Intelligent Ground Systems
Mr. David Thomas
15 April 2008
Intelligent Ground Systems

Advanced Planning Briefing for Academia (APBA) Presentation. The original document contains color images.
Intelligent Ground Systems Overview

Furthering Unmanned Systems Autonomy
- Unmanned Ground Vehicle Platforms
- Vehicle Intelligence and Control
- Mission Payload Integration
- Embedded Simulation

Increasing Crew Interface and Control Capabilities
- Human-Robot Interaction
- Advanced Soldier Machine Interfaces
- Embedded Simulation
TARDEC Robotics

Mission
Integrate, Explore, and Develop Robotics, Network and Control Components with a Focus on Customer Driven Requirements to Provide Full System Solutions to the War Fighter

Technology Components

Demonstrators

Military Relevant Test & Experimentation

Transition and Requirements Development

Integration Technology Development Lessons Learned to Enable Early Technology Insertion

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.
Enabling Technologies

Making the robots work well with others

Today: Robots used individually and independently

Vision: Robots that are fully networked and collaborative

Making the robots smarter

Today: Human input required to control every aspect of robot

Vision: Robots that are able to think and act intelligently and independently

Making the robots easier to use

Today: Robot control requires specialized equipment and training

Vision: Robots that are intuitively easy to command and control

Making the robots

Today: Robot operations confined to limited environments

Vision: Robots that are able to operate in any environment at any time
Research Topics – Potential Shortfalls

- Sensors – extended range & resolution
- Sensors – all weather sensing/obscurants
- Sensors – reduced size
- Software – Terrain classification, especially at extended range
- Software – Feature classification, especially at extended range
- Software – Detection, classification, tracking of moving vehicles, people, & animals from a moving vehicle (object association/partial obscuration)
- Software – Detection of moving & stationary people, often partially obscured or camouflaged
- Software – Stand-off classification of mud or water – estimate of surface supportability/trafficability
Research Topics – Potential Shortfalls

Vehicle Intelligence
- Ability to adapt to changing environment & learn from prior experience or act based upon general guidance
- Ability to project future activity or courses of action by others and plan accordingly
- Ability to understand vehicle health and modify plans accordingly

Tactical Behavior
- Mimic the behavior of Soldiers under similar conditions
- Continue autonomous operation during prolonged communications outages
- Self-protection

Collaboration
- Shared situational awareness
- Teaming – robot/robot and robot/Soldier

Mission Specific Behaviors
- RSTA
- Force Protection
- Material handling/delivery
Research Topics – Potential Shortfalls

Operator Control
- Situational awareness of what’s going on around the robot/operator intervention
- Scalable interfaces – from MGV to dismount
- Operator workload in realistic tactical environments
- Operator span of control
- Alternative control modes (voice/gesture)
- Hands free, heads up display and control

Command Integration
- Fusion of local situation awareness information with the Common Operating Picture
Research Topics – Potential Shortfalls

- Autonomous Vehicle safety
- Autonomous Weapon safety
- Platform – modularity; shape shifting; micro-miniaturization; bio-mimetic; health maintenance/ prognostics/ self-healing;
- Low SWAP, high bandwidth data links
- High density power sources
- Network integration

Advancing Fielded Capability
Hard On and Off Road Problems

- Very busy environments
- Potholes
- Other vehicles
- Poor lane markings
- Traffic signals
- Pedestrians
- Animals
- Road work

- Deep water
- Very cluttered environments
- Mud, ice, snow, gravel and other traction problems
- Sharp rocks, rebar and curbs
- Tank traps
- Wire, posts and fences
- Hidden hazards, e.g. rocks and holes
- Fog, dust, smoke, rain
Examples of what Co-op Students are doing in Intelligent Systems

- Operator Control Units
- Hyperspectral Scene Segmentation
- Head Mounted Display
- Human Detection and Localization
- Novel Platform Development
- Robotic Path Planning