i.e. a state vector) to correct an a priori estimate of these same values. However, 

neither the number of solved-for attitude parameters nor the number of attitude observations used 

is important as far as the process itself is concerned. If the number of observations is less than 

the number of solved-for parameters, some combination of the unknowns will retain their a priori 

value, or, in some cases, an algebraic singularity will result. In general, the state vector and the 

various attitude estimates will be vectors in an n-dimensional phase space. The purpose of the 

data filter is to then calculate a state vector which is optimal by some statistical measure. 

Unfortunately, the optimal estimate is often difficult to achieve exactly due to the nonlinear 

characteristics of the attitude dynamics and measurement models involved. As result, nearly all 

the filters currently in use simply work around the problem by approximating the dynamics using 
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linear equations '. Allowing for nonlinear equations would negate many of the basic statistical 

assumptions and techniques underpinning estimation theory, some of which include linear 

algebra and Gaussian normal distributions of errors (36 p. 437). A fundamental assumption 

allowing the use of linear techniques to solve estimation problems is that the linear least squared 

error (LLSE) estimator and the Bayesian least squared error (BLSE) estimator, also known as the 

minimum mean-square error (MMSE) estimator, are equivalent when process and measurement 

noise statistics are independent and identically distributed (iid) Gaussian distributions (37 pp. 190 

- 191). As long as the dynamic and measurement equations transform the associated errors 

linearly, the LLSE and BLSE equivalence assumption holds. 

A least-squares filter determines the state vector which minimizes the weighted square of 

the difference (error) between the observed data and the estimate computed from the observation 

model. The contribution of an individual observation in this process may be weighted according 

to the observation's expected accuracy and importance. Because least-squares filters provide the 

best estimate of the state parameters when the uncertainty is a result of Gaussian noise, they are 

by far the most common type of estimator and can be divided into two major classes: batch and 

sequential (36 p. 437). A batch estimator updates a state vector at a given reference time using a 

block of observations taken during a fixed time span. Conversely, in a sequential or recursive 

estimator, the state vector is updated after each observation is processed. Generally, sequential 

filters will be more sensitive to individual data points than will batch processors; that is, the 

sequential estimator may converge to a solution more quickly but be less stable than a batch 

algorithm (36 pp. 437 - 438). 

1 Reference (42) provides a survey of all the nonlinear attitude estimation methods currently in use. Among the 
many estimators covered, is the orthogonal attitude filter, which represents the first approach to a truly nonlinear 
filter. 
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Referring all the way back to Figure 3.1, the two major sequential estimators are the 

recursive least-squares estimator and various forms of the Kaiman filter. Like a batch estimator, 

a recursive least-squares estimator corrects the state vector at a specified reference time. Since 

the confidence in the updated state at the reference time improves as more and more 

measurements are processed, the sensitivity of the filter to the observations diminishes over time. 

A recursive least-squares process allows the estimate to be updated at each measurement time, 

thereby avoiding the need to maintain an extensive backlog of previous measurements (2 p. 273). 

The basic Kaiman filter goes a step further than the recursive least-squares algorithm by 

employing the statistical knowledge of the modeling process and the attitude measurements. A 

Kaiman filter is a sequential estimator with a fading memory, meaning that it generally corrects 

the state vector at the time that each observation was made, rather than at a set epoch time. After 

the state is updated using one or more observations, it is propagated or extrapolated by a 

mathematical model to the time of the next observation to provide an initial estimate for the next 

update. The filter's confidence in its estimate of the state is allowed to degrade from one update 

to another, using models for the noise in the state vector. This causes the influence of earlier data 

on the current state to fade with time so that the filter does not lose sensitivity to current 

observations (2 pp. 274 - 275). 

The major advantages of batch estimators is that they are simple to implement and are 

also generally less sensitive to bad data points than the more sophisticated algorithms which will 

be described. Another advantage of an algorithm of this type is that all observation residuals can 

be seen simultaneously, so that any obviously invalid observations, i.e., those with unusually 

large residuals, can be easily removed (36 p. 456). According to Reference (36), an observation is 

commonly removed if the absolute value of its residual is greater than three times the weighted 
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root mean square residual. On the other hand, the computational burden imposed by a batch filter 

can be significant and depends on the number of state parameters, observations to be processed, 

and iterations required for convergence, as well as the overall complexity of the state and 

observation models employed by the filter (36 pp. 456 - 457). If a large number of iterations are 

required, a recursive estimator should be considered in order to reduce computer storage 

requirements and decrease execution time. Additionally, if the state undergoes minor unmodeled 

variation during the time spanned by the observations, the Kaiman filter will generally track 

better than either the recursive or batch least-squares algorithms. On the other hand, such 

algorithms tend to be more sensitive to bad data, particularly at the beginning of a pass (2 p. 274). 

As will be discussed in Section 3.2.5, the backwards-smoothing extended Kaiman filter is a very 

eclectic estimator, possessing attributes of both a batch least-squares algorithm and a Kaiman 

filter. The consequence of such a union is an estimator that is able to incorporate statistical 

information about the modeling process and observations, while also being less reactive to 

invalid measurements which would otherwise cause the filter to misbehave. 

The intent of the following sections is to provide the conceptual framework and relevant 

equations leading up to the central algorithm used in the Lincoln attitude estimation system 

(LAES), the backward-smoothing extended Kaiman filter (BSEKF). Much can be gained by 

looking at the various attributes of its component parts as well as the emergent properties of the 

fully assembled algorithm. To that end, Section 3.2.1 provides the theoretical foundation for the 

algorithms presented in Sections 3.2.2 - 3.2.5. In addition to looking at the extended Kaiman 

filter (EKF) and square-root information filter and smoother (SRIF&S), the batch least-squares 

filter is covered in considerable detail since it is used in both the BSEKF and the attitude 

estimation  software,  called  LLMotion,   currently being  used  at  Lincoln  Laboratory.   The 
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backward-smoothing extended Kaiman filter is then thoroughly presented, with a focus on its 

specific attributes in relation to other estimators, operational characteristics, and specifics on how 

to implement the algorithm. In Chapter 4, the backward-smoothing EKF will be discussed in the 

context of the specific attitude estimation problem under investigation. 

3.2.1    Foundational Concepts in Probability and Statistics 

This section is meant to provide a brief description of the key equations and concepts in 

probability and statistics which form the foundation upon which the filters presented in latter 

sections have been developed. To that end, only those equations which are directly related to the 

development and understanding the maximum-likelihood (ML) and maximum a posteriori 

(MAP) estimation problems will be presented. For a more detailed discussion of the statistical 

properties and derivations of the algorithms presented in this chapter, see References (38) and 

(37). 

3.2.1.1 Covariance Analysis 

Covariance analysis is a general statistical procedure for studying the relationship 

between errors in the measurements and error in quantities derived from the measurements. The 

expected value or mean of a continuous random variable X is written as E[X] or mx, and is defined 

by (38 p. 219) 

E[X] = I xfx(x)dx (3.20) 

where fx(x) is the probability density function, which represents the probability of X assuming a 

value somewhere in the interval (x,x + dx); that is, (38 p. 220) 

b 

p(a<X<b) = j fx(x)dx = Fx(b) - Fx(a) (3.21) 
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Fx(x) is the cumulative distribution function (cdf), whose properties are treated in detail in 

Reference (38), along with other important probabilistic concepts and equations related to 

estimation. What is of greatest importance here, is that geometrically, mx is one of a number of 

possible devices for locating the center or centroid of the probability distribution with respect to 

the origin. If one considers a second random variable Y, in which (38 p. 220) 

Y = g(X) = (x- a)n (3.22) 

then the expected value of the random variable can be expressed as (38 p. 220) 

mY — E[g(X)] — I g(x)fx(x)dx — I (x — a)nfx(x)dx (3.23) 

Notice that if a = 0 and n — 1 then the function g is the first moment of X about the origin is and 

is equivalent to equation (3.20). Similarly, the nth moments about the mean are also very useful 

in describing X. The second central moment or variance ax is defined by setting a = mx and 

n = 2, to produce (38 p. 221): 

al = E[g(X)] = E[(X - mx)
2] = E[X2] - E[X]2 = j(Xi- mx)

2fx{x)dx (3.24) 

The variance of the probability distribution is simply the average square deviation of X from the 

mean value and the positive root-mean-square (rms) deviation or standard deviation ax, defined 

by <jx = Jo%, is a measure of the dispersion of the distribution about mx (1 p. 429). The 

magnitude of the variance of an estimate/measurement provides a sense of how much noise is in 

the estimate/measurement. In physical terms, if one interprets the density function as a mass 

distribution, the first moment about the origin becomes the center of mass and the variance is the 

moment of inertia about an axis through the mean (1 p. 430). For example, consider the following 

density functions: 
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Figure 3.12 Two probability density functions with the same mean but different variances 
(38 p. 238) 

Both density functions a and b have their mean value indicated by m. Clearly, the variance of b 

is much larger than the variance of a, since (x — rri)2 generally will be greater than that of a for 

an increment of area dx (28 p. 237). 

All the information that can be known about the random variable X is contained in the 

probability density function (pdf). In estimation applications, one is most concerned with the first 

two moments, namely the mean and variance. Since the pdf will change with time, the prediction 

of the future values for the state dynamic system can be obtained by propagating the joint density 

function fxy(x,y) forward in time and using it to calculate the mean and variance (1 pp. 433 - 

434). While, the equations for propagating these values forward are the subject of the subsequent 

sections the specific equations need for calculating joint, marginal, and conditional probabilities 

are given in Appendix B. 

If the principal of expected value is extended to a continuous random vector composed of 

variables X and Y, the initial and central moments are defined by (38 pp. 220 - 221) 

mx,Y = E\X,Y\ = I   I xyfXY(.x,y)dxdy = ZXY + mxmY (3.25) 
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7
-X,Y = E[{x - mx)(y - mY)] = J J (x - mx)(y - mY)fXY(x,y)dxdy = °X        2-X.Y 

^X,Y        °X 

°l PX-YTY] (3-26) 
PX,Y<TX°Y <*X \ 

where mxy is the mean of the vector and T.xiY is the covariance matrix - a measure of the 

interdependence or linear correlation between the two variables. The correlation coefficient pXY 

ofX and Y is the normalized covariance (38 p. 222) 

PX.Y = E 
(x - mx) (y - mY) 

^- (3.27) 
axaY ax aY 

which satisfies the inequality pXY < 1. For independent variables, ZXiY = pXiY = 0, and for 

completely correlated variables pXY = 1. Covariance analysis relates the presumably know 

variance and covariance in one set of variables (e.g., measurement errors) to a second set of 

variables (e.g., computed attitude errors) (38 p. 223). In what follows, it is assumed that the n 

computed quantities xt are functions of the m measurements yt with m>n. Thus, xt = 

xi(y1,y2, —ym) or in vector notation, x = x(y). The link between the known variance and 

correlation in the measurements and these same metrics in the desired computed quantities is 

given by the linear transformation (1 pp. 432 - 433) 

P = HRHr (3.28) 

where H is the nxm matrix of partial derivatives with the elements Htj = dxt/dyj, R is the 

mxm measurement error covariance matrix, and P is the symmetric nxn state error covariance 

matrix. Equation (3.28) relates the variance (diagonal terms) and covariance (off-diagonal terms) 

in the measurements and computed quantities without implying anything further about the 

distributions of the errors in either x or y. However, two specific assumptions are often used in 

attitude analysis: 
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1. If the distribution of errors in y is Gaussian or normal, then the distribution of errors in x 

is also Gaussian. A continuous random process X that is normally distributed with mean 

m and variance a2, [X~N(mx,<Jx)], possesses a probability density function which is 

given by (38 p. 161) 

/,W=^=e"2UJ (3.29) 
vino* 

for —oo < x < oo. 

2. This special probability distribution is used extensively in modeling random systems 

since it can be shown that any random variable made up of a sum of m independent and 

identically distributed (iid) random components tends towards a normal distribution as 

m -> oo. This property is formally known as the Central Limit Theorem and is a 

fundamental assumption in the development of statistical estimation algorithms. If there 

are a large number of uncorrelated measurements, then the Central Limit Theorem can be 

used to infer the distribution of errors in x, irrespective of the form of the distribution of 

the measurement errors. The theorem may also be used to compute the variance and 

distribution of errors in a measurement which is contaminated by many errors sources 

with presumably known variances (38 pp. 239 - 240). 

3.2.1.2 Minimum Variance Estimation 

As has already been mentioned, the weighted least-squares approach does not include any 

information about the statistical characteristics of the measurement errors or the a priori errors in 

the values of the parameters to be estimated. The minimum variance approach is one method for 

removing this limitation and is used widely in developing solutions to estimation problems 

because of the simplicity of its use (37 p. 188). It has the advantage that the complete statistical 

description of the random errors in the problem is not required; rather, only the first and second 
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moments of the probability density function of the observation errors are needed. This 

information is expressed in the mean and covariance matrix associated with the random error. If 

it is assumed that the observation error e is random with zero mean and specified covariance, 

then the goal of the state estimation problem is to find the best linear, unbiased, minimum 

variance estimate xfe of the true state xfe (38 pp. 501 - 502). The consequences of formulating the 

problem in this manner are outlined as follows: 

1. Linear: The requirement of a linear estimate implies that the estimate is to be made up of 

a linear combination of the observations, that is (37 p. 184) 

xk = My (3.30) 

The nxm matrix M is unspecified and is to be selected to obtain the best estimate. An in 

depth derivation of the value of M that satisfies the requirements listed in the problem 

statement can be found in Reference (37) - for the sake of brevity, the consequence of 

that effort yields the following equation M = PHTR_1. This result, which when combined 

with equation (3.34) for the minimum variance (provided in step 3) and substituted back 

into equation (3.30), produces the following estimate of xfe (37 p. 186): 

xfe = (HrR-1H)-1HrR-1y (3.31) 

where H is the Jacobian matrix of partial derivative of the state with respect to the 

observations and R is the measurement error covariance matrix. This solution will agree 

with the weighted batch least-squares solution provided in Section 3.2.2, if the weighting 

matrix W, used in the least-squares approach is equal to the inverse of the observation 

noise covariance matrix; that is, if W = R_1 (37 p. 190). 

2. Unbiased: If the estimate is unbiased, then by definition (38 p. 503): 

me = E[e] = E[xk] - E[xk] = 0 (3.32) 
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where e is the prediction error or the difference between the true and estimated state 

xfc — Xfc. 

3.   Minimum Variance: If the estimate is unbiased, then the estimation error covariance 

matrix will be diagonal with values (1 p. 432) 

ai=EKe-me)
2]=E[eeT] (3.33) 

Centering the mean value of the error on zero and then minimizing the variance- 

covariance matrix, ensures that the error probability is focused as tightly as possible 

around the mean value of zero. This process is depicted in Figure 3.2, where the dashed 

blue density function represents the best unbiased minimum variance estimate. 

Figure 3.13 Normal or Gaussian error probability distribution function with mean m and standard 
deviation a (28 p. 503) 

The expression for the minimum state estimation covariance matrix is given by 

Pfc = (HrR-1H)-1 (3.34) 

and is the direct result of the fact that E[eeT] = R and Pk = MRM7". The complete 

mathematical explanation can again be found in Reference (37). 
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3.2.1.3 Maximum Likelihood and Bayesian Estimation 

The method of maximum likelihood estimation (MLE) for determining the best estimate 

of a variable is accredited to Ronald Fisher and is a nonrandom approach which tries to estimate 

an unknown constant. The MLE of a parameter X — given observations y1,y2, ...Jt and the joint 

probability density function (39 p. 1445) 

/x,r(yi.y2,...,yk;xfe) (3.35) 

is defined to be the value of X that maximizes the probability density function. However, if X is a 

random variable and one has knowledge of its pdf, the MLE of A' is defined to be the value of X, 

which maximizes the probability density function of X conditioned on information provided by 

the observations yi,y2, —,yk (39 p. 1446): 

Mxfe|yi,y2.-,yfc) (3.36) 

The Bayes estimate for X is defined to be the mean of the conditional density function given by 

the equation above. The estimator based on the Bayesian approach is known as the maximum a 

posteriori (MAP) estimator.   The joint density function, equation (3.35), and the conditional 

density function are referred to as the likelihood function L. The logic behind maximizing L is 

that of all the possible values of X one should choose the value that maximizes the probability of 

obtaining the measurements that were actually observed (39 p. 1448). If X is a random variable, 

this corresponds to the mode, or peak, of the conditional density function. In the case of a 

symmetric, unimodal, density function such as a Gaussian function, this will be equivalent to the 

mean of the conditional density function. Hence, the MLE and the MAP estimate for a Gaussian 

density function are identical (39 pp. 1448 - 1449). In fact, the maximum likelihood approach can 

be thought of a degenerate case of the maximum a posteriori estimator, since as the variance of 

the normal a priori pdf approaches infinity, the density function will approach that of uniform 

distribution. In this case, the MAP estimate and ML estimate coincide, given that if a uniform 
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prior distribution is assumed over the parameters, the maximum likelihood estimate coincides 

with the most probable values thereof (37 p. 191). 

Posing the estimation problem in the MAP format is a useful starting point in the 

development of statistically based estimation criteria. If one defines X to be the state vector and Y 

to be the observation vector, then fx(x\Y — y) is the a posteriori density function, fY(y\X — x) is 

the a priori density function, and Bayes theorem is given by (38 p. 81) 

, f lv       ,     fxyix.y)     fY(y\X = x)fx(x) 
fx(x\Y = y) = = ——  (3.37) 

fviy) fyiy) 

f ( iv       ^     fxxte.y)     Mpc\Y = y)fY(y) /,w=l)=lw-=—&w— a38) 

From a Bayesian viewpoint, the goal is to develop a filter to propagate as a function of time the 

probability density functions of the desired quantities conditioned on knowledge of the actual 

data coming from the measurement devices (37 pp. 191 - 192). Once such a conditional density 

function is projected, the optimal estimate can be defined. Possible choices for the optimal 

estimate include the mean, median, and mode. By generating the pdf, some judgment can be 

made as to which criterion defines the most reasonable estimate for a given attitude problem. 

However, by assuming that the density function is normal, the mean, median, and mode will be 

identical. Hence, any criterion that chooses one of these values for xfe will yield the same 

estimator (37 p. 194). 

Another nonrandom estimator is the least squares estimator (LSE) which will be describe 

in more detail in the next section. If one is given scalar and nonlinear measurements (36 p. 449): 

yt = hiiXi.tJ + vt for; = 1,2, ...,k (3.39) 

then the least-squares estimate of the vector x is obtained by minimizing the argument (36 p. 448): 

k 

*k = ^Jyt-hl(xi,tl)]
2 (3.40) 
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Again, if the measurement errors are Gaussian, i.e., Vi~N(0,a2), then the least squares estimator 

coincides with the maximum likelihood estimator (MLE) described previously. For random 

parameters, the counterpart of the LS estimator is the minimum mean square error (MMSE) 

estimator which finds the value of the state estimate that minimizes the expectation or the square 

of the error (minimum variance) in the estimate according to the equation (39 p. 1450): 

xfe = £'[(xfe-xfe)
2|y1,y2, ...,yfe] = £'[(e)2|y1,y2, ...,yfc] (3.41) 

The solution to this estimator is the conditional mean of x (27 p. 194): 

xfe = E[xfe|y1;y2, ...,yfc] = J xfe/x(xfe|y1,y2, ...,yk)dx 

= [Pk1 + H^RfcXr'tHfcRfcHyk - hfc) + Po-Hxfc - xfe)] (3.42) 

Because the mean and mode of a normal distribution are equal, the MMSE and MAP estimates 

are equal when given a Gaussian a posteriori pdf In fact, reference (37) shows that due to the 

Gaussian statistics assumed for measurement and process noise, the ML, MAP and minimum 

variance estimators are all equivalent. Accordingly, the estimation techniques described in the 

subsequent sections all make use of the Gaussian independent and identically distributed error 

assumption, but also operate with the crucial flaw that the approximate linear dynamic and 

measurement models differ from the actual nonlinear physics occurring. The extended Kaiman 

filter (EKF), for example, works well for systems with a small degree of nonlinearity. However, 

for systems with higher degrees of nonlinearity, smoothing and other methods are needed to 

improve the accuracy and convergence reliability of the state estimate. 

3.2.2    Batch-Least Squares Filter 

The Gauss-Newton least-squares procedure, formulated independently by Karl Gauss and 

Adrien Legendre, begins by considering the m-component state vector x, which is allowed to 

vary with time according to the dynamics function (37 p. 176) 
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x(t)=/(x°,t) (3.43) 

where x° is the state vector at the reference time t0 and x° is the estimate of this initial state 

vector, calculated using the batch least-squares algorithm. Since x contains parameters whose 

time variation is not insignificant, propagation of the attitude state via direct integration (the R- 

stage Runge-Kutta method is described in Section 2.3.4.1), is required. If the state undergoes a 

minor unmodeled variation during the time spanned by the observations, a batch estimator will 

calculate a weighted average value for x° (37 p. 176). In such instances, a Kaiman filter allows 

better tracking of the state variations than does a batch technique. 

Consider a set of n observations, 

y=[yi ynV (3.44) 

taken during the timespan of interest. In order to determine the state vector x, it is assumed that y 

equals the observation model vector h = h(x, t) based on the mathematical model of the 

observations plus additive random measurement noise v. Thus, for each element of y, (37 p. 177) 

yi = hi(x(ti),ti) + vi (3.45) 

Equation (3.45) can be used to estimate x°, given an a priori estimate XQ, the observations y, the 

functional forms of/(x°, t) and h(x, t), and the statistical properties of v. To accomplish this, the 

least-squares criterion is employed as a measure of good fit; the best value of x0 minimizes the 

weighted sum of the squares of the residuals between the elements of the observation and 

observation model vectors. This is done quantitatively by minimizing the loss function given by 

(37 p. 177) 

/ = -AyrWAy (3.46) 

where the observation residual vector Ay is defined by 

Ay = y - h (3.47) 
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W is an n x n symmetric, nonnegative definite matrix chosen to weight the relative contributions 

of each observation, according to its expected accuracy or importance. In the simplest case, W is 

the identity matrix indicating that equal weight is given to all observations. The general form of 

W can be expressed as (37 p. 177) 

~<Jyl    0      ...    o ' 

W = diag([o-1
2    -    <r2]) =  0    0y2

2 i (3.48) 

0       ...        0      Oyn. 

where ayi for i = 1,2,..., n is the uncertainty in the ith observation y. 

An important variation of the loss function given by equation (3.46) penalizes any 

deviation from the a priori estimate in proportion to the inverse of the uncertainty in that 

estimate; that is (37 p. 178) 

/ = - (Ay rWAy + [x° - xgfSjx0 - x°]) (3.49) 

where P0 is the m x m state weight matrix. If the elements of P0 are zero, no weight is assigned to 

the a priori state estimate, and equation (3.49) is equivalent to equation (3.46). Commonly, P0 

has the form (37 p. 178) 

0*1     0 
0    a, ' x2 

0 

6 (3.50) S0 = diag([a1
2    •••    a*]) 

L0      ...       0     Cxn. 

where axi for i = 1,2, ...,n is the uncertainty in the a priori estimate xg. The use of S0 is 

especially valuable when the lack of observability is a problem, which occurs when a change in 

one or more state parameters causes little changes in the observations (i.e., when the 

observations do not contain enough information to completely specify the state). 

For/ to be a minimum with respect to x0, dj/dx0 must be zero. Therefore, the value of x0 

which minimizes/ is a root of the equation (37 p. 198) 
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^- = -Ay7,WH + [x° - x°]rS0 = [Of 
dx0 

where 0 is a vector of zeros and H is the nxm measurement transition matrix (37 p. 198) 

(3.51) 

H = 
öh dx° 

dhr 

dx° 

dK 
(3.52) 

Values for dhi/dx are normally computed analytically from the observation model. Values for 

dht/dx° are then calculated from (40 p. 42) 

dhi     dhi 
(tj)<l>(ti,to) (3.53) 

dx°      dx 

where 4>(tp t0) is the mxm state transition matrix consisting of the partial derivatives of the 

state at tt with respect to the state at the reference time t0; that is, (40 p. 42) 

dx^tt) dXi (tj)- 

dx 
^(^t0) = ^(t£) = 

dx° 

3*771 (ti) 

dx° 

dxm{t{) 

dxl dx° 

(3.54) 

The values of <I> may be calculated either numerically or analytically, depending on the 

functional form of f(x°, t). 

The most common method of solving equation (13.51) is to linearize the observation 

model vector h(x, t) about a reference vector x{j and expand each element of h in a Taylor Series 

of XQ- It is important to note that x{j may be different from the a priori estimate x°. Truncating the 

higher order terms yields (40 p. 43) 

^ = ^*o)+^(xg)[x°-xS] 

for each element of h. Expressing the above equation in vector form gives (40 p. 43) 

h = h + fix0 - fix0, 

(3.55) 

(3.56) 
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if the same reference vector is used for each element of h. The ~ above each variable signifies 

evaluation at x° = x0,. Substituting equation (3.56) into equation (3.51) and solving for x° (the 

result is designated using the notation for an estimate x°) yields (37 p. 194) 

x° = x° + [S0 + HrWH]_1[HrW(y - h) + S0(xg - x°)] (3.57) 

If XQ — xo and if h is a linear function in x°, then this equation will provide the best estimate for 

the true initial state vector x0. However, if h is nonlinear, x° will not be corrected exactly by 

equation (3.57) unless the a priori estimate XQ is already close to the optimum value. 

Consequently, if the correction determined using equation (3.57) is not small, then an iterative 

process is usually necessary (37 p. 195). In this case, h is linearized about the a priori estimate, 

which is then corrected to become x°, as follows (37 p. 195): 

x? = x°Q + [PQ"
1
 + HrWH]-1[HTR-1(y - h)] (3.58) 

The corrected value xj, then replaces XQ 
as tne reference for the linearization of h(x, t) in the 

next iteration. The (k + 1) estimate for x° is derived using the equation (37 p. 195) 

*fc+i = ** + [So + H[WH,]_1[H[W(yk - hfc) + S0(xg - x°)] (3.59) 

This iterative process continues until the differential correction (i.e., the difference between 

Xfe+i andXfe) approaches zero and/or until the loss function no longer decreases. At this point, 

Xfe+i has converged to its optimum value. Finally, for the converged solution the m x m error 

covariance matrix is given by (36 p. 452) 

Pfe = [S0 + HrWH]-1 = E[eer] (3.60) 

Assuming that E[e] — 0, where the estimation error vector e = x° - x°, and E denotes the 

expected value. 

Another useful quantity is the weighted root-mean-square (rms) residual, which can be 

found using (36 p. 453) 
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by• - J ^r^  (3-61) 

where Wt is the ith diagonal element of the measurement weight matrix and the units of Ayrms are 

the same as for the y* terms. Because Ayrms is normalized according to the sum of the 

observation weights, it is frequently more useful than the loss function as a relative measure of 

the degree to which the solution fits the observed data. However, this parameter alone is 

insufficient for detecting the two major causes of a poor fit - unmodeled biases and a high level 

of noise in the observations. Insight into the contributions of these two sources of error can be 

gained by writing Ayrms in the form (36 p. 453) 

ky?ms = mly + aly (3.62) 

where mAy is the weighted mean of the residuals (36 p. 453) 

mAy = ~YW~ ( } 

and aAy is the weighted rms deviation (standard deviation) of the residuals, (36 p. 453) 

a*y~ \ Ywt  
(3,64) 

The mean of the residuals should be near zero, because Ayt can be either positive or negative. A 

large value for mAy, therefore, indicates the unmodeled biases are probably present in the 

observations and a large value for aAy signifies that the observation noise is large. 

3.2.2.1 Guarded Gauss-Newton Method 

Gauss-Newton differential correction procedure outlined in the previous section may be 

unsuitable for some nonlinear problems because convergence cannot be guaranteed unless the a 

priori estimate is close to a minimum in the loss function. Furthermore, its rate of convergence 

can be difficult to control (40 p. 48). An alternative approach to solving the batch least-squares 
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problem which guarantees convergence is the gradient search method, in which the state 

parameters are adjusted so that the resultant direction of travel in the state space is along the 

negative gradient of the cost function / (i.e., in the direction of steepest decent). Although this 

method initially converges rapidly, it slows down when the solution approaches the vicinity of 

the minimum (40 p. 50). Thus, the guarded Gauss-Newton method was developed in order to 

overcome both the difficulties of the standard Gauss-Newton technique when an accurate initial 

estimate is not available and the slow convergence problems of the gradient search approach 

when the solution is close to the loss function minimum. The algorithm uses an expression of the 

form (41 p. 888) 

xLi = xg + [H£WHfe + rlrnxrn]"1[H^W(y - hfc)] (3.65) 

where lmxm is an identity matrix and y is a proportionality constant. If y is small, equation (3.65) 

is equivalent to the Gauss-Newton procedure and if y is large, x° is corrected in the direction of 

the negative gradient of/, but with a magnitude which decreases as y increases. To implement 

the guarded Gauss-Newton method for improved convergence requires the following simple 

procedure (41 p. 888): 

1. Compute the loss function using the a priori state estimate XQ 

2. Apply the first state correction to the state vector to form x° using equation (3.65) with 

y » HrWH 

3. Recalculate the cost function at x° = x°. If /(xi) > /(x0), then x° is discarded and y is 

replaced by yc, where c is a fixed positive constant. The state estimate x° is then 

recomputed using the new value of y in equation (3.65). If /(x^) < /(x0), then x° is 

retained, but y is replaced by y/c. 
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4.   After each subsequent iteration, compare /(xfe+1) and replace y with either yc or y/c as 

indicated in step 3. The state estimate xk+1 is retained if the cost continues to decrease 

and discarded if/ increases. 

This procedure continues until the difference in the cost function / between two consecutive 

iterations is small, or until y reaches a small predetermined cutoff value {y < e). The details of 

how to implement the guarded Gauss-Newton method in the backward-smoothing Extended 

Kaiman filter (BSEKF) will be provided in Section 3.2.5.1. 

3.2.3    Extended Kaiman Filter 

To estimate the value of a state vector at an arbitrary time tk, the state estimate at t0, from 

a batch or recursive algorithm, must be propagated from t0 to tk using a model of the system 

dynamics. The continuous-discrete Kaiman filter formulated by Rudolf Kaiman in the 1960's, on 

the other hand, estimates the m-component state vector x(tk) directly based on all the 

observations up to and including yk and the dynamics model evaluated between observations (40 

p. 257). Although all filters require a dynamics model to propagate the state estimate between 

observations, the accuracy requirements for this model are normally less severe for the Kaiman 

filter than for batch or recursive estimators because propagation is not preformed at one time 

over the entire block of data. In addition, the Kaiman filter compensates for dynamics model 

inaccuracy by incorporating a noise term which gives the filter a fading memory - that is, each 

observation has a gradually diminishing effect on the future state estimates (36 p. 468). 

By statistically combining attitude measurements with various noise characteristics, along 

with the model and process noise, the basic Kaiman filter arrives at the statistically optimal 

estimate for a linear system. Unfortunately, the attitude problem being considered utilizes 

process and observation models which are both nonlinear. The extended Kaiman filter (EKF) 
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solves this problem by linearizing the estimation around the current mean and covariance, using 

the partial derivatives of the process and measurements functions to compute new state estimates 

even in the presence of nonlinear relationships (36 pp. 462 - 463). The reference attitude for the 

EKF is updated after each observation to reflect the best estimate of the true attitude. 

Consequently, the EKF generally converges on the best estimate more rapidly than the standard 

Kaiman filter since errors introduced in the linearization process are reduced by relinearizing the 

differential equations for the reference attitude are after each observation is processed. (37 p. 209) 

Convergence however, is by no means guaranteed. Unlike its linear counterpart, the extended 

Kaiman filter is not an optimal estimator. If the initial estimate of the state is wrong, or if the 

process is modeled incorrectly, the filter may quickly diverge, due to its linearization. Another 

problem with the EKF is that the estimated covariance matrix tends to underestimate the true 

covariance and therefore risks becoming inconsistent in the statistical sense without the addition 

of "stabilizing noise" (36 p. 463) With that said, the extended Kaiman filter does perform 

reasonably well in most applications and is the most prolific and well established filter in the 

field. 

Each time a set of observations yfe is obtained, the algorithm uses it to update the a priori 

state vector estimate at tk, denoted by xfe_!(tfc), to produce an a posteriori estimate xfe(tfc). The 

EKF also, converts the a priori error covariance matrix estimate Pfc-jXtfe) into the a posteriori 

estimate Pfe(tfc). These a posteriori estimates are then propagated to tfe+1 to become the a priori 

xfc(tfe+1) and Pfe(tfe+1) for the next observation set Vfc+i(tfe+1). The subscript k indicates the 

current estimate, which is based on all the observations up to and including the observations in 

yfe(40p.257). 

Since the system dynamics is nonlinear, the state propagation is commonly performed by 

integrating an equation of the form (40 p. 257) 
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d 
—x = f(x, t,w)^x = f(x, t) (3.66) 
at 

with the initial condition x(tfe) = x(tfe), where / is a function which is nonlinear in x, and w is the 

process noise vector which is assumed to be normally distributed with zero mean and covariance 

Q ... [p(wfe)~N(0, Qfe)]. Similarly, the measurement model relating x to y, is given by the function 

h(x, t, v) => h(x, t), where v is the zero-mean measurement noise vector with covariance 

R...[p(vfe)~N(0,Rfc)](40p.258). 

The algorithm for computing the extended sequential estimate can be summarized as follows: 

Time Update (Predict) 

Given an initial state estimate x(tk), state covariance matrix P(tfe), and observation yfe(tfe) 

1. Propagate the state vector and state transition matrix from tk_1 to tk via equation (3.66) 

with the noise term omitted. If the higher order terms are neglected, under the assumption 

that they are small compared to the first, the linearized dynamics function can be 

expressed as (37 pp. 209 - 210): 

—x = A(t)x (3.67) 

where A is the mxm state Jacobian matrix composed of partial derivatives of / with 

respect to x [A(t) = df/dx\. Since A is time varying, the state transition matrix <i> is 

obtained by integrating the following matrix equation either analytically or numerically 

as discussed in Section 2.3.4.1 (37 p. 210): 

4» = — *(t, tk) = A(t)*(t, tk) (3.68) 

with the initial condition ^>(tfe, tfe) = Imxm. Thus, the solution to equation (3.68) can be 

written as (37 p. 210): 

xfc(tfc+1) = 4>(tfe+1,tfe)xfe(tfe) (3-69) 

2. Project the state error covariance forwards in time using 
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Pk(tfc+1) = *(tfc+i, tfc)Pfc(tfc)*(tfc+i. tfe)
r + Q(tk+1> tfc) (3.70) 

Measurement Update (Correct) 

3. Calculate the predicted observation vector hfe, measurement residual vector Ay = yfc - 

hk, and measurement Jacobian matrix Hfe which consists of the partial derivatives of h 

with respect to x [Hfe = dh/dx]. 

4. Compute the m x l Kaiman gain matrix (/ being some subset of the total number of 

observations, denoted by n) (37 p. 210): 

Kfe = Pfc-i(tfc)H?(HkPk_1(t]k)Hj + Rfc)
_1 (3.71) 

5. Update the state estimate with the latest measurement yfe (37 p. 210) 

xfe(tfc) = **_!&) + Kfc(yfe - hfc) (3.72) 

In some cases it is necessary to iterate the estimate of xfc(tfc) to reduce the effects of 

nonlinearities in the observation model. If this occurs, then hfe and Hfe will be evaluated 

about a reference vector xfe(tfe), which may be different from xfe_1(tfe). The above 

equation is then replaced by the more general form (36 p. 463) 

Xfe(tfe) = xfc(tfc) + Kfe(yfe - hfe + Hfe[Xfc(tfe) - Xfe_!(tfe)]) (3.73) 

Iteration may then be done using equation (3.73) with xk(tk) — xfc_1(tfe) to estimate 

xfc(tfe)- The operation is cyclically repeated using xfc(tfe) = xfe(tfc) and so on, until the 

change in the state estimate xfe(t) is negligible. This modification forms the basis of the 

iterated extended Kaiman filter (IEKF). In most cases the time between observations is 

small and local iteration is not needed. 

6. Update the mxm state error covariance matrix (36 p. 463) 

Pfc(tfc) = Omxm ~ KfeHk)Pfe_1(tfe) (3.74) 

•    Note that in these equations, the Z-vector hfe and the I x m matrix Hfc are equivalent at 

Xfe(tfe). 
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7. Select the next observation at tk+1 and return to step 1. 

8. The extended Kaiman filter has achieved a steady state performance when the corrections 

to the state vector reach a consistent level and when the error covariance matrix is stable. 

The EKF will yield a new state estimate at each observation, which is of value when a 

real-time solution is desired as the filter processes data. By adding the corrections to the state at 

each observation, the effects of the nonlinearities in the equations of motion are not as severe, 

since the attitude parameters are being updated with each measurement. Also, the partials of the 

system dynamics function are recomputed at each time step given the updated state. This allows 

for a more accurate state transition matrix (40 p. 560). Conversely, it is important to remember 

that a fundamental flaw of the EKF is that the probability densities functions of the various 

random variables are no longer normal after undergoing their respective nonlinear 

transformations. The EKF is simply an ad hoc state estimator that only approximates the 

optimality of the conditional probability equation of Bayes Theorem through linearization (37 pp. 

209 - 210). 

3.2.3.1 Kaiman Filter Divergence 

Divergence occurs when the estimated state moves away from the true state. This is the 

most common problem associated with Kaiman filters. The most frequent causes of divergence 

are linearization errors, cumulative round-off and truncation errors, modeling noise, and 

unknown noise statistics (40 p. 467). Linearization problems can be reduced using local iteration 

or more frequent selection of observations. Round-foff and truncation errors may be partially 

solved by using: 1) a square-root filter, which substitutes the square root of the error covariance 

matrix for its full value in the filter gain equation and 2) regularly enforcing the unit norm 

constraint on the attitude quaternion (37 p. 331). Adjusting the state noise covariance matrix using 
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the residuals between actual and computed observations is commonly used to reduce the effects 

of modeling errors. While problems associated with unknown noise statistics may be solved after 

extensive testing with both simulated and real data, proper filter response will only result when 

the appropriate balance between the state noise and measurement noise covariance matrices is 

found. This process is typically called tuning the filter (42 p. 13). A data rejection scheme which 

removes all observations whose uncertainties are not accurately known is also necessary to 

prevent divergence. If, for example, state noise has been underestimated with respect to 

observation noise, the state estimation procedure will become less and less sensitive to the 

observation residuals. Divergence could then result even though the filter may have reached 

steady state. Alternatively, if observation noise has been underestimated, the state estimation 

procedure may be incorrectly influence by the observation errors (42 p. 14). 

3.2.4    Nonlinear Smoothing Filters 

When dealing with systems that have highly nonlinear system dynamics and when 

observations can be post processed - i.e. real-time state estimates are not needed - smoothing is 

a way to compute more accurate state estimates than the Kaiman Filter can alone. Unlike the 

other estimators discussed thus far, which only use past measurements to estimate x, smoothers 

incorporate information from both past and future measurements when estimating each state. 

References (37) and (43) classify smoothing problems into three categories: fixed-interval 

smoothing, fixed-point smoothing, and fixed-lag smoothing. Fixed-interval smoothing keeps the 

time interval of the measurements fixed and then searches for the optimal state estimate within 

the given timespan. Information from both past and future measurements is applied to compute 

optimal state estimates for these interior points. Fixed-point smoothing is used to find state 

estimates for a single point in time. The measurements occurring after the time of interest are 
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subsequently used to improve the estimate at that point. An example of this would be the 

estimation of initial conditions based on later observations of a spacecraft's orientation. Fixed- 

lag smoothing is used to seek estimates of a state which is a fixed number of time points behind 

the current measurement time (43 pp. 1 - 3). Because the backward-smoothing extended Kaiman 

filter described in Section 3.2.5 incorporates fixed-interval smoother in its algorithm, this type of 

smoothing will be the focus of this section. 

It is often desirable to perform a smoothing operation when using a sequential filter. In 

this case, one is searching for the best estimate of the state at some time tk based on all 

observations through time tt where / > k. While the batch estimation approach has difficulty 

including the effects of process noise, smoothing algorithms have been developed to overcome 

this limitation, using a Bayesian approach of maximizing the density function of the state 

conditioned on knowledge of the observations through time tt (33 p. 2). In this section the 

notation xfe is used to indicate the best estimate of x at tk based on observations through tt. In 

accordance with the maximum likelihood approach, the aim is to find a recursive expression for 

xfe in terms of x^+1, which maximizes the conditional probability density function (37 p. 246) 

p(xklxk+1\y1,...,yk,...,yl) = p(xk+1\xk) p(xk|ylf ...,yfc) (3.75) 

Accordingly, the problem can be solved by a least-squares technique that determines the vector 

sequences xfe, wfe, and vfe that satisfy the following linearized constraints (37 p. 246) 

Xfe+i = *(tfc+1, tk)xk + r(tfc+1, tk)wk (3.76) 

Yk = HfcXfe + vfc (3.77) 

and maximize the equation (37 p. 247) 

1 
ln(L) = --[xk+1 - *(tk+1,tfc)xfer [r(tfe+1,tfe)Qfcr(tfe+1,tfe)

r] ^Xfc+i - *(tfc+i,tk)xk] 

1 
- 2 [** " XfeFPfc"1 [xfc " xfc] (3.78) 
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where xfc is the state at stage k; 4>k and rk, are transition matrices which relate the state at a later 

time to one at the current time; Pk and Qk are the corresponding error covariance matrices; Hk is 

the measurement transition matrix; and vectors wk and vk are the random process disturbance 

and measurement error, respectively, both of which are assumed to be Gaussian white-noise 

processes with zero mean and known covariance. 

Fixed-interval smoothing consists of a forward recursive filter pass followed by a 

backward smoothing pass. The forward filter is identical to the extended Kaiman filter (EKF) 

algorithm described in section 3.2.3. The backward pass requires that the a priori and a posteriori 

estimates xk, and associated covariance matrices Pk, be saved. The backward sweep starts with 

initial conditions which are the last state estimate and covariance computed using the forward 

filter sweep (44 p. 128). With each step of the backward pass, the old estimate from the forward 

filter is updated to yield an improved smoothed estimate. This improved estimate is based on all 

the measurement data. The recursive equations for the backward sweep are (37 p. 248): 

xk = x£ + Sk(xk+1 - *(tk+1, tk)*£) (3.79) 

Again, the notation xk means the estimate of x at time k, given measurements, y1 to yt. The 

smoothing gain S is given by (37 p. 248): 

Sk = Pk
k*r(tk+1,tk)[Pk

fe
+1]_1 (3.80) 

The error covariance for the smoothed estimates is given by the recursive equation (37 p. 250): 

pfe = pfe + sfe(pfe+i - pfe+i)sfe (3.81) 

It should be noted that the smoothed error covariance matrix is not required in order to compute 

the state estimates in the backward pass. This is, of course, different than for the forward filter in 

which the filtered error covariance is needed to compute the gain used in computing updated 

state estimates (43 p. 5). 
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The formulation described above is known as the Rauch, Tung, and Striebel (RTS) 

smoother and is different from the square-root information filter and smoother (SRIF&S) that is 

ultimately used in section 3.2.5 with the backward-smoothing extended Kaiman filter. As was 

discussed in the previous section, the two fundamental reasons for filter divergence include: 1) 

inaccuracies in the mathematical model used to describe the dynamics process or the model used 

to relate the observations to the state and 2) errors that occur in the measurement update of the 

state error covariance matrix. In particular, the presence of round-off or truncation errors can 

cause the matrix to become nonpositive definite (37 p. 331). Square root covariance filters 

minimize the effect due to the loss of significant digits during the computational procedure, by 

replacing the state error covariance matrix with its square root such that (37 p. 360) 

P* = [Rxx]_1[Rxx]"T (3-82) 

where Rxx is the square-root information matrix associated with x. 

Consequently, Mark Psiaki uses the SRIF introduced by Dyer and MeReynolds in the 

BSEKF in order to incorporate estimation of process noise vectors and to take advantage of the 

improved numerical stability of the SRIF&S form over the original Kaiman filter/smoother 

formulation presented in this section. Square root formulations increase numerical computation 

accuracy by "guaranteeing positive-defmiteness of the associated covariances and by decreasing 

the condition numbers of the manipulated matrices" (33 p. 1). Additionally, the computation 

time scales linearly with the number of stages N, which is much better than a batch least-squares 

algorithm, whose execution time scales according to QV)3 (33 p. 5). Since the algorithm is 

included in the BSEKF, a summary of the SRIF&S will be provided in this section in preparation 

for the more detailed discussion to follow. Though the specific equations needed to implement 

the filter are saved for Section 3.2.5.1., conceptually, the SRIF&S can be outlined as follows: 
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1. Consider a fixed-length interval containing N + 1 noisy measurements, indexed from y0 

to yN. The filtering problem is to find the best estimate of the state at stage N conditioned 

on the measurements up to and including stage N: xN — E[xN\y0,...,yN]. The fixed- 

interval smoothing problem is thus, to find the best estimate of the state time history for 

stages 0 to N conditioned on the measurements for the entire interval: 

Xfc = E[xk |y0 yN] for k = 0,1,2 N (3.83) 

2. This method finds xfe, wfe, vfe, and vw(fc) sequences that satisfy the linearized restrictions 

given by equations (3.76), (3.77), 

Rww(Ow* = MO ~ vw(0 (3-84) 

and minimizes the cost function of the errors (45 p. 2) 

N-l 

J = 2 ( 2J 
v^Vfe + Z. Mfc)Mfe)) (3-85) 

Equation (3.84) is used for calculating statistics of the process noise's measurement error 

where Rww(/c) is the square-root information matrix associated with wfe, found by 

Cholesky factorizing the process noise covariance matrix Q (this can be easily 

accomplished using the Matlab function chol), zw(fe) is the process noise measurement 

vector, and vw(fe) is the process noise measurement noise vector. 

3. The algorithm works in a recursive manner, starting at stage k with a priori state 

information. The filter first performs a measurement update to combine its a priori state 

data with the measurement equations for that stage, equation (3.77). The propagation 

phase of the generalized SRIF computes the a priori state information at stage k + 1 using 

the a posteriori state information at stage k in conjunction with equations (3.76) and 

(3.84) for stage k. The dynamic model is used to eliminate some stage-fc variables from 
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the information equations, and then they are QR-factorized to obtain an information 

equation for xfe+1 that is independent of all remaining variables (45 pp. 2 - 3). Complete 

QR factorizations of matrices are needed in the generalized algorithm in order to deal 

with singularities and may be readily calculated using the Matlab function called qr. 

4. The smoother then uses data from the filtering solution to execute a recursive backwards 

pass. Each iteration of this recursion starts with the smoothed state estimate at stage k + 

1, x*k+1. It uses an information equation and a part of the difference equation to determine 

the smoothed process disturbance estimate wk. This process noise, x*k+1, and the 

difference equation determine a component of the smoothed state at stage k, x*(fe-,. x*^-, 

is used in another information equation to determine another component of xk, x*b(ky 

Finally, the smoothed and deterministic components are assembled and transformed to 

compute x*k, which completes the recursion (45 p. 4). 

5. A backwards covariance recursion is developed by using the equations of the backwards 

state recursion, the definition of covariance, and the expectation operation. The recursion 

begins at stage j + 1 = N, where the smoothed state covariance is known because it is the 

same as the filtered state covariance P^ = PN. 

A more thorough description of the square-root information filter and smoother, which includes 

derivations and detailed equations, can be found in References (37), (45), and (43). 

3.2.5    Backward-Smoothing Extended Kaiman Filter 

The backward-smoothing extended Kaiman filter (BSEKF) can be classified as a special 

kind of causal batch filter which blends together many of the key attributes of the algorithms 

discussed in previous sections. In addition to using a moving-window batch filter with nonlinear 

Gauss-Newton updates, the current formulation works for a general discrete-time problem which 
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simplifies the mathematics as follows: 1) it eliminates the need to designate deterministic and 

nondeterministic parts of the state vector and 2) it enable joint probability distributions to be 

developed which include the process noise vector. The BSEKF is also similar in spirit to an 

extended Kaiman filter (EKF), an iterated extended Kaiman filter (IEKF), and an unscented 

Kaiman filter because each algorithm is an approximate method that uses a bounded number of 

computations. A better understanding of how the BSEKF makes fewer approximations than 

these other estimators begins by posing the problem as a MAP estimation problem (discussed in 

Section 3.2.1.3). 

The kl   step in a nonlinear filtering problem can be expressed in the maximum a 

posteriori (MAP) form by writing the joint probability density function as pk — exp(-/fc) with the 

cost function (42 p. 16) 

fe-i 
1V - - 1 

Jk = 2 /^(wfQi *wi + fri+i - ^+i(xi+i)]TRr+i[yi+i - hi+i(xi+i)]) + 2(jl°~ x0)
rPö"1(x0 - x0) 

i=o 
(3.86) 

The MAP estimate xk is the vector xk that, along with x( and process noise wt for i = 0,1,..., k — 

1, minimizes ]k subject to the dynamics equation 

xi+i = /i(xi,Wi) for i = 0,1, ...,k - 1 (3.87) 

The process noise covariance is Qj, the measurement noise covariance is Rt, yi+1 is the 

measurement at time ti+1, hi+1(xi+1) is the nonlinear measurement model, and x0 is the a priori 

estimate of the state with covariance P0. The joint a posteriori probability density of x0 and 

w0, ...,wk_1 conditioned on x0,yi,y2, ...,yfe, is proportional to exp(—Jk) if x1( ...,xk are generated 

by iterating the dynamics function. Minimization of the cost / is equivalent to maximization of 

this probability density. As has already been mentioned, for linear Gaussian estimation problems, 

MAP estimation is equivalent to minimum mean-square error estimation,  in which xfe = 
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E[xk\%0,y1,...,yk], the conditional mean. For nonlinear problems, the MAP estimate of xfe will 

not necessarily equal the conditional mean, but is still a useful estimate (42 p. 17). Selection of 

the MAP framework for the BSEKF results in a nonlinear least-squares problem, for which there 

exist powerful solution techniques that have been exploited by its developer, Mark Psiaki, in 

implementing this algorithm. 

One normally solves a sequence of filtering problems that is parameterized by an 

increasing sequence of terminal stage indices, k = 1,2, 3,... Consequently, the size of this 

problem grows with k. The usual EKF avoids this growth by not explicitly recomputing the 

values of 5q for i < k when xfe is optimized in the kth step. The iterated EKF improves upon the 

EKF by iterating the nonlinear measurements update equation for xfe, relinearizing about the 

updated state estimate at each iteration, but it does not explicitly recompute the values of xt for 

i < k (33 p. 17). Any Kaiman filter implicitly recalculates the past state estimates with each new 

measurement update; however, this point is often overlooked because estimates in the past are 

generally of no interest. For linear dynamics and measurements, these past estimates are most 

favorable; unfortunately, this is not the case when the dynamics or measurements are highly 

nonlinear. Thus the EKF linearizations are not about the optimal estimates. 

The backward-smoothing extended Kaiman filter improves on the iterated EKF by 

relinearizing a finite number of measurements in the past when a new measurement is processed. 

Therefore, the BSEKF combines some of the properties of an EKF, a smoother, and a sliding- 

batch estimator and has been shown to have superior performance when the estimation problem 

contains severe nonlinearities that might otherwise significantly degrade the accuracy or 

convergence reliability of other filters (41 p. 885). Unlike the EKF, the BSEKF relinearizes the 

current and past measurement and dynamics functions about the improved guesses of the current 

138 



and past state and process noise vectors. Appropriate relinearization points are chosen by means 

of iterative nonlinear smoothing over an interval of time that ends at the current sample time. 

This approach retains the nonlinearities of a fixed number of stages that precede the stage of 

interest, and it processes information in earlier stages in an approximate manner (41 p. 887). In 

his paper, Dr. Mark Psiaki applied the BSEKF to a difficult spacecraft attitude estimation 

problem in which fewer than three axes were sensed and significant dynamic model uncertainties 

were present. The filter was able to compensate for this uncertainty via simultaneous estimation 

of moment of inertia parameters. Using the BSEKF, he was able to demonstrate improved 

performance and more rapid convergence over either the extended Kaiman filter or unscented 

Kaiman filter (UKF) for estimation problems with large initial attitude or attitude rate errors. The 

results of this performance comparison are provided in Reference (41) along with the original 

formulation for the BSEKF. A detailed description of the unscented Kaiman filter can be found 

in References (46) and (47), while a more general overview of the algorithm is provided in 

Reference (42). 

The algorithm incorporates a Gauss-Newton iteration to solve for the state vector xfe and 

process noise vector wfe for i = k — m,..., k — 1 to minimize the cost function (41 p. 887) 

fe-i 

1 = 2 X (wrQrlwi + [yi+i-^+i(xi+i)]TRr+i[yi+i-^+i(xi+i)]) 
i=k-m 

1 
+ 2 (xfe-m ~~ xfe-m)   (Pfc-m)     (xfe-m — xfe-m) (3.88) 

where x*k_m and P^m are used to represent old data and should not be confused with the filtered 

a posteriori state estimate and corresponding error covariance matrix. Equation (3.88) is also 

subject to the dynamics function expressed in equation (3.87) for I > k — m. The cost function is 

a form of negative feedback that penalizes the computed state vector if it drifts too far from the 
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reference state over the smoothing interval (more precisely, ] penalizes measurement error and 

state estimate error in the manner described in Section 3.2.1.2). Furthermore, equation (3.88) 

retains all of the nonlinearities of the most recent m stages, with all the nonlinear effects of the 

previous stages being represented by the quantity -(xfc_m — x*k_m)T(Pk_m)~1(xk_m -x*k_m). 

This quadratic second term is an approximation of the cost function, ]k_m for fixed xk_m 

optimized over all the xfe and wfe for i < k — m (41 p. 887). A value mtarget is used to denote the 

number of stages, which will be retained and is chosen to balance accuracy and computational 

effort. When k < mtarget, the BSEKF uses m — k stages, and makes no approximations. 

However, when k > mtarget it uses m = mtarget stages, x*k_m, and Pk-m to approximate the 

optimal cost function /0pt[fe-m](xfe-m)- Because the measurement equation, yi+1 = hi+1(xi+1) + 

Vj+1 and the dynamic equation, x;+1 =/;(x;,Wi) are both included in the Gauss-Newton cost 

minimization for not one but m stages, the nonlinearities in both the measurement and dynamic 

equations are treated explicitly for those m stages (42 p. 17). This yields a more accurate 

representation of the cost minimization problem if enough of the past stages are treated explicitly 

by the nonlinear smoother. A large m, therefore, makes both the optimal state estimate xk 

insensitive to the accuracy of the approximation of/0pt[fe_m](xfc_m) and the smoothed estimate of 

Xj for i < k — m insensitive to the terminal time of the smoothing problem. Finally, as was 

mentioned above, the target number of explicitly optimized stages is a design choice. It may be 

practical to modify mtarget dynamically. mtarget could be set to a larger value during 

initialization to ensure convergence and greater accuracy, then lowered to mitigate computation 

time, once steady state performance is achieved. For the time being, however, mtarget is held 

fixed in the interest of algorithm simplicity (41 pp. 886 - 887). 
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3.2.5.1 Detailed BSEKF Algorithm Description 

The nonlinear least-squares smoothing problem presented in equations (3.87) and (3.88) 

is solved in the BSEKF algorithm using the guarded Gauss-Newton method described in Section 

3.2.2.1. This iterative process takes an initial guess and computes a converging sequence of 

estimates; that is, each guess has a lower least-squares cost than the previous one. Convergence 

is guaranteed by a guarding procedure that scales down the computed increment to a given 

estimate, and if necessary, forces a decrease in the least-squares cost from one guess to the next. 

Additionally, the algorithm preserves a set batch size over which it filters and smooths. The 

forward filtering pass is performed using an extended Kaiman filter, though the form employed 

in the BSEKF is slightly different than what is presented in Section 3.2.3. Similarly, the 

backward-smoothing pass is accomplished via the square-root information smoother discussed in 

Section 3.2.4. The number of stages retained by the BSEKF grows until it reaches the requisite 

interval size and then proceeds to "slide along" until all the observations in the pass have been 

processed. The estimator described below is therefore, a synthesis of all the algorithms discussed 

in the proceeding sections, utilizing aspects of a sliding batch least-squares estimator, a guarded 

Gauss-Newton algorithm, extended Kaiman filter, and fixed-interval smoother. 

The following algorithm is adapted from Mark Psiaki's backward-smoothing extended 

Kaiman filter (Reference (41)), and employs the following notation: a£ refers to a vector a at 

time step b for iteration c. All time points are referenced from the current time, denoted using the 

subscript k. Typically, the times points are incremented from k — m to k — 1 meaning that m time 

points or stages are currently being utilized and operated on. Hence, the collection of m previous 

state vectors, observation vectors, covariance matrices, noise vectors, and so on, are all 

collectively referred to in the algorithm as the m-buffer or cache. Since the program has been 
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implemented in Matlab, which does not allow indexing from zero, the initial guesses are written 

as a![ rather than in the more traditional form:aQ. The backwards smoothing extended Kaiman 

filter proceeds as follows (41 pp. 887 - 889): 

1. Choose values for the target number of stages to be used by the fixed-interval smoother 

(mtarget), the maximum number of Gauss-Newton iterations to be performed (.jmax), and 

cutoff values for the cost minimization and guarded Gauss-Newton procedure (/£) and 

(Ye) respectively. 

2. Set m = 0, k = l,j = 0 and assign the initial guesses for the state and process noise 

vectors, i.e. xJ
k_m and wJ

k_m,wJ
k_rn+vw

J
k_m+2, ...,wJ

k_r The initial state guess is the set of 

attitude parameters such that xt = {vo ^o P/(o)} 2. The initial guess for each of the 

process noise vectors is typically zero. Set the initial state error covariance matrix Pl5 

process noise covariance matrices Qj, and measurement noise covariance matrices Rj. 

Factor each matrix using Cholesky decomposition [Matlab - chol]: Pt = [RxxHRxxL 

Qi = [RwLHRwwL and Rj = [Rvv][R•L to obtain R^, Rww, and Rvv, the square root 

information matrices associated with x, w and v, in that order. These matrices will be 

used later in the square root information filter and smoother (SRIF&S). Details on how 

the initial estimates for the state and covariance matrices are calculated are presented in 

Section 4.3.2, with specific examples given in Section 5.1.1. 

3. Set the stage counter m — k, if k < mtarget or m — mtarget, if k > mtarget. Establish the 

total number of observations n to be processed after using the first measurement in the 

2 The initial state X-L is composed of the vector components of the attitude quaternion, angular velocity vector, and 
moment of inertia parameters. Since the observation vector is made up of the full quaternion, only the first three 
elements of y0 are actually used as part of the initial estimate. 
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initial state estimate and begin the observation loop. The observation counter k, is used to 

identify each measurement from 1 to n and control operations in the outermost loop. 

Time State Observation 

ti Xi        ^ •       Vn 
ti x2 yi 

t. X;, y2 

tn+1 xn+l y» 

4. If mtarget observations have been processed, i.e. /c > mtarget, then the fixed-interval 

cache (m-buffer) of saved variables needed for the smoothing process has been filled. 

Values will therefore, be replaced rather than appended. In order to set up the next 

smoothing problem the caches for the subsequent variables need to be shifted by making 

the following assignments: 

^zx(k-m) — ^zx(k-m+l) (3.89) 

(3.90) 

(3.91) 

(3.92) 

where Azx is the state estimation error information vector. The vectors and matrices at 

sample i = k - m + 1 represent the values from the last Gauss-Newton iteration of the 

smoothing problem that ends at the current observation k. Having shifted these final 

smoothed estimates into the preceding position in the m-buffer, they may now be set to 

zero in preparation for the next smoothing problem. The quantities used to approximate 

the optimal cost function are then found by 

Xfc-m = xk-m + ^•xx(k-m)^zx(k-m) (3.93) 

Pfc-m — ^-xxik-rrCp-xxik-rn) (3.94) 

"•xx(k-m)       "•xx(k-m+l') 

wk-m — wfe-m+l 

Xfc-m      xk—m+l 
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5. If mtarget observations have not yet been processed, i.e. k < mtarget, then the m-buffer is 

still being filled and there is no need to perform the assignments in the proceeding step. 

Instead: 

Xfc-m = *i and P*k_m = Pt (3.95) 

At this point in the algorithm the cache will be growing from the size of the current stage 

counter value m to the target number of stages mtarget. The range in cache size is 

summarized in the table below: 

Table 3-1 Algorithm Cache Size 

Cache Type 
Dimension Range for k < mtarget 

(rows x columns x sections) * 
Fixed Dimension for k > mtarget 

(rows x columns x sections)* 
Scalars (1 x m) -» (l x mtarqet) (1 x mtarget) 

Vectors (rxrri)->(rx mtarget) (r x mtarget) 

Matrices (rxcxm) -> (r x c x mtarget) [r x c x mtarget) 
* Sections are an element of depth used to indicate the number of matrices in the cache 

(rows = 1st Dimension X columns = 2n Dimension X sections = 3r Dimension) 

6. Compute the inverse state error covariance matrix 'P^-m- This is the covariance used in 

the approximation for the cost function for all stages before k — m. 

7. Initialize the cost function (J° — 0), reset the cost convergence variable (jnewapprox — 0), 

set the Gauss-Newton iteration counter j - 0, and begin the guarded Gauss-Newton loop 

(the loop will continue until;' < jmax)- 

8. Starting from the state estimate xJ
k_m, propagate the state forward in time from i — k — 

m,...,k — l using the process noise guesses wJ
k_m,..., w^_x and dynamics function 

xi+1 — fi(Xi,Wi) for i — k — m, ...,k — 1 (3.96) 

The state guesses x/+1, ...,xJ
k are calculated using the 4th-order Runge-Kutta numerical 

integration method described in Section 2.3.4.1 [Matlab - ode45] (17). 
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9. Evaluate the state transition matrix 4>j = df^/dx; and process noise transition matrix 

Tt — dfj/dWi at the points (xj,w() for i — k — m, ...,k — 1 [Matlab - symbolic toolbox + 

Jacobian] (17). If I is used to indicate the dimension of the state vector (I x 1), then both 

4>j and Tt are I x I matrices. The linearized dynamics matrices can propagated to each 

observation time by either: 1) numerically integrating the analytic equations for the 

partial derivatives of f with respect to x and w or 2) performing finite differencing using 

the following set of equations to find the central difference: 

df;        /;(X; + S) - /i(Xj - S) , 
<&; = —- = -^ —  (3.97) 

dxt 2s 

dfj     /i(Wj + s) - ft(Wi - s) , 
r£ = —— = J-^-± —  (3.98) 

dwt 2s 

where s is the component step size vector, that is, the finite amount by which each 

element of the state and/or process noise vector is incremented up and down before 

numerically integrating the dynamics function. The vector is of length / and is composed 

of all zeros except at the position of the state value being incremented in that particular 

iteration. It is important to note that because the state must be propagated to each 

observation time twice (i.e., for both the forward and backward finite difference) for 

every component in the state vector (Z-times), this approach is computationally expensive 

and should only be considered as a method of last resort. The alternative to numerical 

partial derivatives is to find the analytic expressions for the partial derivatives. This 

eliminates the major inaccuracy of the numerical computations resulting either from no 

solution or from an erroneous one. The use of analytic partial derivatives also eliminates 

the problem of undefined or incorrect solutions choice at the cost of potentially very 
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complex algebra. The principal advantage of the numerical procedure is that it is both 

simple and direct. 

10. Collect the propagated state estimate x[+1 and observation yt at the corresponding time 

in order to evaluate the measurement error vector 

Ayi+i = yt - hi+1 (x{+i) (3.99) 

and measurement transition matrix Hi+1 = dhi+1/dxi+1. In these equations, hi+1 = 

hi+1 (x|+i) is a vector function mapping components form the propagated state to a form 

which is comparable to that of the observation vector. Additionally, Ayi+1 is the residual 

used to quantify the additive measurement noise vector vi+1 in the nonlinear 

measurement model given by 

Vi+i = hi+1(xi+1) + vi+1 (3.100) 

11. Calculate the cost function at iteration j if the cost has not been computed for the current 

observation k: 

fc-i 

P = 2   X  (wfQr'wj + [yi+1 - Ä/+i(x(+1)]7'Ri-+
1
1|y(+1 - hi+1(xi+1)]) 

i=k-m 

1 
+ Ö (*k-m ~ Xfc-m)   (Pfe-m)     (Xfc-m — Xfe_m) (3.101) 

12. Set the sample index i = k — m and begin the forward square-root information filtering 

pass, by assigning 

AZX(0 = Rxx(fc-m)(Xfe-m - x£_m) (3.102) 

13. Form the block matrix on the right hand side of the following equation and 

orthonormal/upper-triangular (QR) factorize that matrix to determine the matrices on the 

left left-hand side [Matlab - qr]: 
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T* 
R ww(t) 

0 
0 

R wx(i) 
R xx(i+i) 

0 

R ww(i) 0 

—R    /-".O"1^      R    ^O"1 

0 Rvv(i+i)H;+i. 

(3.103) 

The block matrix has dimensions (2(1) + •£) x 2(0, where / and -6 are the length of the 

state vector and measurement vector respectively; thus, the resulting orthonormal matrix 

T and upper-triangular matrix are both square with dimensions: (2(0 + €) x (2(1) + f). 

14. Compute the information vectors associated with the state estimation error, process 

noise, and measurement noise (Azx, Azw, and Azr) by performing the following matrix 

multiplication: 

Azw(0 

Az^j+i) 

Azr(0 

= if 
_Rww(i)wj 

Az x(i) (3.104) 

-Rvv(i+l)Ayt+i. 

Steps 13 and 14 are essentially combining the state propagation and measurement update 

into a single QR factorization step. 

15. If i — k — 1, then terminate the iteration and proceed to step 16; otherwise, set i — i + 1 

and go back to step 13. 

16. Calculate the incremental change in the state estimate 

Axfe = R-^(fe)Azx(fe) (3.105) 

17. Set i — k — 1 and perform the backward square-root information smoothing pass, which 

consists of the following set of equations: 

AWi = R-^^Az^) - RWX(0AXJ+1] (3.106) 

Axt = ^[Ax^ - T^AwJ (3.107) 

18. If i = k — m terminate the iteration and go to step 18; if not, set i = i — 1 and return to 

step 17. 
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19. Having completed the square-root information filter and smoother (SRIF&S) portion of 

the algorithm, the guarded Gauss-Newton method can now be used to search for the 

minimum arguments of the cost function given by equation (3.101) in step 11. Set the 

initial trial search step size y — 1. 

20. Calculate the candidate next guess of the smoothed solution by computing the state and 

process noise vectors with the addition of the corrections obtained from the SRIF&S 

given in step 12-18: 

4+-m = 4-m + Y^k-m (3-108) 

w/+1 = w{ + ykWi for i = k - m,..., k - 1 (3.109) 

*/+i = fi(xJi+1>wi+1) for i = fc - m, ...,fc - 1 (3.110) 

Equations (3.108) - (3.110) are in effect a repetition of steps 8 and 10 using the refined 

estimate for the state. Therefore, in addition to propagating the state to each observation 

time in the m-buffer, the corresponding observation vectors needs to be retrieved so that 

the residuals can be determined for the costing function. 

21. Recalculate the cost/;+1 by evaluating equation (3.101). 

22. lf]j+1 > ]i, then activate the guarding procedure in order to ensure a reduction in cost, by 

setting y — 0.5y and going back to step 20. Otherwise, proceed to step 23. 

23. Compute the linearized prediction of the cost and determine whether convergence has 

been reached: 

fe-i 

-1 V     T 
Jnewapprox ~ ~^     7      "^r(i)"^r(i) yo.lLl) 

i=k-m 

If Jnewapprox ~ Jnewapprox ^ Je is sufficiently small, then the estimate has converged to the 

local cost minimum. Alternatively, if the actual new cost based on nonlinear dynamics 
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and measurement functions is nearly the same the linearized prediction, then the 

algorithm may be terminated in very few steps because the linearized model is very 

accurate. If either of these conditions are true, if 7 > jmax, or if 7 = 0, then assign the state 

1 + 1 
estimate for the current observation time k: xk = xk , obtained in step 20. Return to 

step 3 to begin processing the next observation and set k = k + 1. If the algorithm has not 

yet converged and; is not yet too large (j < jmax\ set; = j + 1 and go back to step 8. 

24. Note that if trial search step size gets to be very close to zero, that is if y < y£, then 

algorithm is either searching for the next state in the wrong direction or has already found 

the estimate that minimizes the cost; in either case print a warning message, set y — 0, 

and return to step 8 for one last iteration. If multiple warning messages appear in a row 

then the state estimates are not being refined and there is a strong chance that the BSEKF 

will diverge. If this occurs then further 'tuning' is in order and different initial values for 

the state, measurement, and/or process noise covariance matrices (P, R, and Q) should be 

tried. 

3.2.5.2 Specifics on Iterations and Indexing 

Since much of what makes the BSEKF challenging to implement lies in the intricate 

looping structure and offset indexing scheme, the following simple example has been provided to 

help clarify the dynamic behavior of the algorithm itself while in operation. 
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Table 3-2 Iterations and Indexing Operations 

mtarget ~ 10 k m i = k — m:k — 1 ic = i — ((fc — m) - -1) 

k < mtarget 

1 1 0:0 1:1 
2 2 0:1 1:2 
3 3 0:2 1:3 

10 10 0:9 1:10 

k > rntarget 

11 10 1:10 1:10 
12 10 2:11 1:10 
13 10 3:12 1:10 

n 10 n-10:n-l 1:10 

The BSEKF utilizes the subsequent list of critical variables: k is the observation counter, n is the 

total number of observations to be processed, m is the current size of the smoothing interval, 

mtarget is the target size of the interval, i is the iteration counter, and ic is an indexing value. 

The variable; is then used to keep track of the number of Gauss-Newton iterations. 

In the example provided above, mtarget is set to 10; this represents the maximum number 

of observations over which the algorithm will propagate the state vector and try to minimize the 

residuals between the estimated and observed attitude. When the algorithm begins to run, only a 

single observation - designated with k - is present in the cache, called the m-buffer, the current 

size of which is denoted using m. In accordance with the MAP problem, the algorithm will 

attempt to keep the cost/penalty function as small as possible over the range i = k — m: k — 1. 

At this point, the BSEKF operates in a manner which is indistinguishable from the traditional 

EKF, since the extended Kaiman filter can be interpreted as a BSEKF that uses mtarget = 1 and 

only one Gauss-Newton step. As more observations are added on subsequent iterations, the size 

of the cache that the algorithm is using to approximate and refine the state begins to grow. When 

the current observation value exceeds the target stage size, the algorithm stops adding 

observations to the m-buffer and begins to shift, attaching the most recent estimates to the end of 
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the cache and deleting the oldest. From this point forward, the number of stages that will be 

retained is fixed at 10 and the algorithm begins to "slide along" until all n observations have 

been processed. The iteration counter i regulates the size of the m-buffer over time and the 

indexing value ic ensures that all the vectors and arrays used throughout the filtering sub-process 

are properly referenced and ordered within the cache. 

To further illustrate the algorithm dynamics, the following diagram (see Figure 3.14) 

depicts the growth and then sliding effect that occurs within the observation cache (y) as k 

progresses from 1 to n = 8, with a target number of retained stages equal to 5. Note that this 

example is different from the one provided in Table 3-2, which uses an unspecified total number 

of observations and an mtarget of 10. 

to ti t2 t3 U ts 16 17 ts 

1 

k=l X1 

k = 2 X1 X2 

k = 3 yi X2 X3 

k = 4 X1 X2 y-3 \4 

k=5 X1 X2 X3 X4 Xs 

k = 6 X2 X3 X4 Xs X6 

k=~ Y3 \4 ys V« \7 

k=8 X4 Xs X6 X7 ys 

m= 1 

m = 3 

m = 4 

m = 5 

in = S 

mtarget - 5 

Figure 3.14 Depiction of the growth and sliding effect that occurs in the observation cache over 
time. The target number of stages in this example is 5 and the total number of measurements to be 

processed is 8. 

3.2.5.3 Relevance to this Specific Research Problem 

The strength of the BSEKF lies in its ability to rapidly recover from poor initial estimates 

of the state vector and covariance matrices, and still achieve greater accuracy than more widely 

used algorithms. It accomplishes this by maintaining a backlog of observations over which the 
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algorithm is able to filter and smooth. However, building up and preserving information comes at 

a cost, namely significant computational time. The filter is ideal for solving attitude estimation 

problems using radar observations, due to the large number of uncertainties involved with 

remotely measuring the attitude. In addition to having greater measurement noise than more 

conventional sensors, using externally derived observations, further complicates the modeling 

process, since the internal dynamics and mass distribution of the satellite are completely 

unknown. Since the internal composition is not readily observable, the problem is necessarily 

constrained to spacecraft, which utilize either passive attitude control (i.e. reliance on a vehicle's 

natural response to the environment to maintain a nominal orientation) or have experienced an 

anomaly that has resulted in the loss of active command/control of the vehicle's attitude (i.e. use 

of computed actuator torques to achieve and maintain the desired pointing requirements is no 

longer possible). Restricting the use context in this manner ensures that the only forces impacting 

the rotational motion of the vehicle are due to environmental torques. Approximating the inertia 

tensor, using the rough physical dimensions of the vehicle (geometric modeling), is used as an 

initial first guess to get the filter moving in the right direction; but ultimately, the BSEKF's 

ability to simultaneously estimate and refine these values over time, using indirect measurements 

(only attitude observations), is invaluable. Consequently, the computational burden is accepted in 

order to compensate/overcome the greater initial uncertainties and measurement error associated 

with a problem of this type. 
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4       Lincoln Attitude Estimation System 

The Lincoln Attitude Estimation System (LAES) is a new approach being developed for 

the Space Situational Awareness Group at MIT Lincoln Laboratory, which attempts to determine 

the motion of a freely tumbling rigid body from a series of radar images. LAES integrates 

several legacy hardware and software systems with a backward-smoothing extended Kaiman 

filter and a detailed set of environmental torque models. 

Section 2.3.1 and 2.3.2 gave a comprehensive account of the rotational motion of rigid 

bodies, while Section 2.3.4.3, provided a useful introduction to including sources of torques in 

the Euler equations. This chapter does not repeat these expositions but rather focuses on the 

coupling of the rotational motion equations with the radar equations developed in Section 3.1.3. 

The inherent ambiguity that arises when trying to determine the attitude of a spacecraft from a 

single radar image adds an interesting challenge to developing a motion analysis algorithm. The 

approach currently used by the Space Situational Awareness Group, to resolve this uncertainty, 

is to utilize measurements from a sequence of images and make several strategic assumptions 

about the satellites' motion capabilities and physical characteristics. Specifically, the existing 

motion analysis tools suppose torque-free motion (N = [0]) of an axial symmetric Q± = I2) rigid 

body, the details of which are presented in Section 2.3.3. The restrictions that these simplifying 

assumptions impose on the system of equations go both ways, enabling closed-form motion 

propagation at the expense of inaccurate system dynamics and a loss of operational flexibility. 

Conversely, the Lincoln Attitude Estimation System accepts the greater complexity associated 

with incorporating environmental torques and dealing with asymmetrical moments of inertia 

Oi * h ^ h)> in order to better model the rotational motion of a given satellite. 
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4.1 Legacy Hardware and Software Systems 

The Space Situational Awareness Group at Lincoln Laboratory (Group 93) operates the 

Lincoln Space Surveillance Complex (LSSC), comprising the Millstone deep-space satellite 

tracking radar and the Haystack and Haystack Auxiliary (HAX) wideband satellite imaging 

radars. These radars are remotely controlled from the Lexington Space Situational Awareness 

Center (LSSAC), which serves as a data processing and fusion node for the LSSC and other 

ground- and space-based space surveillance sensors. Two-dimensional radar images are 

generated using the Advanced Radar Imaging Environment Software (ARIES) by Doppler 

processing the radar returns collected with HAX in each of the range cells of a coherent 

wideband radar signal - the Doppler frequency of the center of mass being first removed. 

Consistent with the methods described in Section 3.1, this process is summarized in Figure 4.1 

and results in a sequence of range/range-rate images. For a more in depth explanation of the 

functions performed by HAX and ARIES, please refer back to Section 3.1 and/or consult 

References (48) and (49). 
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Figure 4.1 ARIES is used to read raw data from sensors and perform the image formation 
processing. Steps include data extraction, aligning the pulses according to the center of mass (given 
by the orbital state vector), image interval calculation, weighting and Fourier transformation, and 

phase gradient autofocus to correct phase errors and thereby improve image focus. 

The formation of highly resolved, well-focused,  and precisely-scaled radar images 

requires the accurate estimation of the target's translational and rotational motion during the 

imaging interval. However, in order to accurately estimate the attitude of a spacecraft, one needs 

a set of consistently-scaled and focused set of images, which begs the question: how does this 

whole process get started? The answer is the radar collection and processing manager within the 

LSSAC makes an initial first guess, which will be referred to as the nominal or baseline motion. 

Using this preliminary approximation of the object's motion relative to the radar line of sight 

allows the range/range-rate dataset to be roughly scaled in the x direction and centered to form a 

series of discrete-time range/cross-range images for a given pass (4 pp. 1 - 2). Again, the image 

plane coordinate system P is defined by the plane which includes the radar line of sight and is 

perpendicular to the instantaneous angular velocity vector (o of the spacecraft. These conditions 
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are in line with the derivation of a radar image formed using pulse returns (range) and Doppler 

shift (cross-range). 

The attitude of the spacecraft is then determined relative to the image plane using the 

image-model matching process, discussed in Section 3.1.3. A three-dimensional computer model 

is, through computer graphics procedures, displayed on top of the two-dimensional image. The 

analyst rotates the wireframe model and manually scales the cross-range of the image such that 

the projection of the wireframe onto the image plane coincides with the figure of the target. 

Therefore, the orthographic projection matrix that the computer graphics procedures computed to 

display the model, simultaneously describes the orientation of the object within the radar image 

plane. As a result, the attitude of the plane itself needs to be known in order to correctly 

determine the attitude of the satellite. However, given that the raw radar measurements only 

provide range and range-rate information in two-dimensions, it becomes readily apparent that 

from a single image, one can determine the attitude and angular velocity of a target only up to a 

rotation around the radar line of sight. Specifically, each image provides four measurements 

when six (0,6, xp, <p, 6, xp) are needed in order to uniquely determine the motion of the spacecraft. 

With a solitary radar system, the problem is therefore, underdetermined and additional external 

information or simplifying assumptions are required (at least initially). 

Given the ambiguous nature of the ISAR imagery, an iterative process is necessary to 

properly/uniquely determine both the attitude of the spacecraft and the image plane into which 

the target is being projected. Figure 4.2 shows the basic interdependencies that exist between the 

hardware and software systems involved in the non-cooperative attitude estimation process. 
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Figure 4.2 High-level system inputs and outputs 

It should be noted that while all information appears to flow through Interactive Motion, in 

reality, data handling functions are performed by the X-Based Enhanced Lincoln Interactive 

Analysis System (XELIAS). Interactive motion is simply a subprogram in XELIAS, which 

enables an analyst to directly manipulate the baseline motion parameters which are applied to the 

pass. Manually altering these global parameters has a direct impact on the cross-range scaling 

and initial orientation of the wireframe model used in the measurement making process. 

Accordingly, Interactive Motion is a critical interface, providing operators with immediate 

feedback and an easy way to qualitatively assess a given motion solution. 

LLMotion is the existing force-free motion solution software system, accessible through 

XELIAS. The program utilizes a batch least-squares filter, in conjunction with a search 

algorithm, to determine the attitude of a spacecraft by locating the minimum of an objective 

function calculated over a sample grid of motion parameters. Since only so many degrees of 

freedom are observable in a single pass with reasonably small error, LLMotion makes several 

assumptions in order to simplify the motion determination task. While the software has proven 

quite useful in short term analyses, for more sophisticated endeavors, such as understanding 

tumbling motion over several hours or multiple passes, a different approach is needed. The 
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Lincoln Attitude Estimation System (LAES), discussed in Section 4.3, is an attempt to satisfy 

this need and operates on the premise that the existing Group 93 software can be leveraged to 

obtain a refined set of radar images and initial state estimate for use in a second iteration. 

Therefore, it is important recognize the critical role that LLMotion plays in preprocessing 

the baseline motion solution used to generate the radar images. The output from the system is a 

list of all the local minima found in the state space, sorted in ascending order based on their 

objective function values. This essentially provides the analysts with a means to quantitatively 

assess of the potential motion solutions within the search space. When dealing with nonlinear 

systems of equations, producing robust motion analysis software becomes somewhat delicate as 

there is rarely a guarantee of finding the global extreme that presumably corresponds to the true 

rotational motion of the spacecraft. Each minimum shows the parameter values associated with 

that specific grid solution. The analyst is then able to apply and visually examine the prospective 

motion solutions in order to qualitatively determine which set of parameters gives rise to the 

"best" alignment. This improved estimate of the satellite's attitude over time becomes the new 

baseline motion used in the image-model matching process and backward-smoothing extended 

Kaiman filter. Having reduced some of the uncertainty in the measurements enables several of 

the more limiting assumptions, i.e. those which tend to breakdown over longer time spans, to be 

removed. The modified BSEKF is subsequently able to further refine the attitude estimate for the 

first pass as well as propagate the estimate with greater accuracy over the time/observation gaps 

which separate the imaging passes. 

4.2     XELIAS/LLMotion: Single Pass Attitude Determination and Estimation 

LLMotion solves for a satellite's rotational motion using relative range and range-rate 

returns from body scatterers, measured on coherent radar images. Given the measurements from 
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a set of range-Doppler images, solving for the body dimensions and motion of the spacecraft by 

analytical means would, in general, be very difficult if not impossible. This is due to the fact that 

the dynamic motion of the spacecraft not only determines the body's orientation as a function of 

time, but also affects the attitude of the radar image plane and the relationship between Doppler 

and cross-range position. However, the reverse process, in which the body model and motion 

parameters are given and the projection into the image plane is derived, is straightforward and 

forms the basis of LLMotion. Hence, it should be possible to find a motion solution using the 

reverse process in an iterative loop that performs a least-squares fit to the measurements. This is 

the technique used in both LLMotion and LAES. 

The first critical assumption in the existing Group 93 software is that the torque exerted 

on the satellite is zero. The important sources of environmental perturbations that are thereby 

ignored include the gravity gradient, atmospheric drag, solar radiation pressure, and geomagnetic 

moment. As was discussed in Section 2.3.4.3, while these external forces are typically quite 

small, they are persistent and therefore, significant in multi-pass attitude estimation problems. 

Disregarding the variation in the angular velocity of the spacecraft due to environmental torques 

can result in large motion residuals and phase errors which produce a smearing in the cross-range 

direction that is proportional to the distance from the center of the image. Second, the satellite is 

assumed to be a rigid body. While many satellites are not entirely rigid, their articulating 

components are considerably less massive than their main bodies; the assumption therefore, 

seems valid. Third, the principal axes of the inertia tensor are aligned with the model axes, i.e., 

the principal axes are the columns of the attitude matrix A. Manmade structures often do follow 

this principle. Fourth, only spin-precession tumbling motion is considered, constraining the first 

two moments of inertia to be the same, that is, It = I2 * I3. As was discussed in Section 2.3.3, 
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assuming the spacecraft is a symmetric rigid body in a torque-free environment enables closed- 

form motion propagation. Removing this constraint requires numerical integration of elliptic 

integrals or a system of ordinary differential equations expressing Euler's equations of motion. In 

this thesis, the latter option has been selected and will be covered in greater detail in Section 

4.3.2. Finally, as ground-based observations of an orbiting object to do not reveal the total mass, 

the moments of inertia are arbitrarily normalized. Thus, of the original six free parameters in the 

inertia tensor, Group 93 's software leaves one. In an inertial coordinate system, the inertia tensor 

is therefore, given by 

/ = ADAT (4.1) 

where D = diag(l, l,/z). 

When expressing the angular velocity of a satellite in terms of the radar image plane, the 

fundamental ambiguity is, as discussed in Section 3.1.3, a rotation around the radar line of sight 

of angle 6, R2(d). The analyst has scaled the image by s to estimate cross-range from Doppler. If 

pz is, as before, the nominal unit-vector normal to the image plane matrix P, then the component 

of the total angular velocity orthogonal to the RLOS is (27 p. 13) 

Ry(d)a) total .      . 

s 

To this must be added the component parallel to the RLOS, which is py |&>fotai|, for unknown o)y. 

Finally, to obtain the angular velocity of the satellite from the total angular velocity, one must 

remove the contributions from the orbit, producing (27 p. 16) 

v                                                       i    v      i      /    v^-  s^total \ 
Msat = Mtotal + ^total ~ M orbit = Pyl^totall + ( ~ Morbit I (4-3) 

Recall from Section 3.1.3.1 that 

•" = ^nom" align (4.4) 

160 



and the true attitude is ARy{6). Combining the preceding arguments and substituting into Euler's 

equation, relating angular velocity to angular momentum (L = /<»), yields (27 p. 16) 

L = Rv(d)[ADAT]Rv(-6) Py I "total + 
Ry(9)a>fotal 

Morbit (4.5) 

The free parameters, after the analyst has obtained the measurements Raiign and s for the 

image, are 6, Iz, and \co^at\. Zero torque implies that the angular momentum vector is invariant 

over the pass. Euler's equation with zero torque and the inertia tensor used in LLMotion and 

XELIAS immediately implies that eight independent parameters are sufficient to describe 

rotational motion. Most directly these are attitude, angular velocity, the single free inertia tensor 

parameter, and the time at which the first six parameters are valid. Holding to the notation used 

in Section 2.3.3, the eight symmetric parameters for the torque-free motion of a symmetric rigid 

body are: 

to 
a 
S 
9 

^param ~     0o l~"-.bj 

where t0 is the time to which all the parameters are referenced; a and S are the right ascension 

and declination used to specify the precession direction, which is aligned with the angular 

momentum vector L; 6 is the coning angle, indicating the angle between the angular momentum 

vector and the z-axis of the spacecraft (note that D = diag(l, 1, Iz) is consistent with this choice 

of axis); the coning angle is the angle between the angular momentum axis and body cone of the 

spacecraft;  x-initial  0O   and  z-initial  i//0   are  the  preliminary precession  and  spin  angles 

respectively; and the precession period 0_1 and spin period i/>_1 are the times need by the 

spacecraft to complete one revolution about the angular momentum axis and z-axis (aligned with 
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the vehicle's longest dimension) respectively (please refer to Figure 2.6 for more detail). The 

initial first guess (baseline motion solution), made by the individual in the LSSAC, is comprised 

of these parameters, which roughly describe the rotational motion of the vehicle over time. 

A sequence of range/cross-range images are generated using this arbitrary set of motion 

parameters. These images do not have to be correctly scaled in cross-range, but they must not be 

so distorted that less than two or three scatterers can be consistently identified. Identifiable 

returns are selected in pairs, each pair constituting a body feature which is assigned an 

identifying number. The range and cross-range coordinates of one end of each feature is 

measured with respect to the other on a number of images. Along with each measurement, a 

weighting factor can be assigned. The angular velocity used in generating the individual image is 

also noted. 

Each image contributes an equation of the form given in equation (4.5). LLMotion 

determines the motion of a satellite by searching for the minimum of a cost function calculated 

over a sampled grid of motion parameters. A numerical batch least-squares minimization, in 

conjunction with what is called dynamic hill climbing (DHC) or grid search, reduces the error 

between the measurements from the image and calculated values from the motion parameters. 

There are two different objective functions used in LLMotion, one for feature measurements and 

another for angular velocity (32). The meter measure case solves for all the motion parameters, 

five angles and two rates along with the feature lengths if requested. The angular velocity case 

can only solve for the right ascension and declination of the precession vector and the precession 

period. The angular velocity option is, thus, primarily used when the imagery data is badly 

smeared and feature measurements are difficult to identify. In most other instances, the meter 

measure option is used. 
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In the meter measure case the measurements are feature lengths in the image plane, as 

depicted in the following figure: 

Feature Measurements                               Feature Measurement 
Image #1                                                           Image #2 

•          **           Ä       J Ik 

9 
• 

9 

Figure 4.3 Specifying measurement points and features vectors in XELIAS 

Meter measure is performed in XELIAS and consists of a set of measurement points placed at 

distinct locations within the sequence of images. Connecting the point in a specific order, 

consistently over the entire pass, provides LLMotion with feature measurements (i.e., vector 

lengths) of the target in terms of the image plane coordinates. These observations are typically 

made with the aid of the wireframe model of the satellite, which provides both a useful reference 

for scaling the imagery and acts as a guide for point placement when the satellite features being 

measured are obscured or difficult to distinguish in the imagery alone. 

The residual feature vectors (measured - calculated) are divided by the cross range 

resolution Arx. A single value for Arx is used for both the x and y components of all the measured 

features vectors on all the images, as shown in the cost function equation below (32 pp. A-l): 

''=^II(tm&-c<')+K-c«)2 (4-7) 
X

   i=l y = l  ^      C' / 

In equation (4.7), mi7- and Cjy are the measured and calculated;'* feature vector of the Ith image; 

ü)^. and o)%. are the z components of the angular velocity values for the ith image reference to the 
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measurements and calculated for the new motion, respectively; n is the total number of images; 

mt the total number of features for image i; and N = Hf=i^i- Calculated feature vectors are 

determined by varying the motion parameters and combining them with the state vector to obtain 

a 3 x 3 transformation matrix T for each image which transforms a feature vector r from body 

coordinates to radar image plane coordinates (CJ;- = T^ry). In LLMotion, the transformation 

matrix is calculated only for a dynamic RLOS, corresponding to varying azimuth and elevation 

angle during the integration interval. The radar tracking of a moving target is the dynamic RLOS 

case. The rather lengthy sequence of rotations needed to calculate T are given in Appendix B. 

Conversely, in the angular velocity case the measurements are the angular velocity values 

used to rescale each image. Accordingly, co^. can be computed by taking the angular velocity 

used in generating the images nearest the reference time and modifying it according the 

estimated cross-range scaling error in the image (o)mt = Mt>ase/S)- The scaling measurements are 

taken using the interactive scaling option in XELIAS and give a different instantaneous angular 

velocity for each image. These measurements are used in LLMotion to calculate the 

corresponding objective function defined by (32 pp. A-3) 

1      / v 2 -   /   ,z . .z \ * 

^-IPse* 
i=i 

In this case, all the motion parameters are held constant except a and Ö for the precession vector 

and period. The vector ft), of which o)^ is the third component, is calculated from the motion 

parameters and the state vector data. The calculations are explained in Appendix B. Finally, for 

the sake of completeness, the root mean square (rms) equations for both cases can be 

summarized as (32 pp. A-2 - A-3) 
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n m. 

RMS= £11 (£»«-«* )+H-4 c«) 
1      i=l ]=1  X    Ci ' 

n 

KMS =    -> (<<-<) (4.10) 
n 

t=i 

Minimization of the cost functions can be found in one of two ways - by means of a 

calculated grid search or a dynamic hill climbing global/local search. In either case the user can 

vary any of the seven primary motion parameters and also specify the range for each motion 

parameter. Although, in reality the angles are bound, LLMotion does not impose these 

constraints on the user. Instead after a minimum is found, if it is out of normal range, it is 

converted back to the correct quadrant. The calculate grid function allows the analyst to 

investigate the entire solution space by calculating the cost function over a user defined motion 

parameter grid where the user specifies the range and step size for each motion parameter. The 

minimum within this grid are the possible solutions. After the entire objective function space is 

calculated, a simple search is done to find all the minima within the space. The search tests the 

nearest and next nearest neighbors of a given point to identify all local minima. These minima 

are then improved and the angles are converted to the correct quadrant if necessary. 

According to Reference (32), the implementation of a search algorithm in LLMotion was 

motivated by shortcomings in the gradient descent method. As discussed in Section 3.2.2.1 the 

guarded Gauss-Newton technique was also developed in response to the deficiencies intrinsic to 

gradient descent, namely, problems with convergence to local minima and ill-conditioning of the 

matrix inversion. Dynamic hill climbing is similar in nature to the guarded Gauss-Newton 

process used in the BSEKF. As described in References (32) and (50), the full DHC algorithm 

consists of local and global search components. The local search (inner loop) consists of a series 

165 



of tests with a step vector which is doubled if the cost function decreases and is halved 

otherwise. This feature allows the algorithm to "climb" out of poor locations and rapidly 

converge to a unimodal minima. The direction of the step vector is determined by the sum of the 

two previous successful moves, a feature with encourages movement towards a successful 

solution. The inner loop has converged if the step vector size is reduced below a user-defined 

threshold. The step size and direction adaptation in DHC are designed to mimic the features of 

gradient descent without the problems of local minima and matrix conditioning. Dynamic hill 

climbing is "designed to efficiently incorporate the random search capabilities of simulated 

annealing, optimum step size in gradient descent, and global search capability of genetic 

algorithms into a single algorithm." (50 p. 10) Similarly, the DHC global search (outer loop) 

procedure consists of gridding the search space into 2n points or initial guesses, where n is the 

number of search parameters. The process then uses each of the grid points as an initial guess to 

perform a coarse search, which uses fewer iterations and greater step size threshold than the fine 

grid analysis performed during a DHC local search. Essentially, the outer loop identifies the 

areas which will most likely contain favorable outcomes. Since several minima are usually 

found, the results are filtered to eliminate duplicate solutions before being used as the initial 

guesses for the fine search processing. The search is done repeatedly until there is no 

improvement in the solution. The output of the DHC local search is filtered in the same manner 

as the DHC global results to produce the final set of potential motion solutions (32 pp. H-l - H-2). 

An evaluation function in LLMotion allows the analyst to compare the different minima 

and select the best set of parameters to fit the given imagery data. The analyst can activate one of 

the minima and display both the imagery and model with that minimum defined as the active 

motion solution. Although in general the minimum with the smallest objective function value is 
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the best solution this is not always the case. In fact, for most passes, there are two possible 

solutions that give rise to equally small residuals. During a pass, the RLOS sweeps out a surface 

that is almost planar. For an object that is rotating about an axis fixed in space, there is a false 

model and rotation axis pair that are mirror images of the true model and axis in the plane of the 

RLOS. This false solution gives outline projections that are nearly identical to those given by the 

true solution and cannot be identified reliably on the basis of the residuals. Because the false 

model is a mirror image of the true model, any known asymmetry in the object can be used to 

differentiate between the two solutions. If there is no known asymmetry, the true solution might 

be selected on the basis of data from multiple passes, or from other information pertaining to the 

satellite motion or orientation. 

4.3     XELIAS/LAES: Multi-Pass Attitude Estimation and Prediction 

The Lincoln Attitude Estimation System serves two primary functions: 1) further refine 

the attitude estimate output from LLMotion and 2) propagate the spacecraft's attitude over time. 

The goal is to produce high precision attitude estimates by using information about the mass 

distribution of a satellite and by accurately modeling the external disturbance torques acting on 

the vehicle over time. One of the reasons for doing this is to assist in the analysis of motion 

solutions calculated from multiple passes of radar imagery data. Figure 4.4 is a simple 

conceptual plot showing how one might pick a motion solution for a particular pass using this 

tool. Generally speaking an LLMotion solution will only be valid over the duration of the pass; 

thus, LAES attempts to determine the rotation motion of the spacecraft using observations from 

several passes. 

167 



Multiple Motion Solutions for a 
Second Radar Imagery Pass 

e 
ir. 
s p 
e 

A- 
Propagated 

Motion Solution 

First Pass 
Motion Solution 

Time 

Figure 4.4 Correlating motion solutions from multiple passes of radar imagery data 

An important attribute of the new software system is that it allows the user to view propagated 

motion solutions over time. An overlay feature is used for viewing two or more propagated 

motion solutions right on top of one another. For example, turning off the effects of the 

gravitational torque on the motion of the satellite corresponds to the manner in which LLMotion 

would propagate the state parameters. With no gravitational torque the right ascension and 

declination of the angular momentum axis will remain constant. 

4.3.1    Measurement Sub-process 

The Lincoln Attitude Estimation System is intended to be an add-on program which can 

be easily integrated into the greater collection motion analysis tools currently in use within the 

Space Situational Awareness Group. In order to properly interface with legacy systems, LAES 

must be able to take in the eight symmetric motion parameters used in XELIAS/LLMotion and 

output a state vector of the same form. However, because the assumptions of zero disturbance 

torques and spacecraft symmetry are removed in the new program, the attitude of the spacecraft 

can no longer be characterized in terms of simple spin-precession motion. The filtered state 
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^paramii) 

estimate generated by the backward-smoothing extended Kaiman filter is, therefore, converted 

into a unique set of parameters for each image in the pass: 

t 
a 
S 
e 
0 (4.11) 

d>-\ 

Because the parameterization is only valid for each discrete observation time tt, x-initial 0O and 

z-initial xp0 are replaced by the instantaneous precession angle 0; and spin angle xpi, respectively. 

An understanding how x'param^y is computed, begins with an assessment of the output 

from LLMotion. The refined set of motion parameters that the program produced can be passed 

to ARIES for use in reimaging the pass. In addition to focusing and scaling the images in the 

cross-range direction, the improved estimate of the rotational motion enables the imaging 

interval to be recalculated (based on the change in aspect angle) and thus, more images to be 

produced. However, the motion solution may still contain a considerable amount of noise. As a 

result, additional measurements of the apparent "true" attitude of the spacecraft need to be added 

to the new baseline motion before the filtering sub-process in LAES can begin. To assist in 

processing the collected data, the Space Situational Awareness Group has developed a 

comprehensive set of modeling and advanced radar image analysis techniques which have again 

been implemented in the software program known as the X-Based Enhanced Lincoln Interactive 

Analysis System. In addition to image manipulation features, XELIAS provides a complete 

computer-aided tool for creating or modifying an existing geometric model of a satellite of 

interest (4). If a "wireframe" model of the target is available, then it can be displayed on top of 

the collected imagery for analysis. Measurements of a spacecraft's attitude, relative to the initial 
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guess, i.e., the baseline motion used to regenerate the images, are made through the manual 

alignment of the wireframe model with each of the underlying radar images. This image-model 

matching process is, as described in Section 3.1.3, performed in XELIAS through the translation, 

rotation, and scaling functions provided as part of the software (4). The figure below depicts how 

each discrete measurement is made by aligning a wireframe model (depicted on the right) with 

the underlying radar image (depicted on the left). The radar observations are composed of range 

and cross-range returns at different intensity levels, which are denoted using an artificial color 

band in which stronger signals appear as warmer colors. It should also be noted the images 

below depict a fictitious satellite and are caricatures of the true wireframe models and radar 

observations used in the measurement process (created in Microsoft PowerPoint). 

Figure 4.5 Alignment of a wireframe model (right) with an underlying radar image (left). The set of 
rotations that parameterize the attitude deviations between the baseline motion solution and 

perceived true attitude are recorded by XELIAS as a set of Euler angles. 
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The rotations (in degrees) that are needed to transform the wireframe model from the 

baseline set of body-fixed coordinates, denoted with a lowercase b subscript, into the corrected 

set of body-fixed coordinates, designated with a capital B subscript, are recorded by XELIAS as 

a set of Euler angles that can be easily recovered and transferred to Matlab for filtering (saved in 

the paramcdf file). This set of Euler angles represent the deviations in attitude from the baseline 

motion solution, and can be expressed as a series of rotations about the z-, y-, and x-axis and 

applied in that order. The rotations can be written as (6 p. 9): 

uß = Äx(0)Äy(0)Äz(VOuj, => uß = Ä123uö (4.12) 

where 0, 0, and 0 are the angles of rotation about the x-, y-, and z-axis respectively, u is an 

arbitrary column vector, and R123 = Raugn is the combined set of rotation matrices needed in the 

image-model matching process. Similarly, the sequence of rotations needed to transform a vector 

v in baseline body-fixed coordinates b to the inertial coordinate frame / is given by the equation 

(51 p. 1): 

v, = ÄoÄ*(0)Äy(0 - 7r/2)flz(0)vö => v7 = fi0i23vb (4.13) 

where 0 is the precession angle, 0 is the coning angle, 0 is the spin angle, given by the following 

set of equations (51 p. 1): 

0 = 0(At) + 0o (4.14) 

0 = 0O (4.15) 

0 = 0(At) + 0o (4-16) 

At = U - t0 (4.17) 

In the relationships expressed above, the spin rate 0 and precession rate 0 can found by simply 

inverting the two periods given in the baseline parameterization;   i?0i23 = Abase and is the 
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combined set of rotation matrices that makeup the nominal attitude; and R0, can be written as (51 

p. 2): 

Ä0 = 

cos(a) cos(5)    — cos(a) sin(5)      sin(a) 
sin(a) cos(5)     —sin(a) sin(5)     — cos(a) 

sin(5) cos(5) 0 
(4.18) 

where a is the right ascension and S is the declination of the precession vector. The normalized 

angular momentum vector for the reference motion solution can be obtained directly from R0: 

Lbase=R0(:,l) (4.19) 

and used in combination with the last column of the baseline rotation matrix to find the angular 

velocity (27 p. 18): 

<»base = <P^base + MbaseC .3) (4.20) 

Other useful relations involving the spin and precession rates (i/> and <p), the moment of inertia 

dt, coning angle 6, and angular momentum magnitude \L\, include (27 p. 18): 

xl} = ^fT^\L\cos(6) (4.21) 
*x*z 

•      \L\ 
<P = -r (4.22) 

Expressing the single moment of inertia parameter in terms of the spin-precession motion 

parameters can be accomplished by means of the following equation (27 p. 18): 

0 cos(ö) 

0cos(0) + {[) 
h = ~ 77T-T (4-23) 

The total set of rotations A and corresponding quaternion, which ultimately comprises the 

measurement vector y, can be calculated using: 

[W]B = RalignAlaseMl => [w]„ = A[w]j (4.24) 

Equation (4.24) expresses the transformation of a vector w from the inertial frame directly to the 

corrected body-fixed coordinate frame. Though the formulas needed to convert from a rotation 
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matrix A to an attitude quaternion q are relatively straightforward, they are rather lengthy and 

are, therefore, saved for Appendix A. The result of applying equations (A. 10) through (A. 13) to 

the combined rotation matrix A, is the measurement vector used in the filtering sub-process, 

which has the form: 

y = 
q4 

ml (4.25) 

4.3.2    Filtering Sub-Process 

The state vector used in the Lincoln Attitude Estimation System is of dimension 12 x 1 

(x = [q±, q2, q-i, oi\, w2, OJ3, pn,..., P/6]r) and is comprised of the vector components of the attitude 

quaternion (the fourth term - the redundant scalar component - has been removed due to the 

singularity that results in the state transition and covariance matrices), the attitude rate vector 

(angular velocity), and the six moment of inertia matrix parameters as presented in Mark 

Pasaki's formulation for the BSEKF. The moment of inertia parameters can be used to construct 

the moment of inertia tensor IB, given by (41 p. 890): 

IB = [v41(p/4)i42(p/5)i43(p/6)] 

Pn + Vh 
12 

0 

0 

0 

Pn + P% 
12 

0 

0 

0 

Pn + Pn 
12 

[AUpI6)AT
2(pI5)Al(pI4)] (4.26) 

In this formula, An(p) is the 3x3 direction cosine matrix for a rotation of p radians about the 

nth axis; pn, p,2, and p/3 are the lengths of the sides of an equivalent uniform rectangular box 

multiplied by the square root of its mass, and Pi4,Pi5, and pI6 are the three Euler angles that 

parameterize the rotation of this box with respect to spacecraft coordinates. 

The quaternion parameterization has been chosen for several practical reasons: 1) the 

prediction equations are treated linearly, 2) the representation is free from singularities, and 3) 
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the attitude matrix is algebraic in the quaternion components (thus eliminating the need for 

trigonometric functions). However, the use of the quaternion as the attitude state presents some 

difficulty in the application of the filter equations. This difficulty is due to the lack of 

independence of the four components, which are related by the constraint that the quaternion 

have unit norm. This restriction results in the singularity of the covariance matrix P of the 

quaternion state and is difficult to maintain numerically due to the accumulation of round-off 

error. The most straightforward way to circumvent this complication is to represent P by a matrix 

of smaller dimension (12 x 12 instead of the 13 x 13); the most obvious approach being to 

simply delete one of the quaternion components. The fourth element has been selected, although 

in principal any component could be removed. Since the quaternion is not unique the correct sign 

of the scalar element must be recorded and stored in the m-buffer for use in reconstructing the 

full 4x1 vector for certain critical algorithm operations (namely, propagating the state to the 

next observation time and computing the residual). The redundant fourth component can then be 

easily recovered using the relationship: q4 — (+l)^/l - q\ — q\ — q\, which simultaneously 

satisfies the constraint on the quaternion. However, it should be noted that the accumulation of 

numerical round-off error and the linearization approximation inherent in the update equations 

can distort the calculation of q4. Though this need not cause concern in the propagation of the 

quaternion, due to the fact that this operation is linear, care must be taken when calculating the 

attitude matrix or when an update is to be performed. As a result the constraint on the quaternion 

should be regularly enforced (typically after numerous operations using the full quaternion or 

before switching back to the minimal attitude representation) using equation (2.37) from Section 

2.1.4. 
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The filter also utilizes the Euler angle representation as a means of visualizing the attitude 

and residuals, and removing discontinuities which arise in the measurements and state estimates. 

The discontinuities manifest themselves as sign changes in the attitude quaternion, as depicted in 

Figure 4.6, and correspond to a set of Euler angles passing through ±n. Because the components 

of the quaternion regularly pass through zero, it is more difficult to determine the proper sign 

that each should have, than it is to establish the appropriate Euler angle. If uncorrected, these 

artificial jumps in the data can lead to wildly inaccurate residuals, which in turn disrupt the cost 

function. 
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Figure 4.6 Discontinuities in the quaternion and equivalent Euler angle measurements 

The procedure for removing discontinuities in the data is as follows: 

1. Convert the attitude quaternion to a set of 3-1-3 Euler angles using the equation (A. 7) 

2. Compare and modify the current Euler angle estimate based on the previous value 

f4>k-i ~ 0k <Pk = <Pk + [round I   k x  —-j * 2n\ 

9k — ®k + I found ( J * 2TT J 

ipk = 'tPk + [round I   fc~^ —-J * 2nj 

(4.27) 

(4.28) 

(4.29) 
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3.   Convert the Euler angles back into an attitude quaternion using equation (A. 4) 

Reasonable initial values for each of the state components can then be obtained in the 

following manner. As was mentioned in Section 3.2.5.1, the preliminary estimate for attitude 

quaternion is simply the first three elements of the initial measurement vector (y0). The angular 

velocity vector, leverages the work done to remove the discontinuities, by plotting the Euler 

angles about each axis over time and performing a linear least squares fit to the first n 

observations. To determine the angular rates, the transformation into a body-referenced angular 

velocity is done using the equation for a 3-1-3 Euler angle sequence (2 p. 256): 

(Oi 

(02 = 
.0*3. B 

0     cos(i/>)     sin(0) sin(j/>) 
0 — sin(i/0    sin(0) cos(i/0 
1 0 cos(ö) 

(4.30) 

L0J 

An alternative method would be to use the scale factor s, measured in the image-model matching 

process, and saved by XELIAS in the paramcdf file, to correct the baseline angular velocity 

terms given by equation (4.20). The process and equation needed to do so are given in Appendix 

B.The wireframe model used in making the attitude measurements is also used in computing an 

initial estimate for the inertia tensor of the satellite, by first decomposing the model into a set of 

matrices consisting of the vertex coordinates and the order in which they should be connected to 

create planar faces. This information can be obtained from the iges file used by XELIAS, which 

contains a description of the three-dimensional structure of the satellite for computer graphics 

rendering and software manipulation. The polyhedral mass properties algorithm described in 

Section 2.3.4.2 is then used to compute the mass properties for a solid, simple polyhedron of 

constant mass density. Finally, the initial guesses for the moment of inertia parameters are 

calculated through singular value decomposition and back solving for the components which 

correspond to the inertia matrix generated using the wireframe model. 
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It is important to note that the uncertainties inherent in using a purely geometric model of 

the spacecraft are compensated for by augmenting the state to include the six parameters that 

determine the moment of inertia matrix. Estimating the inertia matrix parameters is done to 

refine the Euler dynamics model and thus improve the estimates of the attitude and rates. The 

overall scaling of the inertia matrix is unobservable, but it does not need to be estimated because 

the scaling does not affect the system's rotational motion (41 p. 890). What matters is the relative 

ratio between each of the elements of the moment of inertia. This is accounted for by assigning a 

very small priory variance to one the inertia matrix magnitude parameters. This acts as a soft 

constraint on the scaling. 

This implementation of the BSEKF also incorporates the effects due to the gravity- 

gradient, magnetic field, aerodynamic, and solar radiation torques. The equations and definition 

of terms that were uses are described in Section 2.3.4.3. The input values needed to execute these 

models were obtained from reports generated using Satellite Tool Kit (STK), the MSISE-2000 

atmospheric model, the International Geomagnetic Reference Field (IGRF), and the online 

ephemeris computation service provided by the Jet Propulsion Laboratory's HORIZONS 

Database (23) (52) (53) (54) (55). Since the relative importance of each environmental torque is a 

function of the spacecraft's size, geometry, mass, mass distribution, and altitude, each model 

occupies a separate module that can be turned on or off depending on the unique characteristics 

of each spacecraft being analyzed. Additionally, the modular design enables the effects of each 

torque on the overall motion solution to be systematically tested. The figure below depicts the 

list of input files used by each torque model and their source. 
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Figure 4.7 Input files needed in the backward-smoothing extended Kaiman filter, inertia tensor 
model, and various torque models 

The dynamics function ^(x^w^) for this system uses the kinematics equation for the 

attitude quaternion (41 p. 890) 

q = 2 

0 co3 —co2 <Wi 
—oo3 0 <Ui o)2 

(o2 — Oiy         0 Ü)3 

—ü)t —0)2 —0)3 0 

<? (4.31) 

together with Euler's equation for the attitude dynamics (41 p. 890) 

6) = IB^-VB X (JBOB) +NB+ A(q)\Vi\ (4.32) 

to propagate the state from sample time tt to sample time ti+1. The term NB on the right-hand 

side of equation (4.32) is the combined environmental torque vector in spacecraft coordinates. 
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The expression involving Wj implies that the process noise vector is a 3 x 1 disturbance torque 

that is measured relative to inertial coordinates, and is constant during the sample interval. 

Numerically integrating the analytic equations of motion and the partial derivatives for the state 

and process noise vectors produces the attitude quaternion (elements 1 - 4 of f;) and angular 

velocity (elements 5 - 7 of fj) vectors at time ti+1, and linearized dynamics matrices, <Pt — 

dlil öx; and Tt = dft/ dwt. The remaining six elements of fj characterize the dynamics of the 

inertia matrix parameters. Since these parameters are modeled as being constants, (ft ); = (xt )t 

for / = 7, ...,12. Because the state vector xi+1 must be of dimension 12 x 1, the fourth term of 

the discrete-time dynamics function output vector ft is removed after noting the sign. Similarly, 

the fourth row and column of the state and process noise transition matrices <J>j and Tj are deleted 

so that they are both 12 x 12. The measurement function fy(Xi) represents a conversion from the 

reduced attitude representation to the full quaternion and takes the following simple form: 

hi(xt) = 

*1 - 

*2 

*3 

\l-xl- 2          2 
" x2       X3 

<7i 

<?2 

93 
q4. 

(4.33) 

Taking the partial derivatives of the measurement function with respect to the quaternion 

components of the state vector results in the 4 x 12 linearized measurement matrix 

J-3X3       03X9 

0lX3     01X9 

(4.34) 

Because the constraint of the quaternion must be preserved in order to be a true 

representation of the attitude of the spacecraft, care must be taken when operating on state 

vector, specifically, adding or subtracting values from the quaternion components. Accordingly, 

the following equations in the backward-smoothing extended Kaiman filter have been amended 
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to ensure that changes being applied to the quaternion components are themselves incremental 

rotations 

• From BSEKF step 4: 

xfc-m = xfc-m + Rxx(fc-m)Azx(fc-m) (4.35) 

• From BSEKF step 12: 

AZX(0 = Rxx(fc-m)(Xfe-m - xfc-m) (4.36) 

• From BSEKF step 20: 

Xfc-m = Xk-m + yAXfc-m (4-37) 

In equations (4.35) - (4.37), + and - operators are, correspondingly, replaced with the 

composition rule, given by equation (2.47), and difference rule, given by equation (2.48), from 

Section 2.1.4. It should be noted that the full 4x1 vector q must be reconstructed in order to 

implement the procedure above, and that these changes only apply to the first three components 

of the state vector, i.e., those related to the attitude quaternion. 

Similarly, the quaternion error in this representation can also be expressed not as the 

arithmetic difference between the measured and the estimated quaternion, but as the quaternion 

which must be composed with the estimated quaternion in order to obtain the true attitude. Since 

this incremental quaternion corresponds almost certainly to a small rotation, the fourth 

component will be close to unity and, hence, all the attitude information of interest is contained 

in the three vector components. Therefore, the twelve part state vector also provides a non- 

redundant representation of the state error. The error quaternion is defined as (56 p. 424) 

H+l = «meas^alc = ^+1 [^+1 W+l)   '] for i = fc - m, ..., fc - 1 (4.38) 
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and can also be expressed in matrix form using equation (2.48). Consequently, equation (4.38) 

can be used in place of the measurement error vector Ay;+1 and within the cost function, given by 

equation (3.101) from BSEKF step 11. 

In addition to the modifications and added functions detailed in the section thus far, the 

following post processing operations are needed to convert the final state estimates into a set of 

motion parameters x'param(-Q that are consistent with what is used by the existing Group 93 

software systems. Picking up where Section 3.2.5.1 left off, insert the subsequent steps: 

25. Once the backward-smoothing extended Kaiman filter has processed the last observation 

in the pass, that is, k — n and all the termination criteria have been satisfied, propagate the 

final state estimate xfe to all the times of interest. Again, propagation of the state vector is 

accomplished by numerical integrating equations (4.31) and (4.32), as described in 

Section 2.3.4.1. In practice this means using the Matlab function ode45 to backwards 

propagate xfe to each discrete-time observation in the pass. 

26. Calculate and plot the residuals between the measured attitude y and final, i.e., filtered, 

state estimates h(x), using equations (4.38) and (3.99). The state error covariance over 

time should also be plotted for the quaternion, angular velocity, and inertia components. 

As will be discussed in the results section, these are the primary quantitative measures of 

accuracy used in assessing filter performance and a given motion solution. 

27. Compute the attitude rotation matrix At and inertia tensor lB using equations (A. 5) and 

(4.26) respectively. Determine the angular momentum vector in spacecraft coordinates at 

each observation time in the pass using Euler's formula: (Lj)B = IB{pi{)B. Using the 

attitude matrices, transform the angular momentum and angular velocity vectors into the 

ECI coordinate frame by means of the following simple formulas: 

181 



(<ut)7 = AJMB and (!,()/ = Aj(.Lth (4-39) 

28. Calculate the right ascension, declination, and coning angle using the angular momentum 

vector L and spin axis of the spacecraft zB — [0    0    1]T. 

cci = atan2 

Si = atan2 

«•-""^w.-.. 

(4.40) 

(4.41) 

(4.42) 

29. The transformation from inertial coordinates to the spin/precession coordinate frame is 

computed using the right ascension and declination angles: 

R23 = Ry(n/2 - SdRzfrd = 
sin(5j)    0    — cos(5j) 

0 10 
cos(5j)    0      sin(5j) 

cos(ctj)      sin(aj)    0 
- sin(aj)    cos(ai)    0 

0 0 1 

sin(5j) cos(ai)    sin(5j) sin(ai)    — cos(5j) 
— sin(aj) cos(«j) 0 

cos(5i) cos(ai)    cos(5i) sin(aj)      sin(öj) 
(4.43) 

The rotation matrix which takes a vector from body coordinates directly into the 

spin/precession system, denoted by the subscript SP, is given by 

[V]SP = Ä23^[[v]ß => [V]SP = KaseWs (4-44) 

30. Once the new baseline rotation matrices R'base have been converted into n set of 3-1-3 

Euler angles using equation (A. 9), extract the spin and precession angles (xp and 0). If 

the angles are greater than zero, then: 

xPi^xPi-n (4.45) 

and 

cpi = (pt- 
n 

(4.46) 
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However, if the angles are less than zero, then 2TT needs to be added to equations (4.45) 

and (4.46). One should also ensure that the angle 6 obtained from the conversion to Euler 

angles is equivalent to the coning angle found in equation (4.42). 

31. Computation of the angular rates is accomplished using equation (A. 19), after first 

transforming the angular velocity vector from body coordinates to the spin/precession 

coordinate frame my means of the following equation: 

(ft>t)sP = R'baseMB (4-47) 

Inverting the precession rates 0; and spin rates \pi yields the corresponding precession 

and spin period parameters. 

32. Once the new motion parameters have all been converted into the proper units (degrees 

and seconds) x'param^ is ready to be transferred to Interactive Motion for qualitative 

analysis. 

33. If the estimates are deemed acceptable (i.e., quantitative and qualitative measures of 

accuracy suggest that the true rotational motion of the vehicle has been properly 

determined) then the final state vector can be propagated forwards in time to the first 

observation in next pass for further analysis. 

For more specific information on how the filter has been implemented, please refer to the Matlab 

source code provided in Appendix D. 
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5       Results 

The aim of this chapter is to presents the results of a truth-model simulation and set of 

real-life test cases which have been used to assess the performance of the backward-smoothing 

extended Kaiman filter. Given a lack of real-world truth data for the non-cooperative attitude 

estimation problem, it has become necessary to generate attitude measurements using the 

algorithm's own dynamics equations and torque models. In addition to being a vital tool for 

properly tuning the filter, the simulated test cases are intended to demonstrate the basic 

functionality and overall operability of the algorithm. The actual test cases are then meant to 

investigate the BSEKF's accuracy and convergence reliability under a wide variety of very 

challenging circumstances. The results presented in Section 5.3 are divided into short- and long- 

term test cases, depending on whether the attitude estimation and/or prediction was made using 

observations from a single pass or multiple discrete passes separated by an extended period of 

time (t > 90 minutes). The results show that the BSEKF is able to 1) accurately and quickly 

converge on a motion solution for individual data passes, 2) overcome large initial errors, 3) 

filter over long time gaps separating sequential passes, and 4) better predict the attitude of 

spacecraft than existing motion analysis software. 

Throughout the chapter, observations are plotted with respect to a sequential numbering 

system rather than the specific time at which some event occurred or the elapsed time from some 

reference event. This was done for the sake of consistency, simplicity, and space. Figure 5.1 

shows an example set of attitude measurements plotted against time on the right and by discrete 

observation number on the left. The false discontinuities seen in the left-hand graphs are a direct 

result of equally spacing the data points and become more pronounced as the time between 

consecutive values becomes larger. However, when working with dataset from multiple passes 
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plotting the observations over time results in an enormous blank space at the center of the graph. 

This gap in the data corresponds to the long time span in between the two passes and effectively 

pushes all the relevant information towards the edges of the graph, making it very difficult to 

read. 
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Figure 5.1 Example plot of the quaternion (top) and Euler angle (bottom) measurements referenced 
by observation number (left) and time (right) 

It should also be noted that even though the unit-quaternion is used extensively 

throughout the BSEKF, for the purposes of visualizing and evaluating results, the Euler angle 

representation  it the better  choice,  since  it is  generally more  intuitive  and conceptually 
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meaningful than the quaternion. While both types of plots are provided for side-by-side 

comparison, the analysis in Section 5.3 typically focuses on and makes reference to the Euler 

angle version a given set of figures. Ultimately, it is much easier to speak in terms of degrees, as 

opposed to radians or the unitless values of the unit-quaternion. Additionally, while Section 4.3.2 

stressed the importance of the error quaternion in determining the accuracy of an attitude 

estimate, plots of this particular performance measure are only presented in the real-life tests 

cases. Accordingly, the straight residuals between measured and calculated values provide the 

primary means by which to depict and assess the filter's functionality. Finally, in the context of 

this estimation problem, a measure of total attitude error is obtained by calculating the magnitude 

of a vector containing all the component errors (residual values) in a given attitude estimate. 

5.1     Spacecraft Attitude Estimation Problem - Actual Test Case 

The performance of the Lincoln Attitude Estimation System has been assessed using 

several real-world test cases, which utilize observations of an actual inactive satellite. The raw 

radar returns were collected using the Haystack Auxiliary (HAX) wideband imaging radar on 24 

September 2003 and archived/stored in a location accessible from the data handling menu of 

XELIAS. The spacecraft of interest is at an altitude of 1,650 km and is in a slightly elliptical 

orbit, with an eccentricity of 0.0195 and inclination of 63.45 deg. The satellite and datasets 

selected for analysis were chosen for a number of reasons, to include: 

1. The spacecraft is sufficiently large to give good detail to the signature. 

2. The spacecraft has a number of distinguishing features which produce strong radar 

returns and aid in uniquely determining the orientation of the vehicle during the image- 

model matching process. In general, solar panels, booms, trusses, antennas, and other 

structures which tend to protrude from the main body, and break the symmetry of the 
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spacecraft, make the measurement process much easier. However, these same 

appendages and irregular features tend to complicate the dynamics of the system, 

especially when it comes to estimating the mass distribution of the spacecraft and trying 

to account for the effects of environmental torques acting on the body. 

3. A detailed wireframe model was available for the satellite. Creating new computer 

graphics models in XELIAS can be a rather challenging and time consuming task, 

depending on the complexity of the target being analyzed. 

4. According to the XELIAS data archive, the spacecraft became unstable in August of 

2003. 

5. Three consecutive passes of imaging data were available in the archive for the same day, 

with a two hour gap between the first and second pass and a four hour gap between the 

second and third pass. Since the orbital period is roughly two hours, the three datasets are 

not from consecutive revolutions, though data was collected every time the satellite was 

in view of the ground sensor. 

6. The observation periods for the three datasets are all reasonably long. The first and third 

passes are both approximately 22 minutes in length, while the second is roughly half that, 

at about 12 minutes. 

The datasets used in this thesis include 64 discrete-time images for the first pass and 96 

images for the second pass. While this may seem illogical/counter intuitive given that the first 

pass is almost twice as long as the second, it is important to remember that the number of images 

generated by ARIES is more a function of the change in aspect angle of the satellite relative to 

the radar line of sight and amount of overlap between independent images. It should also be 
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noted that, due to time constraints, the third pass has not been included in the current round of 

testing, and will, therefore, be presented as future work item in the next chapter. 

As in the previous chapter, the baseline solution used to produce the images assumes 

torque-free motion of a symmetric rigid body and describes rotational motion in terms of the 

eight parameters listed in Table 5-1. It is important to note that in the absence of perturbations 

the values for the second pass are the same as the first, with the exception of the angles 0O and 

xp0, which correspond to the center time of the first image in the dataset. 

Table 5-1 XELIAS/LLMotion Spin/Precession Motion Parameters 

Variable Description Symbol Value for Pass #1 Value for Pass #2 
Reference Time to 43450 51564 
Right Ascension a 23.503 23.503 

Declination S -2.842 -2.842 
Coning Angle 9 49.572 49.572 

X-Initial 00 -76.242 32.5635 
Z-Initial ^0 49.556 36.5508 

Spin Period tf-i 1501.2959 1501.2959 
Precession Period 0-1 1396.78 1396.78 

These parameters can be used to calculate and plot the angular momentum, angular velocity, and 

spin axis at each discrete observation time. Doing so yields the following plots (Figure 5.2) for 

the nominal motion of the spacecraft in both the inertial frame and body-fixed coordinate frames, 

for the first pass. 
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TORQUE-FREE MOTION OF A SYMMETRIC RIGID BODY IN THE INERTIAL FRAME TORQUE-FREE MOTION OF A SYMMETRIC RIGID BODY IN THE BODY-FIXED FRAME 
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Y-AXIS 

- SPIN VECTOR (2) 
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- ANGULAR MOMENTUM VECTOR (L) 

Figure 5.2 The angular momentum vector (red), angular velocity vector (green) and spin vector 
(blue) over time for the baseline motion solution which includes 64 discrete-time observations made 

over a 22.3 minute pass. 

This result is consistent with the geometrical construction for the axial symmetric case, provided 

in Section 2.3.3, which pictures the rotational motion of a rigid body in terms of space and body 

cones rolling on top of one another. If the angular momentum vector L, in red, and spin vector z, 

in blue, represent the central axes of the space and body cones respectively, then the angular 

velocity vector <w, depicted in green, is the line of contact between the two cones. 

The alignment of the wireframe model with each radar image produces a set of deviations 

or correction measurements, shown in Figure 5.3, which can be converted from sets of 1-2-3 

Euler angles into rotation matrices via equation (A. 1). 
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Figure 5.3 Euler angle deviations for the first (left) and second (right) pass recorded in XELIAS 
from the image-model matching process 

As discussed in Section 4.3.1, the resulting alignment matrices can then be used to refine the 

baseline motion solution and generate the final set of quaternion observations. Unlike the first 

pass, the second has not been preprocessed using LLMotion. Therefore, the right-hand plot of 

Figure 5.3, is indicative of the large systematic errors which result when propagating an 

LLMotion solution over multiple passes. The final set of quaternion measurements and their 

Euler angle equivalents parameterize the attitude of the spacecraft relative to the Earth Centered 

Inertial (ECI) coordinate frame (i.e., the rotations needed to transform a vector from inertial to 

body coordinates), and are depicted in Figure 5.4 (for the first pass) and Figure 5.5 (for the 

second pass). 

5.1.1    Filter Tuning and Initialization 

The initial estimate for the quaternion components of the state vector are pulled directly 

from the vector components of first measurement y0: 

1st Pass: w, = 
0.37659353627381 
0.11532246529129 
0.77140682768356 

(5.1) 
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2nd Pass: W, = 
-0.14238997655619 

0.92632927580853 
0.25508611913828J 

(5.2) 

After the transfer has been made, the initial measurement vector y0 is removed from the 

observation cache and the total number of observations to be processed by the filter is reset to 63 

for the first pass and 95 for the second. 
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Figure 5.4 Baseline motion solution plus correction measurements for the first pass expressed in 
terms of the unit-quaternion (left) and as set of Euler angles (right) 
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Figure 5.5 Baseline motion solution plus correction measurements for the second pass expressed in 
terms of the unit-quaternion (left) and as set of Euler angles (right) 

Initial guesses  for the  angular velocity components  of the  state vector xl5  the  first six 

components of the state error covariance matrix Pl5 and measurement noise covariance matrix R 

are calculated using the built-in Matlab functions poly fit and polyval (17). Polyfit finds the 

coefficients of a polynomial p(x) of degree n that fits a specified number of data points in a least 

squares sense. The result is a row vector of length n + 1 containing the polynomial coefficients in 

descending powers (17) 

p(x) = pxx
n + p2x

1l~1 + — + pnx + -pn_r (5.3) 

Conversely, the polyval function returns the value of a polynomial of degree n evaluated at each 

element x. Fitting a line (n = 1) to the first ten observations of 0, 9, and ip, produces an initial 

estimate for the rate of change of each Euler angle (the slopes correspond to the angular rates: 

<p, 8, and i/>), which can then be converted into an angular velocity vector using equation (A. 17). 

The initial estimates for the two datasets are: 
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Pass#l: 

Pass #2: 

(Xo))l = 

(X Ji = 

(01 " 0.00144322242047" 
0)2 — 0.00293828535360 
C03. -0.00702823296347. 

COi " 0.00442350045872" 
C02 — 0.00021493637615 

.Oi-i. -0.00670942286442. 

(5.4) 

(5.5) 

A similar procedure is also used to calculate values for the error covariance matrices. In 

the case of Pl5 1st degree polynomials must also be computed for the first 10 observations of the 

vector components of the attitude quaternion. The estimates are then found by calculating the 

variance between the points on the line and the actual values at each discrete-time of interest. 

The component with the largest variance value is then rounded to the nearest power of 10 and 

used for all the elements on the diagonal. The state error covariance matrix for the actual test 

case, is given by: 

(P^)   = diag(0.0232,0.0151,0.0348,1.38 x 10~3,2.45 x 10~3,2.96 x 10~3) 

= diag(0.035,0.035,0.035,0.003,0.003,0.003) (5.6) 

Computation of the measurement noise is automated in a similar manner, the only difference 

being, that a 10th degree polynomial (n = 10) is fitted to all four components of the quaternion, 

for all 64 measurements. The variance in the residuals between the actual values and those 

calculated with the polynomial equation result in the following measurement noise covariance 

matrix: 

Ri = diag(0.0096,0.0074,0.0147,0.0122) = 14X4 * (1.5 x 10~2) (5.7) 

Again the final matrix used in the filter sets all the diagonal components to that of the largest 

variance value rounded to the nearest power of 10. The filter is further tuned by selecting a 

process noise covariance matrix, which for all the test cases presented in this section is given by: 

'1 x 10~10N 

Qi — 1-3x3 * At; 
(5.8) 

194 



where Att - ti+1 — tt and l3x3 is a 3 x 3 identity matrix. This process noise intensity is 

equivalent to what was used in Reference (41) and is approximately "3 to 10 times larger than 

the low-frequency limit of the power spectral density of the combined drag and solar/albedo- 

radiation pressure disturbance torques." 

The computer graphics model in XELIAS is then transferred to Matlab for use in the in 

generating an approximation for the mass distribution of the target satellite. The inertia tensor for 

the satellite of interest, assuming uniform density within the bounds of the geometric model, is 

given by: 

/« = 
6.0075       0.4543      -0.2232 
0.4543       6.0257     -0.0464 

-0.2232    -0.0464     2.0552 . 
kg- m2 (5.9) 

Again, since the mass of the spacecraft is unobservable, the overall scaling of the inertia tensor is 

arbitrary. Performing singular value decomposition on equation (5.9) (this operation can be 

accomplished in Matlab by means of the svd function) and solving for the moment of inertia 

parameters (pn, ...,P/6) 
m equation (4.26) yields: 

(*PI\ = 

rP/ii r   2.6040-1 
P/2 4.2106 
P/3 7.7466 
P/4 0.0053 
Pis -0.0557 

Lp/6-l L   2.3518J 

(5.10) 

where the first three values have units of kg0,5 • m and the last three are in rad. The block of P1 

that models the initial uncertainty in pn, p12, and p/3 is (PP/)   = diag(0.6,0.6,0.00015) kg- m2. 

These values indicate a 10% - 30% 3 one-sigma uncertainty in the initial estimates of p71 and p/2 

and a 0.5% initial uncertainty in pI3. The latter uncertainty enforces a soft constraint on the 

unobservable scaling of the spacecraft inertias. The block of P1 that corresponds to p/4, p/5, and 

The equation used for calculating the percentage of one-sigma uncertainty in the initial moments of inertia is given 
by: % = TJP^JVI- The 30% value corresponds to p71and the 10% uncertainty corresponds to pI2- 
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p/6 is set to 73x3 * (8 x 10-2) rad, which reflects the initial uncertainty in the spacecraft's 

principal axis directions. 

The variables contained with the subsequent table are required to implement the 

backward-smoothing extended Kaiman filter as detailed in Section 3.2.5.1 and have a significant 

impact both the accuracy and execution time of the algorithm. In the case of the BSEKF, 

improved filter accuracy can be achieved by: 1) increasing mtarget and/or jmax and 2) decreasing 

the values associated with smax, yE, and/or J£. Greater precision obviously comes at the expense 

of increased computational burden, in terms of both longer run times and greater memory usage. 

Table 5-2 Critical Backward-Smoothing Extended Kaiman Filter Variables 

Variable Description Symbol Value for Pass #1 Value for Pass #2 
Total Number of Observations 
to be Processed by the BSEKF 

n 63 95 

Target Number of Stages Used 
in the Forward Filter and 

Backward Smoother 
^•target 40 50 

Maximum Number of Gauss- 
Newton Iterations Jmax 15 15 

Maximum Numerical 
Integration Step Size Smax 0.5 0.5 

Threshold Value for the 
Guarding Procedure in Gauss- 

Newton Minimization 
YE 1 X 10-10 1 X 10-10 

Cutoff Value for the Cost 
Function Minimization Je 1 x 10-10 1 X 10-10 

It is important to note that the BSEKF has been shown to perform better than other filters 

(specifically the UKF and EKF) only if the number of explicitly optimized sample intervals 

mtarget is sufficiently large. Per the recommendations made in Reference (41), the mtarget value 

was chosen to allow the filter to converge nearly to steady-state when k = mtarget. 

5.2     Spacecraft Attitude Estimation Problem - Simulated Test Case 

A simplified test case, consisting of a new set of quaternion measurements over the same 

time span as the actual observations, has also been produced using the filter's own dynamics 
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equations and propagator. This truth-model simulation is used to create an artificial situation in 

which the true orientation, rates, and mass distribution of the spacecraft are known precisely, in 

order to assess the filter's convergence accuracy and reliability. The simulated dataset was 

generated using the same initial estimates for the attitude, angular velocity, and moment of 

inertia parameters as the first pass of the actual test case. The initial state vector, given in the 

second column of Table 5-3, was propagated to the same observation times using the kinematics 

equation (4.31) and dynamics equation (4.32) in conjunction with the Matlab function called 

ode45, which solves initial value problems for their ordinary differential equations. A random 

number generator was then used to add error to the new set of observations. This "measurement 

noise" is normally distributed with zero mean and standard deviation of three ~ N(0,3) for the 

first and last 10 observations in the pass, and N(0,2) for the other 44 observations. The increased 

noise added to the ends of the pass is meant to reflect the challenges associated with aligning the 

wireframe model to images whose resolution is somewhat degraded the further it is from the 

center of the pass. The sources of this error are discussed in greater detail in the context of the 

actual test case described in Section 5.3.2. The 64 simulated observations with the addition of 

artificial measurement error are shown in Figures 5.6 and 5.7. 
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Figure 5.6 True simulated attitude quaternion measurements (left) and simulated quaternion with 
the addition of random noise (right) 
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Figure 5.7 True simulated Euler angle measurements (left) and simulated Euler angles with the 
addition of random noise (right) 
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5.2.1    Filter Tuning and Initialization 

In order to fully test the ability of the backward-smoothing extended Kaiman filter to 

rapidly recover from poor initial estimates, the algorithm was given an extremely inaccurate 

preliminary state vector. Though the particular values used for the first six components of x1 

were chosen arbitrarily, they do represent a physically real attitude quaternion and angular 

velocity vector. Using equation (A. 7) one is able to determine that the initial attitude, in terms of 

3-1-3 Euler angles, is wrong by approximately 35 degrees about the first axis of rotation (0) and 

95 degrees about the second and third (0 and xp). The error in the angular velocity terms varies 

widely, ranging from as little as 4% (which is the case for co3) to as much as 88% (for o^). 

Finally, the inertia matrix has also been changed to a fully-symmetric model in which all the 

principal moments are equal: 

h = [l3x3 * (10)] kg • m2 (5.11) 

Consequently, the filter starts out with an estimate for the moment of inertia matrix in which the 

principal inertia ratios are wrong by as much as 65% and the principal axes directions are 

incorrect by between 35 and 45 degrees. The error in any given element is no more than 34% of 

the maximum principal inertia. This level of inaccuracy is meant to test the robustness of the 

filter and reflects a level of uncertainty which is far greater than what is likely to be encountered 

in the real non-cooperative attitude estimation problem. The subsequent table (Table 5-3) and set 

of figures (Figures 5.8 and 5.9) present the poor initial estimates, employed in the simulation, 

compared against the true state vector used to generate the observations. 
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Table 5-3 Initial State Vectors for the Simulated Test Case 

State Vector Component True State Vector Value Initial Estimate Value 
<7i 0.37659353627381 0.140134360644793 
Q2 0.11532246529129 0.941434088194620 

<73 0.77140682768356 0.145834358774792 
6>1 0.00144322242047 0.002705006174102 
Oi2 0.00293828535360 -0.002116872057220 
<u, -0.00702823296347 -0.007055041225524 

P/i 2.60400465586434 7.7597 
P12 4.21063662937094 7.7597 
Pr? 7.74726396398345 7.7597 
Pl4 0.00529770721622 0 

P/5 -0.05562767690357 0 

P/6 2.35274994257264 0 

To get a better sense of just how bad the initial state vector is, the attitude was propagated 

forwards to the same discrete observation times of interest. The predicted attitude is shown in 

Figures 5.8 and 5.9, plotted against the true simulated measurements. 

TRUE SIMULATED QUATERNION MEASUREMENTS 

*t             *+   i                                        i* 

.*      *• :.•••.      t                                      ** : 

•            *•   ''!•.. •..••!'     j 

•                            •       •                 ** 

4                              ,"  i  *....•*  i • ql 
-       •      q2 

• q3 
• q4 

I            *"t                 I                  I                  I                  I 
0               10 20                30                40                50                60                7Ü 

DISCRETE-TIME OBSERVATION NUMBER 

INITIAL ESTIMATED QUATERNIONS FROM PROPAGATING THE STATE VECTOR FORWARDS IN TIM! 

•'•*•. 

• ••*•+*• 

* 
/ •'" 

• *'!. */ • 

'• !    '    N ,« 

t               : 

- f*.- r —-*• f-«"  

IV«    i   *• .if 
j    • •        |            •* t 

... 
1              1              1 

:.v,...;v •j' ; : 

** 

• q1     i 
• q2  j 

q3    i 
• q4   1 

10 20 30 40 50 00 
DISCRETE-TIME OBSERVATION NUMBER 

Figure 5.8 Comparison between the true simulated quaternion measurements (left) and the poor 
initial attitude quaternion propagated to the same discrete times (right) 

200 



TRUE SIMULATED EULER ANGLE MEASUREMENTS 

100 

0 

-100 

-200 

-300 

• 

:..-•*•"?";:«•':! •—•••..! 

...*••*!**" '''.'.:>"'• 

'•• 

I           "t* 

i             I 

'•   !      !      ! 

-500 

-BOO 

*;•• 

'''•-. 

• PHI (Z) 

• THETA (X) 

PSI(Z) 

'•• 
-7nn I III 

10 20 30 40 50 60 70 

DISCRETE-TIME OBSERVATION NUMBER 

INITIAL ESTIMATED EULER ANGLES FROM PROPAGATING 
THE STATE VECTOR FORWARDS IN TIME 

100 

0 

100 

200 

300 

400 

500 

• 

 i      | :::««•<:"•!••...   I      .•.- 

:              :'••. 

:                       ''!*•.        :             :             • 

I              i              i            *i             I              II 

I                   I       **?•        I 
600 • PHI (Z) 

• THETA [X) 

• PSI (Z) 

I                   i               **t* 

700 I I                    I                   I                   I                    I 
10 20 30 40 50 

DISCRETE-TIME OBSERVATION NUMBER 

60 70 

Figure 5.9 Comparison between the true simulated Euler angle measurements (left) and the poor 
initial attitude propagated to the same times of interest (right) 

The state and measurement noise covariance matrices were revised to reflect the 

increased amount of uncertainty in the initial attitude and angular velocity vectors. The 

measurement noise covariance was recomputed using the same procedure as described in the 

previous section, while the state error covariance matrix for the simulated dataset simply scales 

the values given in equation (5.4) by a factor of 10. The recalculated matrices are: 

(Pqo>)1 = diag(0.35,0.35,0.35,0.03,0.03,0.03) (5.12) 

and 

Rj = diag(0.0966, 0.0740, 0.0839,0.0222) = 14X4 * (9.7 X 10~2) (5.13) 

Similarly, the error covariance associated with pn, pI2, and p/3 was recalculate based on reflect a 

40% one-sigma uncertainty in the initial estimates of pn and p/2 and a 0.5% initial uncertainty in 

p/3. The initial uncertainty in the spacecraft's principal axis directions. The state error covariance 

for the moment of inertia parameters is given by: 
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(PP/)   = diag(10,10,0.00015,0.068,0.068,0.068) (5.14) 

Finally, in addition to using the same process noise covariance Q( as the actual datasets, the total 

number of explicit nonlinear smoothing samples has been set to 40, which is equivalent to the 

mtarget used in the first pass. 

5.3     Filtering Results 

The residuals that result from subtracting the estimated quaternion from the measured or 

simulated quaternion are the primary quantitative measures used in assessing filter performance. 

Though the residual is only one indicator of convergence, it is particularly sensitive to the 

accuracy of the attitude state over time. The filter has reached a steady state when the residuals 

over time no longer appear to fluctuate significantly and when the error covariance matrix is 

stable. As discussed in Section 3.2.3.1, divergence occurs when the residuals appear to get 

consistently larger over time, as the attitude estimate moves steadily away from the true state. 

The filter will consistently converge on a motion solution only after the appropriate balance 

between the state noise and measurement noise covariance matrices has been found. If the filter 

has been properly tuned, the residual plots can also be used to readily identify individual 

observations which have a particularly large error. Such results indicate a problem with the 

cross-range scaling or a misalignment of the computer graphics model with the underlying 

image. The analyst can either remeasure that particular image or omit that attitude observation 

altogether in future filtering operations. 

The causes of attitude uncertainty may be separated into the two categories of random 

and systematic errors. A random error is an indefmiteness of the result due to the finite precision 

of the test, or a measure of the fluctuations in the result after repeated experimentation. A 

systematic error on the other hand, is a reproducible inaccuracy introduced by faulty calibration 
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or technique. Systematic errors are biases in the measurements which lead to the situation where 

the mean of many separate observations differs significantly from the actual value of the 

measured attribute. All measurements are prone to systematic errors, often of several different 

types. Sources of systematic error may be imperfect calibration of measurement instruments, 

changes in the environment which interfere with the measurement process and sometimes 

imperfect methods of observation can be either zero error or percentage error. For example, the 

range values measured by radar will be systematically overestimated if the slight slowing down 

of the waves in air is not accounted for. 

5.3.1    Simulated Test Case Results 

For the simulated test case, the residuals provide a fairly clear cut picture of the filter's 

performance. The BSEKF is able to reduce the total attitude error in the estimate to less than 5 

degrees in the first 10 minutes, and settles in to a steady-state performance in less than 30 

minutes. Its steady-state peak per-axis attitude error is around 4 degrees and its peak total attitude 

error is approximately 10 degrees (see Figures 5.10 and 5.11). 
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Figure 5.10 Error in each component of the quaternion (left) and Euler angle (right) for the noisy 
simulated test case as each new observation is processed 
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Figure 5.11 Total attitude error in terms of the unit-quaternion (left) and Euler angle (right) 
representations for the simulated test case 

The diagonal terms of the state error covariance matrix, obtained after processing each 

observation in the pass, are plotted in Figures 5.12 and 5.13. The variance in the attitude and 

angular velocity error are both rapidly reduced from their initial values and quickly stabilize 

around 0.002 (radians)2 and 1.5 x 10-6 (radians/second)2, respectively. The variance in the 

moment of inertia parameters, on the other hand, is much more erratic and never appears to settle 

into a definitive steady state performance. Not surprisingly, this result indicates that, given a 

poor initial estimate of the inertia tensor, there are not enough attitude observations in a single 

pass to completely determine the mass distribution of the spacecraft (i.e., information saturation 

has not occurred). From Figure 5.13 one can also see that error covariance for pI6 does not begin 

to consistently reduce until after observation 35, which is about when the variance in the attitude 

error settles into a consistent performance. This suggests the filter has difficulty distinguishing 

between the first and second moments of inertia for rapidly spinning spacecraft; especially when 

there is only a 0.3% difference between the two values. Since the spacecraft is nearly symmetric, 
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the mass is fairly evenly distributed along the x- and y-axes. Once the uncertainty in the other 

state component has been sufficiently reduced, it may become easier for the filter to detect these 

subtle differences. 
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Figure 5.12 Covariance for the vector components of the attitude quaternion (left) and angular 
velocity (right) after processing each observation 
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Figure 5.13 Covariance for the moment of inertia parameters after processing each discrete-time 
observation. The uncertainty in the parameters associated with the lengths of the sides of a uniform 

rectangular box are given in the leftmost graph and those related to the 1-2-3 Euler angles are 
shown in the graph on the right. 
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The total attitude error after processing the final observation is about 2 degrees and the 

error covariance settles around 0.001, midway through the pass. Another measure of the 

accuracy and effectiveness of the algorithm can be obtained by propagating the final processed 

state vector backwards in time and comparing the resulting attitude estimate against both the 

noisy measurements and true simulated observations. 
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Figure 5.14 Visual comparison of the final predicted attitude quaternion against the noisy 
measurements for the simulated test case 
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Figure 5.15 Visual comparison of the final predicted attitude, in terms of the Euler angle 
representation, against the noisy measurements for the simulated test case 

From this qualitative evaluation, the backwards propagated state estimate seems to fit the data set 

very well. Of particular interest is level of precision which can be achieved for those estimates at 

observation times near the beginning of the pass. In order get a better feel for the accuracy of the 

final filtered state consider the residuals that result from subtracting each estimated attitude 

quaternion from the corresponding noisy measurement. From Figures 5.16 and 5.17, it appears 

that the BSEKF has been able to remove the random errors which were added to each of the 

simulated measurements; this is reflected in the fact that residuals do not follow any regular 

pattern, are centered on zero, and fall primarily within + 4 degrees of the mean. This however, is 

not the case for the residuals corresponding to the first and last 10 observation times. The total 

error at the beginning and end of the pass is as much 7 degrees, which is more than twice the 

amount of error present at any other point in the pass. These results therefore, accurately reflect 

the additional noise (N(0,3)) which was added to these boundary regions in order to more 
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closely simulate the conditions which would be experienced in the actual datasets. As will be 

explained in greater detail the next section, it is much more difficult to make accurate 

measurements of the attitude towards the ends of a given pass. 
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Figure 5.16 Error between the final predicted attitude and noisy measurements expressed in terms 
of the unit-quaternion (left) and Euler angles (right) 
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Figure 5.17 Total error in the final predicted attitude in terms of the unit-quaternion (left) and 
Euler angles (right) 
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In the actual test cases, the true motion of the spacecraft over time is unknown. The 

quality of an attitude prediction can only be assessed with respect to the noisy observations. For 

the simulation however, the state parameters at any given instant are known precisely, enabling 

the propagated quaternion to be compared against the true attitude. A side by side comparison of 

the true and predicted attitude is provided in Figures 5.18 and 5.19; neither plot reveals any 

noticeable discrepancies. 
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Figure 5.18 The true simulated attitude (left) versus predicted attitude quaternion (right) after 
processing all the observations in the pass 
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Figure 5.19 The true simulated attitude (left) versus predicted Euler angles (right) after processing 
all the observations in the pass 

Returning to more quantitative performance measures confirms that the BSEKF has been 

able to accurately determine the motion of this fictitious satellite. Even with the spikes in 

boundary observations, the total error in any given attitude estimate within the pass does not 

exceed 2.25 degrees. However, the set of residuals depicted in Figure 5.20 reveal that what 

appeared to be mostly random noise in Figure 5.16 is, in reality, also comprised of very small 

systematic errors. This suggests that further tuning may be needed, since under ideal conditions 

the noise should be Gaussian. It should also be noted that in the case of the quaternion residuals, 

the second greatest departure from the true attitude occurs in the last 5 observations (see Figure 

5.21). Because the measurements were made with the filter's own dynamics equations and 

torque models, the divergence of the attitude state towards the beginning of the pass, can be 

directly attributed to the remaining errors in the final state estimate. 
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Figure 5.20 Residuals between the final predicted state estimate and the true simulated 
observations 
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Figure 5.21 Total attitude error between the final predicted state estimates and the true simulated 
observations 

It is important to remember that the cost is only minimizes over those estimates contained 

within the m-buffer (cache), which in this case is 40. Consequently, as the smoothing window 

begins  to  "shift  along",  those  observations  which have  already been processed have  a 

diminishing effect on the current state estimate xfe.  In order to remain sensitive to new 
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observations, the BSEKF is allowing the influence of earlier data to fade over time. Because the 

filter does maintain a backlog of observations,  similar to that of a batch algorithm, the 

estimator's memory does not fade as quickly as other types of Kaiman filters. In the preceding 

figures, it is therefore, not surprising that as the state estimate begins to breakdown when 

propagated to observation times outside what is contained in the cache. Unfortunately, this sort 

of outcome does not bode well for being able to do long term attitude prediction. While the filter 

is able to rapidly recover from large initial errors and converges on the correct motion solution, 

the final estimate is still not known with enough accuracy to precisely fit all the observations in a 

short 22 minute pass. Unless the filter is able determine the motion parameters of the spacecraft 

more precisely,  it is highly unlikely that the attitude can be predicted with very much accuracy 

over multiple passes, spanning several hours, as any errors in the initial state will cause the 

attitude to diverge. 

The fractional error norm of the estimated inertia is given by the quantity 

||7g*tr(/B)/tr(/B)-/g|| 

ll/iill ^       } 

and provides a good metric of the accuracy with which the filter's moment of inertia matrix 

estimate IB approximates the true inertia matrix IB. The trace ratio in the expression is included 

to remove the unobservable overall scaling. The 41% initial moment of inertia estimation error 

converges to 1.6% by the end of the filtering process. This represents a 96.1% decrease in the 

inertia matrix modeling error. The ability of the filter to simultaneously recover from poor initial 

estimates and cut through measurement noise in the simulated dataset lends credibility to results 

obtained in the actual test case. Since the true attitude, angular velocity, and mass distribution of 

the target satellite are unknown in the real-life test case, the simulation is very useful in tuning 

the filter and evaluating its ability to refine estimates. 

212 



Figure 5.22 Fractional error norm for the estimated inertia matrix as each new observation is 
processed. 

5.3.1.1 Simulated Test Case - Long-Term Attitude Prediction 

In order to evaluate the ability of the final BSEKF state estimate to be used in predicting 

the attitude over the time gap separating two consecutive passes, a new set of truth measurements 

was generated by propagating the simulated state vector to the same observation times used in 

the second pass of the actual test case. A comparison of the true and estimated state at the last 

observation time for the first pass reveals that there are less than 2 degrees of total error in the 

attitude and 1.6% error in the moment of inertia estimate. The least accurate component is the 

sixth moment of inertia parameter corresponding to the z-axis rotation needed to orient a uniform 

rectangular box multiplied by the square root of its mass with respect to spacecraft coordinates. 

The amount of inaccuracy in pI6 is in agreement with the error covariance depicted in right hand 

graph of Figure 5.13, which indicates that this particular parameter is fairly difficult to determine 

from the attitude measurements. 
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Table 5-4 Final State Vectors for the Simulated Test Case 

State Value True State Vector Estimated State Vector Difference 
q^ 0.433359215122371 0.436244890157324 -0.00288567503495 
Q?. -0.074790520515558 -0.073988166134436 -0.00080235438112 

Qi 0.864399308793746 0.863566032869862 0.00083327592388 
u>1 0.002888628273754 0.002862109016238 0.00002651925752 
o)2 0.001400626259306 0.001300661040758 0.00009996521855 
0)3 -0.007039370441506 -0.007071061229068 0.00003169078756 

Pn 2.604004655864339 2.497433299943323 0.10657135592102 

Pl2 4.210636629370945 4.250976971438172 -0.04034034206723 
Pn 7.747263963983449 7.746025950913061 0.00123801307039 

VIA 0.005297707216223 0.016551166355644 -0.01125345913942 

PIS -0.055627676903572 -0.057455881580290 0.00182820467672 

Pie 2.352749942572640 -0.861133876734452 3.21388381930709 

Even though the state estimate has minimal errors, the long propagation time, over a gap of 1.88 

hours, amplifies even slight differences in certain attitude components. Figures 5.23 and 5.24 

show the predicted-versus-true attitude at each of the 95 discrete observation times in the second 

pass. 
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Figure 5.23 Side-by-side comparison of the predicted quaternion (left) and true attitude 
measurements (right) for the second pass 
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PREDICTED EULER ANGLES FROM PROPAGATING THE STATE VECTOR TO THE NEXT PASS TRUE SIMULATED EULER ANGLE MEASUREMENTS FOR THE SECOND PASS 
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Figure 5.24 Side-by-side comparison of the predicted Euler angles (left) and true attitude 
measurements (right) for the second pass 

From Figure 5.23, one is able to quickly discern that qx (red data points) and q3 (green data 

points) are very close to truth, while, qualitatively speaking, the sinusoidal curve created by 

plotting q2 over time appears to be the correct shape but offset by approximately 0.065. The 

nonlinear relationships that exist between different state components results in a very complex 

state space. It is therefore, rather interesting that the error in the predicted attitude would 

predominantly affect a single quaternion component, q2 (blue datapoints), and manifest itself as a 

fairly consistent underestimation of the true value. Since the fourth component of the quaternion 

is not independent, the deviation in q2 in turn produces an equal and opposite error in the values 

of q4 (i.e., the magenta data points appear to be shifted upwards by about - 0.065). Plotting the 

residuals reveals that the error in each of the quaternion components is in fact fairly constant, 

fluctuating by no more than 0.03. The Euler angles, on the other hand, vary by as much as 22 

degrees in the case of 9 and have a total error which ranges from as little as 10.6 degrees, to as 

much as 15.7 degrees. 

215 



ERROR IN EACH COMPONENT OF THE UNIT-QUATERNION EULER ANGLE ERROR ABOUT EACH AXIS OF ROTATION 
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Figure 5.25 Residuals for the attitude quaternion (left) and Euler angles (right) 
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Figure 5.26 Total error for the second pass attitude prediction 

These results indicate the even minor errors in the final estimated state vector can produce large 

differences in the attitude quaternion when propagated over extended periods of time. While this 

outcome is not overly surprising, it sets an important benchmark against which actual long-term 

attitude prediction results can be evaluated. It is unlikely that the error in the final state estimate 

of the actual test case will be less than what has been achieved by the filter in the truth-model 
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simulation. Consequently, one would expect to see even greater residuals for real-life attitude 

predictions. 

5.3.1.2 Simulated Test Case - Multi-Pass Attitude Estimation 

In this test case, the BSEKF has been given two consecutive pass of simulated 

measurements, in order evaluate the ability of the algorithm to filter over long time gaps in the 

data. The amount of time separating the two datasets is approximately 1.88 hours. The artificial 

measurement noise used in this scenario is assumed to be Gaussian, unbiased, and greater 

towards the ends of the pass. Thus, the random error is iV(0,2) for the first and last 10 

observations in the combined pass, N(0,1.5) for observations 11 to 20 and 140 to 149, and 

N(0,1) for the other 120 measurements in between. The 160 simulated observations with and 

without the addition of artificial measurement error are shown in Figure 5.27. 
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TRUE SIMULATED QUATERNION MEASUREMENTS FOR TWO CONSECUTIVE PASSES TRUE SIMULATED EULER ANGLE MEASUREMENTS FOR TWO CONSECUTIVE PASSES 
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Figure 5.27 True and noisy quaternion and Euler angle measurements for the simulated multi-pass 
test case 

It is important to note that referencing each attitude based on its sequential observation 

number, rather than a specific time, results in a distorted view of the spacecraft's motion. 

Because the second dataset contains 32 more observations, the first pass is significantly 

compressed and, thus, looks to be much shorter, when, in reality it is approximately twice as long 

as the second. Additionally, longer time gaps between observations result in what appear to be 

discontinuities in the attitude measurements. However, displaying the attitude versus time is not 

without problems. Specifically, the long time span separating the two datasets results in a plot 

which is mostly empty space and, therefore, difficult to read. 
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From Figure 5.28, one can see that the filter is able to rapidly reduce the total amount of 

error in the initial attitude estimate, settling into a clear steady state performance around 2 

degrees within the first hour of filtering. The larger residuals observed at the end of the pass are a 

direct result of the increased amount of measurement noise which has been added to the last 20 

observations. The nonlinearities in the measurements are responsible for the brief spike in the 

Euler angle residuals preceding observation 40. 
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Figure 5.28 Residuals and total error after processing each discrete observation in the simulated 
multi-pass test case 
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After all the observations in the first pass have been processed, the state error covariance 

matrix is increased to half its initial value in order to reflect the fact there is a substantial amount 

uncertainty in the state estimate beginning the new pass. Thus, the covariance matrix is reset to: 

P64 = diag(0.025,0.025,0.025,2.5 x 10~3,2.5 x 10~3,2.5 x 10~3,5,5,7.5 x 10~4,0.4,0.4,0.4) 

(5.16) 

According to graphs in Figure 5.29, these values appear to have been rather excessive, given that 

within the first observation of the second pass the error covariance associated with each state 

parameter is significantly reduced from what is provided in equation (5.16). 

QUATERNION ERROR COVARIANCE 

0.05 
x10 ANGULAR VELOCITY ERROR COVARIANCE 

0.04 - 

0.03 

> 0.02 

0 01 

.    q1 : 

•    12 i 
•    q3 j 

*, 
.A \-m^^       .... 

20 40 60 60 100 120 140 
DISCRETE-TIME OBSERVATION NUMBER 

4- 

w 3 
U 
z < 
s. < 
> 2- 

1 - 

' ' 
40 60 80 100        120        140 

DISCRETE-TIME OBSERVATION NUMBER 

MOMENT OF INERTIA PARAMETER ERROR COVARIANCE 

0.8 

0.7 

0.6 V 

. 14 

. 15 

.    16 
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The right side of Figure 5.30 shows the fractional error norm for the estimated inertia 

tensor after processing each observation in the combined dataset. In this test case, the 41% initial 

moment of inertia estimation error converges to 0.8% by the end of the first pass and remains at 

about this level for the remainder of the filtering process. This represents a 98.05% decrease in 

the inertia matrix modeling error. 

The left side of Figure 5.30 depicts the amount of time needed to process each 

observation in the pass. The computation time increases fairly linearly until the target number 

smoothing stages is reached (mtarget — 40), at which point the algorithm spends approximately 

2.5 minutes per observation. As the algorithm begins to filter over the time gap separating the 

observations from the two passes, the processing time increases dramatically, averaging roughly 

12 minutes per measurement, and becomes highly variable, fluctuating from 6 to 28 minutes per 

measurement. During this period, the computational burden is most directly influenced by the 

numerical integration step size s, the target number of smoothing stages mtarget, and the number 

of Gauss-Newton iterations j preformed. Once the fixed interval (m-buffer) no longer spans the 

two passes, the filter again settles into a steady state performance around 2.5 minutes per 

observation. 
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TIME NEEDED TO PROCESS EACH OBSERVATION FRACTIONAL ERROR NORM FOR THE ESTIMATED INERTIA MATRIX 
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Figure 5.30 Algorithm processing time (left) and fractional error norm for the estimated inertia 
tensor (right) 

Despite having datasets separated by almost two hours, the BSEKF is able to propagate 

the attitude to the next pass and begin updating the state estimate using the new observations. 

This capability is invaluable, given the limited amount of time in which the satellite is in view of 

the ground sensor on any given pass. Finite pass length, along with imaging geometry, dictates 

the number of independent images which can be generated and the diversity of attitude 

information contained within the sequence of images. In the non-cooperative attitude estimation 

problem, the ability to accurately determine a satellite's motion from a single set of two- 

dimensional images is dependent on: 1) the extent to which the aspect angle changes relative to 

the RLOS and 2) the amount of angular separation in the RLOS over the course of the imaging 

period. While a single pass may not be able to meet these criteria, linking together several 

discrete datasets should provide the filter with a sufficient number of measurements to refine the 

state estimate. Furthermore, difference in the imaging geometry should help resolve the 

ambiguity in the attitude of the radar image plane by increasing the parallax (i.e., the apparent 

displacement or difference of orientation of an object viewed along two different radar lines of 
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sight). Propagating the final state estimate x160 backwards over both passes and plotting the 

resulting data points against the true attitude measurements yields the set of graphs in Figure 

5.31. The predicted values are depicted as colored dots while the true attitude components are 

shown as black plus symbols. The fact that there are only minor discrepancies in the attitude 

prediction over the two passes is a testament to the correctness of the final state estimate. 
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Figure 5.31 The predicted versus true attitude. The predicted values are depicted as colored dots 
and are obtained from propagating the final state estimate backwards in time. The true values for 

each quaternion component (left) and Euler angle (right) are designated using the + symbol. 

In the subsequent figures the predicted attitude is compared against the noisy and true 

measurements in order obtain a more objective measure of the accuracy. Over the second pass, 

the error about each axis of rotation is roughly between ± 2 degrees up until the last 20 

observations; at which point, the residuals increase to about ± 4 degrees. This result is in 

agreement with the measurement error standard deviation which was applied to the end of the 

pass. A similar result is obtained for the first pass, except that there appear to be much larger 

systematic errors due to the long propagation time. It is interesting that while the quaternion 
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residuals appear to be more or less centered on zero, xp is somewhat biased, with a mean value of 

approximately 3 degrees. Removing the random noise reveals that the systematic errors do not 

exceed 1.2 degrees for the second pass and 3.5 degrees for the first pass. The total errors for the 

two passes are less than 3.5 and 1.5 degrees, respectively, confirming that the backward 

smoothing extended Kaiman filter is able to perform multi-pass attitude estimation. 
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Figure 5.32 Total error (bottom) and residuals (top) for the predicted attitude versus noisy 
measurements 
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Figure 5.33 Total error (bottom) and residuals (top) for the predicted attitude versus true 
measurements 

5.3.2   Actual Test Case Results 

For the first pass of the real-life test case, the filter converges from a relatively large 

initial error within approximately 15 minutes. However, the BSEKF does not appear to settle into 

a clear steady-state performance, given that at around observation 35 the residuals being to 

exhibit larger systematic errors, growing from less than 2 degrees of error to as much as 8 

degrees by the end of the pass. After an extensive tuning effort, it is felt that these results do not 

necessarily indicate a problem finding the right combination of state, measurement, and process 
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noise covariance matrices per se, but rather reflect the inherent challenges in making attitude 

measurements from radar observations. 
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Figure 5.34 Quaternion and Euler angle residuals after processing each observation in the pass 
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Figure 5.35 Total quaternion and Euler angle error after processing each observation in the pass 
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From Figures 5.34 and 5.35, it is clear that the greatest amount of measurement noise is 

present in the observations towards the beginning and end of the pass. However, this result is to 

be expected considering the manner in which the attitude measurements are made. The factors 

which contribute most to the increased error in these data points likely include: 1) signal 

attenuation and/or distortion caused by the fact that the radar pulses are passing through more of 

the atmosphere when the satellite is at lower elevation angles and greater distances from the 

ground sensor, and 2) the amount of aspect angle change relative to the radar line of sight tends 

to be less when the spacecraft is near the horizon, requiring longer integration times to detect the 

subtle changes in the Doppler frequency. As has already been mentioned in Section 3.1.2.2, 

longer imaging intervals are more susceptible to errors in the orbital state vector and baseline 

motion parameters. Unexpected movement of the satellite during the FFT processing time span 

(imaging interval) results in energy being distributed through multiple resolution cells, distorting 

the images and further complicating the image-model matching process. Furthermore, when 

curve fitting via a least-squares procedure, estimates tend to overshoot the actual values in the 

boundary regions of a given dataset; this effect is typically referred to as the Gibbs Phenomenon 

when working with Fourier series and other sinusoidal basis functions (a similar oscillation, 

called the Runge Phenomenon, also arises when fitting higher order polynomials). 

Rather than using the straight arithmetic difference, the error can also be expressed as an 

incremental quaternion, which must be composed with the estimated quaternion in order to 

obtain the true attitude. Using this method for representing the measurement noise in the system 

yields the following plot: 
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Figure 5.36 Vector components of a quaternion expressing the set of small rotations needed 
transform the estimated attitude quaternion into the measured value 

This is likely the most accurate manner in which to convey the amount of error in the attitude 

estimate over time, given the emphasis put on maintaining a proper unit-quaternion throughout 

the filtering process. It is interesting to compare the results of Figure 5.36 with those of Figure 

5.34. Expressing the error in this manner provides a slightly different perspective of the filters 

performance, since the components of the error quaternion begin to diverge much later than the 

residuals presented in Figure 5.33. Additionally, even after observation 45 - which is about the 

point where the attitude deviations start to grow - the errors do not appear to undergo as 

dramatic an increase. 

Another valuable measure of filter performance is obtained from plotting the diagonal 

components of the state error covariance matrix over time. The subsequent set of figures show 

the amount of uncertainty present in the various state parameters, after processing each discrete 

observation k in the pass. The results depicted in right most graph of Figure 5.37 indicate that 

there is a high degree observeability in the angular velocity components, despite the lack of 
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direct measurements. The variances in the angular rates are dramatically reduced from their 

initial values within the first few minutes of running the filter and appear to reach a steady state 

performance at 1 x 10-6 (radians/second)2 by about observation 10. Intuitively, it makes sense 

that motion of the spacecraft would be very sensitive to even small changes in the angular 

velocity terms. Similarly, the covariance of the attitude quaternion is decreased by approximately 

86% within the first 10 observations and seems to settle around 2.5 x 10-3 midway through the 

pass. The increase in the covariance of the second quaternion component (indicated by the blue 

dots on the left side of Figure 5.37) at observation 45 corresponds to the divergence observed in 

the residual plots. Unlike the other state elements, the uncertainty in the moment of inertia 

parameters does not reach a steady-state by the end of the pass. This indicates that there is not 

enough information contained in the attitude observations of a single 20 minute pass to 

completely determine the inertia tensor of the satellite. The results of Figure 5.38 suggest that 

p/6, which parameterizes the rotation of a uniform rectangular box about the z-axis, is relatively 

insensitive to changes in the attitude measurements over time. Conceptually, if the spacecraft is 

spinning rapidly then, in effect, the mass distributed along the x and y axes is being averaged, 

making it more difficult to distinguish between p71 and p/2. Again, these particular parameters 

are the lengths of the sides of a box multiplied by the square root of its mass. Accordingly, it 

takes a greater number of observations to reduce the ambiguity in the relative ratio of I± to I2. 
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Figure 5.37 Covariance in the attitude quaternion and angular velocity components of the state 
vector 
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Figure 5.38 Covariance in the moment of inertia parameters 

Though the BSEKF only computes first derivatives of its nonlinear dynamics and 

measurement functions, the algorithm is able to capture curvature effects through the Gauss- 
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Newton iterations that it uses to solve its nonlinear smoothing problem. It is in these iterations, 

specifically the forward filter and backward smoothing operations, that information about 

changes in the attitude work their way into the other state variables. Consequently, if the filter 

only performs a single Gauss-Newton minimization, the moment of inertia parameters, which are 

modeled as being constants in the dynamics function, will not be altered/refined from one 

observation time to the next. If this occurs for multiple observations fairly early on in the pass, 

the filter "thinks" it has found the minimum and, thus, begins to reduce the covariance. Unless 

the estimates for the moment of inertia parameters are in fact very accurate, the filter will almost 

certainly begin to diverge, even if it appears to have reached a steady state performance. In 

Reference (41), Psiaki concludes that the larger number of Gauss-Newton iterations typically 

required towards the beginning of a pass, "indicate the smoothing problems are harder to solve 

when the inertia matrix uncertainties are large...this makes sense because these introduce strong 

nonlinearities in the estimation problem." In the process of tuning the filter this sequence of 

events was encountered several times and is a major indicator that divergence is imminent. As 

has already been mentioned in Section 3.2.3.1, this is likely the case when the state noise has 

been underestimated with respect to observation noise, as the state estimation procedure will 

become less and less sensitive to the observation residuals. Resolving this sort of problem is a 

simple matter of increasing the error covariance associated with the inertia parameters, to reflect 

the fact that the distribution of mass within the satellite is almost completely unknown. 

In addition to filter divergence, other signs that all is not well include abrupt increases in 

the residuals and imaginary numbers in the state vector. In both cases the source, invariably, has 

been the presence of discontinuities (denoted by a full sign inversion) in the attitude quaternion, 

which in turn breaks the constraint that the representation have unity norm to be considered a 

231 



pure rotation. In the process of implementing the BSEKF, this has been the single greatest 

reoccurring problem encountered; the reason for this is twofold: 1) the quaternion is not unique, 

that is, the sign of all the components may be switched and still describe the same attitude, and 2) 

the fourth quaternion component is not utilized throughout the algorithm in order to avoid 

singularities in the covariance and transition matrices. In particular, problems seemed to arise in 

equation (3.108), when applying the state correction Ax, used to calculate the candidate next 

guess of the smoothed solution. During the forward filter and backward smoothing portion of the 

algorithm the direction and amount by which attitude should be altered is determined; however, 

because q4 is not included in this operation it becomes unclear which sign to apply to this 

specific element when it is close to zero (it is uncertain whether the value is going to pass 

through, or simply approach, zero). Coming up with a set of rules and tests to ensure that the 

correct sign gets consistently applied to the quaternion has proven to be a nontrivial endeavor. 

While a solution appears to have finally been found (see the Matlab source code provided in 

Appendix D for specific information), the indicators of a discontinuity problem are important to 

keep in mind, in the event that some new/unforeseen failure mode arises. 

Propagating the final state estimate xn backwards in time to each observation in the pass 

enables the accuracy of the motion solution to be assessed in two ways: 1) quantitatively, in 

terms of the residuals, and 2) qualitatively, via a visual comparison of the quaternion components 

and Euler angles over time. It should also be mentioned that the exactness of the attitude 

prediction can be evaluated by entering the instantaneous motion parameters, described in 

Section 4.3.1, into Interactive Motion. In this case, the quality of the image-model alignment that 

results from applying the unique set of parameters indicates the accuracy of the motion solution. 

No manipulation of the images or wireframe model should be required if the rotational motion of 
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the satellite has been adequately determined. Because LAES removes the assumption of spin- 

precession motion, a unique state values has been computed for each discrete observation. 

However, Interactive Motion applies the motion parameters to the entire pass. Unfortunately, this 

means that the analyst must manually enter the new parameters for each discrete-time image. 

This can be a rather time consuming process, given the large number of images which typically 

comprise each pass. For this reason, in addition to the fact that radar images and wireframe 

models are not releasable, only the attitude components and residual are presented in the 

subsequent figures. 
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Figure 5.39 The noisy attitude measurement (left) versus the predicted quaternion (right) obtained 
from propagating the filtered state components backwards over the pass 
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Figure 5.40 The noisy attitude measurements (left) versus the predicted Euler angles (right) 
obtained from propagating the filtered state components backwards over the pass 

From closely examining the end of the pass, one can readily see that the measured and 

predicted values begin to diverge at around observation 60, with the most noticeable deviations 

occurring in q2 (blue points in Figure 5.39) and 0 (red points in Figure 5.40). Otherwise, the fit 

appears to be  fairly good.  The residual between the measured quaternion and estimated 

quaternion are again plotted for each time of interest, and confirm that by far the greatest 

difference is in the first and last 5 observations, where the total error reaches 10.4 degrees. 

Throughout the rest of the pass, the residuals do not exceed ± 4.2 degrees when analyzed in 

terms of the Euler angles. Unlike the simulated test case, the systematic errors which exist in the 

data are more likely the result of problems in the measurement process rather than improper filter 

tuning. Since the resolution and overall clarity of the last 10 images appears to be significantly 

degraded when compared with the rest of the pass, it is highly possible that the motion predicted 

by the BSEKF is in fact more correct than what the following residual plots depict. Regrettably, 
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because the true attitude is unknown these suspicions cannot be confirmed; however, the 

calibration test case suggested in the future works section offers a potential solution to this 

problem. 
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Figure 5.41 Residuals arising from the difference between the measured and estimated attitude 
quaternion (left) and Euler angles (right) for the first pass 
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In order to compare the results of the BSEKF with those of LLMotion, the following 

procedure was used: 

1. Since the image-model matching process has already been preformed, the wireframe 

model axes can be used as the basis for assigning measurement points to the radar 

images. A tool within XELIAS has automated this task. Placing and connecting these 

points in a consistent manner from image to image results in a set feature vectors, 

such those illustrated in Figure 5.43. 

2. The feature measurements and scaling factors are input into LLMotion and a local 

search is preformed via the Dynamic Hill Climbing function to obtain a new motion 

solution. 

3. Converting the new baseline motion parameters into a series of attitude quaternions 

can be done using equations (4.13) - (4.18) and equations (A. 10) - (A. 13). 

Subtracting the calculated attitude from the original measurements provided in Figure 

5.4, yields the residuals found in Figure 5.44. 

Figure 5.43 Alignment of feature measurements with model axes 
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Based on the residual plots provided in Figures 5.41 and 5.44, the performance of the 

BSEKF appears to be slightly better than that of batch least-squares algorithm used by 

LLMotion. Overall the LLMotion residuals are more dispersed than those of the BSEKF, and 

have greater peak values (> 110 |deg) towards the ends of the pass. For example, in both 

methods, the greatest amount of error occurs in observation 63, where the Euler angle residuals 

for the BSEKF and batch least-squares filter are 8.6 degrees and 12.2 degrees, respectively. 
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Figure 5.44 LLMotion residuals arising from the difference between the measured and estimated 
attitude for the first pass 

The BSEKF's performance improvements come at a large computational cost. When 

mtarget = 40, the BSEKF requires between 40 and 60 times as much computation as an EKF for 

each iteration of its Gauss-Newton nonlinear least-squares solver, and multiple iterations are 

usually required to solve the problem. The BSEKF has been run with a maximum limit of 15 

Gauss-Newton iterations per problem, and the average number of iterations for all the test cases 

was 8.4 per problem. During the first 30 minutes of filtering, the average number of iterations 

237 



per problem was higher, between 10.2 and 10.8, with many problems terminating prematurely at 

the maximum of 15 iterations. During the remaining time, the average number of iterations per 

problem was between 6.6 and 7.5, with a majority terminating after just two iterations. 

The total time needed to process all 64 observations was approximately 1.8 hours. It 

should be noted that the BSEKF used in the Lincoln Attitude Estimation System has not been 

optimized for speed. The execution time is highly variable and depends on the following factors: 

1. The total number of observations being processed 

2. The threshold values used for cost function and guarded Gauss-Newton procedure 

3. The maximum number of Gauss-Newton iterations performed 

4. The target number of smoothing stages (fixed interval size) 

5. The maximum numerical integration step size 

6. The number and combination of torque models used in the dynamics function 

7. The amount of interpolation required to obtain input values for the torque models 

8. The attributes of the computer system running the Matlab files (processing power and 

memory) 

9. Converting the Matlab files into C code can be done using the Matlab Compiler and 

appears to cut the amount of processing time in half4 

Figure 5.45 shows the amount of time needed to process each observation in the pass. 

The computation time per observation increases linearly as the size of the m-buffer (smoothing 

interval) grows. When k — mtarget the number observations retained in the smoothing interval m 

has reached the cut-off value of 40 and becomes fixed. At this point, the computation time settles 

into a steady state performance around 1.75 minutes per observation. The spike in processing 

4 Note: Matlab files were not compiled into C code for the test cases presented in this chapter 
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time between observations 25 and 35, is the result of an increased number of Gauss-Newton 

iteration which were preformed as the algorithm began to encounter strong nonlinearities in the 

measurements. 

Figure 5.45 Algorithm computation time 

5.3.2.1 Actual Test Case - Refined First Pass Measurements 

The attitude determination process is more complex whenever data selection based on an 

a priori attitude is not sufficiently accurate. This occurs, for example, in the presence of smoothly 

varying systematic anomalies in which some of the data are clearly invalid but presumably valid 

and invalid data run smoothly together. Attitude determination in the presence of such errors 

requires iterative processing to obtain successive attitude estimates. The general procedure for 

this is as follows: 

1.   Discard "obviously" bad data and use the remaining data to estimate the attitude as 

accurately as possible. 
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2. Use the new attitude estimate to reject additional data (or recover previously rejected 

data) as appropriate. 

3. Iterate until a self-consistent solution has been obtained, i.e., when step 2 makes no 

change in the set of selected data. 

This procedure does not establish that the final attitude estimate is correct, or that the data 

selection has been correct. It is possible that the iterative process will not converge - it may 

reject all the data or oscillate between two distinct data sets. This method can at best obtain an 

attitude solution which is consistent with the data selection process. Therefore, whenever 

problems of this type are encountered, it is important to attempt to find the physical cause or a 

mathematical model of the data anomaly to provide an independent test of whether the data 

selection is correct. 

The central problem of the above iteration procedure is the data rejection in step 2. 

Operator judgment is the main criterion used, both because general mathematical tests are 

unavailable and because the anomaly is unanticipated. Tables of data are of little or no use for 

analyst identification of systematic anomalies; therefore, data plots are normally required. Four 

types of data plots have been used throughout this thesis for this purpose: 1) plots of raw data, 2) 

plots comparing directly the observed data and computed data based on the most recent attitude 

estimate, 3) plots of deterministic attitude solutions obtained from individual pairs of points 

within the data, and 4) plots of residuals between the observed data and predictions from a least- 

squares procedure or similar processing method based on the entire collection of data. 

In practice, the author has found that the most likely culprits of erroneous motion 

solutions are things like the mirror image anomalies (discussed in Section 4.2) and the 

application of nonphysical motion solutions when preprocessing the data using LLMotion. 
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LLMotion displays nonphysical minima if there are no true minima or if the non-real motion 

solution has a smaller objective function value than the smallest true minimum. This failure 

mode was encountered in the course of this research effort and prompted the inclusion a simple 

check within the algorithm to ensure that the baseline motion parameters do not produce negative 

values on the diagonal of the inertia tensor. While negative moments of inertia indicate the 

presence of a physical impossibility, the mirror image errors represent a physically equivalent 

motion set due to the physics of range-Doppler imaging. This is demonstrated in Figure 5.46, 

which shows a scatterer rotating about the angular velocity axis and the resulting radar image 

plane attached to the center of the satellite. 

Y 

Range 

Mirror Image   j. 
Scatterer   ->f 

->>X 

Figure 5.46 Mirror image mapping in the radar image plane coordinate system. 

The range-Doppler image projects the scatterer into the (cross-range, range) plane which 

includes the radar line of sight and is perpendicular to the plane defined by the ROLS and the 

angular velocity vector <u. An equivalent scatterer, shown in red, also projects to the same point 
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in the plane. This suggests that the view of the image plane from the - z direction will yield an 

equivalent motion solution. Although the three-dimensional wireframe model for a single image 

is fundamentally ambiguous under the reverse mapping, the sequence of images reflects a 

different satellite motion relative to the radar. For example, the counterclockwise rotation of the 

scatterer is transformed into a clockwise rotation from the opposite direction. Also structures on 

the satellite, which are not symmetric to a mirror reflection through the image plane, will yield a 

different 3-D satellite model under the transformation. For this reason, the derived alternative 

motion solution, obtained from a reverse mapping should be checked by wireframe overlay and 

multiple pass analysis. 

The value of the predicted-versus-observed data plots, as part of the data validation 

procedure, can be seen in Figures 5.39 and 5.40, which illustrates areas of noticeable divergence 

in the pass. In order to obtain an accurate attitude solution, the measurements in the highlighted 

regions must be corrected. As mentioned in the previous section, the larger residuals towards the 

ends of the first pass are primarily due to a combination of human error and noise in the radar 

images. The image-model matching process is somewhat subjective, since it is based on the 

analyst's ability to perceive the spacecraft's orientation within the radar image plane and to 

finely manipulate the wireframe model. Anything that degrades the analyst's capacity to interpret 

the attitude of the target from the sequence of images, such as, poor image resolution, the 

correlation between cross-range scaling and certain rotations, and ambiguity in the geometric 

projection of scattering centers, all contribute to the measurement noise. Adjusting the alignment 

of the wireframe in the first and last 15 images resulted in a new set of measurements, which are 

presented in Figure 5.47. 
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Figure 5.47 Adjusted quaternion (left) and Euler angle (right) measurements for the first pass 

The predicted state vector from the first round of filtering was used to calculate the initial 

state estimate xx for this test case. The initial state error covariance matrix P1 that was utilized in 

this example, is provided in equation (5.12). The performance of the BSEKF, using these refined 

measurements, is shown in Figures 5.48 and 5.49. When given a fairly accurate initial guess, the 

filter does not go through a transient phase in which it appears to converge to a steady state 

performance. Consequently, the residuals predominantly oscillate between + 3 degrees, with a 

few values reaching + 6 degrees, around observations 35 and 45. In the preliminary filtering run, 

the total error at the end of the pass was approximately 11 degrees. Thought the maximum total 

error in this follow-on test case is still somewhat high, at 9.8 degrees, the noise in the last 10 

observations has been reduced to less than 4 degrees. 
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Figure 5.48 Residuals (top) and total attitude error (bottom) for the altered first pass 
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Figure 5.49 Vector components of a quaternion expressing the set of small rotations needed 
transform the estimated attitude quaternion into the measured value 

In Figure 5.47, one can clearly see that the transition between the first and second round 

of measurements is a bit rough. Plotting the predicted attitude (depicted as colored dots) against 

the noisy measurements (denoted using black + symbols), confirms that the largest adjustments 

to the attitude do in fact occur around observations 15 and 49, since these are the boundary 

points between the original set of Euler angle deviation measurements and the amended set. The 

peak per-axis attitude errors at these points are around 6.9 and 5.1 degrees, respectively. The 

total error in the pass does not exceed 8.1 degrees, which is an improvement when compared 

with the 11 degrees of error seen in the first test run. Additionally, the error in the first and last 

10 observations has been reduced to less than 5 degrees, indicating that the adjustments made 

during the image-model matching have resulted in an attitude estimate which appears to be 

closer to truth. Indeed, when visualizing the motion solution using Interactive Motion, there is a 

noticeable improvement in overall alignment of the wireframe model to each image. 
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Figure 5.50 The predicted attitude versus noisy quaternion (left) and Euler angle (right) 
measurements 

Table 5-5 Predicted State Vectors for the Refined Actual Test Case 

State Value * Initial State Vector (x^ Final State Vector (x64) 

<7i 0.402738275810855 0.761008695080058 

Q2 0.167084329810110 -0.089615661178056 

<73 0.755574691127142 0.619412688605402 

<JU 0.488867665178345 0.170770959120085 

«i -0.000419570565546 -0.000570979038240 

(*>2 0.002455347785409 0.002487806650175 

fr>3 -0.007230447943850 -0.007282034022134 

Pn 3.140482859217543 3.140482859217543 

Pl2 3.871535464684956 3.871535464684956 

Pn 7.746023003273300 7.746023003273300 

Pi* 0.033085770810414 0.033085770810414 

PK 0.070640011195889 0.070640011195889 

P,e, 0.644519559782514 0.644519559782514 
Propagating the final state vector (column 3) to the initial observation time results in the state values provided in 

column 2. 
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Figure 5.51 Residuals (top) and total attitude error (bottom) in the predicted attitude for the 
altered first pass 

5.3.2.2 Actual Test Case - Long-Term Attitude Prediction 

The baseline motion solution obtained from processing the first pass measurements with 

LLMotion is provided in Table 5-1 of Section 5.1. This set of parameters, was selected from 
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among several other potential minima as the best estimate for the first pass, based on three 

criteria: 1) the cost function value (FCN), 2) the root mean square value (RMS), and 3) a 

subjective visual assessment of how well the wireframe aligns with the sequence of radar images 

after applying the motion parameters to the entire pass. In Figure 5.52, the LLMotion solution 

has been propagated without external torques to each of the discrete observation times of interest 

in the two passes. 

XEUAS BASELINE MOTION SOLUTION PROPAGATED OVER BOTH PASSES 

&H I \v 

• q1 

• q2 
q3 

• q4 

XELIAS BASELINE MOTION SOLUTION PROPAGATED OVER BOTH PASSES 

20 40 60 00 100 120 140 160 
DISCRETE-TIME OBSERVATION NUMBER 

V 

PHI (Z) 

THETA ( 
PSI(Z) 

J-~|-—* 

J I I l_ 
40 60 80 100 120 140 
DISCRETE-TIME OBSERVATION NUMBER 

Figure 5.52 Baseline motion solution from XELIAS propagate over the first and second pass 

Applying the corrective Euler angle measurements, shown in Figure 5.3, to the baseline motion 

yields the final set of observations used in the BSEKF (illustrated in Figures 5.4 and 5.5). The 

results from processing the first pass (presented in Section 5.3.2) indicate that state estimate 

calculated using the backward smoothing extended Kaiman filter is more accurate than the local 

minimum found using LLMotion; that is, a local DHC search and batch least-squares algorithm. 

Propagating the final estimated state vector over the 1.88 hour time gap separating the first and 

second pass results in the following plots of the predicted-versus-measured attitude: 
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Figure 5.53 Long-term attitude prediction for the actual test case. The noisy second pass 
measurements (right) versus the predicted attitude observations (left) when propagating the state 

estimate from the end of the first pass. 

While the predicted values, presented in the left-hand plots, follow the same general trend as the 

actual measurements for the second pass, they also appear to be out of phase and somewhat 

misshapen. This outcome is yet another measure of the accuracy of motion solution obtained 

from filtering the first pass and indicates that the true motion of the spacecraft has not been 

found by the BSEKF. As was seen in the simulated test case presented in Section 5.3.1.1, even 
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small errors in the state parameters produce wildly different results when propagated over long 

periods of time. It should also be noted that when projecting the state vector to the next pass, 

only the gravity-gradient torque model has been used. Accordingly, the results presented in 

Figures 5.53, do not account for the disturbances caused by the Earth's magnetic field, solar 

radiation pressure, or atmospheric drag. While, the gravity-gradient should be the dominant 

torque impacting the motion of this particular satellite, the effects of the environmental torques 

will certainly affect the accuracy of the prediction over such extended time spans. Systematic 

testing using all the torque models developed for this algorithm is left as a future work item. 

However, it is felt that the errors in the final state estimate are the principal factor limiting the 

accuracy of the long term prediction, given the sensitivity of the attitude to even minor changes 

in certain state parameters. The solution approach used in the multi-pass simulated test case was 

to provide the BSEKF with both sets of measurements and to allow the algorithm to filter over 

the time gap separating the two datasets. This method worked very well, yielding an attitude 

prediction with less than 3.5 degrees of total error over the combined set of passes. 

Though the BSEKF is physically able to process the two passes together it is 

unsuccessful in finding a state estimate which accurately describes the motion of the spacecraft 

over both. The result is a final state vector that when propagated backwards in time, fits the 

second pass observations but not the first. Though the presence of environmental torques cause 

gradual nonlinear changes in the motion parameters over time, such disturbances are not large 

enough to account for the differences seen in the state estimates from one pass to the next. 

Though the baseline motion parameters are the same for both passes, the corrections made 

during the image-model matching process have resulted in attitude measurements which are 

fundamentally different from one another and, ultimately, lead to two separate local minima. The 
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basic disparity between the two passes is most easily observed in the estimated inertia tensor 

over time. Though the two matrices should be essentially the same, the side-by-side comparison 

in Table 5-6 reveals that after processing the second pass, the ratios between each of the 

moments of inertia were 1.325 to 1.483 times larger than what they were at the end of the first 

pass. 

Table 5-6 Estimated Moment of Inertia Ratios 

Moment of Inertia Ratio First Pass Estimate Second Pass Estimate 
hlU 0.393 0.583 

hlh. 0.412 0.546 

1st Pass: 

2nd Pass: 

"6.3755    0.2647    0.0803 
IB =   0.2647    6.0899    0.2682 

.0.0803    0.2682    2.5069 

5.7710      -0.1674    1.4187 
/* -   -0.1674     6.1640     0.4232 

1.4187       0.4232      3.3673 

(5.17) 

(5.18) 

An explanation for why the two sets of measurements do not mesh with one another 

requires a brief summary of the iterative process utilized in LAES. Essentially, the approach 

taken in this thesis has been to use the DHC algorithm in LLMotion to divide up the state space 

and systematically vary each parameter to find the minima which presumably describe the 

motion of the spacecraft. Based on the corrective measurements made during the alignment 

process, the BSEKF refines the motion parameters and propagates the estimate to the next pass. 

Because the attitude measurements have been decoupled from the image plane coordinate system 

and expressed as corrections to the baseline motion parameters, the inherent ambiguity in the 

orientation of the image plane is no longer being taken into account. Essentially, this approach 

erroneously assumes that the attitude of the radar image plane in inertial space is more or less 

known (i.e., that it was solved for during the preprocessing phase with LLMotion). Thus, when 

the differences between datasets become larger than the natural fluctuations caused by external 
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torques, problems arise in trying to fit the two passes together. Correcting the BSEKF's 

measurement model is fairly straightforward and will be discussed in greater detail in Section 

6.4. 

Performing a global grid search using the Dynamic Hill Climbing (DHC) algorithm in 

LLMotion, produced the four potential motion solutions given in Table 5-7. 

Table 5-7 LLMotion Solutions for the Second Pass 

Parameter Motion Solution #1 Motion Solution #2 Motion Solution #3 Motion Solution #4 
FCN 0.0293 0.0586 1.34 xlO-7 0.0196 
RMS 0.0251 0.0354 5.36 xl0~5 0.0205 

Mol Ratio 0.398 0.499 0.45 0.406 

a 60.9 134.2 101.7 126.8 
S -8.5 15.0 6.2 9.0 
e 47.0 21.2 34.8 24.7 

00 157.2 140.0 157.2 155.7 

00 167.9 -163.8 -180.0 -179.2 

0-1 1740.4 2235.5 2112.1 2259.4 

0"1 1684.0 2389.9 2104.2 2315.0 

Plotting the four motion solutions without any corrective measurements reveals the extent 

to which the attitude can vary and the image-model alignments still agree (see Figure 5.54). 

While the third motion solution results in the smallest cost and root mean squared error, in terms 

of the quality of fit when visualizing the motion solutions in XELIAS, the fourth set of 

parameters seems to be the most correct. All four sets of parameters and corresponding attitude 

plots appear to be inherently different from that used in the first pass. One can safely conclude 

that either: 1) the iterative attitude estimation process has not converged to the global minima in 

this particular test case or 2) physical events onboard the spacecraft, such as fuel slosh, have 

invalidated the rigid dynamics assumption (i.e., the only torques acting on the vehicle are due to 

external perturbations). 
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Figure 5.54 LLMotion solutions for the second pass 

To be fair, each of the minima found in the global grid search for the first pass would need to be 

refined, propagated (with all the torque models turned on), and compared with the list of minima 

found for the second pass. Selection of a baseline motion solution would then be based on the set 

of parameters which most closely matched those generated for the subsequent pass. However, 

such a procedure would be incredibly time consuming given the fact that the measurement 

process is not automated. Because even small errors in the dynamics model and/or state estimate 

can have a dramatic impact on the accuracy of an attitude prediction, it is unclear to what extent 

each perspective motion solution would need to be refined in order to achieve a sufficient 

correspondence with those of the next pass. Though further research on this subject is needed, it 

is the opinion of the author that the state space is simply too large and nonlinear for this to be a 
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truly viable approach. Automation of the measurement making process is underway, but is a 

significant effort. A better alternative would be to use a bistatic or multistatic radar system to 

obtain a unique set of unambiguous measurements describing the attitude of the spacecraft over 

the duration of the pass. With such measurements, the BSEKF would be able to filter over any 

number of passes in order to determine the motion of the target. 
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6       Conclusion and Future Work 

This thesis was motivated by the need for improved attitude estimation and prediction 

capabilities when using radar images as the basis for estimating a spacecraft's attitude. 

Specifically, this study addressed the issue of incorporating disturbance torques and spacecraft 

asymmetry into the dynamic equations of motion. In order to accomplish these tasks 

considerable care has been taken in the selection of a suitable attitude representation and data 

filter. 

6.1     Problem Summary 

Since only a small fraction of an orbit is visible from ground-based sensors, limited 

attitude information can be collected and used in estimating a target's rotational motion. The 

situation is made worse by the fact that the number of independent images which can be 

produced is restricted by the amount of aspect angle change in the spacecraft relative to the radar 

line of sight. Additionally, given the nature of the radar measurements themselves, the 

orientation and angular velocity of the spacecraft can only be determined up to a rotation around 

the RLOS. This uncertainty, in conjunction with the error introduced from trying to align the 

projection of a three-dimensional model with a noisy two-dimensional image, makes the non- 

cooperative attitude estimation problem incredibly challenging. On top off all this, information 

about the mass distribution of the vehicle is completely unknown and the measurements and 

dynamics of the system can be highly nonlinear. Ultimately, the entire method is reliant on 

human powers of perception and judgment not only in terms of the measurement procedure 

(image-model matching), but also in the data validation and motion evaluation processes. 

Given the large amount of ambiguity and noise, the solution approach used in this thesis 

has been threefold. First, an iterative estimation process is needed to converge on the motion of 
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the satellite of interest and gradually refine the imagery upon which the attitude determination is 

based. Second, the existing software program known as LLMotion is used to narrow the solution 

space and preprocess the motion estimate by removing large initial scaling errors and reducing 

deviations between the geometric model and underlying imagery. LLMotion operates under the 

assumption that there are no disturbance torques acting on the vehicle and that the spacecraft is a 

symmetric rigid body with no articulating or flexible surfaces. The software system utilizes the 

Euler angle attitude parameterization, as it is well suited to a spin-precession motion description 

and closed-form motion propagation. LLMotion identifies potential motion solutions (i.e., local 

minima) via a batch least-squares procedure, in combination with a grid search algorithm which 

systematically analyzes an extensive state space. Third, a backward-smoothing extended Kaiman 

filter with additional torque models is used to filter the remaining measurement noise and 

overcome nonlinearities in the measurement and dynamics equations. This method relinearizes 

the current and past measurement and dynamics functions about improved guesses of the current 

and past state and process noise vectors. Appropriate relinearization points are chosen via 

iterative numerical smoothing over an interval of time that ends at the current sample time. This 

process results in a state estimation algorithm that treats all of the nonlinearities over a number of 

stages without any approximation. Additionally, by simultaneously estimating the moment of 

inertia parameters, the BSEKF is able to compensate for the uncertainty which results from 

sensing fewer than three axes and having little to no information about the mass distribution of 

the vehicle. It is also important to reiterate that the BSEKF was selected over a batch least- 

squares algorithm so that measurements from follow-on passes could be filtered as they became 

available. Thus, greater operational flexibility could be achieved by allowing an analyst to easily 

join observations made over several passes and obtain a new state estimate after each observation 
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is processed. Other critical design decisions include the numerical integration of a system of 

ordinary differential equations expressing Euler's equations of motion (as opposed to the use of 

elliptical integrals) and the use of the attitude quaternion whose kinematic equation is linear and 

which satisfies only a single, easily enforceable constraint. 

6.2     Modeling Enhancements 

The Lincoln Attitude Estimation System is a new tool which has been developed for the 

Space Situational Awareness Group at MIT Lincoln Laboratory, in order to accurately estimate 

the rotational motion of an uncontrolled satellite over time. The system has modified a 

backward-smoothing extended Kaiman filter to produce an algorithm that can be integrated with 

the existing systems currently in use at Lincoln Laboratory. The major features which have been 

added to the BSEKF, as presented in Reference (41), include: 

1. The addition of environmental torque models for the Earth's magnetic field, gravity- 

gradient, atmospheric drag, and solar radiation pressure. 

2. A geometrically derived initial estimate for the inertia tensor that removes the assumption 

of symmetry in the principal moments of inertia and includes estimates for the off- 

diagonal products of inertia. 

3. A complete quaternion parameterization that maintains the unity norm requirement while 

preventing discontinuities in the measurements and attitude estimates, as well as 

singularities in the state covariance and transition matrices. 

4. Conversion functions which transform between spin-precession motion parameters and 

the 12 x 1 BSEKF state vector given at the beginning of Section 4.3.2, in order to 

properly interface with the existing software systems used by the SSAG. 
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5.   Automated generation of initial estimates for the state vector, state error covariance 

matrix,  and measurement noise covariance matrix by means of polynomial fitting 

algorithms. 

6.3     Data Analysis 

Test results for a simulated and actual non-cooperative attitude estimation problem 

confirm that the BSEKF can be used to filter the noisy measurements produced from fitting 

geometric (wireframe) models to discrete-time radar images. By retaining the nonlinearities of a 

fixed number of sample intervals before the time of interest and approximating the effects of 

earlier sample times' dynamics and measurement nonlinearities, the algorithm is able to achieve 

considerable accuracy and convergence reliability despite the large uncertainties that arise when 

measuring spacecraft attitude using ground-based sensors. For the truth-model simulation, the 

41% initial moment of inertia estimation error converges to 1.6% by the end of the pass and the 

total attitude error was reduced to 1.8 degrees after processing all the noisy observations. For the 

actual dataset, the filter converged to a steady-state performance at around 5 degrees of attitude 

error but finished the pass with more than 10 degrees of total attitude error. This, however, is not 

a problem with the filter, but rather with the measurements. Adjusting the Euler angle deviation 

measurements at the beginning and end of the pass enables the total error to be reduced to around 

4 degrees. 

Both test cases demonstrate that the BSEKF is ideally suited for use on non-cooperative 

attitude estimation problems. However, the results obtained from this research effort also suggest 

that a 10 or 20 minute pass from a single sensor provides an insufficient number of observations 

to determine the motion of the spacecraft to the level of accuracy needed to perform precise 

long-term attitude prediction. The error in the measurements is several orders of magnitude 
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greater than that introduced by ignoring environmental disturbance torques. Nevertheless, the 

BSEKF has demonstrated the ability to filter over multiple passes (i.e. long time gaps). Thus, the 

potential exists for refining the state vector using observations strung together from multiple 

short duration imaging opportunities. In this way, an estimate of the inertia tensor can be built-up 

over time, enabling the orientation of a vehicle to be predicted with greater and greater accuracy 

as more datasets are processed. In the multi-pass simulated test case, the total attitude error 

which resulted from propagating the final state estimate backwards over the combined passes 

was less than 3.5 degrees for the first dataset and under 1.5 degrees for the second. On the other 

hand, for the actual test case, significant differences in the attitude measurements from pass to 

pass prevent the BSEKF from successfully filtering the combined dataset. Essentially, the 

BSEKF begins to converge on a particular motion solution during the first pass, goes through a 

second transient phase as it propagates over the time gap, and then settles into an entirely 

different local minimum by the end of the second pass. The resulting set of parameters does not 

consistently describe the motion of the spacecraft over both passes. This indicates that that there 

is a problem with the measurement model which needs to be resolved before further testing can 

begin. 

6.4     Unresolved Issues 

A major focus of this thesis has been to address some of the many difficulties posed by 

the non-cooperative attitude estimation problem. The major issues which have yet to be fully 

resolved involve the measurement sub-process and are a direct consequence of the complicated 

imaging geometry (dynamics of the satellite relative to the radar station) and limited number of 

measurements which can be obtained from each two-dimensional radar image. In the course of 

writing this thesis it has become apparent that the measurements cannot be decoupled from the 
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image plane coordinate system for several very important reasons. First, the measurement errors 

may no longer be Gaussian due to the fact that a series of nonlinear transformations are needed 

to go from the body-fixed reference frame to the radar image plane coordinate system. Because 

the orientation of the image plane in inertial space is not entirely known, the measurements 

cannot be separated from the image plane without making some assumptions about the motion of 

the spacecraft, which may or may not be true. The current approach used in LAES does just that, 

measuring the attitude of the spacecraft with respect to an image plane whose orientation is 

inherently unknown. Second, the measurement errors may not be independent, since corrections 

to the baseline motion parameters are made through a combination of cross-range scaling and 

model rotations. There is a very complex nonlinear relationship between the measurements made 

during the image-model matching process (i.e., the cross-range scaling factor and 1-2-3 Euler 

angle rotations), and the nominal motion of the spacecraft. For example, a change in the scaling 

term impacts both the perceived true attitude of the target within the radar image plane and the 

direction of the target's angular velocity vector. Consequently, it is unclear how much of the 

error can be attributed to scaling issues and how much is tied to deviations in the attitude. 

In order to solve the non-cooperative attitude estimation problem more measurements are 

needed and can be obtained in one of two ways: 1) stereoscopic radar images from a bistatic or 

multistatic radar system or 2) use measurements from multiple passes. Modifying the BSEKF 

observation model so that it is no longer tied to a set of baseline motion parameters, would 

enable LAES to completely replace LLMotion. In the procedure described below, the 

measurements are made with respect to the radar image plane coordinate system. In order solve 

for the attitude of the spacecraft, the orientation of the image must be estimated simultaneously. 
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The difference in imaging geometry from one pass to the next should help to resolve the 

uncertainty in the attitude of the image plane by providing a difference in the RLOS direction. 

The following modifications need to be made to the BSEKF measurement model in order 

to ensure that the measurements are independent and normally distributed: 

1. During the image generation process, that number of discrete-time radar image output by 

ARIES should be entirely based on the amount of aspect angle change over the duration 

of the pass and not the amount overlap between images. 

2. After aligning the wireframe to all the images in the pass, use the model's axes as the 

basis for selecting and connecting a set of six points in each radar image. Because these 

are the same feature measurements used by LLMotion, they are automatically saved in 

the paramcdf file. Each image i in the pass contributes j measurement vectors of the 

form: 

_ \ms_xcoord~\   _ rVx~\ ,     ,. 
yiJ ~ [ms_ycoord\    ~ LyyJ 

where yx is the x coordinate of the measurement point in Hertz and yy is the y coordinate 

of the point in meters. The scaling factors needed to convert the x coordinates from 

Doppler to meters are contained in the imagecdf file under the variable name x_scale. 

Both files can be obtained from XELIAS by following the instructions provided in 

Appendix C. 

3. The observation model h(x) transforms elements of the state vector into a form which is 

equivalent to the measurement vector. In this instance feature vectors in the spacecraft 

body are rotated and projected into the image plane via the attitude quaternion and 

angular velocity vector. The quaternion expressing the transformation between the body- 

fixed coordinate system and the inertial frame is currently used throughout the BSEKF 
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and can be easily converted into a rotation matrix A using equation (A. 5). A series of 

rotations, given by equations (B. 17) - (B. 20), are then required to transform from the 

inertial frame (/) to the image plane. Combining the attitude matrix A with this sequence 

of rotations results in the following expression: 

[yij]IP = Ti[yj]B (6-2) 

where T is the rotation matrix which relates feature vectors in the body-fixed coordinate 

frame (B) to those in the radar image plane coordinate system (/P). Note that since this is 

the same matrix used by LLMotion, an initial estimate for the state vector can be 

calculated using equations (B. 11) - (B. 20). The values needed to calculate the 

preliminary rotation matrix Tx, given by equation (B. 21), are contained in the imagecdf 

and motioned/ files (see Table C-l). It is important to recognize that as the imaging 

geometry changes, only the sequence of rotation need to go from / -*IP are impacted. 

Thus, the change in RLOS from image-to-image and pass-to-pass is now properly being 

accounted for. 

4. The measurement transition matrix Hj is then given by equations (A. 30) - (A. 33), which 

are the derivatives of a rotation matrix with respect to the components of an attitude 

quaternion. Note that since the final rotation about the RLOS is found using the angular 

velocity vector, the partial derivatives of the rotation matrix with respect to the 

components cox and a>z will also be needed. 

6.5     Future Work Items 

This section discusses several areas of future research which are related to this study. 

Generally speaking, the future work items fall into two categories: those related to resolving 
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problems with the measurement process and those concerned with further improving and 

validating the filtering process. 

6.5.1    Systematic Torque Model Testing 

A major aim of this thesis has been the inclusion of the environmental torque models in 

Euler's equations of motion. However, only the gravity-gradient model has been consistently 

included in all the test cases which have been presented in the results section of Chapter 5. The 

reasons for this include: 1) given an orbital altitude of over 1000 km, the gravity-gradient was 

assumed to be the predominant disturbance torque acting on this particular satellite, 2) the 

accuracy of the model was able to be validated by comparing the torque generated using the 

model presented in Section 2.3.4.3.1 against that produced using source code provided by Dr. 

Mark Psiaki5, 3) a direct relationship exists between the attitude of the spacecraft and magnitude 

and direction of the torque (i.e., in addition to the state vector, only a single orbital parameter is 

needed to compute the perturbation), 4) the accuracy of the other models could not be verified 

due to a lack of truth data against which to compare the results, 5) the aerodynamic and solar 

radiation models can impose a significant computational burden on the system depending on the 

level of detail included in the geometric model of the spacecraft, and 6) the magnetic, 

aerodynamic, and solar radiation torques all require a number of variables (such as the drag 

coefficient, magnetic dipole moment, and surface reflectivity) which cannot be observed through 

ground-based radar measurements and, therefore, must be assumed. Consequently, there is much 

work that could be done to systematically turn on the other three torque models which have been 

developed in order to evaluate their impact on the propagated attitude estimate. The challenge 

5 The Matlab source code, graciously provided by Dr. Mark Psiaki of Cornell University, was used to validate and 
refine the gravity-gradient torque model, state transition matrices, and numerical integration technique used in the 
BSEKF. 
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will be in the acquisition of accurate and reliable truth data against which model outputs can be 

evaluated. 

6.5.2    Cooperative/Non-cooperative Calibration Test Case 

The potential exists for coordinating with the owner/operator of a given satellite system, 

to obtain onboard attitude telemetry over the same time span as the remotely sensed attitude 

observations. The goal would be to use a satellite with known attitude time history and moment 

of inertia properties time history to calibrate the radar-based attitude determination process. Such 

a test case would provide invaluable truth data against which the results of the Lincoln Attitude 

Estimation System could be compared in order to determine the source of the error limiting the 

accuracy of the algorithm: improper filter tuning, faulty attitude measurements, imprecise torque 

models, or some combination of all the above. The calibration test case would be based on a 

spacecraft for which the following conditions could be met: 

1. Obtain an owner-operator attitude determination based on onboard sensors, making 

measurements over a predetermined time span. The inertia tensor, surface material 

properties, and dimensions of the spacecraft would also be of great value in developing 

an accurate computer model for the target. 

2. Obtain the non-cooperative attitude estimate based on the Lincoln Laboratory ground- 

based sensor measurements, image-model matching process, and the capabilities of the 

backward-smoothing extended Kaiman filter over the same time span as the reference 

attitude provided by the satellite's operators. 

While the organizational challenges in coordinating the measurement process would be 

nontrivial, it is the opinion of the author that such a test case would be well worth the effort. 

Much work has been done on the part of Dr. Paul Cefola to find a suitable satellite, whose 
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operators are willing and able to provide the requisite attitude information. Several satellites have 

been proposed the most promising of which include the Hubble Space Telescope (HST), 

RADARSAT, and ENVISAT. For an overview of each of the perspective satellite systems see 

References (57), (58), and (59), respectively. Ideally, the satellite selected for this study would 

have all the following attributes: 
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Table 6-1 Satellite Attributes for the Calibration Test Case 

Selection Criteria Ideal Attributes 

Satellite Geometry 

A large, asymmetric rigid body with several 
distinguishing features (booms and non-body- 

mounted solar arrays are preferable) and widely 
dispersed scattering centers would be helpful 
during the image-model matching process. 

Ultimately, the satellite should be large enough to 
show sufficient structure to be able to assign point 
scatterers in the image to corners of the wireframe 

model and the shape should be suitable for a unique 
assignment 

Satellite Mass Properties 

Two principal moments of inertia should be 
approximately equal to test the algorithm under the 
assumptions of a symmetric gyro on the one hand, 

but should be sufficiently different in order to 
challenge the algorithm with a satellite 

contradicting the assumption. 

Attitude Control 

Satellite should be inactive, uncontrolled, or 
otherwise not maneuvering during the imaging pass 

(passive attitude control systems are acceptable). 
The ideal target would also have minimal onboard 
thruster propellant in order to mitigate impact of 
fuel sloshing and would not use active internal 
control mechanisms such as reaction wheels. 

Operational Considerations 

The imaging opportunities should be selected on 
the basis of maximizing the amount of time in 

which the satellite is in view of the ground sensor 
and optimizing the ISAR geometry (e.g., passes 

with higher elevation angles will tend to have less 
atmospheric distortion and be easier to track). If 
possible, measurements should be collected for 

several consecutive passes. 

Orbital Properties 

A low altitude (1000 > h > 500), high inclination 
(i « 42 deg) orbit would minimize the time 

between imaging passes (short orbital period), 
maximize the time in view of the radar, and provide 

the best imaging geometry. A sun-synchronous 
orbit would be ideal since the satellite passes over 
any given point on the Earth's surface at the same 
local solar time. Additionally, a LEO satellite will 
enable the aerodynamic torque model to be more 

thoroughly tested. 

Onboard Attitude Sensors 

The array of onboard sensors that a particular 
satellite uses to determine its attitude should also be 
considered, since they will be gathering the "truth 
data" against which the non-cooperative attitude 

estimate will be judged. 
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6.5.3    Variation-of-Parameters Formulation 

This approach extends the closed-form motion propagation, used in LLMotion, to 

account for motion in the presence of disturbance torques. In addition to improving LLMotion, 

this method could also be easily integrated into a backward-smoothing extended Kaiman filter, 

since it is the dynamic equations which are being altered and not the estimation algorithm. A 

variation-of-parameters formulation represents an intermediate technique between what is done 

in the Lincoln Attitude Estimation System and LLMotion. 

The spin-precession motion parameters specify the orientation of the spacecraft body 

principal axes relative to an inertial frame in which the angular momentum vector is along the 

inertial z-axis. It is frequently more convenient to specify the orientation of the spacecraft 

relative to some other inertial frame. This is especially important if one wishes to use the 

resulting closed-form solution as the starting point for a variation-of-parameters analysis of the 

motion in the presence of torques, because the angular momentum vector is not fixed in inertial 

space when the torque does not vanish. Changing this reference system is straightforward if there 

is a convenient rule for the parameters representing the product of two successive orthogonal 

transformations. Since the quaternion composition rule is well suited to the task, the closed-form 

solution for this kinematic representation is also needed. The solution, in the axial symmetry 

case, is (60 pp. 40 - 42) 

q(t) = 

RA <7s ~<?2 Ri 

-R3 Ri Rl Rl 

<?2 -<7l R\ R3 

-Rl ~Rl -<?3 RA 

q0 (6.1) 

where 

q[ = u± cos(a) sin(/?) + u2 sin(cf) sin(/?) (6.2) 

q'2 = u2 cos(a) sin(/?) — u± sin(cf) sin(/?) (6.3) 
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q'3 = u3 cos(a) sin(/?) + sin(a) cos(/?) 

q\ = cos(a) cos(/?) — u3 sin(a) sin(/?) 

a = 2$)t 

ß = 2^ 

u = 
£ol 

Mi 

«2 
U3 

(6.4) 

(6.5) 

(6.6) 

(6.7) 

(6.8) 

In the equations above, all the constants of the motion have been reexpressed in terms of initial 

values of the quaternion components and L0, the angular momentum vector in body coordinates. 

These initial values are arbitrary (except that the sum of squares of the quaternion must be unity) 

because the inertial reference frame can be chosen subjectively. The variation-of-parameters 

formulation of attitude dynamics is a method for exploiting the torque-free solutions in the 

presence of torques. The parameters to be varied are the initial values of both the quaternion and 

the components of the angular momentum vector along the body principal axes. The forward 

solutions are equation (6.1) and 

L(t) = 
(Li)0 cos(2a) + (L2)0 sin(2a) 
(L2)o cos(2a) + (L1)0 sin(2a) 

a3)0 

(6.9) 

where a is given by equation (6.6). These are obtained by multiplying the following equations 

(<u1)0 cos(jpt) + (w2)0 sin(jpt) 

(w2)o cos(^t) - (OJ-OO sm(jpt) 

(^3)o 

O) = 

by the principal moments of inertia along the three axes. The backward solutions are obtained 

from equations (6.1) and (6.9) by interchanging L with L0 and q with q0, and changing the sign 

of t (and thus of a and /?). Differentiating the backward solutions and substituting the forward 
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equations of motion on the right-hand sides yields the variation-of-parameters equations of 

motion for the axial symmetric case (60 p. 44): 

Ro = 

0       6J3     — co2    fc*i 
—co3     0        (o1     c52 

—ai1    —(o2    ~<*>3     0 

<7o (6.11) 

i0(O = 

a + 2(l-!-ßu2N3ß 

•b-2{l-
I-ßu1N3ß 

N, 

(6.12) 

where a, ß, and u are given by equations (6.6) - (6.8); and Na, Nb, and 6> are defined by (60 pp. 

45 - 48) 

Na = Nt cos (2 a) - N2 sin (2 a) (6.13) 

Nb = N2 cos (2 a) + Nt sin (2 a) (6.14) 

O) — 

[(u3Nb - u2AT3)(l - cos(2^)) - utG - Na sm(2ß)]/L0 

[(u^s - u3Na)(l - cos(2/?)) - u2G - Nb sin(2/?)]/I0 

[(u2Na - UlNbXl - cos(2^)) - u3G - N3(sm(2ß) - (1 - /1//3)2^)]/L0 

(6.15) 

with 

G = (UlNa + u2Nb + u3N3)(2ß - sin(2^)) (6.16) 

Note that the angle ß must be expressed in radians in these equations. The variation-of- 

parameters method will be most useful if \N\t « \L\. In this case, equations (6.11) and (6.12) can 

be integrated with a large time step to find q0(t) and I0(0- The quaternion q(t) representing the 

attitude at time t, can be obtained from equations (6.1) - (6.8); the angular momentum vector 

t(t) can be found from equation (6.9) if desired. Equation (6.11) has the same structure as the 

kinematic equation for the instantaneous quaternion, equation (4.31), so any techniques used for 

solving the latter equation can also be used for the former. 
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The variation-of-parameters equations for the asymmetric case, /x =£ I2 & h, are 

significantly more complicated than the axial symmetry case, largely because of the dependence 

of a particular parameter of the Jacobian elliptic functions on the initial values of L and q. The 

extension of this approach to asymmetric spacecraft is covered extensively by the authors of 

Reference (60). 

6.5.4    Formal XELIAS/LAES Interface 

A formal interface between LAES and XELIAS is needed in order to properly visualize, 

evaluate, and correct the state estimates output by the BSEKF. As has already been mentioned, 

the current approach is to convert the BSEKF state vector for each discrete observation in the 

pass into an equivalent set of spin-precession motion parameters. Each set of parameters is then 

manually input into Interactive Motion in order to view the resulting alignment between the 

wireframe model and underlying radar image. Because, the parameters are applied to the entire 

pass, the motion solution can only be viewed for a single image at a time. Not only is this 

process incredibly inefficient, tedious, and time consuming, with no way to hold the values fixed 

over a series of images, it is very difficult to make adjustments to the measurements. A formal 

interface should, therefore, possess the following features and capabilities: 

1. Automatically pass the wireframe model, attitude measurements, and other critical filter 

inputs, contained in the iges, imagecdf, andparamcdf files, to the BSEKF. Improving the 

level of integration between the BSEKF and Satellite Tool Kit (STK), would also greatly 

enhance the ability of the analyst to quickly acquire the orbital information needed to run 

the various environmental torque models. Data handling functions can and should be 

entirely automated. 

270 



2. Discontinue the use of the eight symmetric motion parameters as the primary attitude 

representation (or allow the analyst to select the appropriate parameterization) and enable 

the XELIAS to work directly with the BSEKF state vectors. With the changes detailed in 

Section 6.4, this should be a relatively straightforward process, since the attitude 

quaternion can be easily converted into a rotation matrix using equation (A. 5) and 

applied directly to the computer generated model. 

3. A robust visualization function would allow the analyst to display a motion solution over 

one or more passes. Rather than using a single set of parameters over the entire pass, the 

BSEKF should provide XELIAS with a motioned/ file containing the attitude matrix, 

angular velocity, moment of inertia, and reference time at which this information is valid. 

In addition to displaying the wireframe model overlaid onto radar images, it would be 

useful to see the attitude depicted in terms of the quaternion or Euler angles over time as 

well. As the orientation of the model is adjusted, the attitude representation could be 

updated to reflect the correction made to the motion. Note that these plots would provide 

the analysis with an objective measure of an estimate's accuracy (similar to the predicted- 

versus-measured plots given in Chapter 5), but should not be taken as the new attitude 

measurements; to do so would be a return to the previous method of adjusting the motion 

parameters. 

6.5.5    Bistatic Radar Measurements 

The single greatest limiting factor in the non-cooperative attitude estimation problem is 

the number of measurements which can be acquired from a monostatic radar over the course a 

single pass. A bistatic or multistatic radar system consists of separately located (by a 

considerable distance) transmitting and receiving sites. Therefore, a monostatic Doppler radar 
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can be easily upgraded to a multistatic system by including additional receivers or (by use of the 

same frequency) two monostatic radars can work together like a bistatic system. Because a 

bistatic radar makes use of the forward scattering of the transmitted energy, a signal can also be 

received when the geometry of the reflecting object returns very little energy in the direction of a 

single sensor. Essentially, the larger distance between the transmitting unit and the receiving 

unit(s) results in a greater parallax. This difference in viewing geometry obtained from two 

concurrent images eliminates the ambiguity in the orientation of the radar image plane. Table 6-2 

summarizes some of the primary advantages and challenges to using multiple ground sensors. 

Table 6-2 Principal Advantages and Disadvantages of Bistatic/Multistatic Radar Systems 

Advantages Disadvantages 
Compared to the transmitting unit, the 

procurement, operations, and maintenance costs for 
receivers are minimal 

Additional cost required to provide communication 
between sites 

Receivers are relatively simple and the advent of 
GPS solves many of the synchronization and 

timing problems that have previously limited the 
performance of bistatic systems. Additionally, 
increases in signal processing power mean that 
many of the signal digitization and processing 

operations are now feasible in real time. 

Increased system complexity with multiple 
receivers 

Receivers are mobile and can, therefore, be 
repositioned in order to maximize the viewing 

geometry based on the satellite's orbit 
Harder to deploy/implement 

Possible enhanced radar cross section of the target 
due to geometrical effects 

Reduced low-level coverage due to the need for 
line of sight from several locations 

Greater apparent difference in the orientation of a 
satellite viewed along two different lines of sight 

A limiting case of the bistatic geometry occurs 
when the target lies on the transmitter-receiver 

baseline 
Multiple radar images at each discrete time result in 

an overdetermined system (more equations than 
unknowns), reducing uncertainty in the 

measurements 

The technology is still relatively immature and, 
thus, requires a larger research and development 

effort 

The current approach attempts to solve for six degrees of freedom using a single two- 

dimensional radar image, which provides only four measurements. In the stereoscopic approach, 

however, two radar images with substantially different radar lines of sight could be used to 
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obtain eight independent measurements for each discrete observation time. The general 

measurement procedure begins by displaying each set of radar images next to one another and 

projecting the wireframe model simultaneously into the two radar image planes. During the 

image-model matching process, the analyst would then rotate and translate the model in order to 

align it with both images. Manipulating the wireframe projected onto one image plane results in 

a corresponding change in the model overlaid onto the other image. Similarly, a change in the 

cross-range scaling would impact both images equally. In this manner, the attitude and angular 

velocity of the spacecraft could be uniquely determined for each discrete time in the pass (i.e., 

there is no longer an uncertainty in these values about the RLOS). For details on bistatic radar 

systems and a list of relevant equations see Reference (61). 

6.5.6 Computer Aided Image-Model Matching 

References (33) and (34), describe how to constrain the rotation of a faceted three- 

dimensional object about a fixed axis to fit a desired extent in a particular direction. The 

algorithm described in these two articles, could be used as the starting point for partially 

automating the image-model matching process. The intent in developing and implementing such 

a program would be to: 1) reduce the amount of time needed to obtain accurate attitude 

measurements and 2) help resolve sources of error related to limitations in human perception and 

motor control. The computer aided measurement procedure currently envisioned would work in 

the following manner: 

1.   A bounding box is sized by the analyst expressing the maximum range and cross-range 

extents of the three-dimensional satellite projected into the two-dimensional radar image 

plane (see Figure 6.1). 
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2. Obtain a "coarse match" by having the analyst quickly translate and rotate the wireframe 

model to roughly align it with the image. The most time consuming part of the process is 

the series of fine manipulations needed to achieve a precise match between the model and 

underlying image; it is this activity which will be performed by the computer. One of the 

most challenging aspects of this problem will be to balance computation time and 

accuracy against what can be already be done by a well trained operator (the program is 

of little value if it does not reduce the time and effort required to make attitude 

measurements). A well designed graphical user interface (GUI) will be needed in order to 

make this both an efficient and effective tool. 

3. Set the parameter step size and search range. In a manner similar to what is currently 

being done by the Dynamic Hill Climbing algorithm in LLMotion, the search space could 

be partitioned into smaller subspaces based on the initial range of values input by the 

analyst. The computer would then take over and use a brute force method to 

systematically vary the orientation of the wireframe model to find the projection which 

best fits within the bounding box. Parallel processing using the Lincoln Laboratory Grid 

(LLGrid) should be considered for this task. Once the search space has been gridded, 

each piece can be passed to a separate computer which would then increment and 

compare all the combinations of Euler angles within its particular subspace. Once all the 

perspective solutions have been aggregated, a final cost comparison could be preformed 

and the proper attitude selected/displayed. 

4. Essentially, the algorithm examines ranges of angles resulting in distinct pairs of extreme 

vertices v+ and v~. The key is to observe that one only needs to consider the vertices on 

the boundary of the model's convex hull. The cost function penalizes attitude estimates 
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(i.e., combinations of Euler angles) which result in a model projection whose extreme 

vertices (i.e., the max(±x) and max(±y) coordinate values) are further from the 

measured maximum extent. In the end, the goal is to minimize the distance of the 

extreme vertices from the constraining perimeter. 

5. As a final note, the algorithm should be designed so that a change in the cross-range 

scaling automatically resizes the bounding box, to prevent the analyst from having to 

manually redraw the perimeter after each scaling adjustment. 

Figure 6.1 Partial Automation of the Measurement Process Using Bounding Boxes 
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6.5.7    Tomasi-Kanade Factorization Method 

Inferring scene geometry and satellite motion from a stream of radar images is possible, 

but is an ill-conditioned problem (sensitive to noise) when the targets are distant with respect to 

their size. In Reference (62), the authors develop a factorization method that can overcome this 

difficulty by recovering shape and motion under orthography without computing depth as an 

intermediate step. In the Tomasi-Kanade Factorization Method, an image sequence is 

represented as a 2F x P measurement matrix Y, which is made up of the horizontal and vertical 

coordinates of P points tracked through F frames. If image coordinates are measured with respect 

to their centroid, it can be shown that under orthographic projection, the measurement matrix is 

of rank 3. This is known as the rank theorem and enables the matrix Y to be factored into the 

product of two matrices R and 5 (62 p. 137). Here, R is a 2F x 3 matrix that represents the target's 

rotation, and 5 is a 3 x P matrix that represents the shape in a coordinate system attached to the 

to the object centroid. The two components of the target's translation in the radar image plane 

are computed as averages of the rows of Y. When features appear and disappear in the image 

sequence because of occlusions or tracking failures, the resulting measurement matrix Y is only 

partially filled in. The factorization method can handle this situation by growing a partial 

solution obtained from an initial full submatrix into a complete solution with an iterative 

procedure (62 p. 137). As a side note: when the measurement points are selected using the axes of 

the wireframe model, even if a particular feature is obscured/absent in a particular image (or 

series of images), there should be no holes in the matrix. 

The rank theorem captures precisely the nature of the redundancy that exists in an image 

sequence, and permits a large number of points and frames to be processed in a conceptually 

simple and computationally efficient way to reduce the effects of noise. The resulting algorithm 
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is based on singular-value decomposition [Matlab function svd\, which is numerically well 

behaved and stable. The robustness of the recovery algorithm in turn enables one to use an image 

sequence with a very short interval between frames (an image stream), which makes feature 

tracking relatively simple and the assumption of orthography easier to approximate (62 p. 138). 

For the further information on the method and the specific equations needed to implement the 

algorithm, see References (62), (63), and (64). 
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7      Appendix A 

Convert from Euler Angles to a Rotation Matrix (6 p. 24 & 32) 

Ä123GM.0) = fi1(V)fi2(ö)Ä3(0) 

cos(0)      sin(0)    0 
- sin(0)    cos(0)    0 

0 0 1 

cos(0)    0 - sin(0) •1 0 0 
0        1 0 0 COS(0) sin(0) 

sin(0)    0 cos(0) . 0 — sin(0) cos(0) 

cos(0) cos(0) sin(0) cos(0) — sin(0) 
cos(0) sin(0) sin(0) - sin(0) cos(0)    sin(0) sin(0) sin(0) + cos(0) cos(0)    cos(0) sin(0) 
cos(0) sin(0) cos(0) + sin(0) sin(0)    sin(0) sin(0) cos(0) — cos(0) sin(0)    cos(0) cos(0) 

(A.1) 

fi313(0,0,0) = Ä3^)Ä1(0)fi3(0) 

1 0 0 " cos (0) sin (0) 0 1 0 0 
0 cos (0) sin (0) -sin (0) cos (0) 0 0 COS (0) sin (0) 
0 -sin (0) cos (0). 0 0 1. .0 —sin (0) COS (0) 

cos(0) cos(0) — sin(0) cos(0) sin(0)       sin(0) cos(0) + cos(0) cos(0) sin(0)      sin(0) sin(0) 
— cos(0) sin(0) — sin(0) cos(0) cos(0)    — sin(0) sin(0) + cos(0) cos(0) cos(0)    sin(0) cos(0) 

sin(0) sin(0) — cos(0) sin(0) cos(0) 

Convert from Euler Angles to a Quaternion (6 p. 24 & 32) 

q123 (0,0,0) = 

9r 
92 
93 
-94- 123 

q313 (0,0,0) = 

•<7i- 

92 
93 
-94- 313 

cos (0/2)cos (0/2)sin (0/2) - sin (0/2)sin (0/2)cos (0/2) 
cos (0/2)sin (0/2)cos (0/2) + sin (0/2)cos (0/2)sin (0/2) 
sin (0/2)cos (0/2)cos (0/2) - cos (0/2)sin (0/2)sin (0/2) 
cos (0/2)cos (0/2)cos (0/2) - sin (0/2)sin (0/2)sin (0/2). 

cos(0/2)sin(0/2)cos(0/2) + sin(0/2)sin(0/2)sin(0/2) 
sin(0/2)sin(0/2)cos(0/2) - cos(0/2)sin(0/2)sin(0/2) 
sin(0/2)cos(0/2)cos(0/2) + cos(0/2)cos(0/2)sin(0/2) 
cos(0/2)cos(0/2)cos(0/2) - sin(0/2)cos(0/2)sin(0/2) 

Convert from a Quaternion to a Rotation Matrix (6 p. 14) 

Rq(q) = (9l - Iql2)l4x4 + 2qqr - 2q4[q x] 

(A. 2) 

(A. 3) 

(A. 4) 

91-92-93+94        2(<?1q2 + <73<?4) 

2(9i92 - 9394)      -9i +92-93+94 
2(9i9s + q2qA) 2(q2q3 - q±q4) 

2(9i9s - 9294) 

2(9293 + 9i94) 

-9i - 9f + 9I + 94 
(A 5) 
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Convert from a Quaternion to Euler Angles (6 p. 24 & 32) 

#123 (?) = 

123 

atan2(2(q1q2 + <73<74).<7i ~ vi ~ li + ll) 
-asm(2(q1qz-q2qAj) 

atan2(2(q2q3 + q^), -q£ -q2+ql + ?l) 

'313 (q) = 
0 
0 

313 

atan2(2(q1q3 + <72q4), 2(-q'2q3 + ^I^)) 

acos(-^ -ql + ql + ql) 

atan2(2(q1q3 - q2q4),2(q2q3 + <7i<74)) 

Convert from a Rotation Matrix to Euler Angles (6 p. 24 & 32) 

£ 123 («123 GM,0)) = 
123 

atan2Cri2.ru) 
- asin(r13) 

atan2(r23,r33) 

* 313 (*313 (0.0,0)) = 

0 
0 
0J 313 

atan2(r31,-r32) 
acos(r33) 

atan2(r13,r23) 

Convert from a Rotation Matrix to a Quaternion (6 p. 15) 

If r22 < -r33 and rlt > r22 and rxl > r33 

«7 = 

r<7ii 
^2 

<73 
Lq4J 

If r22 > r33 and rlx < r22 and rxl < -r33 

q = 

r?2i 
<h 
<?3 

lq4\ 

-y/1 + rlx     r22     r33 

1 
TI-(r12+r2l) \qx 

1 
7— (r3i+r13) 

1 
T~~ (r23 — r32) 4(7X 

rl 
oV ^       rH ~*~ r22       r33 

1 
TT-(r12+^2l) 
4^2 

1 
T~~(r23 + r32) 
4<?2 

1 
7— (r3i-r13) 
4q2 

If r22 < r33 and r1± < -r22 and rlx < r33 

(A. 6) 

(A. 7) 

(A. 8) 

(A 9) 

(A. 10) 

(A. 11) 
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Q = 

\qs] 
Qi 
<?2 

lq4\ 

2 V^ _ rH ~ r22 + r33 
1 

T7-(r31+r13) 
4<73 

1 
T~~(r23 + r32) 
4<73 

If r22 > —^"33 and rlt > —r22 and rxl > —r33 

4?: 
•0i2-*2i) 

(A. 12) 

9 = 

r?4i 
<h 
92 

U3J 

-Vl + r11 + r22 + r33 

1 
TZ-^r23 — r32) 

T— fai - r13) 4q4 

1 
T— (ri2 - r2i) 4q4 

Intra-Euler Angle Conversion (6 pp. 13 -14) 

^123(^313(^.0,0)) = 

123 

(A. 13) 

atan2(cos(0) cos(ö) sin(i/0 + sin(0) cos(jp), — sin(0) cos(ö) sin(i//) + cos(0) cos(i//)) 

—asin(sin(0) sin(^)) 

atan2(sin(0) COS(J/0, cos(0)) 

(A. 14) 

^313(^123(^,0,0)) = 

313 

atan2(cos(0) sin(0) cos(i//) + sin(0) sin(i/>), — sin(0) sin(ö) cosO/0 + cos(0) sin(i/>)) 
acos(cos(0) cos(i/))) 

atan2(— sin(ö), cos(ö) sin(i/>)) 

Convert from Euler Angle Rates to an Angular Velocity (6 p. 24 & 32) 

(A. 15) 

<Ws(£'l23) - 

^B^is) - 

ü)1 

0)3 

co1 

^3 

1 0 -sin(Ö) 

0     cos(i//) cos(ö) sin(t/)) 

0 — sin(0) cos(0) COS(T//) 

0     cos(i/>) sin(ö) sin(i/>) 

0 — sin(i/0 sin(ö) cos(jp) 

1 0 cos(ö) 

123 

(A 16) 

(A. 17) 

313 
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Convert from an Angular Velocity to Euler Angle Rates (6 p. 24 & 32) 

1 
EI23(.°>B) - 

^31-iiMB) — 

6 
L0J 

cos(0) 
123 

cos(ö)    sin(ö) sin(i/»)      sin(ö) cos(xfj) 
0        cos(0) cos(i//)    — cos(0) sin(^) 
0 sin(i//) cos(i/)) 

sin(0) 
313 

— cos(ö) sin(i/>)     cos(ö) cos(xp)     sin(ö) 
sin(ö) cos(i/;)      — sin(ö) sinO/0        0 

sin(i/>) cos(if)) 0 

(x)1 

(03 

ü)2 

(ü3 

(A. 18) 

(A. 19) 

Convert from Quaternion Rates to an Angular Velocity (6 p. 16) 

6>7(<jf) = 

6>! 

0)3 

= 2 
94  -9s  92  ~9! 

93 94 ~9i -92 
-92 9i 94 -q3 

(oB(q) = 
(01 

0)2 

0) 

= 2 
3Jß 

94 93 -92 ~9! 

"93 94 9i —q2 

92 —9i 94 -q3 

9i 

92 

93 

94 

9i 

92 

93 

L94 

(A. 20) 

(A 21) 

Convert from Angular Velocity and the unit quaternion to the quaternion rates (6 p. 16) 

qf(ft);) = 

q(ü)B) = 

9i 

92 

93 

94- 

1 

~ 2 

94  -93  92 

9s 94 -9i 

-92 9i 94 

-9i" 

-92 

-93- 

T 

(02 

.^3. 

9i" 

92 

93 

94- 

1 

~ 2 

"94  9s  -92 

-93 94 9i 

.92 ~9i 94 

-9i 

-92 

-93. 

T 

0)2 

A>3. 

(A. 22) 

(A. 23) 

The Derivatives of the Rotation Matrix with Respect to the Euler Angles (6 p. 24 & 32) 

d^!23 

d(p 

0 0 0 
cos(0) sin(ö) cosO/0 + sin(0) sin(t/>)       cos(0) sin(ö) sin(*/0 — sin(0) COS(I/J)       cos(0) cos(0) 

— sin(0) sin(0) cos(ip) + cos(0) sinO//)    — sin(0) sin(ö) sm(ip) — cos(0) cos(i/>)    — sin(0) cos(ö) 

dR 123 

de 

— sin(ö) cos(xp) — sin(ö) sin(xp) 
sin(0) cos(ö) cos(i/>)    sin(0) cos(ö) sin(i//) 
cos(0) cos(ö) cos(i/>)    cos(0) cos(ö) sin(i/>) 

-cos(ö) 
— sin(0) sin(ö) 
— cos(0) sin(ö) 

(A. 24) 

(A. 25) 
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dR 123 

dip 

— cos(ö) sin(i/>) cos(0) cos(^) 0 
• sin(0) sin(ö) sin(i/>) — cos(0) COS(T//)    sin(0) sin(ö) cos(xp) — cos(0) sin(i/>)    0 
cos(0) sin(ö) sinO/0 + sin(0) cos(i/0    cos(0) sin(0) cos(ip) + sin(0) sin(i/>)    0 

(A. 26) 

dR 313 

a^ 

— cos(0) sin(i/>) — sin(0) cos(ö) cos(xp) 
— cos(0) cos(^) + sin(0) cos(ö) sin(i/>) 

0 

— sin(0) sin(^) + cos(0) cos(ö) cos(xp)     sin(i//) cos(0) 
— sin(0) cos(t/0 — cos(0) cos(ö) sin(i/i)    — sin(i//) sin(0) 

0 0 

dR 313 

90 

sin(0) sin(ö) sin(i/0 
sin(0) sin(ö) cos(xp) 

sin(0) cos(ö) 

— cos(0) sin(ö) sinO/0    cos(ö) sin(i/>) 
— cos(0) sin(ö) cos(xp)    cos(0) cos(t/>) 

— cos(0) cos(ö) — sin(ö) 

(A. 27) 

(A. 28) 

dR 313 

3tf» 

- sin(0) COS(T//) — cos(0) cos(0) sin(i/>)      cos(0) cos(jp) — sin(0) cos(ö) sin(i//)      0 
sin(0) sinO/>) — cos(0) cos(ö) cos(ip)      — cos(0) sin(^) — sin(0) cos(0) cosO/>)    0 

cos(0) sin(ö) sin(0) sin(ö) 0 
(A. 29) 

The Derivatives of the Rotation Matrix with Respect to the Elements of the Quaternion (6 p. 

15) 

an \Ri      92       93 
(A. 30) 

(A. 31) 

dRa 
dq1 

"9i      92       9s " 
92    ~9i      94 

L93    -94    ~9iJ 

9Rq 

dq2 

-92    9i    -94" 
9i      92      93 

L 94      93    -92J 

dRq 

TA=2 

dq3 

-93      94     9i" 
- 94       -9s     92 

9i       92      93 J 

dRq 
TA=2 
dq4 

94       93       -92" 
-93      94       9i 

92    -9i      94 J 

(A. 32) 

(A. 33) 
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The Derivatives of the Euler Angles with Respect to the Elements of the Quaternion (6) 

d(p \   -<72 

ql + ql 
<7i q4 -q-i i 

ql + ql. dq ql + ql ql + ql 
(A. 34) 

dd 

dq~ 

Vl " 2ql(qj - ql - ql) + 2q\{q\ + ql) - 2qf(q|) - (<rf + ql + q| + qf) 
[<?i   qi   -q-i   -q*\ 
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(A. 35) 

dx/j r   qz -qi 

ql + ql 

<?4 -93     I 

ql + ql. ~äq~ ql + ql ql + ql 
(A. 36) 



8       Appendix B 

Day of the Year: (3 p. 191) 

Table B-l Day Numbers 

Month Days of the Year (Leap-Year Values) 
January 1-31 Day 

February 32 - 59 (32 - 60) Day+ 31 
March 60-90(61-91) Day + 59 (60) 
April 91-120(92-121) Day+ 90 (91) 
May 121-151 (122-152) Day+120 (121) 
June 152-181(153-182) Day+151(152) 
July 182-212(183-213) Day+181(182) 

August 213-243(214-244) Day+ 212 (213) 
September 244 - 273 (245 - 274) Day + 243 (244) 

October 274 - 304 (275 - 305) Day + 273 (274) 
November 305-334(306-335) Day + 304 (305) 
December 335-365(336-366) Day + 334 (335) 

Julian Date: (3 p. 189) 

JD = 367(year) - int 

/ ( 7 I year + intI 
month + 9s 

"12       , 

+ 
/(second/60) + minute\     , 
V 60 j 

24 

+ int f —  ) + day + 1721013.5 

(B.l) 

The int relation denotes real truncation (remove decimal values or round towards zero) 

Joint Probability: 

The joint probability density function /, cumulative distribution function F, and joint 

probability element for a continuous random vector composed of random elements X and Y, are 

given by the set of equations: 

dFlY{x,y) 
fx,r(x,y) = 

dxdy 

Fxyix.y) = PiX ^ x,Y < y) = I   I fXY(x,y)dxdy 

(B.2) 

(B.3) 
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•pipe < X < x + dx,y <Y < y + dy) = fx,Y(x,y)dxdy (B. 4) 

Marginal Probability: 

Determining the probability behavior of one random variable, given the joint probability 

behavior of two, is then done by means of the following: 

fxto = f fXiY(x,y)dy (B.5) 

FxOO = Fx(x, oo) = p(X < x) = j fx{x)dy (B. 6) 

fr(y) = j fx,yix,y)dx (B. 7) 

FY(y) = FY(oo, y)=p(y<y) = j fY(y)dx (B. 8) 

Hence, the marginal density function of a random variable is obtained from the joint density 

function by integrating over the unwanted variable. 

Conditional Probability: 

Bayes' Formula offers a way to specify the probability density of the random variable X 

given random variable Y and is given as 

, , .     fxx(x,y)     f(y\x=x)(y)fxM 
fwr-fito = -J^- = JM  (B. 9) 

/cm=,)(y) - -j^y- j^  (B. io) 

LLMotion Transformations: (32 pp. B-l - B-13) 

The first three rotation matrices convert the body axes to precession axes 

Rx((P)Ry(e-^)Rz(jP) (B.ll) 

where 4>, 6, and xp are the precession, coning, and spin angles, respectively, and are a function of 

the satellite precession rate (0), spin rate (ip), x-initial (0O)> z-initial (ip0), observation time (t£), 

and reference time (t0) and are given by: 
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0 = 0(At) + 0o (B. 12) 

0 = 0O (B.13) 

xlj = iP(At)+*Po (B.14) 

At = tt - t0 (B. 15) 

The conversion from the precession system to an inertial frame is performed by two more 

rotations, involving the right ascension (a) and declination (5) angles: 

Ry(a)Rz(S) (B.16) 

For  a dynamic  radar line  of sight,  transformation to  a radar oriented  system is 

accomplished using the following four matrices: 

Rz(El(tO)Rx(Az(tO)Rz(-(p)Ry(-Ä(tO) (B. 17) 

Where Az and El are the azimuth and elevation angles of the RLOS, q> is the latitude of the 

sensor and Ä is the sum of the radar longitude, the right ascension of Greenwich at t0, and the 

rotation of the Earth since the reference time (tt — t0). Finally, in order to rotate the body vector 

into the radar image system requires two additional matrices given by: 

Ry(£(t,))Äy(7?(ti)) (B. 18) 

where 

,                    (Az cos(£7)\ f  ,  .N 
V(tt) = - atan   ^    => Ry^i.^)) = — V 7 J( 

El 0    -Äzcosißl) 
0 10 

Äzcos(El)    0 El \(Äzcos(EQ)   +(El) 

(B.19) 
and 

s(tj) = - atan (—) (B.20) 
\ozJ 

The  total  transformation  matrix  T  and  the   instantaneous   angular  velocity  vector  wcalc 

corresponding to the series of transformations and satellite spin/precession vector are: 

T = ßy(£(t))Äy(r7(t))Äz(£'/(t))Äz(/lz(t))ßz(-(p)Ry(-A)Ry(a)ßz(ö)fix(0)/?y(0 - n/2)Rz(iP) 
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(B.21) 

<>>caic = Ry(e(t))Ry(r](f)) Rz{El{t))Rx{Az{t))Rz{-(p)Ry{-X)Ry{a)Rz{S)Rx{4>)Ry (d -|) 

+ Rz(El(t))Rx(Az(t))Rz(-<p)Ry(-X)Ry(a)Rz(Ö) 

+ Rz(EKt))Rx{Az(tj)Rz(-<p) 
0 

+ Rz{El(t)) 

"0 
0 
0 

iz °1 
0 + 0 
0 .Eli 

(B.22) 

where E is the Earth's rotation rate, Äz is the azimuth rate, and El is the elevation rate. The total 

angular velocity for general spin/precession motion in the ECI coordinate system / and satellite 

body coordinate system B are given by 

6>7 = RJa)Rz(S) I 
0 
0 

LO 

+ Rx(<P)Ry(9-n/2)Rz(xp) (B.23) 

and 

a>B = Rz(xP)TRJe - TT/2)
7 

"0 o- 
0 + 0 

-0- .^ 
(B. 24) 

respectively. 

Angular Velocity Measurement in the Lincoln Attitude Estimation System 

Recall that the image scale factor s, measured by the analyst, is a correction to the 

magnitude of the z component of the instantaneous angular velocity of the spacecraft. Because 

the direction of the vector is unchanged, the orientation of the image plane and spacecraft are 

unaffected; rather, it is the rate components which are being adjusted. The scaling values 

obtained from image-matching process can be recovered from the paramcdf file generated by 

XELIAS and used to correct the baseline motion. The new angular velocity value could then be 

used as an auxiliary or alternate measurement model in the backward-smoothing extended 

Kaiman filter. 
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Image Plane Mewed Edse On 

\J«Ui!r= ,       KMJ 

total 

Figure B.l Angular velocity correction geometry 

Recall from the image plane geometry presented in Section 2.1, that the total angular velocity of 

the system is composed of components related to the rotation of the vehicle a>sat and values 

connected to the orbital motion of the spacecraft relative to the ground sensor tM>orbit. The 

corrected angular velocity of the satellite is denoted by ca'sat and can be decomposed into in- 

plane and out-of-plane components according to the equation: 

(B.25) 

Combining equation (B. 25) with the definition of the total angular velocity yields the following 

set of relationships: 

tfotal = "Lt = "Tat (B-26) 

U'sat - ^sat + wIat 

total — *"sat "T" "'orbit 

z,    _ Mtotal 
'"sat —      ~ ("orbit 

(B. 27) 

(B.28) 

Since the baseline motion solution is what is being corrected in this procedure, <i>base is 

equivalent to the initial angular velocity of the satellite <usat. Inserting equation (B. 27) into 

(B. 28) and substituting the result, along with equation (B. 26), into equation (B. 25) produces: 
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(»sat ~ (»base + 
(»base + (»orbit 

] - (»orbit = (»läse + ~ ((»base) + \~~) <°orbit      ^ ^ 

where o)orbit is the constant angular velocity due to the trajectory of the satellite and is 

perpendicular to the RLOS. Additionally, tobase and oiybase are the components of the baseline 

angular velocity vector oibase that are perpendicular and parallel to the radar line of sight, 

respectively. These values can also be written as: 

O) y     _ 
base = C 0) base Py)P> 

z          y 
(»base — (»base ~ (»base 

(»orbit 
\^sat     ^sensor) * P3 

Krsat      r: sat      *sensor 

(B.30) 

(B.31) 

(B.32) 

(»base ~ <PLbase + 'MbaseO <3) (B- 33) 

Substituting equations (B.30) - (B.33) in to equation (B.29) yields the final corrected angular 

velocity vector in body-fixed coordinates: 

(»sat = ([4>Lbase + *Möase(:»3)] - Py)Py 

+ -[[(Phase + TpAbase(: ,3)] - {[4>lbase + Mb aseC <3)] ' Py)Py] 

<rr) 
(ysat - ^sensor) X Py 

\Vsat ~ ^sensor) 
. Py 

(B.34) 

Measured: [v]t = STRT
align[v]B 

(»vneas ~ (»base/s 

Calculated: [v]£ = S'T'[v]B 

The matrix 5 applies a scaling factor to the cross-range component to allow for error in the 

nominal angular velocity used in generating the image. 5 and 5' are therefore a function of the 

motion parameters and the nominal angular velocity |o)fase| 

290 



s    0    0 s'   0   0 
0    10 and S' = 0    10 
0   0    1. .0    0    1- 

5 = 

where s is the scale factor measured by the analyst during the image-model matching process 

(recorded by XELIAS in theparamcdf file) and s' — Wlaic\/\0)lase\ 
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Appendix C - Algorithm Setup Procedures 

File Types: 

The paramcdf files contain the analyst measurements for each image in the imagecdf file; the 

motioned/Tile, stores the motion profiles for the satellite; and the iges file, contains a description 

of the 3D structure of the satellite for computer graphics rendering and software manipulation. 

Table C-l XELIAS File Variables 

Name Symbol Location Description 

motion ref time to motioned/ 
Reference time of motion (seconds since 01 

Jan 1970) 

rightascension a motioned/ 
Right ascension of the angular momentum 

axis (degrees) 

declination S motioned/ 
Declination of the angular momentum axis 

(degrees) 

zinit 0o motioned/ 
Initial precession angle of spin axis about 

angular momentum axis (degrees) 
coning angle e motioncdf Coning angle (degrees) 

precession_rate 0 motioned/ Precession rate (degrees/sec) 
xinit 0o motioned/ Initial angle about the spin axis (degrees) 

spin rate 0 motioned/ Spin rate (degrees/sec) 

longitude Ä imagecdf Longitude of the radar sensor (degrees) 
latitude <p imagecdf Latitude of the radar sensor (degrees) 
height h imagecdf Altitude of the radar sensor (meters) 

pass date d0 imagecdf Date of pass (seconds since 01 Jan 1970 
start time tt imagecdf Start time of image (seconds) 
stoptime if imagecdf Stop time of image (seconds) 
x scale xs imagecdf Doppler to meter conversion 
range P imagecdf Range (meters) 

azimuth Az imagecdf Azimuth (degrees) 
elevation El imagecdf Elevation (degrees) 

range rate P imagecdf Range rate (meters/sec) 
azimuth rate ÄZ imagecdf Azimuth rate (degrees/sec) 
elevation rate El imagecdf Elevation rate (degrees/sec) 

im xscale s paramcdf Cross-range scale factor 
ms number Vn paramcdf Number of measurement points in image 
ms xcoord yx paramcdf x coordinate of measurement point (Hertz) 
ms_ycoord yv 

paramcdf y coordinate of measurement point (meters) 
wf xrotate 0 paramcdf x rotation of wireframe model (degrees) 
wf_yrotate e paramcdf y rotation of wireframe model (degrees) 
wf zrotate 0 paramcdf z rotation of wireframe model (degrees) 
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vertices V iges Vertex coordinates of the wireframe model 

faces f iges 
Order in which the vertices should be 

connected to create planar triangular facets 

Saving and Formatting Measurement Times 
1. Select Images from Database 

a. Enter the Satellite's Object Number and Check the Box that Filters the Images 
Based on this Criterion 

b. Select a Pass Number 
2. Fit Wireframe Model to Images 
3. Jump to Data Handling 
4. Save Image Subset as DDMMYYimages.imagecdf 
5. ncdump DDMMYYimages.imagecdf | head -n 2000 | parse_times.pl > TIMES.txt 

Saving Radar Images, Wireframe Models, and Motion Parameters 
1. Select Images from Database 

a. Enter the Satellite's Object Number and Check the Box that Filters the Images 
Based on this Criterion 

b. Select a Pass Number 
2. Fit Wireframe Model to Images 
3. Jump to Data Handling 
4. Under the Save Heading, Select Data Set Files 
5. Select the "File" tab at the top of the "Data Handling" menu 
6. Check the "Select for Save" boxes on the right hand side of the "Data Handling" menu 

for "Model..." 
7. Enter in a save path: /h/account name/DDMMYYBSEKFI... 
8. Save the wireframe model as: /model name.iges 
9. Push the "Save" button at the bottom of the "Data Handling" menu 
10. Under the "Save" heading, select "Image Subset" 
11. Select the "File" tab at the top of the "Data Handling" menu 
12. Check the "Select for Save" boxes on the right hand side of the "Data Handling" menu 

for "Image..." and "Param..." 
13. Enter in a save path: fh/account name/directory name/... 
14. Save the images as: IDDMMMYY_ images.imagecdf 
15. Save the parameters as: IDDMMYY_param.paramcdf 
16. Push the "Save Subset" button at the bottom of the "Data Handling" menu 

Recovering and Parsing Files 
1. Open unix shell 
2. cd h/account name/DDMMMYY BSEKF 
3. ncdump DDMMMYYjparam .paramcdf | parsemeasurements .pi > EA_ OBS. txt 
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Transferring and Accessing Information Over the Network 

Windows Machine 
1. Start 
2. Run 
3. Wsweepea 
4. Enter 
5. .. .\homes\account name\DDMMMYY_BSEKF 
6. Place STK files into the folder 

SGI Machine 
7. Open unix shell 
8. cd h/account name/DDMMMYYBSEKF 
9. parse_stk_dates.pl < DDMMMYYcoe. txt > COE. txt 
10. parse_stk_dates.pl < DDMMMYY_sun_int.txt > SUN INT.txt 
11. parse_stk_dates.pl < DDMMMYY_llr.txt > LLR.txt 
12. parse_stk_dates.pl < DDMMMYY_sun_r.txt > SUN R.txt 
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10     Appendix D - Matlab Source Code 

This Appendix provides the Matlab source code for the main backward-smoothing 

extended Kaiman filter (BSEKF) function. In the interest of space, the numerous sub-functions 

which comprise the dynamics and measurement models are omitted from the text, but included 

in the CD attached to the back cover of this thesis. 

%% LINCOLN ATTITUDE ESTIMATION SYSTEM (LAES) - MATLAB CODE %% 
%%%2LT KYLE VOLPE 
%%%MIT LINCOLN LABORATORY 
%%%MIT DEPARTMENT OF AERONAUTICS AND ASTRONAUTICS 
%%%UNITED STATES AIR FORCE 

%% INPUT FILES: 
%TIMES.txt - Measurement Times File [XELIAS] 
%EA_OBS.txt - Deviation Measurements File [XELIAS] 
%M_PARAM.txt - Baseline Motion Parameters File [XELIAS/Interactive Motion] 
%COE.txt - Classical Orbital Elements File [STK] 
%LLR.txt - Latitude/Longitude/Range File [STK] 
%SAT_RV.txt - Satellite Position and Velocity File [STK] 
%SUN_R.txt - Sun Position File [STK] 
%SUN_INT.txt - Solar Intensity File [STK] 
%B_FIELD.txt - Magnetic Field File [NOAA] 
%A_DENSITY.txt - Atmospheric Density File [NRLMSISE-00] 
%EARTH_R.txt - Earth Position File [NASA/JPL - HORIZONS] 

%% OUTPUT FILES: 
%run_time.txt 
%state.txt 
%covarience.txt 
%q_error.txt 
%ea_error.txt 
Iparameters.txt 

%% INTERNAL FUNCTIONS: 
%m_times 
%ob_times 
%xdot 
%ydot 
%qdot 
%wdot 
%idot 
%ndot 
%adot 
%a_dot 
%n_dot 
%t_dot 
%xpg_dot 
%xpg_int 
%xpg_pro 
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%ypro 
%xpro 
%qpro 
%q_enforce 
%n_param 
%m_param 
%f_model 
%h_model 
%p_model 
%torque 
%i_cache 
%j_cost 
%b_motion 
%initial_xp 
%eaobs 

J. o. 
o o 

%JCOST = Current Cost Function 
%jcost = Previous Cost Function 
%J_pn = Process Noise Subcost 
%J_mn = Measurement Noise Subcost 
%J_x = State Noise Subcost 
%JAPPROX = Current Linearized Prediction of the Cost 
%japprox = Previous Linearized Prediction of the Cost 
%J_eps = Cost Function Epsilon Value 
%q = Attitude Quaternion Vector 
%w = Angular Velocity Vector 
%I = Moment of Inertia Parameter Vector 
%A = A(q) = Quaternion Rotation Matrix 
%W = Angular Velocity Matrix 
%MoI = Inertia Tensor 
%N = Environmental Torques Vector (Body Referenced Accelerations) 
%EA = Euler Angle Matrix 
%t = Observation Time Vector [CACHE] 
%x = f(x,w) = Predicted State Vector at the Current Gauss-Newton Iteration 
(j)[CACHE] 
%xj = Predicted State Vector at the Next Gauss-Newton Iteration (j + 1) [CACHE] 
%xhat = Modified State Vector Used in the Ordinary Differential Equation 45 
%y = Measurement Vector [CACHE] 
%yhat = h(x) = Predicted Measurement Vector [CACHE] 
%w_pn = Process Noise Vector at the Current Gauss-Newton Iteration (j)[CACHE] 
%wj_pn = Process Noise Vector at the Next Gauss-Newton Iteration (j+1)[CACHE] 
%v_mn = dy = delta y = Measurement Noise Vector [CACHE] 
%xhatstar = Updated State Estimate for the Cost Function 
%Pstar = Updated State Estimation Error Covariance Matrix for the Cost 
Function 
%xdot = f(x,t) = Dynamics Function/State Propagator 
%qdot = Kinematics Equation [Time Dependent Quaternion d/dt(q)] 
%wdot = Dynamics Equation [Time Dependent Angular Velocity d/dt(w)] 
%TIME = Predicted Time Vector [T_ic to T_ic+1] 
%X = Predicted State Matrix at the Current Gauss-Newton Iteration (j) [X_ic 
to X_ic+1] 
%XJ = Predicted State Matrix at the Next Gauss-Newton Iteration (j+1) [XJ_ic 
to XJ_ic+l] 
%PHI = df/dx = Linearized Dynamics Matrix [State Jacobian] 
%GAMMA = df/dw_pn = Linearized Dynamics Matrix [Process Noise Jacobian] 
%H = dh/dx = Linearized Measurement Matrix [Measurement Jacobian] 
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%phi = df/dx = State Transition Matrix [CACHE] 
Igamma = df/dw_pn = Process Noise Transition Matrix [CACHE] 
%h = dh/dx = Measurement Transition Matrix [CACHE] 
%R = Measurement Noise Covariance Matrix 
%Q = Process Noise Covariance Matrix 
%P = State Error Covariance Matrix 
%Rvv = Square Root Information Matrix Associated with the Measurement Noise 
(v_mn) 
%Rww = Square Root Information Matrix Associated with the Process Noise 
(w_pn) 
%Rxx = Square Root Information Matrix Associated with the Initial State Cost 
Function 
%Rbar_wx = Square Root Information Matrix Associated with the State and 
Process Noise After Being QR Factored 
%Rbar_ww = Square Root Information Matrix Associated with the Process Noise 
After Being QR Factored 
%dz_r = Change in the Weighted Cost Related to the Measurement Noise 
%dzbar_w = Change in the Weighted Cost Related to the Process Noise 
%dz_x = Change in the Weighted Cost Related to the State 
%dx = Change in the State Vector 
%dw_pn = Change in the Process Noise Vector 
%k = Observation Counter 
%n = Total Number of Observations 
%m = m_buffer = Collection of Previous States, Observations, Process Noise 
Vectors, and Covariance Sqrt to be Filtered Forward and Smoothed Backward 
%m_target = "Window/Buffer Size" 
%j = Gauss-Newton Iteration Counter 
%j_max = Maximum Gauss-Newton Iteration Count 
%term_crit = Termination Criteria 
%g_count = Trial Search Step Size Counter 
%G = gamma = Current Trial Search Step Size 
%g = Previous Trial Search Step Size 
%G_eps = Trial Search Step Size Epsilon Value 
%Y = Measurement Vectors [Y_l to Y_k] 
%T = Observation Times [T_l to T_k] 
%B = Block Matrix to be QR Factored 
%Z = Block Matrix Containing the Vectors dzbar_w, dz_x, and dz_r 
%T_qr = Q Matrix That Results From the Factorization of B 
%R_qr = R Matrix That Results From the Factorization of B 

%% BACKWARD SMOOTHING EXTENDED KALMAN FILTER %% 

%START THE ALGORITHM TIMER 
START_TIME = clock; 

%SELECT ALGORITHM RUN LOCATION 
%%%HOME COMPUTER = 1 
%%%WORK COMPUTER = 2 
%%%N0MAD2 COMPUTER = 3 
LOCATION = 1; 

%TURN PARALLELISM ON OR OFF 
PARALLEL = 0; %%%OK TO CHANGE%%% 

%TURN ENVIRONMENTAL TORQUES ON OR OFF 
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1 
= 2 

%%%+ SOLAR RADIATION PRESSURE = 3 
TORQUE = 0; %%%OK TO CHANGE%%% 

%SELECT THE TYPE OF TEST CASE TO RUN: 
1 

LATED TEST C 
TEST = 1; 

%SELECT THE PROPAGATION METHOD TO USE: 
%%% ANALYITIC EQUATIONS = 1 
%%% FINITE DIFFERENCING = 2 
PROPAGATOR = 1; %%%OK TO CHANGE%%% 

%SELECT THE MOMENT OF INERTIA MODEL TO USE: 
1 
2 

INERTIA = 1; %%%OK TO CHANGE%%% 

%SET THE NUMBER OF PASSES TO BE PROCESSED: 
PASSES = 2; %%%OK TO CHANGE%%% 

%TURN GRAPHS ON OR OFF 
GRAPH = 1; %%%OK TO CHANGE%%% 

%TURN PROFILE ON OR OFF 
%profile on %%%OK TO CHANGE%%% 

if LOCATION == 1 
PATH = ('C:\Documents and Settings\Kyle Volpe\Desktop\LAES_BSEKF\'); 

elseif LOCATION == 2 
PATH = ('C:\Documents and 
Settings\ky20900\Desktop\THESIS_LAES\LAES_BSEKF\'); 

elseif LOCATION == 3 
PATH = ('/home/ky20900/LAES_BSEKF/'); 

end 

%SPECIFY THE FOLDER(S) IN WHICH TO SAVE THE FOLLOWING OUTPUT FILES: 
sta = fopen([PATH,'state.txt'],'wt'); 
resl = fopen([PATH, 'q_residuals.txt'], 'wt'); 
res2 = fopen([PATH, 'ea_residuals.txt'], 'wt') ; 
res3 = fopen([PATH,'attitude_error.txt'],'wt'); 
ela = fopen([PATH,'elapsed_t.txt'],'wt'); 
cov = fopen([PATH,'covariance.txt'],'wt'); 

if PARALLEL == 1 
matlabpool open 
%pmode start local 4 

end 

%SET THE TARGET SIZE OF FILTER WINDOW [M_BUFFER]  (m_target) 
m_target=4 0; 
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%SET THE MAXIMUM NUMBER OF GAUSS-NEWTON ITERATIONS (j_max) 
j_max=15; %%%OK TO CHANGE%%% 

%SET THE MAXIMUM NUMERICAL INTEGRATION STEP SIZE (s_max) 
s_max=0.5; %%%OK TO CHANGE%%% 

%SET THE FOLLOWING COUNTERS: 
m=l; 

%SET THE FOLLOWING EPSILON VALUES: 
G_eps=le-10; %%%OK TO CHANGE%%% 
J_eps=le-10; %%%OK TO CHANGE%%% 

%% BEGIN PROGRAM 

%INITIALIZE THE FOLLOWING VECTORS AND MATRICES 
T=[]; 
TIME=[]; 
Y_ea=[]; 
w= [] ; 
n=0; 

%GENERATE THE ATTITUDE MEASUREMENTS USING THE BASELINE MOTION AND CORRECTION 
MEASUREMENTS 
for PASS = 1:PASSES 

%SET THE BASELINE MOTION PARAMETERS AND REFERENCE DATE FOR EACH PASS 
[DATE,RA,D,CA,ZI,XI,PP,SP] = b_motion(PASS); 

%EDIT AND COLLECT THE EULER ANGLE (DEVIATION) MEASUREMENTS (EA) 
[EA,N] = eaobs(PASS); 

%EDIT THE OBSERVATION TIMES 
[time,t] = m_times(PASS) ; 
DN = ob_times(DATE) ; 

%ADD THE XELIAS MOTION PARAMETERS TO THE EULER ANGLE MEASUREMENTS TO GET 
THE TRUE ATTITUDE MEASUREMENTS (Y) 
[Y,MoI,W] = a_obs(t,RA,D,CA,ZI, XI, PP,SP, EA); 

%COMBINE THE OBSERVATIONS 
T=[T;t] ; 
TIME=[TIME;time]; 
Y_ea=[Y_ea,Y]; 
w=[w, W] ; 
n=n+N; 

end 

%INITIALIZE ALL THE CACHES THAT WILL BE USED BY THE FILTER 
[y_ea, y_q, t,x,w_pn,xj,wj_pn,Q_pn,Q,yhat_ea,yhat_q,v_mn,V_mn,phi,gamma,h,Rvv,R 
ww,R_ww,Rxx,Rbar_wx,Rbar_ww,dz_r,dzbar_w,dz_x,dx,dw_pn,q4_s,qj4_s,y_mn] = 
i_cache(n,m_target) ; 

%CALCULATE THE INITIAL ATTITUDE QUATERNION, ANGULAR VELOCITY, AND MOMENT OF 
INERTIA PARAMETERS VECTORS (q, w, and I): 
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%CALCULATE THE MOMENT OF INERTIA MATRIX USING EITHER THE GEOMETRIC MODEL OR 
THE SYMMETRIC MODEL 
if INERTIA == 1 

%GEOMETRIC MODEL (ASTMMETRIC MODEL) 
[M,CoM,MoI] =p_model(); 
disp('GEOMETRIC MODEL') 
disp(Mol) 

elseif INERTIA == 2 
%FULLY SYMMETRIC MODEL 
Mol=10*eye(3); %%%OK TO CHANGE%%% 
disp('FULLY SYMMETRIC MODEL') 
disp(Mol) 

elseif INERTIA == 3 
%XELIAS MODEL (PARTIALLY SYMMETRIC) 
dispCXELIAS MODEL') 
disp(Mol) 

end 

%ASSEMBLE THE INITIAL STATE VECTOR (x); MEASUREMENT NOISE COVARIANCE MATRIX 
(R_mn); AND INITIAL STATE COVARIANCE MATRIX (P) 
[Y_ea,Y_q,X,q4_s,p,R_mn] = initial_xp(Y_ea,Mol,T); 
x(:,l)=X; 

%COMPARE THE ANGULAR VELOCITIES DERIVED USING THE TWO DIFFERENT METHODS 
disp('SYMMETRIC MOTION PARAMETER ANGULAR VELOCITY VS CORRECTED LINEAR FIT 
ANGULAR VELOCITY') 

disp([w(:,l),x(4:6,l) ]) 

%SAVE THE FULL 13 x 1 INITIAL STATE VECTOR TO A TEXT FILE 
fprintf(sta,'%f %f %f %f %f %f %f %f %f %f %f %f 
%f\n' ,x(l,l),x(2,l),x(3,l) , q4_s (1) *sqrt (l-x(l, 1)A2-x(2,1)A2- 
x(3, 1) A2), x(4,l),x(5,l),x( 6,1), x(7,l),x(8,l), x(9,l),x( 10,1), x(ll,l),x( 12,1)); 

%DELETE THE FIRST COLUMN OF THE MEASUREMENT MATRIX (Y) 
Ybar_ea=Y_ea; 
Ybar_q=Y_q; 
Y_ea(:,l) = []; 
Y_q(: , 1) = [ ] ; 

%CALCULATE THE FOLLOWING TORQUE MODEL INPUT PARAMETERS 
[V_SAT,R_SUN,SOLAR_I,R_SAT,B_FIELD,CoP,U_NORM,S_AREA,A_DENSITY] = 
n_param(DN,T,TORQUE) ; 

%RESET THE TOTAL NUMBER OF OBSERVATIONS (n) 
s=size(Y_q); 
n=s (1,2); 

%SET THE INITIAL PROCESS NOISE VECTORS (w_pn) [3x1 Disturbance Torque] 
w_pn(:,l)=zeros(12,l); 

%SET THE INITIAL STATE COVARIANCE MATRIX (P) 
p=[5e-2;5e-2;5e-2;5e-3;5e-3;5e-3;10;10;0.0001;8e-l;8e-l;8e-l]; 
P ( :, :,1)=diag(p); 
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%CALCULATE THE SQRT INFORMATION MATRIX ASSOCIATED WITH THE STATE (Rxx) 
IFactor P_0 into [Rxx"-1][RxxA-T]using Cholesky decomposition 
Rxx(:, :,l)=chol(P(:, :,1)A-1); 

%CALCULATE THE PROCESS NOISE COVARIANCE MATRICES (Q_pn)  [TUNE FILTER] 
%Q=I_3x3*Process Error Variance 
Q_pn(:, :,l)=eye(3)*le-9; %%%0K TO CHANGE%%% 
for k=l:n 

Q_pn(:,:,k+l)=eye(3)*(((le-9))/(T(k+1)-T(k))); %%%0K TO CHANGE%%% 
end 

%CALCULATE THE LINEAR APPROXIMATION TO THE MEASUREMENT NOISE COVARIANCE 
MATRIX (R_mn) 
%R_mn=I_3x3*Measurement Error Variance Per Axis in Radians 
R_mn=eye(4)*0.5e-2; %%%OK TO CHANGE%%% 

%DECIDE IF THE PROPAGATED STATE VECTOR SHOULD BE SAVED AS A NEW SET OF 
OBSERVATIONS 
SAVE = 1; 

%PROJECT THE INITIAL STATE FORWARD OVER THE TIME SPAN OF INTEREST 
[Yhat_ea,Yhat_q,ybar_ea,ybar_q] = 
ydot(DN,T, Y_ea, x, q4_s,s_max,CoP,U_NORM,V_SAT,R_SUN,SOLAR_I,A_DENSITY,B_FIELD, 
S_AREA,R_SAT,SAVE,PATH,TEST) ; 

if TEST == 2 
%SAVE THE FULL SET OF NOISY MEASUREMENTS 
Ybar_q=ybar_q; 
Ybar_ea=ybar_ea; 

%RESET THE OBSERVATION CACHE 
Y_q=ybar_q; 
Y_ea=ybar_ea; 

%SET THE NEW INITIAL STATE VECTOR, COVARIANCE MATRIX, AND OBSERVATIONS 
x(:,l)=[0.140134360644793,-0.94143408819462 0,-0.145834358774792; 
0.002705006174102,--0.002116872057220,--0.007055041225524,• 
7. 745966692414834; 7.745966692414834;7.745966692414834;0; 0; 0 ] ; 
Y_q(:,1)=[]; 
Y_ea(:,l) = []; 

end 

%BEGIN THE OBSERVATION LOOP 
for k = 1:n 

%START THE OBSERVATION TIMER 
tic 

%DISPLAY THE CURRENT OBSERVATION NUMBER 
disp('CURRENT OBSERVATION') 
disp(k) 

%PERFORM THE FOLLOWING ASSIGNMENTS AND CALCULATE xhatstar and Pstar 
if k > m_target 

JFFER HAS BEEN FIL 
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%MAKE THE FOLLOWING ASSIGNMENTS: 

%SHIFT THE STATE CACHE 
x=circshift(x, [0,m_target]); 
x(:,end)=0; 

%SHIFT THE 4TH QUATERNION COMPONENT SIGN CACHE 
q4_s=circshift(q4_s,[0,m_target]); 
q4_s(end)=0; 

%SHIFT THE PROCESS NOISE CACHE AND SET THE LAST COLUMN EQUAL TO ZERO 
w_pn=circshift(w_pn,[0,m_target]); 
w_pn(:,end)=0; 

%SHIFT THE CHANGE IN WEIGHT COST RELATED TO THE STATE VECTOR 
dz_x(:,1)=dz_x( : , 2 ) ; 

%SHIFT THE STATE SQUARE ROOT INFORMATION MATRIX 
Rxx(:,:,1)=Rxx(:,:,2); 

if k == 64 
%CALCULATE THE SQRT INFORMATION MATRIX ASSOCIATED WITH THE STATE 
(Rxx) 

%Factor P_0 into [Rxx^-l][RxxA-T]using Cholesky decomposition 
p=[2.5e-2;2.5e-2;2.5e-2;2.5e-3;2.5e-3;2.5e-3;5;5;0.0 0001;4e-l; 
4e-l;4e-l]; 
P(:,:,1)=diag(p); 
Rxx(:,:,l)=chol(P(:,:,1)A-l); 

end 

%CHECK THE DIAGONAL OF Rxx FOR NEGATIVE VALUES AND NEGATE THE MATRIX 
IF THERE ARE 
if sum(diag(Rxx(:,:,1))) <= 0 

Rxx ( :, :,1)=-Rxx( : , : , 1) ; 
end 

%CALCULATE THE UPDATED STATE ESTIMATE FOR THE COST (xhatstar) 
%xhat=(Rxx(:,:,1)A-l)*dz_x(:,1); 
xhatstar=x(: , 1) + (Rxx(:, :,1)A-l)*dz_x( : , 1) ; 

%ENFORCE THE CONSTRAINT ON THE QUATERNION 
[cq,qstar4_s] = q_enforce(x(1:3,1),q4_s(1) , ((Rxx(1:3,1:3,1)A-l) 
*dz_x(l:3,1)) ,qz4_s(1) , 1) ; 

%REVISE THE STATE ESTIMATE FOR THE COST (xhatstar) 
xhatstar(l:3,l)=cq(l:3,l); 

%CALCULATE THE STATE ESTIMATION ERROR COVARIANCE FOR THE COST (Pstar) 
AND ITS INVERSE (P_inv) 
Pstar=(Rxx(:,:,1)A-l)*((Rxx(:,:,1)' )A"D; 
P_inv=Rxx(: , :,1) '*Rxx(:, : , 1) ; 

304 



else %k <= m_target 
%%% THE M_BUFFER IS STILL BEING FILLED %%% 

%ASSIGN THE UPDATED STATE ESTIMATE FOR THE COST (xhatstar) 
xhatstar=x(:,1); 

%RECORD THE SIGN OF THE 4TH QUATERNION COMPONENT (qstar4_s) 
qstar4_s=q4_s(1); 

%ASSIGN THE STATE ESTIMATION ERROR COVARIANCE FOR THE COST (Pstar) 
AND ITS INVERSE (P_inv) 
Pstar=P(:,:,1); 
P_inv=Rxx(: , : , 1) '*Rxx(:, : , 1) ; 

end 

%SET m 
if k <= m_target 

m=k; 
shift_obs = false; 

else %k > m_target 
m=m_target; 
shift_obs = true; 

end 

%CREATE OR MODIFY THE CACHE 
if k > m_target && shift_obs == true 

%%% ONCE THE CACHE IS FULL SHIFT 
COLUMN WITH THE NEWEST VECTOR %%% 

%SHIFT THE OBSERVATION CACHE 
y_ea=circshift(y_ea,[0,m-l]); 
y_ea(:,end)=Y_ea(: , k) ; 

y_q=circshift(y_q,[0,m-l]); 
y_q(:,end)=Y_q(:,k); 

%SHIFT THE PREDICTED MEASUREMENT CACHE 
yhat_ea=circshift(yhat_ea,[0,m_target]); 
yhat_ea(:,end)=0 ; 

yhat_q=circshift(yhat_q,[0,m_target]); 
yhat_q(:,end)=0; 

%SHIFT THE TIME CACHE 
t=circshift(t,[m,0]); 
t(end)=T(k+l); 

%SHIFT THE PROCESS NOISE COVARIANCE CACHE 
ic=l; 
for i=k-(m-1):k+l 

Q(: , : , ic)=Q_pn(:, :,i); 
ic=ic+l; 

end 
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%REASSIGN THE MEASUREMENT NOISE COVARIANCE CACHE 
R=R_mn; 

else %k <= m_target & shift_obs == false 

%CREATE THE OBSERVATION CACHE 
y_ea=Y_ea(:,1:k); 
y_q=Y_q( : , 1 : k) ; 

%CREATE THE TIME CACHE 
t=T(l:k+l); 

%CREATE THE PROCESS NOISE COVARIANCE CACHE 
for i=l:k+l 

Q(:, :,i)=Q_pn(:, :,i) ; 
end 

%CREATE THE MEASUREMENT NOISE COVARIANCE CACHE 
R=R_mn; 

end 

%INITIALIZE THE COST FUNCTION Jcost 
JCOST=0; 
jcost=JCOST; 

%SET THE TERMINATION CRITERIA FOR THE GAUSS-NEWTON ITERATION 
term_crit=0; 

%RESET THE Japprox CONVERGENCE VARIABLE 
JAPPROX=0; 
japprox=JAPPROX; 

%SET THE GAUSS-NEWTON ITERATION COUNTER j TO ZERO 

j = 0; 

%BEGIN THE GAUSS-NEWTON LOOP 
while j < j_max; 

for i = k-m:k-l 

%SET THE INDEX COUNTER 
ic=i-((k-m)-1); 

%EXECUTE THE DYNAMICS FUNCTION/STATE PROPAGATOR (PREDICT NEXT 
STATE): 

%SET THE STATE PROPAGATION DIRECTION 
DIRECT = 1; %%%FORWARD = 1 | BACKWARD = -1%%% 

%DETERMINE IF THE PARTIAL DERIVATIVES NEED TO BE CALCULATED 

sCALCULATE THE NEXT STATE VECTOR (X) AND THE STATE AND PROCESS 
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NOISE TRANSITION MATRICES (PHI AND GAMMA) 
[X,PHI,GAMMA] = xpg_pro(DN,t(ic:ic+l),x(:,ic),q4_s(ic),s_max, 
w_pn(4:6,ic),CoP,U_NORM,V_SAT,R_SUN,SOLAR_I,A_DENSITY,B_FIELD, 
S_AREA,R_SAT,TORQUE,DERIV); 

%DETERMINE IF THE PARTIAL DERIVATIVES NEED TO BE CALCULATED 
DERIV = 1; %%%NO = 0 | YES = 1%%% 

%USE THE OBSERVATION MODEL TO CALCULATE THE MEASUREMENT NOISE 
(v_mn) AND MEASUREMENT TRANSITION MATRIX [H] 
[x, q4_s, yhat_q, yhat_ea,v_mn,V_mn,y_mn,H] = hdot(X, x,q4_s,y_q, 
y_ea,yhat_q,yhat_ea,v_mn,V_mn,y_mn,ic,k,m_target,DERIV); 

%ASSIGN THE OUTPUT JACOBIAN MATRICES PHI [df/dx], GAMMA 
[df/dw_pn], AND H [dh/dx] TO THEIR RESPECTIVE CACHES (phi, gamma, 
AND h) 
phi(:,:,ic)=PHI; 
gamma(:,:,ic)=GAMMA; 
h(:, :,ic+l)=H; 

%FACTOR THE PROCESS NOISE MATRIX Q INTO [Rww^-l][RwwA-T] 
Rww(:,:,ic)=chol(Q(:,:,ic)A-l); 
R_ww(4:6,4:6,ic)=Rww(: , :,i c); 

%FACTOR THE MEASUREMENT NOISE MATRIX R INTO [R_vvA-l] [R_vvA-T] 
Rvv(:,:,ic+1)=chol(RA-1); 

end 

%CALCULATE THE COST FUNCTION Jcost AT ITERATION j IF THE COST HAS 
NEVER BEEN COMPUTED BEFORE FOR THIS OBSERVATION k 

if JCOST == 0 
JCOST = j_cost(k,m,x(:,1),w_pn,v_mn,Rww,Rvv,xhatstar,Pstar,P_inv, 
q4_s(1),qstar4_s(1)); 

end 

%COMPUTE THE INITIAL CHANGE IN WEIGHT COST RELATED TO THE STATE 
VECTOR (dz_x) 
dz_x=Rxx(:, :,1)* (xhatstar-x(:,1)); 

%ENFORCE THE CONSTRAINT ON THE QUATERNION 
[dq,qz4_s] = q_enforce(x(1:3,1),q4_s(1),xhatstar(1:3,1),qstar4_s(1) , 
-i); 

%REVISE THE CHANGE IN WEIGHT COST RELATED TO THE STATE VECTOR (dz_x) 
dz_x(l:3,l)=Rxx(l:3, 1:3,1)*dq(l:3, 1) ; 

%ITERATE FOR THE FORWARD FILTER 
ic=l; 
for i = k-m:k-l 

%QR FACTORIZATION 
B=double([R_ww(:,:,ic),zeros(12,12);-Rxx(:,:,ic)*phi(:,:,ic)A-l 
* gamma ( : , : , ic) , Rxx (:, :, ic) *phi ( :, :,ic)/N-l;zeros(4,12), 
Rvv(:,:,ic+l)*h(:,:,ic+l)]); 
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[T_qr,R_qr]=qr(B); 
Rbar_ww(:,:,ic)=R_qr(1:12,1:12); 
Rbar_wx(:,:,ic)=R_qr(1:12,13:24); 
Rxx ( :, :,ic+1)=R_qr(13:24,13:24); 

%Z BLOCK VECTORS 
Z=T_qr'*[-R_ww(:, :,ic)*w_pn(:,ic);dz_x(:,ic) ; Rvv(: , :,ic+1) 
*v_mn(:,ic+1)] ; 
dzbar_w(:,ic)=Z(1:12,:); 
dz_x(:,ic+l)=Z(13:24, : ); 
dz_r(:,ic)=Z (25:28, :); 

%INCREMENT THE ITERATION COUNTER 
ic=ic+l; 

end 

%CALCULATE dx(k) 
dx ( : , ic) =Rxx ( : , : , ic) /s-l*dz_x ( : , ic) ; 
%i=k-l should be true 
%Set ic=ic+l so that the kth stage is processed 

%BACKWARD SMOOTHING 
ic=ic-l; 
for i = k-l:-l:k-m 

%CALCULATE dw_pn 
Rbar_ww_inv=zeros(12) ; 
Rbar_ww_inv(4:6,4:6)=Rbar_ww(4:6,4:6,ic)A-l; 
dw_pn(:,ic)=Rbar_ww_inv*(dzbar_w(:,ic)-Rbar_wx(:, : , ic) 
*dx(:,ic+1)); 

%CALCULATE dx(i) 
dx ( : , ic) =phi (:, :,ic)A-l*(dx(:,ic+l) -gamma ( : , : , ic) *dw_pn ( : , ic) ) ; 

%INCREMENT THE ITERATION COUNTER IN REVERSE 
ic=ic-l; 

end 

%END OF SMOOTHING PROBLEM SOLUTION; RESET THE GAMMA VALUE (G) TO ONE 

G=l; 
g_count=0; 
g=G; 

%SAVE THE PREVIOUS COSTS TO jcost AND japprox 
jcost=JCOST; 
japprox=JAPPROX; 

while (1) 

if q4_s(1) ==0 
STOP=l; 

end 
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%CALCULATE THE UPDATED STATE VECTOR (xj) 
xj(:,l)=x(:,l)+G*dx(:,l); 

if G ~= 0 
%RECORD THE SIGN OF THE QUATERNION COMPONENTS (q_s) 
qj_s=sign(xj(1:3,1)); 

%ENFORCE THE CONSTRAINT ON THE QUATERNION 
[cq,qj4_s] = q_enforce(x(1:3,1),q4_s(1),(G*dx(1:3,1)),q4_s(1) 
,D; 

%CHECK THE SIGN OF THE UPDATED QUATERNION 
cq_s=sign(cq(1:3,1)); 

if sum(qj_s+cq_s) == 0 
%CHANGE THE SIGN ON THE UNKNOWN FOURTH COMPONENT OF THE 
STATE CHANGE VECTOR AND RE-ENFORCE THE CONSTRAINT ON THE 
QUATERNION 
[cq,qj4_s] = q_enforce(x(1:3,1),q4_s(1),(G*dx(1:3,1)) 
,-q4_s(l),l); 

end 

%REVISE THE UPDATED STATE VECTOR (xj) 
xj(l:3,l)=cq(l:3,l); 

end 

for i = k-m:k-l 

%SET THE INDEX COUNTER 
ic=i-((k-m)-1); 

%CALCULATE wj_pn 
wj_pn(:,ic)=w_pn(:,ic)+G*dw_pn(:,ic); 

%EXECUTE THE DYNAMICS FUNCTION/STATE PROPAGATOR (PREDICT NEXT 
STATE): 

%SET THE STATE PROPAGATION DIRECTION 
DIRECT = 1; %%%FORWARD = 1 | BACKWARD = -1%%% 

%DETERMINE IF THE PARTIAL DERIVATIVES NEED TO BE CALCULATED 
DERIV = 0; %%%NO = 0 | YES = 1%%% 

%CALCULATE THE NEXT STATE VECTOR (X) AND THE STATE AND 
PROCESS NOISE TRANSITION MATRICES (PHI AND GAMMA) 
[XJ,PHI,GAMMA] = fdot(DN,t(ic:ic+l),xj(:,ic),qj4_s(ic), 
wj_pn(4:6, ic),CoP,U_NORM,V_SAT,R_SUN,SOLAR_I,A_DENSITY, 
B_FIELD,S_AREA,R_SAT,TORQUE, DERIV,DIRECT) ; 

%DETERMINE IF THE PARTIAL DERIVATIVES NEED TO BE CALCULATED 
DERIV = 0; %%%NO = 0 | YES = 1%%% 

%USE THE FOLLOWING OBSERVATION MODEL TO CALCULATE THE 
MEASUREMENT NOISE (v_mn) AND MEASUREMENT TRANSITION MATRIX 
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[H] 
[xj,qj4_s,yhat_q,yhat_ea,v_mn,V_mn,y_mn,H]    =  hdot(XJ,xj, 
qj4_s,y_q,y_ea,yhat_q,yhat_ea,v_mn,V_mn,y_mn,ic,k, 
m_target,DERIV); 

end 

%CALCULATE THE NEW COST FUNCTION (JCOST) 
JCOST = j_cost(k,m,xj(:,1),wj_pn,v_mn,Rww,Rvv,xhatstar,Pstar, 
P_inv,qj 4_s(1) ,qstar4_s(1)); 

%CALCULATE THE APPROXIMATE COST FUNCTION (JAPPROX) 
dz_r_sum=0; 

ic=l; 
for i = k-m:k-l 

dz_r_sum=dz_r_sum+(dz_r(:,ic)'*dz_r(:,ic)); 
ic=ic+l; 

end 

%SET THE CONVERGENCE VARIABLE JAPPROX 
JAPPROX=0.5*dz_r_sum; 

%CHECK WHETHER THE COST HAS INCREASED 
if JCOST >= jcost; 

g=G; 
G=0.5*G; 
g_count=g_count+l; 

else 
break 

end 

%IF THE CURRENT TRIAL SEARCH STEP SIZE (g) WAS SET TO ZERO IN THE 
PREVIOUS ITERATION, THEN EXIT 
if G == 0 

break 
end 

%IF THE CURRENT TRIAL SEARCH STEP SIZE (g) GETS TO BE VERY CLOSE 
TO ZERO, THEN PRINT A WARNING AND EXIT 
if G <= G_eps 

disp('WARNING: TRIAL SEARCH STEP SIZE NEAR ZERO') 
disp('GAMMA COUNT (g_count)') 
disp(g_count) 
disp('PREVIOUS COST VALUE (jcost)') 
disp (jcost) 
disp('CURRENT COST VALUE (JCOST)') 
disp(JCOST) 
disp('PREVIOUS LINEARIZED PREDICTION OF THE COST VALUE 
(japprox)') 
disp(japprox) 
disp('CURRENT LINEARIZED PREDICTION OF THE COST VALUE 
(JAPPROX)') 
disp(JAPPROX) 
G=0; 
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end 
end 

%TEST THE TERMINATION CRITERION 
if abs(JAPPROX-japprox) <= J_eps 

term_crit=l; 
end 

%SET THE GAUSS-NEWTON STATE CACHE (xj) TO THE STATE CACHE (x) AND THE 
GAUSS-NEWTON PROCESS NOISE CACHE (wj_pn) TO THE PROCESS NOISE CACHE 
(w_pn) 
ic=l; 
for i = k-m:k 

x(: , ic)=xj(:,ic); 
q4_s(ic)=qj4_s(ic); 
w_pn(:,ic)=wj_pn(:,ic); 
ic=ic+l; 

end 

%ASSESS THE TERMINATION CRITERIA FOR THE GAUSS-NEWTON ITERATION 
if term_crit == 1 || j+1 == j_max 

%DISPLAY THE NUMBER OF ITERATIONS NEEDED 
disp('NUMBER OF GAUSS-NEWTON ITERATIONS (j)') 
disp(j) 

%DISPLAY THE CURRENT SIZE OF THE M-BUFFER 
disp('CURRENT SIZE OF THE M-BUFFER (m)') 
disp(m) 

%DISPLAY THE COST VALUES 
disp('PREVIOUS COST VALUE (jcost)') 
disp(jcost) 
disp('CURRENT COST VALUE (JCOST)') 
disp(JCOST) 
disp('PREVIOUS LINEARIZED PREDICTION OF THE COST VALUE 
(japprox)') 
disp(japprox) 
disp('CURRENT LINEARIZED PREDICTION OF THE COST VALUE (JAPPROX)') 
disp(JAPPROX) 

%DISPLAY THE STATE VECTOR 
disp('STATE VECTOR (x)') 
disp(x(:,m+1)) 

%SAVE THE FULL 13 x 1 ESTIMATED STATE VECTOR TO A TEXT FILE 
fprintf(sta,'%f %f %f %f %f %f %f %f %f %f %f %f %f\n', 
x(l,m+l),x(2,m+l),x(3,m+l),q4_s(m+1)*sqrt(1-x(1,m+1)A2 
-x(2,m+l)A2-x(3,m+l)A2),x(4,m+l),x(5,m+l),x(6,m+l),x(7,m+l), 
x(8,m+1),x(9,m+1),x(10,m+1),x(ll,m+l),x(12,m+1)); 

if TEST == 2 
%CALCULATE THE CURRENT ESTIMATED MOMENT OF INERTIA MATRIX 
(MoI_est) 
I=x(7:12,m+1); 
C=[cos(1(5))*cos(1(6)),cos(I(5))*sin(I(6)),-sin (I (5)); 
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sin(I(4))*sin(I(5))*cos(1(6))-cos(I(4))*sin(I(6)),sin(I(4)) 
*sin(I(5))*sin(I(6))+cos(1(4))*cos(1(6)),sin(1(4))*cos(1(5)); 
cos (I(4))*sin(I(5))*cos(I(6))+sin(I(4))*sin(I(6)) , cos(1(4)) 
*sin(I (5))*sin(I(6))-sin(I(4))*cos(1(6)),cos(1(4)) 
*cos(I(5))]; 
MoI_est=C*diag( [(I(2)/S2 + I(3)"2)/12,(I(1)/S2 + I(3)"2)/12, 
(I (1) "2 + 1 (2) A2) /12] ) *C; 

%CALCULATE THE MoI_est FRACTION ERROR NORM (MoI_error) [ERROR 
IN ESTIMATED MOMENT OF INERTIA MATRIX (MoI_est) RELATIVE TO 
THE TRUE INERTIA MATRIX (Mol)] 
MoI_error(k)=norm(MoI_est*trace(MoI)/trace(MoI_est)- 
Mol)/norm(MoI); 

%DISPLAY THE FRACTION ERROR NORM 
disp('FRACTION ERROR NORM FOR MoI_est') 
disp(MoI_error) 

end 

%DISPLAY AND SAVE THE FOLLOWING RESIDUALS: 
disp('QUATERNION RESIDUAL/MEASUREMENT ERROR (v_mn)') 
dy=v_mn(:,m+1) ; 
disp(dy) 
fprintf(resl, '%f %f %f %f\n' , dy(1),dy(2),dy(3),dy(4)); 

dispCEULER ANGLE RESIDUAL/MEASUREMENT ERROR (V_mn) ' ) 
dy=V_mn(:,m+1); 
disp(dy) 
fprintf(res2, '%f %f %f \n' , dy(1),dy(2),dy(3)); 

disp('QUATERNION ATTITUDE ERROR (y_mn)') 
dy=y_mn(:,m+1); 
disp(dy) 
fprintf(res3, '%f %f %f %f\n' , dy(1),dy(2),dy(3),dy(4)); 

%DISPLAY AND SAVE THE STATE ERROR COVARIENCE MATRIX 
disp('STATE ERROR COVARIENCE (P)') 
Phat=(Rxx(:,:,m)A-l)*((Rxx( : ,:,m)')A-l); 
phat=diag(Phat); 
disp(phat) 
fprintf(cov,'%f %f %f %f %f %f %f %f %f %f %f 
%f\n',phat(1),phat(2),phat(3),phat(4),phat(5),phat(6),phat(7),pha 
t(8) ,phat(9),phat(10),phat(11),phat (12)); 

%DISPLAY THE AMOUNT OF TIME NEEDED TO PROCESS EACH OBSERVATION 
disp('TIME TO PROCESS THE CURRENT OBSERVATION') 
toe %sec 
e_time=toc/60; %min 
fprintf(ela,'%f %f\n',k,e_time); 

%SET THE GAUSS-NEWTON ITERATION COUNTER (j) EQUAL TO THE MAXIMUM 
VALUE (j_max) 
j=j_max; 

else 
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%disp('GAUSS-NEWTON ITERATION') 
%disp(j) 

end 
end 

end 

%CLOSE THE OUTPUT TEXT FILES 
fclose(sta); 
fclose(resl) 
fclose(res2) 
fclose(res3) 
fclose(ela); 
fclose(cov); 

%DISPLAY THE FINAL PREDICTED AND MEASURED ATTITUDE ALONG WITH THE ERROR ABOUT 
EACH AXIS, AND THE TOTAL ERROR 
dispC FINAL PREDICTED AND MEASURED ATTITUDE [X Y ERROR (deg) ] ' ) 
compare= [yhat_q ( : , end) , y_q ( : , end) , v_mn ( : , end) ] ; 
disp(compare) 
dispC TOTAL ERROR (deg)') 
disp(norm(v_mn(:,end))) 

%VIEW THE PROFILE REPORT 
%profile viewer 

%GRAPH BSEKF RESULTS 
if GRAPH == 1 

%PLOT THE EULER ANGLE ERROR ABOUT EACH AXIS 
load ea_residuals.txt 
figure 
hold on 
grid on 
plot(ea_residuals(1:end,1),'r.') 
plot(ea_residuals(1:end,2),'b.') 
plot(ea_residuals(1:end, 3) , 'g. ' ) 
title('EULER ANGLE ERROR ABOUT EACH AXIS OF ROTATION') 
xlabel('DISCRETE-TIME OBSERVATION NUMBER') 
ylabel('RESIDUAL (deg)') 
legend('PHI (Z)','THETA (X)','PSI (Z)') 

%PLOT THE QUATERNION ERROR ABOUT EACH AXIS 
load q_residuals.txt 
figure 
hold on 
grid on 
plot(q_residuals(l:end,l),'r.') 
plot(q_residuals(1:end,2),'b.') 
plot(q_residuals(l:end,3),'g.') 
plot(q_residuals(1:end,4) , 'm. ') 
title('ERROR IN EACH COMPONENT OF THE UNIT-QUATERNION') 
xlabel('DISCRETE-TIME OBSERVATION NUMBER') 
ylabel('RESIDUAL') 
legend('ql','q2','q3','q4') 
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r . ') 
b. ') 
g. ') 

%PLOT THE ATTITUDE QUATERNION ERROR 
load attitude_error.txt 
figure 
hold on 
grid on 
plot(attitude_error(1:end,1) 
plot(attitude_error(1:end,2) 
plot(attitude_error(1:end,3) 
%plot(attitude_error(1:end,4),'m.') 
title('ATTITUDE QUATERNION ERROR') 
xlabel('DISCRETE-TIME OBSERVATION NUMBER') 
ylabel('ATTITUDE QUATERNION') 
legend('gl', 'g2', 'q3 ' ) 

%CALCULATE AND PLOT THE TOTAL EULER ANGLE ERROR 
n=length(ea_residuals) ; 
ea_total_error=zeros(n, 1) ; 
for k=l:n 

ea_total_error(k,1)=norm(ea_residuals(k,:)); 
end 
figure 
hold on 
grid on 
plot(ea_total_error, 'm.') 
title('TOTAL ERROR IN THE EULER ANGLES') 
xlabel('DISCRETE-TIME OBSERVATION NUMBER') 
ylabel('TOTAL ATTITUDE ERROR (deg) ' ) 

%CALCULATE AND PLOT THE TOTAL QUATERNION ERROR 
n=length(q_residuals) ; 
q_total_error=zeros(n, 1) ; 
for k=l:n 

q_total_error(k, 1)=norm(q_residuals(k, : ) ) ; 
end 
figure 
hold on 
grid on 
plot(q_total_error, 'm. ' ) 
title('TOTAL ERROR IN THE UNIT-QUATERNION') 
xlabel('DISCRETE-TIME OBSERVATION NUMBER') 
ylabel('TOTAL ATTITUDE ERROR') 

%PLOT THE TIME NEEDED TO PROCESS EACH OBSERVATION 
load elapsed_t.txt 
figure 
hold on 
grid on 
plot(elapsed_t(1:end, 1) , elapsed_t(1:end, 2) , ' k . ' ) 
title('TIME NEEDED TO PROCESS EACH OBSERVATION') 
xlabel('DISCRETE-TIME OBSERVATION NUMBER') 
ylabel('ELAPSED TIME (min)') 

%PLOT THE STATE ERROR COVARIANCE MATRIX ELEMENTS 
load covariance.txt 
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%PLOT THE QUATERNION ERROR COVARIANCE 
figure 
hold on 
grid on 
plot(covariance(1:end,1),'r.') 
plot(covariance(1:end,2),'b.') 
plot(covariance(1:end,3),'g.') 
title('QUATERNION ERROR COVARIANCE') 
xlabel('DISCRETE-TIME OBSERVATION NUMBER') 
ylabel('VARIANCE') 
legend('ql','q2','q3') 

%PLOT THE ANGULAR VELOCITY ERROR COVARIANCE 
figure 
hold on 
grid on 
plot(covariance(1:end,4),'r.') 
plot(covariance(1:end,5),'b.') 
plot(covariance(1:end,6),'g.') 
title('ANGULAR VELOCITY ERROR COVARIANCE') 
xlabel('DISCRETE-TIME OBSERVATION NUMBER') 
ylabel('VARIANCE') 
legend('wl','w2','w3') 

%PLOT THE MOMENT OF INERTIA PARAMETER ERROR COVARIANCE 
figure 
hold on 
grid on 
plot(covariance(1:end,7),'r.') 
plot(covariance(1:end,8),'b.') 
plot(covariance(1:end,9),'g.') 
title('MOMENT OF INERTIA PARAMETER ERROR COVARIANCE') 
xlabel('DISCRETE-TIME OBSERVATION NUMBER') 
ylabel('VARIANCE') 
legend('II', '12', '13' ) 

%PLOT THE MOMENT OF INERTIA PARAMETER ERROR COVARIANCE 
figure 
hold on 
grid on 
plot(covariance(1:end,10),'r.') 
plot(covariance(1:end,11),'b.') 
plot(covariance(1:end,12) , 'g.') 
title('MOMENT OF INERTIA PARAMETER ERROR COVARIANCE') 
xlabel('DISCRETE-TIME OBSERVATION NUMBER') 
ylabel('VARIANCE') 
legend('14', '15', '16' ) 

%PLOT THE FRACTION ERROR NORM FOR THE ESTIMATED MOMENT OF INERTIA MATRIX 
if TEST == 1 

%CALCULATE AND DISPLAY THE FINAL ESTIMATED MOMENT OF INERTIA 
I=x(7:12,m+l); 
C=[cos(1(5))*cos(1(6)),cos(I(5))*sin(I(6)),-sin(I(5));sin(I(4)) 
*sin(I(5))*cos(1(6))-cos(I(4))*sin(I(6)),sin(I(4))*sin(I(5)) 
*sin(I (6))+cos(1(4))*cos(1(6)),sin(1(4))*cos(1(5));cos(1(4)) 
*sin(I(5))*cos(I(6))+sin(I(4))*sin(I(6)) , cos(I(4))*sin(I(5)) 
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*sin(I(6))-sin(I(4))*cos(1(6)),cos(1(4))*cos(1(5))]; 
MoI_est=C*diag( [(I(2)A2+I(3)A2)/12,(I(1)A2+I(3)A2)/12, 
(I (1) "2 + 1 (2) A2) /12] ) *C ; 
disp('FINAL ESTIMATED MOMENT OF INERTIA') 
disp(MoI_est) 

elseif TEST == 2 
figure 
hold on 
grid on 
plot(MoI_error,'r.') 
title('FRACTIONAL ERROR NORM FOR THE ESTIMATED INERTIA MATRIX') 
xlabel('DISCRETE-TIME OBSERVATION NUMBER') 
ylabel('FRACTIONAL ERROR NORM') 

end 
end 

%CALCULATE THE REFINED SET OF MOTION PARAMETERS AND PROJECT THE FINAL STATE 
BACKWARDS OVER THE TIME SPAN OF INTEREST 
[qhat,ehat,vhat_ea,vhat_q,xhat,RT,RA,D,CA,ZI,XI,PP,SP,PA, SA,PR,SR] = 
m_param(Ybar_ea,Ybar_q,T,x(:,end),q4_s(end),w_pn,DN,CoP,U_NORM,V_SAT,R_SUN,SO 
LAR_I,A_DENSITY,B_FIELD,S_AREA,R_SAT,PATH); 

%DISPLAY THE REFERENCE TIME (sec), RIGHT ASCENSION (deg), DECLINATION (deg), 
CONING ANGLE (deg), SPIN ANGLE (deg) PRECESSION ANGLE (deg), PRECESSION 
PERIOD (sec/rev), AND SPIN PERIOD (sec/rev) 
disp('[REFERENCE TIME | RIGHT ASCENSION | DECLINATION | CONING ANGLE | SPIN 
ANGLE | PRECESSION ANGLE | PRECESSION PERIOD | SPIN PERIOD]') 
disp([RT,RA,D,CA,SA,PA,PP,SP]) 

%DISPLAY THE Z INITIAL (deg), X INITIAL (deg), PRECESSION RATE (deg/sec), AND 
SPIN RATE (deg/sec) 
disp('[Z-INITIAL | X-INITIAL | PRECESSION RATE | SPIN RATE]') 
disp( [ZI,XI,PR,SR]) 

%STOP THE ALGORITHM TIMER 
STOP_TIME = clock; 
TOTAL_TIME = etime(STOP_TIME,START_TIME) ; 

%DISPLAY THE TOTAL ALGORITHM RUN TIME 
disp('TOTAL RUN TIME (hrs)') 
disp(TOTAL_TIME/3600) 
disp('DONE') 
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