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ABSTRACT

A simulation tool was developed using MATLAB and its Graphical User Interface Development 
Environment (GUIDE) to simulate aspects of an airborne foliage-penetrating Laser Detection and 
Ranging (LADAR) system in scenarios designed to contribute towards the military operational 
use of such a system. In particular, the simulation tool is intended for conducting analysis on how 
best to task the aircraft and position the sensor. This document provides an overview of the 
graphical user interface and software including: the design challenges; dealing with the input 
scenery data; modelling the sensor and platform flight path; and planned analysis of the 
simulation results. 
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Design of a Foliage Penetrating LADAR 
Simulation Tool 

Executive Summary

This document outlines the development of software, designed using the MATLAB 
programming language, which aims to accurately simulate aspects of an airborne foliage-
penetrating LADAR system. This work was undertaken as part of Task 07/105 Support to 
Intelligence, Surveillance and Reconnaissance to investigate the tasking of airborne sensors to 
detect inconspicuous targets, particularly those partially obscured by forest canopies. 

Laser Detection and Ranging (LADAR) three-dimensional (3D) imaging systems could be 
extremely useful for this application. Such systems form 3D images based on time-of-flight 
of laser photons, some of which pass through gaps in foliage or other partial obscurants 
such as camouflage nets. Hence the 3D image will contain partial information about any 
objects behind or underneath such obscurants. The obscurant can be removed from the 
image by applying a range threshold, leaving a partial image of the hidden objects which 
may include targets of interest. An improved overall image can be formed by combining 
images taken from several different viewpoints, using knowledge of the LADAR sensor’s 
location at each viewpoint. 

The aim of the work under this Task is to recommend how to task an aircraft such as a 
Tactical UAV with a LADAR imaging payload, recognising that such a system is currently 
hypothetical and has not entered the Defence Capability Plan. There was no intention to 
produce a detailed model to aid in designing LADAR systems for aircraft or for testing 
data processing algorithms; rather, the fidelity of the model was only intended to be 
suitable for operations research studies. 

The scope of this document is the design of software and algorithms to run simulations of 
LADAR imagery acquisition. A graphical user interface has been developed for the 
simulation tool to make it easy to set up scenarios, modify parameters, visualise the output 
and perform analysis. An overview is also presented on the three-dimensional scene and 
target models used by the simulation and the modelling of the sensor and aircraft flight 
path. There were also several design challenges specific to the MATLAB environment 
which is discussed in this document. 
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1. Introduction

Laser Detection and Ranging (LADAR) systems are used to produce three-dimensional 
images of the real world. LADAR sensors work by measuring the time it takes for 
transmitted laser pulses to return to a detector. A typical sensor will consist of multiple 
detectors arranged in an array. Each detector has its own timing circuitry which is used to 
measure the arrival times of photons returned from flood-illuminating the scene with a 
laser pulse [1]. This information is used to determine the range and consequently the 
spatial location in three-dimensional space of points that form a three-dimensional image 
of the scene.  
 
This type of system can be utilised in a military surveillance context to detect and identify 
targets that are partially obscured, e.g. by foliage or camouflage netting. Returns are 
received from partially obscured objects because some transmitted laser photons will pass 
through the gaps in foliage or other obscurants and return to the detectors. It is possible to 
restrict a received image to a desired range of depths and so reveal any objects beneath or 
behind these partial obscurants. However, it is necessary for a foliage penetrating LADAR 
system to take and combine multiple images from different views through the foliage in 
order to form an overall image that will provide sufficient resolution for recognising 
objects. Different views can be collected by fixing the sensor in a single position and taking 
multiple images of a scene over time as the wind causes movement in the foliage [2], or by 
mounting the sensor to a moving platform such as an aircraft [3]. 
 
The software described in this document is intended to simulate a LADAR system on an 
aircraft. It uses three-dimensional point-cloud models to represent the real world as a set 
of voxels (volume elements in three-dimensional space). These scene models consist of the 
visible features of an area of land, including natural elements such as landforms and trees, 
and human elements such as vehicles and buildings. LADAR images are modelled by 
capturing the set of voxels that are within the sensor’s field of view and have a direct line-
of-sight to the sensor. Images taken from different viewpoints are then combined into an 
overall image. The purpose of the software is to analyse a variety of different flight paths 
and determine how best to fly the aircraft and position the sensor in order to detect and 
identify targets such as vehicles. 
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2. Analysing Simulation Results 

The main purpose for developing this software is to assist in making recommendations for 
the operational use of an airborne foliage penetrating LADAR system. This will involve 
generating a set of realistic scenarios and comparison measures.  
 
2.1 Potential Scenarios 

Comparisons will be made by running a variety of scenarios which may include: circling 
around a possible target (Figure 1a); flying past a possible target (Figure 1b); and varying 
the standoff range (Figure 1c). Note that in these particular scenarios, it is assumed that the 
UAV has been cued to the approximate location of the target. 

(c) (b) 

(a) 

 
Figure 1: Top view of some flight paths to be considered. The targeted area is shown in red and the 

blue arrows indicate individual scanning positions. 

 
2.2 Measures of Effectiveness 

One mechanism for comparing scenario output results is visual, i.e. stating that one output 
of a target “looks better” than another. However this is a very subjective measure and to 
be able to make a meaningful comparison between different scenarios it will be necessary 
to devise some quantitative measures of effectiveness.  
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Possible measures of effectiveness could describe the total target coverage, distribution of 
target coverage or difference from an ideal result. For many flight paths the ideal result is 
not the complete target model but instead the view of the target that would be obtained if 
there were no foliage present. Let us call this view of the target the unobscured view and call 
the result with foliage present the obscured view. Assuming that an unobscured view of the 
target would be sufficient, a suitable measure of effectiveness might describe the 
difference between the unobscured and obscured views. The lowest expected difference 
would correspond to the most effective flight path. To support such measures of 
effectiveness, three-dimensional images of both the obscured and unobscured views of the 
target are generated. 
 
Other measures that could also be investigated include the target coverage required for 
identification and the cost (in terms of time and distance) of flying different paths. 
 
 

3. Graphical User Interface Design Overview 

A graphical user interface (GUI) was developed for the simulation tool so that it would be 
easier to configure and run simulations as well as visualise the output and perform 
analysis. The software was written in MATLAB1 and the GUI was designed using the 
Graphical User Interface Development Environment (GUIDE) which provides a set of 
tools to simplify the layout and programming processes of GUI design in the MATLAB 
environment. 
 
3.1 Layout and Design 

The layout and design of the GUI is simple and intuitive. Figure 2 shows the main window 
of the GUI which was constructed using standard components in the GUIDE Layout 
Editor. 
 
The main functions of the program, such as loading files, are accessed through the menus 
and toolbar buttons across the top of the window. Simulation parameters, status indication 
and screen layout options are placed in frames along the left side and across the bottom of 
the window. This allows the user to view and make on-the-fly changes to these parameters 
and settings when appropriate. Additional popup windows are used for some operations, 
such as defining the input/output files (Figure 9) and displaying comparison results 
(Figure 10), in order to reduce clutter in the main window. 
 
 

                                                      
1 The MathWorks, Inc., Natick MA, USA 
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Figure 2: The main window of the LADAR simulation tool GUI. Graphical output such as the 

input scene model and output is displayed in the blank area of the window. 

 
3.2 Program Control and Status 

The development of the GUI focused on the areas of simplicity, functionality and user 
friendliness. To achieve these objectives required careful design to ensure a smooth flow of 
the program through all stages from setting up a scenario to running, generating and 
finally analysing the output.  
 
Controls in the main window are greyed out and inactive when they are not available. 
This helps ensure that operations are performed in sequence and that it is not possible to 
perform illegal operations which may cause erroneous results. Most parameters for 
defining the sensor and flight path are set by entering values in textboxes. These values are 
checked to ensure they are numeric and within practical limits. If an invalid value is 
entered, the parameter is reset to its default value and an error message box may be 
displayed. 
 
Visual status information is included in the software because of the lack of any suitable 
indication that a MATLAB program or block of code is executing (e.g. the mouse pointer 
does not change to the busy state). This information is located in the centre panel along the 
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bottom of the main window. A coloured box and text message are used to provide the user 
with information relating to the current program status. There are three unique program 
states as outlined in Table 1. 
 
Table 1: Visual status indication of the program 

Visual status indicator Current program status 

Yellow A yellow indicator is displayed when the program is idle but not all of the setup 
requirements have been met. This may include data files not loaded or simulation 
parameters not defined, which will be indicated by the text message displayed. 

Green A green indicator is displayed when all setup requirements have been met and the 
simulation is ready to run. 

Red A red indicator is displayed when the program is busy, such as when a data file is 
being loaded or the simulation is running. A percentage progress will also be 
shown when applicable. While the indicator is red the user is unable to do 
anything within the program. 

 
3.3 Sharing Program Data using the Handles Structure 

Using GUIDE to design and create a GUI simplifies the programming process since a 
partially-complete file of MATLAB code (m-file) is automatically generated to control how 
the GUI operates. This includes code to initialise the GUI and a framework for callback
functions, i.e. routines that are executed when the user interacts with components of the 
GUI. 
 
All graphics object properties, including those used for implement plotting and 
visualisation functions, are accessed via object handles which serve as unique identifiers for 
graphics objects. GUIDE uses a variable called the handles structure to store the handles of 
all components in the GUI; a structure is a means of grouping and storing any type of data 
in named fields of a single variable. The handles structure is automatically passed to every 
callback as an input and a function guidata is used to maintain this structure (Figure 3). 
An unfortunate consequence of using GUIDE is that the function guidata cannot be used 
to manage any other variables apart from the handles structure. Therefore, application-
defined data such as unit conversion constants are most easily shared among the callbacks 
by saving the data in new fields added to the handles structure. 
 

Handles 
Structure 

 
CALLBACK 

INPUT 

Changes made to 
handles structure 

Saved with 
guidata 

 
Figure 3: Block diagram illustrating how the handles structure is managed 
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Care must be taken if the callback calls another function that modifies data stored in the 
handles structure. Because the handles structure is not a global variable and each callback 
and function has its own workspace, multiple copies of the handles structure can exist at a 
given time in multiple workspaces. If guidata is called within the function, the updated 
version of the handles structure will not be visible to the callback. So to ensure that the 
handles structure is maintained correctly, it should be returned to a callback as an output 
from a function and guidata should only be called from the callback (Figure 4). 
 

Handles 
Structure 

 
Figure 4:  Block diagram illustrating how to correctly use the handles structure when a function 

is executed from within a callback 

 
3.4 Displaying Data 

Plots are used in the main window to display output data and show a preview of the 
platform flight path and sensor field of view. The panel in the bottom right corner of the 
main window allows the user to change the screen layout to one of the following 
combinations: 

� A split-screen of the three-dimensional and top views of the scene. 

� A split-screen of the three-dimensional views of the scene and output. 

� A full screen three-dimensional view of the scene. 

� A full screen three-dimensional view of the output. 

� A split-screen of the three-dimensional views of the scene and output, and a top 
view of the scene. 

 
3.4.1 Plotting the Scene 

While MATLAB is a very powerful tool for displaying and manipulating data there are a 
number of issues that exist due to the size of the data used by the simulation. The biggest 
issues associated with displaying scene and output data are the memory required and 
processing time. A point cloud representation of a typical scene will consist of about four 
million voxels and creating a three-dimensional plot of this amount of data can take 
several minutes since it is necessary to assign a unique colour to each voxel based on its 

INPUT  
CALLBACK 

Changes made to 
handles structure 

 
FUNCTION 

Copy of handles 
structure returned  
as an output 

Copy of handles 
structure passed  

as an input 

Changes made to 
handles structure 

Saved with 
guidata 
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height in the scene (z coordinate). Assigning these colours is required to give the 
impression of depth in a three-dimensional image displayed on a computer screen 
(Figure 5), but it does not happen automatically with point data as it does when generating 
a surface plot in MATLAB. 
 
 

(b) (a) 
 

Figure 5: A single tree plotted in MATLAB using (a) one colour, and (b) shades of grey, which 
gives the impression of depth 

 
Since there are a maximum of 64 colours available for plotting point data in MATLAB, the 
time taken to produce this three-dimensional plot can be reduced by grouping the data 
into blocks based on z coordinates and executing the plot command once for each colour 
instead of for each z value. This reduces the number of times the plot command needs to 
be called by a factor of ten. A gray scale consisting of 56 shades from near white to black is 
used to plot the scene data, which takes less than a minute for a scene consisting of 
millions of points. 
 
3.4.2 Previewing the Flight Path 

Part of the motivation behind developing this GUI was to show a preview of the aircraft’s 
flight path and sensor’s field of view at each scan location, so that an analyst can check 
that the scenario has been set up correctly before running the simulation. This preview is 
shown in both the three-dimensional and top-down views of the scene (Figure 6). The 
flight path and sensor field of view are updated without needing to replot the entire scene, 
via the handles to these two graphics objects which are stored in the handles structure 
(§3.3). 
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Figure 6: The main window of the LADAR simulation tool showing a flight path preview 

 
3.5 Output Visualisation 

The GUI includes MATLAB’s standard visualisation tools that allow a user to zoom, pan 
and rotate plots. These controls are located in the toolbar along the top of the main 
window and can be used with all views described in §3.4. The viewpoint for three-
dimensional views can also be set manually by specifying azimuth and elevation angles in 
a dialog box which is accessed through the Display menu. 
 
3.5.1 Limitations with Three-Dimensional Plots 

One limitation with the current implementation of the zoom and pan controls (in 
MATLAB R2008b) is that they were designed for use with two-dimensional plots. When 
using these controls to change the view of a three-dimensional plot (such as the input 
scene or output data) unexpected results may occur such as the image extending off the 
screen because the axes are not rescaled, or the data being incorrectly clipped. To produce 
somewhat reasonable results, a workaround was discovered where the zoom control could 
be used from the top (x-y) view of a three-dimensional image. After performing the zoom, 
the image can be rotated as desired. This generally allows a section of a three-dimensional 
image to be zoomed in with the x and y axes correctly rescaled and clipped. 
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3.5.2 Applying a Threshold to the Output 

Functionality has been included in the GUI to allow a height threshold to be applied to the 
output image (Figure 7). This is particularly useful in foliage penetration where we are 
interested in objects beneath a partially obscured area of interest. This option is available 
from the Display menu. When a user specifies a height (in metres), the output figure is 
replotted up to this height. 
 

 

(a) 

(b) 

Figure 7: (a) Example of a simulation output before applying a height threshold. (b) Simulation 
output after a height threshold of 2.5 m has been applied 
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4. Program Overview 

The LADAR simulation tool consists of four stages: File Setup, Parameters, Simulation and 
Output. The flow of the program and the user actions required through each of these 
stages is illustrated in Figure 8. The program is designed so that the user will step 
sequentially through each of these stages. However, users can go back to modify actions 
performed in a previous stage at any time, although this may have an impact on the 
subsequent stages. 
 

 
Figure 8: Flow diagram of the program showing the user actions that are performed at each stage 

SIMULATION

 

 

 

 

 FILE SETUP 

 

PARAMETERS

OUTPUT

Define Sensor 

Create New Scenario Load Scenario 

Define Flight Path

Run Scenario Save Scenario 

Analyse Results 

 

 

 

 

 

 
10 



 
DSTO-GD-0577 

4.1 File Setup 

The first stage of the program involves setting up a scenario (Figure 9). There are two 
options available to the user, either setup a new scenario or load an existing scenario. 
 

 
Figure 9: The setup scenario dialog window 

 
For a new scenario the user is required to create a new scenario data file and load the 
three-dimensional scene model file. The scenario data file will contain file information, 
sensor and flight path parameters. The scenario data filename will also be used to 
automatically generate filenames for the output and comparison measures data. 
 
For an existing scenario the user is required to specify the scenario data file to load. Checks 
are performed at this stage to ensure all associated output and model files exist. If a file is 
not found, the scenario cannot be loaded and an error message will be displayed. An 
overview of the different files used by the program is given in Table 2. 
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Table 2: Description of files used by the program 

File Description

Scenario Data File A text file with a .dat extension (data file), containing Scene and Target model 
filenames and the sensor and flight path parameters. 

3D Scene Model A text file (.txt) containing the information used to construct a three-
dimensional model of the scene. This information is represented as a list (n × 3 
array) of locations stored as comma-delimited values. These locations represent 
the spatial information of elements, e.g. trees and targets, in the scene. 

3D Target Model A text file (.txt) in the same format as the scene model file, containing the 
information used to construct a three-dimensional model of the target only 
(unobscured by foliage). This single target is positioned in the same x-y
location as in the scene model. The filename of the target model is linked to the 
scene model, i.e. if the scene model is ExampleScene.txt then the corresponding 
target model filename will be ExampleScene_Target.txt. 

Scene Simulation Output A text file (.txt) in the same format as the model files, containing scene 
simulation output (results of running the simulation with the scene where the 
target is obscured by foliage). The filename of the scene simulation output is 
linked to the scenario data file, i.e. if the scenario data file is ExampleScenario.dat 
then the scene simulation output filename will be ExampleScenario_Scene.txt. 

Target Simulation Output A text file (.txt) in the same format as the model files, containing target 
simulation output (results of running the simulation with the target only, 
unobscured by foliage). The filename of the target simulation output is linked 
to the scenario data file, i.e. if the scenario data file is ExampleScenario.dat then 
the target simulation output filename will be ExampleScenario_Target.txt. 

Comparison Measures Data A text file with a .cmf extension, containing the results of some comparison 
measures computed on the output data. The filename of the comparison 
measures data is linked to the scenario data file, i.e. if the scenario data file is 
ExampleScenario.dat then the comparison measures data filename will be 
ExampleScenario.cmf 

 
 
4.2 Defining Parameters 

After the file setup is complete and either a new scenario has been created or an existing 
scenario has been loaded, the user can define the parameters for the flight path (§6) and 
sensor (§7) using the controls located in the associated panels on the left side of the main 
window (Figure 2). If an existing scenario has been loaded, the parameters stored in the 
data file will be automatically loaded into the appropriate parameter textbox fields. 
 
4.3 Running and Saving the Simulation 

After a scenario has been set up (i.e. scenario data file created or loaded, model data files 
loaded, and sensor and flight path parameters defined), the simulation is ready to run. At 
this stage it is possible to save the scenario data file information to a new file via the ‘Save’ 
push button in the Simulation Options panel (Figure 2). The simulation is started by 
selecting ‘Run Simulation’ either from the Simulation menu, the toolbar or the ‘Run’ push 
button in the Simulation Options panel. 
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While a simulation is running: 

� all menus, toolbars and buttons are disabled to prevent other actions being 
performed;  

� the progress is displayed in the simulation status panel; and  

� the output plot is progressively updated unless the ‘Fast Mode’ option has been 
selected by enabling the check box in the Simulation Options panel, in which case 
only the final output will be displayed. 

 
Suppressing progressive plotting by selecting ‘Fast Mode’ significantly improves the 
processing time, particularly for large simulations where the scene model contains 
millions of voxels. 
 
4.4 Comparing the Output 

When a simulation run is completed, the output is automatically saved to the filename 
defined when the scenario was initially set up. The software will now perform calculations 
using the output results to compute some comparison measures (discussed in §2) for the 
unobscured and obscured views of a single target. Simultaneous comparison of multiple 
targets in a scene is currently not implemented in the software. These measures are only 
computed for the target that is saved in the ‘3D Target Model’ file. A dialog window 
(Figure 10) will be displayed with a selection of these results for a quick comparison 
between different scenarios. 
 

 
Figure 10: Example of the comparison measures dialog window, displayed after running the 

simulation. The measures displayed here are only preliminary and the measures actually 
used in future analysis work may be different. 
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5. Scene Model Data 

The three-dimensional models of the scene data are constructed from locations stored in a 
text file. These locations represent voxels (three-dimensional volume elements), which 
form the spatial information of the elements contained in the scene.  
 
Two methods were investigated for storing the model data: 

� Use a three-dimensional array in MATLAB to represent all possible voxels, with 
ones and zeros indicating whether the voxel contains anything or not. This was the 
simplest option but is impractical since a realistic scene is too large to be stored and 
processed in this way on a single computer. 

� Store the data using a list and omit voxels representing empty space in the scene. 
This eliminates the issues with memory but working with the data in this form is 
more complicated and so has a significant impact on processing time. 

 
The following example gives a comparison of the memory requirements of both methods 
and illustrates the benefit of storing the data using a list as opposed to using a three-
dimensional array. Figure 11 shows a typical scene made up of trees and vehicle. This 
model contains about 3.8 million voxels representing the scene inside a volume of 
approximately 1500 × 1500 × 900 voxels. 
 

 
Figure 11: A three-dimensional model of a scene consisting of trees and a vehicle 
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Storing the data in a three-dimensional array would require an array the size of 1500 × 
1500 × 900, and 1 byte of memory is required to store a value of 1 or 0 in each element of 
the array using the unsigned 8-bit integer data type in MATLAB. Therefore the three-
dimensional array method will require approximately 1.9 GB of memory. Alternatively, if 
a list is used to store only the voxels that represent elements in the scene, an array the size 
of 3.8 × 106 × 3 is required. Here each row will contain the (x,y,z) location of a single voxel, 
and 8 bytes of memory is required to store the coordinate value in each element of the 
array using the double data type in MATLAB. Therefore the list method will require 
approximately 87 MB of memory. This method is much more efficient since less than 1% of 
all voxels form elements in the scene. 
 
Using the list method is similar to MATLAB sparse matrices, although they could not be 
used for this application since they are restricted to two-dimensional arrays. Although it 
has been demonstrated that the list method overcomes the memory issues associated with 
a three-dimensional array it has other implications for working with the data, as described 
in §7.3. 
 
 

6. Flight Path Modelling 

The flight path modelled in the simulation is represented as a sequence of scan locations 
defined by position and heading parameters set by the user. The position (which refers to 
the sensor position on the aircraft) is given by (x,y,z) coordinates expressed in metres, 
where positive x corresponds to east, positive y corresponds to north, and positive z 
corresponds to altitude. The heading is the aircraft’s direction of travel, measured in 
degrees clockwise from north. 
 
Defining sensor scanning positions also requires the sensor pointing direction (§7.2). This 
is defined by azimuth and depression angles. The sensor azimuth is measured in degrees 
clockwise from the nose of the aircraft, i.e. the sensor azimuth is 0° when the sensor is 
pointed straight ahead. The sensor depression is defined as the angle from horizontal, with 
a range of 1° to 90° where 90° is nadir. 
 
Sensor scanning positions can be defined by the user by manually setting each of the four 
parameters: aircraft position, aircraft heading, sensor azimuth and depression. However, 
two manoeuvres have been defined to simplify and automate the modelling of an aircraft 
flight path: 

� The aircraft travels in a straight line and maintains its current heading (Figure 12). 
This manoeuvre is defined using the aircraft’s starting position, the distance (in 
metres) to travel along the current heading from the starting position, and the 
number of scanning positions to be placed at evenly spaced intervals along this path. 

� A turning manoeuvre (Figure 13) defined by the aircraft’s starting position, the 
turning radius (in metres), the arc (angle of the turn, in degrees), direction (right or 
left) and the number of scanning positions to be placed at evenly spaced intervals 
along the turn. 
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Figure 12: Defining a straight line manoeuvre with five scans along the path. The starting position 

of the aircraft is shown in red. 

 

 

radius

distance

arc

Figure 13: Defining a right turn manoeuvre with four scans along the arc. The starting position of 
the aircraft is shown in red. 

 
It is possible to create detailed flight paths for a scenario using a combination of these 
manoeuvres along with manual adjustments as required. 
 
 

7. Sensor Modelling 

A low fidelity sensor model was implemented in the simulation since the purpose of 
developing the software was to analyse how to best task the aircraft and position the 
sensor rather than developing a high fidelity model for simulating the sensor itself. The 
modelled sensor does not consider factors such as noise, probability of detection, 
probability of false alarm, detector crosstalk, or errors due to timing circuit resolution. 
These random effects were not modelled since it was decided that a more meaningful 
comparison of the flight paths could be made without them.  
 
The output of the sensor modelling is the set of voxels that are within the sensor’s field of 
view and have direct line-of-sight to the sensor, rather than a reconstruction of the correct 
angle-angle-range data that such a real sensor would actually use to produce an image. 
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7.1 Defining the Sensor 

The sensor model implemented in the software is defined by the following parameters 
which are set by the user: 

� Sensor grid — defines the pixel resolution of the sensor, which is assumed to be a 
square array. If the user enters value n, then the sensor consists of an n × n array of 
detectors. 

� Field of view — this is the angular extent of the scene that the sensor can view at 
any given moment and is specified in degrees. 

� Ray grid — controls the number of rays that are received by each detector. If the 
user enters value m, then the ray grid consists of an m × m array. This represents the 
number of different angles from which photons could arrive at the detector array.  

� Depth resolution — this is determined by the response time of the detector (the time 
it takes for the detector to reset after receiving a photon, typically in the order of 
nanoseconds). The depth resolution is specified as a distance in metres, i.e. the 
detector response time multiplied by the speed of light. Multiple voxels with line-of-
sight to a given detector must be separated by at least this distance in order to all be 
detected. 

 
7.2 Setting-up the Ray Data 

To simulate the pulse of laser light reflected back to the detectors, rays are defined to trace 
from a sensor grid and into the three-dimensional model. The output image is then formed 
from the voxels intercepted by the rays.  
 
A ray is defined by: 

1. Ray position, which is the (x,y,z) floating-point coordinates of some point along the 
ray. An initial ray position is the starting point for a ray. 

2. Tracing vector, which sets the direction the ray will trace into the scene. The tracing 
vectors are defined under the assumption that they are equally spaced in angle and 
do not cross. 

 
A set of rays are initially defined for a downwards-looking sensor located at the origin of 
the (x,y,z) space (Figure 14a), which is then rotated and translated as required 
(Figure 14b-c). The tracing vectors and initial ray positions are calculated using the sensor 
grid, ray grid, field of view and the pixel pitch of the sensor. The pixel pitch is hard-coded 
in the program as 100 �m [1]. 
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(a) 

(b) 

(c) 

Figure 14: A set of rays defined by a 3 × 3 sensor grid, 2 × 2 ray grid, and 45° field of view. (a) 
Defined about the origin of the (x,y,z) space. (b) Orientation after applying a sensor 
depression angle of 60°. (c) Final orientation after applying a sensor azimuth of 40° and 
aircraft heading of 20°. 

 
The sensor’s pointing direction depends on the aircraft position and heading, and the 
sensor azimuth and depression angles. The first step is to tilt the sensor by the specified 
depression angle D (rotation about the x axis), by multiplying the ray positions and tracing 
vectors (which define the path of each ray) respectively by the rotation matrix, Rx 
(Figure 14a–b): 
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The next step is to rotate the sensor in azimuth (about the z axis) by the sum of the aircraft 
heading H and the sensor azimuth A, using the rotation matrix Rz (Figure 14b–c): 
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The final stage of setting up the ray data to represent the sensor is to translate the centre of 
the grid of initial ray positions from the origin of the (x,y,z) space to the aircraft’s position. 
The ray positions and tracing vectors are now passed into the ray tracing algorithm. 
 
7.3 Preparation for Ray Tracing 

Ray tracing is conceptually very simple: step along a tracing vector until the ray either 
enters a voxel that forms part of the scene or reaches the ground. Ray tracing therefore 
involves repeatedly searching the list of locations forming the model of the scene. 
 
7.3.1 Defining the Search Space 

A search space, i.e. a subset of the total list of locations, needs to be defined to reduce the 
computation time. This is a consequence of choosing to store the three-dimensional scene 
using a list of locations as opposed to using a three-dimensional array. If it were possible 
to store the scene data directly in a three-dimensional array, then it would not be necessary 
to define a search space since the ray tracing algorithm could directly reference a voxel 
that it passes through and determine whether it is empty or not. However, using a list of 
locations means that a search is required to determine if a ray has intercepted part of an 
element in the scene. Since the three-dimensional scene consists of millions of voxels, 
searching potentially the entire list for every single voxel that every ray passes through is 
impractical. Therefore before performing the ray tracing, a search space is defined to 
restrict the search first by z value and then by x-y values. 
 
7.3.2 Restricting by z Value: Layers 

The program has been designed to simulate the specific case of an airborne sensor used to 
search for ground targets. As a result the z component of the tracing vector is always 
negative, i.e. the z coordinate (altitude) of the ray position will always decrease as a ray is 
traced. Therefore the list of locations is first sorted by decreasing z coordinate value and 
then (arbitrarily) by increasing y and increasing x values. The highest locations that make 
up the scene will now be at the top of the list and the locations on the ground will be at the 
bottom of the list. Note that if a horizontally-looking land-based sensor was being 
simulated then the list of locations could instead be sorted using the x or y values. 
 
The sorted list of locations, which we will call Mdata, can now be pre-searched to 
determine start and end pointers for each subset of data with the same z coordinate. We 
will refer to such subsets as layers, and store the pointers in the array zpoint. So when 
searching for the voxel containing the ray position in the list of locations, the z coordinate 
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of the current ray position can reference zpoint to constrain the search to the appropriate 
layer. Ideally, the index of zpoint would refer directly to the z coordinate of Mdata. But 
because MATLAB starts indexing at 1 instead of 0, it is necessary to include an offset so 
that the first value of zpoint refers to location [0,0,0].  
 
The start and end indices defining layer nzz �  in Mdata are inferred from zpoint as: 

 start_point( ) = zpoint(nz 1�nz ) (3) 

 end_point( ) = zpoint( ) 1nz nz 	  (4) 

 

Index zpoint Index Mdata
1 10 1 2,1,3 
2 9
3 6 
4 1 

2 2,2,3 
3 1,3,3 
4 3,3,3 
5 4,5,3 

 
Figure 15: Example showing how pointers are used to define the search space. The search space for 

a current ray position of [1,5,2] is shown in red. This is inferred from zpoint (shown in 
blue for this example) which gives the start and end pointers of Mdata. 

 
This process is illustrated in Figure 15 with some sample data where the current ray 
position is [1,5,2].  Since the z coordinate is 2, the start pointer is zpoint(2+1) = 6 and the 
end pointer is zpoint(2)–1 = 8. Therefore the Mdata list needs only to be searched from 
indices 6 through to 8 inclusive. In this case, the search will terminate when it checks index 
7 of Mdata because the position matches a location in the list indicating an intercept. 
 
The final point to note is that the last location in the data is always the origin [0,0,0]. While 
not actually a location in the three-dimensional model data, since ground level (or lowest 
point if the scene contains landforms) is defined as 1�z , the origin serves as a ‘dummy’ 
location so that the end pointer of the last z coordinate in the list can be referenced. 
 
7.3.3 Restricting by x-y Values: Bounding Boxes 

While using pointers to restrict the search to the appropriate layer has a significant 
improvement in the computation time, the speed of a search can be further improved by 
considering only the region of each layer that is within the field of view of the sensor. This 
can be approximated by a bounding box defined by the maximum and minimum x and y 
values in the field of view on each layer (Figure 16).  While the bounding box is generally a 
larger area than the strict field of view, it is much simpler to determine since only the 

6 7,3,2
7 1,5,2
8 6,7,2
9 3,4,1 

10 0,0,0 

2�z  for a 
current ray 
position of 

[1,5,2]
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intercepts of the four corner rays with each layer need to be calculated. It is also easier to 
restrict the data to a rectangle aligned with the x-y grid than the arbitrary trapezium shape 
of the strict field of view. 
 

 

(a) 

(b) 

Figure 16: Pruning the list of locations to improve the speed of the search. The field of view is 
shown in red. The blue square shows the field of view aligned with the x-y grid on layer 
z=1. (a) Plot of the original scene, Mdata. (b) Plot of the pruned list, Bounded_Mdata, 
used for searching. 
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The coordinates defining the bounding box are used to prune the original list (Mdata), and 
form a new list (Bounded_Mdata). At the same time a new set of pointers (Bounded_zpoint) is 
computed for this pruned list, allowing the appropriate layer to be searched as described 
earlier but with the search restricted to the bounding box. 
 
7.3.4 Multiple Bounding Boxes 

The computation time can be significantly improved further if instead of applying a single 
bounding box, the sensor is divided up and bounding boxes are computed for subsets of 
the rays. The bounding box (and z layer) defines the search space for a given subset of 
rays. Using a larger number of smaller bounding boxes means that there will be fewer 
voxels in the search space for a given ray, which reduces the time spent searching for 
voxels in the ray tracing algorithm even though the bounding boxes will in general 
overlap. However, the time taken to define a large number of bounding boxes will 
eventually offset the gains made in reducing the search time. The optimal number of 
bounding boxes depends on the number of rays to be traced (Figure 19).  
 
The total computation time is very specific to a particular scenario and the computer used 
to run it. However, the times taken by the bounding box and ray tracing algorithms have 
been modelled as a function of the number of voxels per bounding box for the input scene 
shown in Figure 11, which contains approximately 3.8 million voxels. These times were 
collected from test scenarios run using MATLAB R2008b on a HP Compaq 8710w laptop 
computer with an Intel Core 2 Duo CPU T9500 2.6 GHz, 4.0 GB RAM and Microsoft 
Windows XP Professional. The plot of the time taken versus number of voxels contained in 
a bounding box, v, for the bounding box (Figure 17) and ray tracing (Figure 18) algorithms 
show that a linear model with a non-polynomial (logarithmic) term provides a good fit of 
the data. 
 
The bounding box algorithm time, , is modelled by: tB
 

)ln(210 vvavaaBt ���  (5) 

where , ,  20.00 �a 6
1 1025.1 	
�a 8

2 1031.7 	
	�a
 
The ray tracing algorithm time (for a single ray), , is modelled by: tR
 

)ln(210 vvbvbbRt ���  (6) 

where , ,  001.00 �b 8
1 1008.5 	
�b 9

2 1081.2 	
	�b
 
Equations (5) and (6) are not particularly helpful in choosing the appropriate number of 
bounding boxes that will minimise the computation time for a given scenario because it is 
difficult to estimate the number of voxels that will be contained inside the bounding boxes. 
The number of voxels contained inside a bounding box is dependent on the sensor 
pointing direction, the sensor’s field of view, the density and distribution of voxels that 
form a particular scene and the size of the bounding box itself.  
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Figure 17: Time taken by the bounding box algorithm as a function of the number of voxels 

contained in a bounding box 

 

 
Figure 18: Average time taken by the ray tracing algorithm (for a single ray) as a function of the 

number of voxels contained in a bounding box 
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For scenarios using the input scene shown in Figure 11 and where the sensor azimuth 
angle is aligned with the x-y plane, the number of voxels contained in a bounding box can 
be approximated by the number of voxels contained in a single bounding box 
encapsulating the entire field of view, divided by the number of bounding boxes.  
 
The total computation time, T, for a given number of bounding boxes, B, is estimated by: 
 

)()( vRNvBBT tt ����  (7) 

where N is the number of rays and the number of voxels per bounding box is , 
where V is the total number of voxels contained in a single bounding box encapsulating 
the entire field of view. 

BVv /�

 
Figure 19 shows the times estimated by Equation (7) for a realistic scenario consisting of a 
128 × 128 sensor array with 1, 4 and 16 rays per detector, i.e. 16384, 65536 and 262144 rays 
respectively. These estimates are accurate when the sensor azimuth angle is closely 
aligned with the x-y plane and the sensor depression angle is close to nadir. When the 
sensor is rotated and/or tilted, the size and overlap of the bounding boxes will increase 
and thus Equation (7) will tend to underestimate the computation time. However, the 
location of the minimum of the curve does not shift greatly. Since the curves are relatively 
flat around their minima, choosing a number of bounding boxes that does not correspond 
to the exact minimum will have only a small impact on the total computation time. 
  

 
Figure 19: Approximate computation time of an example scenario (where the sensor depression 

angle is nadir and the field of view encapsulates the entire scene) for different choices of 
the number of rays traced and bounding boxes 
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7.4 Ray Tracing Algorithm 

As previously mentioned, ray tracing is simply stepping along a tracing vector until the 
ray either enters a voxel that forms part of the scene or reaches the ground. 
 
The ray tracing algorithm requires three inputs: 

1. The ray data which includes the set of ray positions and associated tracing vectors. 

2. The three-dimensional model data (Bounded_Mdata). This is the pruned list that only 
contains a subset of the model data around the field of view of the set of rays. 

3. The array of pointers (Bounded_zpoint) used to restrict the search to a smaller subset 
of the pruned model data list. 

 
The algorithm for tracing a single ray is illustrated in Figure 20. This algorithm runs in a 
loop to trace all the rays used to model the sensor in a sequential manner. To avoid 
unnecessary searching of the model data and so improve computation time, the ray 
tracing starts from the highest layer in the scene (i.e. top of the tree canopy) instead of the 
actual sensor. The position where a ray will intercept the highest layer is calculated using 
its initial position, tracing vector and the model data. 
 
As a ray traces through the three-dimensional model, the current voxel location is 
determined by rounding the components of the ray’s position to the nearest integers. 
However, the ray’s position is maintained as a floating point value and not reset to the 
current voxel location as it continues to trace through the scene. This current voxel location 
is checked against the locations of voxels forming the three-dimensional model. If there is 
a match, the ray has intercepted part of an element in the model. 
 
Two alternative methods were devised for performing this intercept check: 

1. Search Method — A search is performed to determine if the ray has intercepted a 
location within the bounds of the current layer. 

2. Logical Indexing Method — A logical indexing operation is used to check for an 
intercept within the bounds of the current layer. This method is currently 
implemented since it is significantly faster than the Search Method (tests have shown 
an approximate five times speed-up). 

 
The ray tracing algorithm returns the intercepted locations or the positions where rays hit 
the assumed ground layer if they trace through the scene without an intercept. To apply 
the depth resolution parameter, the returned locations are first grouped by the detectors to 
which they correspond. Some returns may then be discarded so that the remaining returns 
are spaced appropriately based on the time to reset the detector. 
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Is the ray tracing 
into scene? 

No 

Calculate position where ray 
intercepts the top of the scene 

Has the ray  
hit the ground? 

Determine subset of the 
scene list to search 

Does the ray 
intercept a voxel 

in list? 

Return the location of the 
intercepted voxel 

Calculate position 
where ray hits the 

ground 

Calculate new ray 
position 

No 

Yes 

Yes 

No 

Yes 

END 

Get initial ray position and 
tracing vector 

START

Figure 20: Flow chart of the ray tracing algorithm 
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