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Dynamic Resource Allocation to Improve Service 
Performance in Order Fulfillment Systems 

Abstract 

We have recently developed methods for approximating the sojourn time 
distribution for customers or jobs entering a multi-server queueing network 
with general interarrival and processing times. Here we propose to continue 
the development of such models, and use them to allocate workers dynami- 
cally in an order fulfillment system to improve its service performance. This 
work is part of a long-term effort to develop a resource control system for 
order fulfillment systems, such as those found in distribution depots of the 
Defense Logistics Agency. 



1    Order fulfillment systems 

America's ongoing transition from a manufacturing- to a service-based economy 
has motivated much interest in service systems, both from a management and a 
design perspective. On the management side, there has been renewed interest in 
marketing and consumer behavior and in measuring customer satisfaction. On the 
design side, there has been much work in supply chain network design, supply 
chain coordination, and inventory management. 

The focus of our recent and proposed research is order fulfillment systems, 
which are manufacturing or distribution operations designed to respond to deadline- 
oriented customer requests. The importance of these systems to the U.S. economy 
should be obvious: nearly every industrial or consumer product sold in our coun- 
try passes through such a system on its way to market. 

The work we are proposing is rooted in four levels of customer awareness il- 
lustrated in Figure 1. The most basic level acknowledges the customer's existence, 
but not much more. We might think of this as the old-school mentality that, "This 
would be a great company, if it weren't for the customers." The second level is 
Measurement, in which a firm begins to assess its performance with respect to 
the perception of its customers. For example, it might survey its customers to 
determine if they have been satisfied with respect to quality or on-time delivery. 
The third level, which we believe is where most competitive firms exist, is Man- 
agement. Here, the firm establishes customer-oriented metrics and manages its 
existing operations with respect to them. The fourth level, which is the subject of 
our work, is the Design level, in which the firm transforms (designs) its internal 
operations to improve these customer-oriented metrics. Because transformation 
involves change (by definition) and change is hard, we contend few companies 
exist at this highest level.1 

So, exactly what does all this mean in practice? The Defense Distribution 
Center (DDC), which is the distribution arm of the Defense Logistics Agency, 
provides an excellent case study of the transition from level two to level three in 
customer awareness. In the 1990's, DDC began more precisely measuring the 
time to respond to customer orders as a way of assessing whether or not it was 
providing "good service" to its customers. The new "average cycle time" metric 
was used by senior commanders at DDC to assess the performance of its many 
distribution depots. In the early 2000's, DDC noted problems with the effects of 

'We plead some literary license with these assertions. To say such things scientifically would 
require much interesting research, which is not in the author's area of expertise. 
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Figure 1: Four levels of customer awareness. 
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the metric on internal depot operations, and proposed a new metric called Next 
Scheduled Departure, which more accurately reflected service performance to the 
customer. This metric is still in use today, and depot commanders use it to manage 
daily operations. Note, then, the transition from simple performance measurement 
(average cycle time of internal operations) to management of operations to im- 
prove a customer-oriented metric like NSD. DDC successfully moved into level 
three of customer awareness. 

How then might DDC move to the next level, in which internal operations 
are transformed to improve customer-oriented metrics? This is the subject of our 
proposed research. 

2   A theory of order fulfillment 

At the most basic level, order fulfillment involves only two parties: Customer and 
Provider. Customer makes a request for a product or service with an implicit or 
explicit deadline, and Provider provides the goods in the expected condition by 
the expected time. The three basic functions are Order —>-Process->Deliver. The 
problem with this model is that it is extremely inefficient for most operations. For 
example, if upon every new order, a warehouse worker walks into the warehouse 
to pick a single item, and a truck leaves the dock with that single order to a single 
customer, we would have a very expensive order fulfillment system indeed. 

A more efficient system uses economies of scale at two points: orders are 
batched before processing, which reduces processing costs, and processed or- 
ders are batched for delivery, which reduces transportation costs. The process is 
Order-»Batch—^Process—>-Batch^-Deliver. In the warehousing literature, the ef- 
fects of batching on order picking processes is well-researched and well-understood 



(van den Berg and Gademann, 1999). Because orders are assumed to be exoge- 
nous to the system, there has been no research (that we know of) on how order 
batching affects the order stream itself (and we doubt that it does). To gain fur- 
ther economies of scale, a second batching operation occurs before transportation, 
which reduces delivery costs. Assigning orders to trucks is another name for vehi- 
cle routing problems, which are also well-researched and fairly-well understood. 

But how, we ask, should the batching process which is transportation affect 
the internal processes of the warehouse? This is not well-understood, and, to our 
knowledge, has not been addressed in the literature. 

3 Purpose 

The goal of our research is to design dynamic resource allocation processes that 
improve customer service in order fulfillment systems. To be more specific, we 
seek dynamic worker allocation policies in a warehouse environment that get more 
orders on outbound trucks sooner. 

We propose to investigate policies that require the sojourn time distribution 
for an order. Our research will make two contributions: 

1. We will introduce to the academic and practicing communities dynamic 
worker allocation policies designed to improve service performance instead 
of throughput. 

2. We will extend the theoretical development of approximation models for 
sojourn time distributions for multi-server queueing networks with general 
interarrival and processing times. We have recently made some significant 
advances in this area; our new work proposes to go further. 

4 Progress to date 

The general theme of the research is one of two we have been addressing under 
our current grant. In the course of our research in these two years, this particu- 
lar subject (dynamic worker allocation for order fulfillment systems) has grown 
significantly and has led to two major theoretical advances, which we describe 
below. 

To begin, we should say that the Next Scheduled Departure metric itself is 
new to the academic community, at least in the context of order fulfillment and 



manufacturing systems. Manufacturing research especially has almost universally 
sought to optimize the classic measures of system performance, such as work-in- 
process inventory, throughput, or cycle time. In the warehousing literature, the 
objective is almost always throughput. Our work has been different, and we be- 
lieve valuable, because it supposes a different, more customer-focused objective. 
By definition, Next Scheduled Departure is the percentage of orders arriving be- 
tween cut-off times on two consecutive days that are shipped on a departing truck 
after the cut-off time on the second day. For example, suppose the order cut-off 
time is 1400 (see Doerr and Gue, 2006, for a discussion of how to set the cut-off 
time), and 1,000 orders arrive between 1400 on Day 1 and 1400 on Day 2. If 900 
of those orders ship on the 1700 truck on Day 2 (the rest being still in process), 
then NSD is 90 percent for that day. As we have said, this metric is in use at DLA 
today. 

The idea behind dynamic worker allocation came during some research with 
the Defense Distribution Depot in San Diego (DDDC) several years ago, when we 
noticed that about 5 percent of orders were ready to be shipped in the 30 minutes 
after the truck left everyday. (This insight led to the development of NSD, in 
fact.) The research question we posed at the time was, "Could internal operations 
at DDDC have been reorganized just before the last truck departed for the day, 
such that more orders got on that truck?" Notice that advancing that 5 percent of 
orders by 30 minutes would result in customers receiving them earlier by an entire 
day, due to the batch nature of transportation. 

In our current grant, we began investigating just this question: Can workers be 
dynamically allocated in a warehouse to improve the NSD metric? Early simula- 
tion experiments, frankly, were inconclusive. We tried some naive policies such 
as, 

Policy 1 (Naive 1) At 1400 move 3 workers from Picking to Shipping, then move 
them back after truck departure, 

but this did not seem to improve performance consistently, and in any case not 
significantly. The problem was that the policy was "dumb": On some days, there 
was a significant queue in shipping at 1400, and the extra workers helped push 
through orders that otherwise would not have made the truck. But on other days, 
workers moved to shipping when there was no work for them to do, thus making 
them idle for a time and hurting performance in the long run. 

These insights led us to formulate state-dependent policies, in which the state 
of the system (number of orders in the shipping queue, for example) determine 
when and how many workers to move. Naive state-dependent policies, such as 



Figure 2: A notional model of an order fulfillment system. Filled dots indicate 
workers. 

Policy 2 (Naive 2) At 1400, if the shipping queue is more than 10 orders, move 3 
workers from Picking to Shipping; otherwise, move none, 

showed enough promise in simulation to warrant continued investigation. 
Eventually we found that the most promising policies require an understanding 

of the sojourn time distribution for an order. For example, we needed to know 
what was the probability that an order arriving at, say 1230, would finish before 
the truck left at 1700. If the probability is low, then we might "abandon" that order 
and shift resources to more promising orders. Answering this sort of question 
requires a distribution of sojourn time, not just an expected value. This has led us 
to two theoretical advances. 

4.1   A steady-state sojourn time model 

We model the warehouse as a serial line of three workstations (picking, packing, 
and shipping), with multiple workers for each workstation, or, more generally, 
as a network of multi-server queues. Our search of the literature revealed that 
there existed no methods for approximating the sojourn time distribution in such 
a network. 

We have developed an approximation model for the sojourn time distribution 
in a network of multi-server queues, when the interarrival and processing times 
can take on general distributions. We believe we are the first to have developed 
such a model. Below we sketch the procedure and give a glimpse of the results. 
Details and mathematics are available in Gue and Kim (2008a). 

Our method is based on characteristics of phase-type distributions, which al- 
low us to approximate general distributions in a way that we can take convolutions 
of waiting and processing time distributions at each stage to arrive at a final so- 
journ time distribution. Our work builds on existing research in matrix-geometric 



methods by Neuts (1981), Asmussen and M0ller (2001), and You et al. (2002). 
Very briefly, the procedure is 

1. Use the QNA method of Whitt (1983) to establish interarrival processes to 
all workstations. 

2. Convert each G/G/c representation of a workstation (for picking, pack- 
ing, shipping) to a corresponding phase type model Ph/Ph/c, based on the 
squared coefficients of variation C% and C}. 

3. Compute the initial probability vectors and infinitesimal generators (y,-, Ri) 
for the waiting time distribution of each Ph/Ph/c queue and compute cor- 
responding vectors and generators (/?,, 5,) for processing time, according to 
Asmussen and M0ller (2001). For the number of phases in each Ph/Ph/c 
distribution, use the appropriate value of \\/C2~\. 

4. Use the Q8,-, St) and (y,, /?,) with the method of You et al. (2002) to generate 
an initial probability vector and infinitesimal generator of sojourn time in 
the system (£. Q). 

5. Solve F{t) = P(T < t) = 1 - ^(eoe to obtain the CDF of the sojourn 
time distribution. 

6. Repeat Steps 3-5, this time with number of phases L1/C2J for each distri- 
bution. Let the resulting CDF be G(t). 

7. Compute the mixed CDF, H(t) = aG(t) + (1 — a)F(t), where a is an 
interpolation coefficient, which we show how to determine in Gue and Kim 
(2008a). 

Our method produces distributions very similar to those established in a dis- 
crete event simulation. For a prototypical system with 3 stages and 6 workers per 
workstation (see Figure 3), the results are quite close (Figure 4). We did exten- 
sive analysis with Anderson-Darling tests to show that the approximation model 
produces distributions statistically identical to those derived from simulation. A 
full description of the method and the results is in Gue and Kim (2008a). 

With the steady state sojourn time distribution in hand, we made a significant 
discovery with respect to the performance metric NSD, which enables us to com- 
pute the expected NSD for an order fulfillment system directly from the sojourn 
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Figure 5: Computing expected NSD from the steady state sojourn time distribu- 
tion. 

time distribution. In a coming paper, we will show that 

NSD 
i       r24+8 

24 L P[T<t¥U (1) 

where P[T < t] is the CDF of the sojourn time distribution, 0 < t < 24, and S 
is the amount of time between the cut-off time and the departure time. Figure 5 
shows the relationship graphically. 

The discovery is important because it allows managers, with a relatively sim- 
ple calculation, to estimate performance on NSD for any cut-off time under con- 
sideration. Doerr and Gue (2006) discuss how to set the cut-off time with respect 
to motivating workers to achieve an NSD goal; our result makes this process much 
easier. Equation 1 will also help us with the exploration we propose in Section 5. 

4.2   A state-dependent sojourn time model 
Our second major advance has been a state-dependent model of sojourn time dis- 
tributions, again, for multi-server queueing networks with general interarrival and 
processing time distributions. We believe ours is the first such model. By state- 
dependent, we mean the following. Suppose an order is twentieth in queue when 
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it arrives to a queueing network. Furthermore, suppose we know the number of 
orders in every queue in the system at the time of arrival. What is the sojourn time 
distribution for the job that just arrived? 

As before, the model uses phase-type distributions and matrix-geometric meth- 
ods. The procedure is as follows: 

1. Approximate the first service time distribution as a corresponding phase- 
type distribution, (/S, S), based on the SCV, Cf. 

2. Approximate the first waiting time distribution as a corresponding phase- 
type distribution, (ai, W\). 

3. Approximate the second waiting time distribution as a corresponding phase- 
type distribution, (0:2, W2) based on the first initial probability vector, ai. 

4. Approximate the following waiting time distributions as appropriate phase- 
type distributions, (or,-, W,), i > 3, according to the same procedure. 

5. Generate the initial probability vector and infinitesimal generator of sojourn 
time distribution of the system (y, K) using the convolution property of the 
phase-type distribution. 

6. Solve F(t) = P(T < t) = 1 - yeKte. (t > 0) to obtain the CDF of the 
sojourn time distribution. 

A full description of the model and detailed results are in Gue and Kim (2008b). 
With a model for state-dependent sojourn time distributions, we can compute 

for any job, at any time its probability of "success," or the probability that it will 
make it on the target truck. This gives us a powerful tool for real-time decision- 
making in order-fulfillment systems. 

5    Statement of Work 

We propose to move forward in two main directions: (1) To explore the behav- 
ior and control of order fulfillment systems using policies based on sojourn time 
distributions, and (2) to extend our approximation models to account for non- 
stationary distributions commonly seen in the order streams of distribution cen- 
ters, such as those found throughout the Defense Logistics Agency. 

11 



5.1    Literature review 

The use of cross-trained workers to improve the performance of manufacturing 
systems has been investigated by several authors. Askin and Chen (2006) propose 
two types of worksharing policies—Dynamic assembly-Line Balancing (DLB) 
and Moving Worker Modules (MWM). MWMs have fewer workers than ma- 
chines; DLB systems have the same number of machines and workers, and work- 
ers do not move. DLB has fixed tasks and shared tasks; the former are assigned to 
a designated worker while the latter can be carried out by either of an adjacent pair 
of workers. In addition to this classification, Hopp and Van Oyen (2004) suggest 
a "floating workers" category, in which a fixed worker occupies a machine and 
some cross-trained workers move dynamically to machines most needing them. 
Our review will cover only the work closely related to our proposed research. The 
floating worker category is closest to our problem, but different in that we can 
have many workers at any machine. 

One policy of particular interest is the half full buffer (HFB) control policy for 
dynamic assembly-line balancing. When the buffer between two machines is more 
than half full, a flexible worker helps a downstream worker, or vice versa. Ostalaza 
et al. (1990) developed a Markov chain model for two stage systems and presented 
simulation results for longer lines. McClain et al. (2000) tested the HFB control 
policy to move flexible workers for shared tasks. Gel et al. (2002) proposed a 
more complicated HFB control policy, which considers general processing times 
and different worker speeds. Askin and Chen (2006) and Chen and Askin (2006) 
suggested another threshold heuristic rule—smallest R, no starvation (SRNS). 

Floating worker systems have been examined by Sennott et al. (2006), who 
considered serial production lines in which each station has a specialist, and 
one fully cross-trained generalist to be assigned to any station. They developed 
Markov decision models including set-up costs, holding costs, and set-up time and 
showed that the flexible system performs better than a static system. Andradottir 
et al. (2001) examined a tandem line with two stations and two cross-trained work- 
ers using a Markov decision model. 

Our work is different than previous work in three important ways: 

1. Existing work considers only the traditional system performance metrics of 
throughput, cycle time, and WIP. Our work is specifically directed toward 
the service-oriented metric NSD. 

2. Almost all existing work assumes exponential processing times. The excep- 
tion above is Gel et al. (2002), which admits general processing times. 

12 



3. All existing work assumes a serial production line, and most often just a 
two-stage system. Our models will allow general networks of reasonable 
size. 

5.2   Worker allocation policies 

We propose to investigate worker allocation policies both for distribution centers, 
which can be modeled as a serial line of multi-server queues, and for more general 
manufacturing and logistics networks, which may be modeled as more general 
networks of multi-server queues. 

5.2.1    For distribution centers 

We have already developed conceptual models for three classes of dynamic worker 
allocation policies, which we call the flushing policies, cascade policies, and con- 
currence policies. 

The flushing policy is easy to implement, and is based on the following in- 
sight: Orders that "just miss" the truck are probably located near the shipping 
area shortly before the truck leaves, so it seems reasonable to check the queue in 
shipping a fixed time before the truck leaves and decide how many (if any) work- 
ers to move to Shipping from Picking. To decide how many workers to move, 
we look at the P (success) of the last order in the shipping queue. If it is below 
a threshhold value, we move sufficient workers to Shipping such that its recalcu- 
lated P (success) is above the threshhold. 

Policy 3 (Flushing) At a fixed time each day, compute P(success) for the last 
order in the shipping queue. If it is below a threshhold value, move sufficient 
workers to Shipping such that its recalculated P(success) is above the threshhold. 
Restore the system to its original configuration upon truck departure. 

We have performed extensive simulation experiments for this policy, and have 
observed potential increases in NSD performance between 5 and 10 percent. In 
a service context, this means that 5-10% of customers would be receiving their 
orders one day earlier than they would be without dynamic worker allocation. We 
strongly suspect retail firms (and DLA) will be interested in these results. 

But we have much to do, even with this simply policy. For example, the 
policy is controlled by three parameters (time at which to switch workers, the 
threshhold probability, and the number of workers to switch), and we do not yet 
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understand how these parameters affect the results. Our simulation work has used 
only "reasonable values" for these parameters. 

We propose to investigate the performance of the flushing policy for dynam- 
ically allocating workers in a serial queueing network, which we believe fairly 
represents a distribution center operation. Our investigation will be primarily 
simulation-based, due to the complexity of the system. Our objective is to un- 
derstand the relationship between switching time, threshhold probability, and the 
number of workers switched. We anticipate offering to the research and practic- 
ing communities a real-time decision-making system with the potential to improve 
order fulfillment times by an entire day for 5-10 percent or more of its customers. 

We will also investigate a modified version of the Flushing policy, which we 
call Multi-Flush. 

Policy 4 (Multi-Flush) At multiple fixed times per day, execute the Flushing Pol- 
icy above. 

The intuition here is that on some days a shift of workers at the normal switching 
time may not afford sufficient time to work down the queue in Shipping. Would 
it be better, then, to do a mid-day switch, for example, to work down the queue 
early on? 

Such a policy may be especially useful when workload is not steady through- 
out the day, as is the case for most every order fulfillment system. We address 
the problem of sojourn time estimation under non-stationary arrival distributions 
below. 

Policy 5 (Cascade) At a fixed time each day, execute the flushing policy from 
Picking to Packing. At a later time, execute flushing from Packing to Shipping. 

The idea behind this policy is to "follow the work" that will just finish before 
departure, creating a sort of "bow wave" of orders working their way through. 
Parameters to modify here are the same as for the Flushing Policy, plus we must 
decide on a second time of execution. 

Policy 6 (Concurrence) At multiple fixed times per day, consider switching work- 
ers from Picking to Packing, and from Packing to Shipping, simultaneously. 

This class of policies has considerably more flexibility, but will also be more dif- 
ficult to design and control. We believe that, as with the Multi-Flush and Cascade 
policies, Concurrence will be especially valuable for non-stationary arrival distri- 
butions. 

14 



Figure 6: A simple general network. 

5.2.2    For manufacturing and logistics networks 

So far we have addressed only serial processes, which are a good approximation of 
a typical warehouse. Manufacturing and logistics networks can also be modeled as 
networks of queues, and our methods might be used to establish control schemes 
to improve their performance. Therefore, there is a need to design resource allo- 
cation policies when the network is not a serial line. The general network control 
problem is more complicated because it is not clear how to move workers between 
workstations, nor are the implications of those moves clear. We propose to inves- 
tigate worker allocation policies for simple general networks, such as the one in 
Figure 6, and move to more complicated networks after developing some insight. 

5.3    Theoretical extensions 

We also propose to extend our theoretical models in two ways. The first is to 
address non-stationary arrival distributions. Thus far, we have developed models 
only for the case of stationary arrival distributions. The arrival patterns to most 
service systems, however, are more complex. For example, data from a DLA 
depot with whom we worked indicated surges of orders around 0500 and 1400 
each day, which created a bimodal distribution. We anticipate that we will extend 
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our existing models in another dimension of time, creating, for example, a CDF of 
the form F{t\J2), where /] is the arrival time (of day) and /2 is the sojourn time. 
The result will be a sojourn time surface, with which we will construct worker 
allocation policies. 

The second theoretical extension will incorporate non-zero switching times. 
Currently, our models assume that workers move from one workstation to another 
instantaneously. In practice, of course, repositioning workers creates idle time 
during the transition, and we must account for this. 

6   Future Naval relevance 

Our work on sojourn time distributions, although fairly technical, has a very prac- 
tical application in real order fulfillment systems. We are trying to build the com- 
ponents of a resource control system for order fulfillment systems, which could 
be used in industry or the military. 

To that end, we have had conversations with the Deputy Commander of the 
Defense Distribution Depot, Susquehanna, PA (DDSP), and he has expressed in- 
terest in developing such a control system. We have much to do before this would 
come to fruition: 

1. We must accomplish the work in this proposal, which should more firmly 
establish the theoretical underpinnings of the control policies. 

2. We must do extensive testing with data from DDSP. We have already re- 
ceived a data set from DDSP, and have plans to test our models with it in 
the next phase of the research. 

3. We would need to build a software tool. Such a tool would be useful with 
even the most basic functions of tracking the work content within the dis- 
tribution center and giving managers a way to identify bottlenecks and idle- 
ness. 

4. Finally, integration and testing at the field site (DDSP) would be required. 

To reiterate, we are not proposing to accomplish all of this in this proposal. Rather, 
we thought it would be helpful to point out that the current, proposed research is 
part of a larger effort to bring research and technology to practice in the DoD. 
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