Award Number: W81XWH-06-1-0452

TITLE: Crosstalk Between Leptin Receptor and IGF-IR in Breast Cancer: A Potential Mediator of Chemoresistance

PRINCIPAL INVESTIGATOR: Rita Nahta, Ph.D.

CONTRACTING ORGANIZATION: Emory University
Atlanta GA 30322

REPORT DATE: April 2009

TYPE OF REPORT: Annual

PREPARED FOR: U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for Public Release;
Distribution Unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.
14. ABSTRACT

Obesity is a major risk factor for breast cancer, and is associated with reduced treatment response and reduced overall survival. The obesity-associated hormones IGF-I and leptin and their receptors, IGF-IR and leptin receptor (Ob-R), are elevated in breast cancer. Previously we showed through co-immunoprecipitation and immunoblotting that IGF-IR and Ob-R interact in the breast cancer cell lines MDA-MB-231, MCF7, BT474, and SKBR3. Stimulation of cells with IGF-I promoted Ob-R phosphorylation, which was blocked by IGF-IR kinase inhibition. In addition, IGF-I activated downstream signaling molecules in the leptin receptor and IGF-IR pathways. In contrast to IGF-I, leptin did not induce phosphorylation of IGF-IR, indicating that receptor cross signaling is unidirectional, occurring from IGF-IR to Ob-R. Our results demonstrate for the first time a novel interaction and cross talk between the IGF-I and leptin receptors in human breast cancer cells. Our ongoing studies will examine this cross talk in more detail by determining the biological and molecular effects of inhibition of these growth factor receptors. We will then examine the influence of this cross talk on response to taxane-based chemotherapy.

15. SUBJECT TERMS

Breast cancer, leptin, insulin-like growth factor-I, growth factor receptor signaling
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>4</td>
</tr>
<tr>
<td>Body</td>
<td>4</td>
</tr>
<tr>
<td>Key Research Accomplishments</td>
<td>8</td>
</tr>
<tr>
<td>Reportable Outcomes</td>
<td>9</td>
</tr>
<tr>
<td>Conclusion</td>
<td>9</td>
</tr>
<tr>
<td>References</td>
<td>10</td>
</tr>
<tr>
<td>Appendices</td>
<td>12</td>
</tr>
</tbody>
</table>
INTRODUCTION

Obesity is an important risk factor associated with the development and progression of breast cancer (1-7), reduced therapeutic efficacy, and higher mortality rates among breast cancer patients (8-11). The obesity-associated hormones insulin-like growth factor-I (IGF-I) and leptin are found at high levels in breast cancer patients (12-15), and their receptors, IGF-IR and Ob-R (leptin receptor is also known as obesity receptor), are overexpressed in a majority of breast cancers (15-17). Increased expression of leptin and Ob-R correlate with increased risk for distant metastasis and reduced overall survival in breast cancer patients (15). Leptin induces proliferation of breast cancer cells via activation of STAT3 (18,19), a transcriptional activator of the anti-apoptotic protein Bcl-2 (20,21). STAT3-dependent overexpression of Bcl-2 was associated with resistance to the chemotherapeutic agent paclitaxel in breast cancer cells (21). We propose that IGF-IR and the leptin receptor interact, and that IGF-IR and leptin induce phosphorylation of Ob-R, activating STAT3 and upregulating Bcl-2, which in turn results in taxane resistance. Our hypothesis is that high levels of leptin and IGF-I increase Ob-R signaling, contributing to taxane resistance in breast cancer. Our long-term goal is to establish markers of Ob-R signaling as predictors of taxane response. The rationale is that these markers of Ob-R signaling, including serum levels of leptin and IGF-I, and tissue levels of phosphorylated Ob-R, STAT3 and Bcl-2, can be used (1) to identify patients most likely to respond to taxanes, and (2) as therapeutic targets to improve response rates to taxanes in the treatment of breast cancer.

BODY

Task 1 Apply nanotechnology-based methods for visualization of IGF-IR and leptin receptor (Ob-R) in real time.

We will continue to work on the best way to label IGF-IR and Ob-R antibodies with nanoparticles or fluorescently based methods to effectively image cells exposed to these antibodies in real time.

Task 2 Demonstrate that IGF-I activates the leptin receptor via IGF-IR crosstalk.

The majority of this aim has been completed and published (reference 22; see appendix for publication). Results from this publication are summarized below; data can be seen in the figures in the attached publication.

Insulin-like growth factor-I receptor and leptin receptor interact in human breast cancer cells. Immunoprecipitation of Ob-R with subsequent immunoblotting for IGF-IR showed that Ob-Rb (longer isoform) and Ob-Rt (shorter isoform) are both pulled down with IGF-IR in human breast cancer lines MDA-MB-231 (MDA231), MCF7, BT474, and SKBR3. Conversely, IGF-IR immunoprecipitation pulled down Ob-Rb and Ob-Rt in each cell line, with preferential interaction observed with the shorter isoform of Ob-R in MCF7, BT474, and SKBR3 cells. Quantitation showed that IGF-IR was pulled down with Ob-R to a similar extent in all four lines. Collectively, the results of these
immunoprecipitation experiments indicate that the insulin-like growth factor-I receptor and leptin receptor interact in human breast cancer cells.

Insulin-like growth factor-I receptor cross signals to the leptin receptor. To determine the effect of IGF-IR/leptin receptor interaction on receptor signaling, MCF7 cells were serum-starved overnight, and then stimulated with IGF-I (100 ng/mL) for up to one hour. IGF-IR phosphorylation was induced within 5 min, while total IGF-IR levels were unaltered. Importantly, phosphorylation of Ob-R was also induced within 5 min of IGF-I exposure, suggesting potential cross signaling from IGF-IR to leptin receptor. Similarly, in BT474 cells and MDA231 cells, IGF-I stimulation induced phosphorylation of both IGF-IR and Ob-R within 5 min, without affecting total levels of either receptor. To determine if IGF-I stimulates phosphorylation of the leptin receptor via the IGF-IR kinase, MCF7 cells were treated with the IGF-IR kinase inhibitor I-OMe-AG538 and stimulated with IGF-I. Immunoblotting demonstrated that inhibition of IGF-IR kinase blocked IGF-I-stimulated phosphorylation of leptin receptor. Thus, IGF-I cross signals to the leptin receptor via the IGF-IR kinase. Analysis of downstream signaling showed significant phosphorylation of JAK2 and STAT3 in response to IGF-I within 5 min. IGF-I also activated the PI3K pathway, whereas phosphorylation of ERK1/2 and p38 MAPK was rapidly activated but transient versus other signaling pathways.

Insulin-like growth factor-I receptor / leptin receptor cross talk is unidirectional. We next examined whether cross talk occurs in the opposite direction, i.e. from the leptin receptor to IGF-IR. MCF7 cells were serum starved and stimulated with leptin (1000 ng/mL) for up to 6 hours. Leptin induced phosphorylation of leptin receptor within 5 min. However, phosphorylation of IGF-IR at either tyrosine 1131 or tyrosine 1135 and1136 was not stimulated by leptin at these time points up to 6 hours, nor was it stimulated at shorter time point increments or longer time points up to 24 hours or with lower doses of leptin. As a positive control, IGF-I stimulated phosphorylation of IGF-IR as expected and also induced phosphorylation of leptin receptor as previously observed. Similarly, BT474 cells stimulated with leptin showed phosphorylation of leptin receptor but not of IGF-IR at any of the three sites examined (Tyrosine 1131, 1135, 1136). Thus, our results suggest a unidirectional cross talk from the IGF-I receptor to the leptin receptor in breast cancer cells.

Additional unpublished data pertinent to this aim was collected this past year and includes the following.

Analysis of Src, JAK2, PI3K, and ERK1/2 as potential mediators of IGF-IR cross talk to Ob-R.

MCF7 cells were serum-starved overnight, and then treated with 10µM Src kinase inhibitor I (EMD Chemicals, Gibbstown, NJ) overnight, followed by IGF-I (100ng/mL) stimulation for 15 min. Protein lysates were immunoblotted for phosphorylated and total Src, IGF-IR, and Ob-R (Figure 1). Inhibition of Src kinase appeared to partially reduce IGF-I-mediated phosphorylation of the IGF-IR and Ob-R, suggesting that Src kinase activity is important to IGF-IR kinase activity and to its cross talk to Ob-R.
We also pre-treated MCF7 cells for 1 hour with inhibitors of Src, Jak2, PI3K, or MAPK prior to IGF-I stimulation and examined Ob-R phosphorylation (Figure 2). The short-term treatment with inhibitors did not inhibit IGF-IR cross talk to Ob-R, in contrast to the overnight treatment with Src inhibitor I (Figure 1).

MCF7 cells were pre-treated with a STAT3 inhibitor overnight prior to IGF-I stimulation (Figure 3). However, the inhibitor did not appear to inhibit STAT3 signaling, as phosphorylated STAT3 was not reduced. Thus, we will need to optimize the cell culture conditions for this inhibitor.

In addition, since insulin receptor shares homology with IGF-IR, we inhibited insulin receptor with 10 µM HNMPA (EMD Chemicals) overnight followed by IGF-I stimulation and immunoblotted for phosphorylated and total IGF-IR and Ob-R (Figure 4). IGF-I mediated phosphorylation of Ob-R in the presence of HNMPA, suggesting that IGF-I stimulation of insulin receptor does not mediate the cross talk to Ob-R. However,
stabilization with insulin does phosphorylate Ob-R (Figure 5), suggesting that insulin may be activating IGF-IR which then cross talks to Ob-R.

![Figure 3. Effect of STAT3 inhibitor on IGF-I-mediated Ob-R phosphorylation.](image)

Figure 3. Effect of STAT3 inhibitor on IGF-I-mediated Ob-R phosphorylation. MCF7 cells were serum-starved overnight, and then treated with 10 µM STAT3 inhibitor (S) overnight, followed by IGF-I (100ng/mL) stimulation for 15 min. Lysates were immunobotted for phosphorylated and total Ob-R and STAT3.

![Figure 4. Insulin receptor inhibition does not reduce IGF-I-mediated Ob-R phosphorylation.](image)

Figure 4. Insulin receptor inhibition does not reduce IGF-I-mediated Ob-R phosphorylation. MCF7 cells were serum-starved overnight, and then treated with 10 µM insulin receptor inhibitor HNMPA overnight, followed by IGF-I (100ng/mL) stimulation for 15 min. Lysates were immunobotted for phosphorylated and total Ob-R and IGF-IR. SS, serum starved control; IGF, IGF-I stimulation control; H, HNMPA control; H + IGF, treated with HNMPA followed by IGF stimulation.

Task 3 Demonstrate that Ob-R signaling activated by leptin or IGF-I contributes to taxane resistance.

To assist with this aim we have been testing various IGF-IR and Ob-R inhibitors. We have identified siRNA against IGF-IR that appears to effectively knockdown the receptor (Figure 6). However, after testing multiple leptin receptor siRNA we have been unable to identify one that knocks down leptin receptor expression (not shown). We will continue to optimize conditions to effectively knock down Ob-R.

We previously reported in our first annual report that breast cancer cells treated with leptin and taxane showed very little change in DNA fragmentation. Here, we treated with IGF-I and examined cytotoxicity of docetaxel using a clonogenic assay. MCF7 cells were treated with 100ng/mL IGF-I +/- 10nM docetaxel for 1 week, with media plus IGF-I or drug changed daily. Photographs of cultures were taken to assess colony growth (Figure
7). IGF-I appears to partially block docetaxel sensitivity, as a higher colony count was observed in the IGF-I + docetaxel cultures.

With respect to aim 3, we are testing inhibitors of leptin receptor (siRNA) or mutant leptin receptor constructs to examine effects on taxane response.

Figure 5. Insulin stimulates Ob-R phosphorylation. MCF7 cells were serum-starved overnight, and then treated with insulin (100ng/mL) over a time course for 1 min to 90 min. Lysates were immunoblotted for phosphorylated and total Ob-R. SS, serum starved control

<table>
<thead>
<tr>
<th>insulin</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 1 5 15 30 60 90 min</td>
</tr>
</tbody>
</table>

![p-Y1141 Ob-R](image)

![Ob-R](image)

Figure 6. IGF-IR siRNA pilot test. MCF7 cells were transfected with control siRNA (si-C) or IGF-IR siRNA (si-IGF) for 48 hours. Lysates were immunoblotted for total IGF-IR to confirm knockdown.

IGF-IR

<table>
<thead>
<tr>
<th>si-C</th>
<th>si-IGF</th>
</tr>
</thead>
</table>

actin

![si-C](image)

![si-IGF](image)

KEY RESEARCH ACCOMPLISHMENTS

- Discovery that IGF-IR and leptin receptor interact
- Discovery that IGF-IR cross talk to Ob-R is unidirectional
- Potential role of Src kinase as mediator of IGF-IR cross talk to Ob-R
- Finding that insulin stimulates phosphorylation of Ob-R
Demonstration that IGF-I reduces toxicity of docetaxel in breast cancer cell cultures

![Figure 7. Effect of IGF-I on cytotoxicity of docetaxel. MCF7 cells were treated with docetaxel (10 nM) in the absence or presence of 100ng/mL IGF-I. Media was changed every 24 hours for 1 week. Representative photographs are shown.]

REPORTABLE OUTCOMES

- Publication showing results from Aim 2 of original proposal (see appendix)
- Chosen as oral symposium speaker at DoD BCRP 2008 Era of Hope meeting to present the results of this grant in the “Modifiable risk factors” session

CONCLUSION

Up to this point, we made the following novel discoveries. (1) The IGF-I and leptin receptors interact in human breast cancer cells. (2) Cross signaling occurs from IGF-IR to Ob-R in breast cancer. IGF-I stimulation induces phosphorylation and activation of Ob-R, while IGF-IR kinase inhibition blocks IGF-I-mediated Ob-R activation. Downstream signaling molecules JAK2, STAT3, Akt, and ERK1/2, all of which are functional in the leptin and IGF-IR pathways as well as in multiple other signaling pathways, were activated by IGF-I stimulation. (3) Cross talk is unidirectional, as leptin does not activate
IGF-IR. Thus, leptin is not likely to affect IGF-IR oncogenic function in breast cancer. However, since IGF-IR cross talks to Ob-R, it is feasible that Ob-R may contribute to IGF-IR molecular or biological effects, and is worthy of further study. Thus, we have identified a novel receptor interaction and unidirectional cross talk involving the IGF-IR and leptin receptor. (4) Insulin appears to stimulate Ob-R phosphorylation as well, although inhibition of insulin receptor does not block IGF-I-mediated Ob-R phosphorylation. Insulin is known to bind and activate IGF-IR; thus, insulin may be activating Ob-R via IGF-IR. (5) Our pilot study shows that IGF-I does partially reduce response to docetaxel. Ongoing experiments are examining the effect of IGF-I cross talk to Ob-R on Bcl2 and taxane resistance. The results so far are significant in that they suggest interaction between two growth factor receptor signaling pathways that play an important part in breast cancer biology. The implication is that targeting one receptor may not be enough; dual targeting against IGF-IR and leptin receptor may be more beneficial and should be examined. To this end we have identified inhibitors of IGF-IR (siRNA, kinase inhibitor, and antibody), but are still testing Ob-R siRNA and mutant constructs. Determining the roles of Ob-R and IGF-IR in docetaxel responsiveness may ultimately contribute to being able to predict which patients will respond to this commonly used chemotherapeutic agent.

REFERENCES

APPENDICES
Please see the attached Curriculum Vitae.
Please see attached publication.

SUPPORTING DATA
N/A
BIOGRAPHICAL SKETCH

Provide the following information for the key personnel and other significant contributors in the order listed on Form Page 2. Follow this format for each person. DO NOT EXCEED FOUR PAGES.

NAME
Rita Nahta

POSITION TITLE
Assistant Professor

eRA COMMONS USER NAME (credential, e.g., agency login)
rnatha

EDUCATION/TRAINING (Begin with baccalaureate or other initial professional education, such as nursing, and include postdoctoral training.)

<table>
<thead>
<tr>
<th>INSTITUTION AND LOCATION</th>
<th>DEGREE (if applicable)</th>
<th>YEAR(s)</th>
<th>FIELD OF STUDY</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNC, Chapel Hill, N.C.</td>
<td>B.S.</td>
<td>1994</td>
<td>Chemistry</td>
</tr>
<tr>
<td>Duke University, Durham, N.C.</td>
<td>Ph.D.</td>
<td>2000</td>
<td>Field: Molecular Cancer Biology (Department: Pathology)</td>
</tr>
<tr>
<td>Harvard Medical School, Boston, MA</td>
<td>N/A</td>
<td>2000-2002</td>
<td>Postdoctoral</td>
</tr>
<tr>
<td>M. D. Anderson Cancer Center, Houston, TX</td>
<td>N/A</td>
<td>2002-2004</td>
<td>Postdoctoral</td>
</tr>
</tbody>
</table>

A. Positions and Honors. List in chronological order previous positions, concluding with your present position. List any honors. Include present membership on any Federal Government public advisory committee.

Positions
1990-1994 (summers only) Lab Technician, The Virkler Company, Charlotte, NC, Supervisor: Peter Hauser, Ph.D.
1995-2000 Ph.D. Candidate, Department of Pathology and Molecular Medicine, Duke University, Durham, NC, Mentors: J. Dirk Iglehart, M.D. and Jeffrey R. Marks, Ph.D.
2000-2002 Postdoctoral Fellow, Department of Medicine and Tumor Biology, Harvard Medical School and Massachusetts General Hospital Cancer Center, Boston, MA, Mentor: Emmett V. Schmidt, M.D., Ph.D.
2002-2004 Postdoctoral Fellow, Department of Breast Medical Oncology, M. D. Anderson Cancer Center, Houston, TX, Mentor: Francisco J. Esteva, M.D., Ph.D.
2004-2/2007 Instructor, Department of Breast Medical Oncology, M. D. Anderson Cancer Center, Houston, TX
2/2007-present Assistant Professor, tenure track, joint appointment: Departments of Pharmacology and Hematology & Medical Oncology, School of Medicine, Winship Cancer Institute, Emory University
9/2007-present Member, Molecular Systems Pharmacology Program, Graduate Division of Biological and Biomedical Sciences, Emory University

Honors
2004 AACR-Amgen, Inc. Fellowship Award in Clinical/Translational Cancer Research
2004 M. D. Anderson Cancer Center Odyssey Special Fellowship Award
2004 Concept Award, Department of Defense Breast Cancer Research Program
2005 IDEA Award, Department of Defense Breast Cancer Research Program
2006 Invited Managing Editor, Frontiers in Bioscience
2006 Howard Temin K01 Award, National Cancer Institute
2007 Distinguished Cancer Scholar Award, Georgia Cancer Coalition

B. Selected peer-reviewed publications (in chronological order).

14. Wang W, Nahta R, Huprun G, and Marks JR. TAF1i70 isoform specific growth suppression correlates with its ability to complex with the GADD45 protein. Mol Cancer Res 2: 442-452, 2004. (The first two authors contributed equally to this work.)

C. Research Support.

Current Support
National Cancer Institute K01CA118174 8/1/2006-7/31/2011
Role: PI
Title: “HER-2/IGF-IR cross-talk and Herceptin resistance”
Aims of this study are to investigate interaction and cross talk between HER2 and IGF-IR, downstream signaling and downregulation of p27kip1, and targeting IGF-IR in Herceptin resistance.

Role: PI
Title: “Crosstalk between leptin receptor and IGF-IR in breast cancer: a potential mediator of chemoresistance”
Aims of this study are to investigate potential interaction and cross talk between the IGF-I receptor and the leptin receptor and effects of leptin signaling on resistance to taxane chemotherapy.

Georgia Cancer Coalition 7/01/2007-6/30/2012
Role: PI
Title: Distinguished Cancer Scholar Program
This is a research lab start up grant.

Emory University Research Committee 01/15/20 09/01-01/14/2010
Role: PI
Title: Modulation of BRCA1 by curcumin in triple negative breast cancer
Aims of this study are to determine the molecular mechanisms by which curcumin modulates BRCA1, and examine the chemopreventive activity of curcumin in triple negative breast cancer in vivo.

Completed Support
U. S. Department of Defense (DOD) W81XWH 0510419 6/15/05-6/14/06
Role: PI
Title: “BTG1, a novel mediator of chemosensitivity in breast cancer”
Aims of this study were to examine regulation of BTG1 by Bcl2 and to demonstrate that BTG1 sensitizes breast cancer cells to chemotherapy.

Institutional Research Grant 9/1/05-8/31/06
Role: Co-PI
M. D. Anderson Cancer Center
Title: “Mechanisms of p27kip1 downregulation in trastuzumab-resistant breast cancer cells”
Aims were to examine mechanisms of p27kip1 downregulation focusing on IGF-I signaling.

AACR-Amgen, Inc. Postdoctoral Fellowship in Clinical/Translational Cancer Research 7/1/04-6/30/05
Role: PI
American Association for Cancer Research and Amgen, Inc.
Title: “p27kip1 as a therapeutic target in trastuzumab-resistant breast cancer”
Aims of this study were to examine mechanisms of p27kip1 downregulation in trastuzumab-resistant breast cancer and to correlate immunostaining of p27kip1 with response to trastuzumab in breast cancer tissues.

M. D. Anderson Cancer Center Odyssey Special Fellowship 2004
Role: PI
Title: “Mechanisms of trastuzumab resistance in breast cancer”
Aims were to characterize trastuzumab-resistant breast cancer cells using microarray and to determine the role of IGF-I signaling in trastuzumab resistance.
A Novel Unidirectional Cross-Talk from the Insulin-Like Growth Factor-I Receptor to Leptin Receptor in Human Breast Cancer Cells

Tuba Ozbay\(^1\,\,^3\) and Rita Nahta\(^1\,\,^2\,\,^3\,\,^4\)

Departments of \(^1\)Pharmacology and \(^2\)Hematology/Oncology, School of Medicine, \(^3\)Winship Cancer Institute, and \(^4\)Molecular and Systems Pharmacology Program, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, Georgia

Abstract

Obesity is a major risk factor for the development and progression of breast cancer. Increased circulating levels of the obesity-associated hormones leptin and insulin-like growth factor-I (IGF-I) and overexpression of the leptin receptor (Ob-R) and IGF-I receptor (IGF-IR) have been detected in a majority of breast cancer cases and during obesity. Due to correlations between increased leptin, Ob-R, IGF-I, and IGF-IR in breast cancer, we hypothesized that molecular interactions may exist between these two signaling pathways. Coimmunoprecipitation and immunoblotting showed that IGF-IR and Ob-R interact in the breast cancer cell lines MDA-MB-231, MCF7, BT474, and SKBR3. Stimulation of cells with IGF-I promoted Ob-R phosphorylation, which was blocked by IGF-IR kinase inhibition. In addition, IGF-I activated downstream signaling molecules in the leptin receptor and IGF-IR pathways. In contrast to IGF-I, leptin did not induce phosphorylation of IGF-IR, indicating that receptor cross-signaling is unidirectional, occurring from IGF-IR to Ob-R. Our results show, for the first time, a novel interaction and cross-talk between the IGF-I and leptin receptors in human breast cancer cells. (Mol Cancer Res 2008;6(6):1052–8)

Background

Obesity is an important and manageable risk factor for the development and progression of postmenopausal breast cancer (1). Increased body weight and body mass index are associated with reduced disease-free and overall survival and poorer therapeutic response rates in breast cancer patients, regardless of menopausal status or age (2). Although the exact molecular mechanisms by which obesity influences cancer biology are unknown, there is evidence suggesting that increased production and secretion of adipocyte-derived growth factors and hormones contributes to cellular transformation and tumorigenesis (3, 4). The obesity-associated hormones leptin and insulin-like growth factor-I (IGF-I) have been independently implicated in the connection between obesity and breast cancer (5).

Leptin, a product of the obese\((ob)\) gene, is an adipocytokine that regulates appetite, bone formation, reproduction, cellular proliferation, and angiogenesis (6). Because of the strong association between human obesity and elevated levels of circulating leptin, this hormone has been widely studied in the fields of nutrition and weight management (7). More recently, however, leptin has emerged as a potential factor contributing to mammary tumorigenesis. In vitro studies showed that leptin stimulates the growth, survival, and transformation of breast cancer cells (5), primarily by activating the Janus-activated kinase (JAK)/signal transducers and activators of transcription (STAT) signaling pathway (8, 9) and the phosphoinositid-3-kinase/Akt and mitogen-activated protein kinase (MAPK) pathways (10). Leptin induces cell cycle progression by up-regulating cyclin D1 expression and cyclin-dependent kinase 2 activity, as well as by inactivating the retinoblastoma growth suppressing protein (11). Importantly, leptin and its receptor (Ob-R) were found to be overexpressed in a majority of breast cancer tissues, especially in high-grade tumors, but absent or expressed at very low levels in normal mammary epithelium or benign tumors (5, 12). In addition, leptin-deficient mice have a decreased incidence of spontaneous and oncogene-induced mammary tumors (13). Thus, leptin signaling seems to play an important role in breast cancer biology.

Similar to leptin, increased levels of IGF-I and its receptor are detected in sera and primary tumors of breast cancer patients (14, 15), and transgenic overexpression of IGF-I receptor (IGF-IR) has been shown to induce mammary tumor formation (16). IGF-I is an important endocrine, paracrine, and autocrine regulator of breast epithelial cell growth. Increased signaling through the IGF-IR results in increased cellular proliferation, mitogenesis, and survival and decreased apoptosis, causing resistance to numerous antineoplastic agents (14, 17). For these reasons, the IGF-IR has become an important therapeutic target for drug discovery in breast oncology (17).

Cross-talk between different growth factor receptor families is frequently observed in tumors. This mechanism allows cancer cells to enhance downstream signaling resulting in greatly increased proliferation, mitogenesis, and cell survival.
The IGF-IR has been shown to interact and cross-talk with multiple receptors, including the epidermal growth factor receptor (EGFR; ref. 18), HER2 (19), platelet-derived growth factor receptor (20), and the estrogen receptor (14). Due to the correlations between elevated levels of leptin, IGF-I, and their associated receptors with obesity and breast cancer, we hypothesized that interactions and/or cross-talk may occur between these two signaling pathways.

Results

IGF-IR and Leptin Receptor Interact in Human Breast Cancer Cells

The human breast cancer lines MDA-MB-231 (MDA231), MCF7, BT474, and SKBR3 were examined for expression of the IGF-IR and leptin receptor (Ob-R). Immunoblotting of total protein lysates (Fig. 1A) showed that the two major isoforms of Ob-R, called Ob-Rb (longer isoform) and Ob-Rt (shorter isoform), are expressed at similar levels in all cell lines (Fig. 1B). IGF-IR is expressed at higher levels in MCF7 and BT474 cells versus SKBR3 and MDA231 cells, with highest levels observed in MCF7 cells (Fig. 1B).

Immunoprecipitation of Ob-R with subsequent immunoblotting for IGF-IR showed that Ob-Rb and Ob-Rt are both pulled down with IGF-IR in all four cell lines (Fig. 2A). Conversely, IGF-IR immunoprecipitation pulled down Ob-Rb and Ob-Rt in each cell line, with preferential interaction observed with the shorter isoform of Ob-R in MCF7, BT474, and SKBR3 cells (Fig. 2B). Quantitation showed that IGF-IR was pulled down with Ob-R to a similar extent in all four lines (Fig. 2C). Total Ob-R was pulled down with IGF-IR in all four lines; however, higher levels of Ob-R interacting with IGF-IR was observed in MCF7 cells (Fig. 2C), likely due to the higher expression level of total IGF-IR in these cells (Fig. 1B). Negative controls in which cell lysates were immunoprecipitated with rabbit IgG confirmed that IGF-IR and Ob-R were not pulled down (Fig. 2D). In addition, because IGF-IR has been shown to interact with insulin receptor (21), we blotted IGF-IR immunoprecipitates for insulin receptor as a positive control (Fig. 2D). Insulin receptor was pulled down with IGF-IR in all four lines. Finally, another tyrosine kinase receptor, EGFR, was immunoprecipitated and blotted for Ob-R in all lines (Fig. 2D).

Collectively, the results of these immunoprecipitation experiments indicate that the IGF-IR and leptin receptor interact in human breast cancer cells.

IGF-IR Cross-Signals to the Leptin Receptor

To determine the effect of IGF-IR/leptin receptor interaction on receptor signaling, MCF7 cells were serum-starved overnight and then stimulated with IGF-I (100 ng/mL) for up to 1 hour. IGF-IR phosphorylation was induced within 5 minutes (Fig. 3A), while total IGF-IR levels were unaltered. Importantly, phosphorylation of Ob-R was also induced within 5 minutes of IGF-I exposure, suggesting potential cross-signaling from IGF-IR to leptin receptor. Similarly, in BT474 cells (Fig. 3B) and MDA231 cells (Fig. 3C), IGF-I stimulation induced phosphorylation of both IGF-IR and Ob-R within 5 minutes, without affecting total levels of either receptor. To determine if IGF-I stimulates phosphorylation of the leptin receptor via the IGF-IR kinase, MCF7 cells were treated with the IGF-IR kinase inhibitor I-OMe-AG538 and stimulated with IGF-I (Fig. 3D). Immunoblotting showed that inhibition of IGF-IR kinase blocked IGF-I–stimulated phosphorylation of leptin receptor. Thus, IGF-I cross-signals to the leptin receptor via the IGF-IR kinase.

Having established that IGF-IR stimulates phosphorylation of the leptin receptor, we examined IGF-I–mediated effects on downstream receptor signaling. MCF7 cells were stimulated with IGF-I and immunoblotted for phosphorylated and total JAK2 and STAT3 (Fig. 4A) and for phosphorylated and total Akt, extracellular signal-regulated kinase 1/2 (ERK1/2), and p38 MAPK (Fig. 4B). Significant phosphorylation of JAK2 and STAT3 was observed in response to IGF-I within 5 minutes. IGF-I also activated the phosphoinositol-3-kinase pathway, as shown by phosphorylation of Akt. Phosphorylation of ERK1/2 and p38 MAPK was rapidly activated by...
transient versus other signaling pathways. Collectively, these results support the concept that IGF-I cross-activates the leptin receptor signaling pathway, although the signaling molecules examined are downstream of multiple growth factor receptors and, thus, do not strictly confirm activation of leptin receptor signaling. However, as leptin receptor phosphorylation was induced by IGF-I and blocked by IGF-IR kinase inhibitor on Tyr1141, which is the phosphorylation site that binds STAT3 and activates downstream signaling, our results strongly suggest that IGF-IR induces activation of the leptin receptor.

IGF-IR/Leptin Receptor Cross-Talk Is Unidirectional

We next examined whether cross-talk occurs in the opposite direction, i.e., from the leptin receptor to IGF-IR. MCF7 cells were serum starved and stimulated with leptin (1,000 ng/mL) for up to 6 hours. Leptin induced phosphorylation of leptin receptor within 5 minutes (Fig. 5A). However, phosphorylation of IGF-IR at either Tyr1131 or Tyr1135/1136 was not stimulated by leptin at these time points of up to 6 hours nor was it stimulated at shorter time point increments or longer time points of up to 24 hours or with lower doses of leptin (not shown). As a positive control, IGF-I stimulated phosphorylation of IGF-IR as expected and also induced phosphorylation of leptin receptor as previously observed (Fig. 3). Similarly, BT474 cells stimulated with leptin showed phosphorylation of leptin receptor but not of IGF-IR at either of the three sites examined (Tyr1131, Tyr1135, and Tyr1136; Fig. 5B). Thus, our results suggest a unidirectional cross-talk from the IGF-IR to the leptin receptor in breast cancer cells.
Discussion

Epidemiologic studies estimate that obesity increases the risk of breast cancer by up to 50% (3). The molecular mechanisms guiding obesity-associated breast cancer are not well understood, but are likely to involve an increased production and secretion of obesity-associated hormones (22). IGF-I and leptin are capable of regulating mammary tissue growth at multiple levels (5). Both hormones are secreted by abdominal adipocytes, resulting in endocrine effects on various tissues, including the breast. Paracrine growth stimulatory effects occur via IGF-I and leptin released by the adipocyte component of stroma surrounding breast epithelial cells or existing breast tumor cells. In addition, an autocrine signaling component is present as breast cancer cells themselves produce and secrete IGF-I and leptin and express cell surface receptors for both ligands. Thus, IGF-I and leptin represent a molecular link between adipose tissue and mammary tissue.

The IGF-IR and Ob-R signaling pathways have each been independently implicated in the development and progression of breast cancer. High circulating levels of IGF-I have been associated with an increased risk of developing breast cancer, and patients with existing breast cancer expressed high serum levels of IGF-I (17). In addition, transgenic mouse models overexpressing IGF-I, IGF-II, or IGF-IR showed an increased incidence of mammary tumor formation (16, 17, 23, 24). Conversely, liver-specific depletion of IGF-I caused reduced circulating levels of IGF-I in mice, resulting in diminished IGF-I endocrine effects on mammary tissue and, ultimately, reduced incidence of breast tumors (25). Similar to the IGF-I signaling pathway, leptin signaling has been associated with breast cancer. Leptin and its receptor were shown by immuno-histochemistry to be overexpressed in primary and metastatic breast cancers relative to noncancer tissues (5). Expression of both leptin and Ob-R was most abundant among high-grade tumors, supporting a role for this pathway in breast cancer progression. In addition, in vivo models showed that whereas mice that overexpress transforming growth factor-α developed mammary tumors, leptin-deficient transforming growth factor-α

![FIGURE 3](image-url). Evidence of cross-talk from IGF-IR to Ob-R. IGF-I induces phosphorylation of Ob-R, which is blocked by IGF-IR kinase inhibition. MCF7 (A), BT474 (B), and MDA231 (C) cells were serum-starved overnight and then stimulated with IGF-I (100 ng/mL) for 1, 5, 15, 30, or 60 min. Cells were lysed for protein, and total protein extracts (50 μg) were immunoblotted (SS, serum-starved control) for p-Y1141-Ob-R (phosphorylated Tyr1141 on leptin receptor), total Ob-R, p-Tyr1131 IGF-IR (phosphorylated Tyr1131 on IGF-IR), IGF-IR, and actin as a loading control. IGF-I stimulated phosphorylation of Ob-R within 5 min in all cell lines. Importantly, phosphorylation of the leptin receptor was also induced within 5 min of IGF-I exposure. Total receptor levels did not change. D. MCF7 cells were serum-starved overnight, then stimulated with IGF-I (100 ng/mL) for 5 min, and/or treated with the IGF-IR kinase inhibitor I-OMe-AG538 (10 μmol/L overnight). Total protein was immunoblotted for p-Y1141-Ob-R, total Ob-R, p-Tyr1131 IGF-IR, and total IGF-IR. Experiments were done at least twice. Inhibition of IGF-IR kinase blocked IGF-I-mediated phosphorylation of leptin receptor, supporting cross-talk from the IGF-IR kinase to leptin receptor. SS, serum-starved control; I, IGF-I; AG, I-OMe-AG538; I + AG, IGF-I + I-OMe-AG538.

mice were resistant to mammary tumor development (13), illustrating the important contribution of the leptin signaling pathway to some forms of breast cancer. Hence, because IGF-I and leptin are frequently detected in the serum of breast cancer patients and both receptors are overexpressed in a majority of breast tumors, we sought to determine whether molecular interactions occur between IGF-IR and leptin receptor in breast cancer.

We showed the following novel findings (Fig. 6):

(a) The IGF-I and leptin receptors interact in human breast cancer cells. Of potential interest, IGF-IR may preferably associate with Ob-Rt versus Ob-Rb in MCF7, BT474, and SKBR3 cells, as more of this isoform was pulled down in the IGF-IR immunoprecipitates (Fig. 2B); total levels of both Ob-R isoforms were similar in each line (Fig. 1A).

(b) Cross-signaling occurs from IGF-IR to Ob-R in breast cancer. IGF-I stimulation induces phosphorylation and activation of Ob-R, whereas IGF-IR kinase inhibition blocks IGF-I–mediated Ob-R activation. Downstream signaling molecules examined included JAK2, STAT3, Akt, and ERK1/2, all of which are functional in the leptin and IGF-IR pathways, as well as in multiple other signaling pathways. Thus, the IGF-I signaling experiments do not strictly indicate that IGF-I induces activation of one particular pathway. However, our results clearly indicate that IGF-I induces phosphorylation of Ob-R on Tyr1141. Phosphorylation of Tyr1141 is required for Ob-R to bind to the STAT3 transcription factor, which is then activated by JAK2 and translocated to the nucleus to stimulate transcription of downstream target genes (26). Thus, our results indicate that IGF-I activates Ob-R via the IGF-IR kinase.

(c) Cross-talk is unidirectional, as leptin does not activate IGF-IR. Whereas it is feasible that other phosphorylation sites on IGF-IR may be affected by leptin stimulation, the three sites examined here (Tyr1131 and Tyr1135/1136) were not affected by leptin. These three phosphorylation sites are the critical sites known to be required for IGF-IR mitogenicity and transforming activity (27). Thus, the inability of leptin to induce phosphorylation at these sites suggests that the leptin hormone alone is not likely to affect IGF-IR oncogenic function in breast cancer. However, because IGF-IR cross-talks to Ob-R, it is feasible that Ob-R may contribute to IGF-IR molecular or biological effects and is worthy of further study.

Thus, we have identified a novel receptor interaction and unidirectional cross-talk involving the IGF-IR and leptin receptor, which has not been previously described. Interestingly, Garofalo et al. (5) showed that IGF-I can induce leptin transcript levels in MCF7 cells. Our results further support this concept of IGF-I–mediated positive regulation of the leptin pathway.

Cross-talk from IGF-IR to other signaling pathways seems to be a potentially common mechanism used by cancer cells to enhance tumor growth and supports the significance of the IGF-I system to the biology of breast cancer, as well as the relevance of IGF-IR as a therapeutic target. We previously showed that IGF-IR cross-talks to the HER2 cell surface receptor in breast cancer cells that have become resistant to the HER2-targeted agent trastuzumab (19). Others have also shown that IGF-IR is capable of cross-signaling to the EGFR (18) and to the estrogen receptor (14). Thus, understanding the mechanisms by which IGF-IR mediates activation of other growth factor signaling pathways is important to breast cancer research. We have examined the role of the Src kinase family in mediating IGF-IR cross-talk to leptin receptor and have found that Src kinase inhibition does not inhibit IGF-IR/Ob-R cross-talk (not shown). Future studies will examine the molecular mechanisms mediating this receptor cross-talk. In addition, cotargeting leptin receptor and IGF-IR as a strategy to inhibit breast cancer progression, as well as the contribution of leptin receptor to IGF-I–mediated promitogenic and antiapoptotic effects, will be examined in breast cancer cells.

In summary, our results show, for the first time, that the IGF-I and leptin receptors physically form a protein complex in

FIGURE 4. IGF-I activates downstream signaling. MCF7 cells were serum-starved overnight and then stimulated with IGF-I (100 ng/mL) for 1, 5, 15, 30, or 60 min. Total protein extracts (50 μg) were immunoblotted for the downstream leptin signaling molecules p-STAT3 (Tyr705), total STAT3, p-JAK2 (Tyr572), and total JAK2 (24B11) (A) and for molecules downstream of both leptin receptor and IGF-IR, p-Akt (Ser473), total Akt, p-p42/p44 MAPK (Thr202/Tyr204; ERK1/2), total p42/p44 MAPK (ERK1/2), p-p38 MAPK (Thr180/Tyr182), and total p38 MAPK (B). IGF-I induced phosphorylation of STAT3 and JAK2, consistent with IGF-I–mediated activation of leptin signaling, and also activated Akt, ERK1/2, and p38 MAPK signaling. Since the same lysates were used in A and B, the same actin blot is shown.
breast cancer cell lines and, further, that there exists a one-way cross-talk whereby IGF-IR induces phosphorylation and activation of the leptin receptor in breast cancer.

Materials and Methods

Materials

Human recombinant IGF-I (Sigma) was dissolved at 100 μg/mL in PBS and used at 100 ng/mL in culture. Human recombinant leptin (EMD Biosciences) was dissolved at 1 mg/mL in PBS and used at 100 or 1,000 ng/mL. I-OMe-AG538 IGF-IR kinase inhibitor (Sigma) was dissolved at 1 mmol/L in PBS and used at 10 μmol/L in culture.

Cell Culture

MDA-MB-231 (MDA231), MCF7, BT474, and SKBR3 breast cancer cells were purchased from the American Type Culture Collection and maintained in DMEM supplemented with 10% FCS.

Ligand Stimulation

Cells were serum starved overnight, and then stimulated with IGF-I (100 ng/mL) for 1, 5, 15, 30, or 60 min or leptin (1,000 ng/mL) for 5 min, 0.5 h, 1 h, 3 h, or 6 h. In addition, a subset of cells were serum starved, treated with the IGF-IR kinase inhibitor I-OMe-AG538 (10 μmol/L overnight), and stimulated with IGF-I (100 ng/mL).

Immunoprecipitation

Total protein lysates (200 μg) were incubated with 1 μg of Ob-R or IGF-IR antibody or 1 μg rabbit IgG, rotating for 4 h, followed by addition of protein A/G-agarose (Cell Signaling) and rotating overnight. Beads were then washed thrice in PBS containing 0.1% Tween 20 and immunoblotted to detect Ob-R (H-300, Santa Cruz), IGF-IR (polycronal, Cell Signaling), EGFR (monoclonal 1F4, Cell Signaling), or insulin receptor β (polycronal, Cell Signaling). Blots of immunoprecipitations were quantitated using NIH imaging software ImageJ.

Immunoblotting

Cells were lysed in buffer containing 10 mmol/L Tris (pH 7.5), 100 mmol/L NaCl, 1 mmol/L EDTA, 1% NP40, and protease and phosphatase inhibitor cocktails (Sigma). Total protein extracts (50 μg) were immunoblotted using the following antibodies at the indicated dilutions: IGF-IRβ (polycronal at 1:1,000; Cell Signaling); p-Tyr1131/1136-IGF-IR/ Tyr1146-IR (polycronal at 1:200; Cell Signaling); p-Tyr1135/1136-IGF-IR/Tyr1150/1151-IR (polycronal at 1:200; Cell Signaling); leptin receptor (Ob-R; H-300 polyclonal at 1:200; Santa Cruz).
Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

References

