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l. Introduction

This Postdoctoral Training Award (W81XWH-08-1-0127, entitled “Accurate and Fast
Localization of Prostate for External Beam Radiation Therapy”’) was awarded to the principal
investigator (PI) for the period of February 15, 2008 --- February 14, 2010. This is the annual
report for the first funding period (February 15, 2008 --- February 14, 2009). The purpose of this
project is to develop a tomosynthesis-based method for fast and accurate prostate localization
during IMRT. The specific ams of this project are: 1) To determine the protocol for acquiring
projection data for tomosynthesis, 2) to determine the optima tomosynthetic image
reconstruction algorithm, 3) to determine an accurate non-rigid registration method for
registering the daily tomosynthetic images to the planning CT images of the prostate, 4) to
develop and evaluate the tomosynthesis-based repositioning protocols. Under the generous
support from the U.S. Army Medical Research and Materiel Command (USAMRMC), the Pl has
contributed significantly to the field of prostate cancer research by applying the physics and
engineering knowledge. A number of conference abstracts and refereed journal publications have
been resulted from the support. In this report, the past year’'s research activities of the Pl are
highlighted.

Il. Body

During the past year, the Pl has successfully implemented a ray-tracing method to generate the
projection image from a digital mathematical phantom and used Trilogy oncology system to
acquire projection data of an anthropomorphic phantom with various protocols. The Pl has also
implemented tomographic image reconstruction algorithms including both analytical filtered
back-projection (FBP)-type method and statistics-based iterative image reconstruction algorithm.
The analytical image reconstruction algorithm is based on the widely-used Feldkamp Davis and
Kress (FDK) algorithm. To enhance the image of reconstructed tomographic image, a statistics-
base sinogram smoothing agorithm has been developed. Two journa papers (ref.1 and 2) and a
conference proceeding (ref. 3) have been published based on the developed algorithm. The
iterative image reconstruction algorithm is based on statistical properties of measured projection
data, where the noise modeling of measured data is incorporated into the penalized weighted
|east-squares objective function. To improve the image resolution of reconstructed image, a new
prior model is proposed. One conference abstract (ref.4) and one journal paper (ref. 5) have been
published based the proposed agorithm. Currently, the Pl is conducting research on image
reconstruction and registration for tomosynthesis using few projections from the cone-beam CT.
One paper regarding the number of projection required for accurate tomosynthetic image
reconstruction and registration is under preparation.

II. Key Research Accomplishments

e Developed a simulation package: including projector to generate projection image from a
digital mathematical phantom and FDK reconstruction algorithm to reconstruct
tomosynthesis image.

e Developed a statistics —based sinogram smoothing algorithm to suppress noise in
projection data and improve image quality in reconstructed image.
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e Developed an iterative image reconstruction agorithm with a new prior constraint to
improve image quality and resolution in tomographic images.

V. Reportable Outcomes
Thefollowing isalist of publications resulted from the grant support in the last funding period.

Refer eed Publications:

1. J. Wang, L. Zhu, and L. Xing, “Noise reduction in low-dose X-ray fluoroscopy for
Image Guided Radiation Therapy (IGRT)”, Int J Radiat Oncol Biol Phys, in press,
2009

2. J. Wang, T. Li, and L. Xing, “Iterative image reconstruction for CBCT using edge-
preserving prior”, Medical Physics, vol. 36, pp. 252-260, 2009

3. L. Zhu, J. Wang, and L. Xing, “Noise suppression in scatter correction for Cone-
Beam CT”, Medical Physics, vol. 36, pp. 741-752, 2009

4. J. Wang, T. Li, Z. Liang and L. Xing, “Dose reduction for kilovoltage cone-beam
computed tomography in radiation therapy”, Physics in Medicine and Biology, vol.
53, pp. 2897-2909, 2008

Conference Abstract:

1. J. Wang, A. Chai, L. Xing, “Noise correlation in CBCT projection data and its
application for noise reduction in low-dose CBCT”, poster presentation in 2009
SPIE Medical Imaging conference, Orlando, FL

2. J. Wang, T. Li, and L. Xing, “Low-dose CBCT Imaging for External Beam
Radiotherapy”, oral presentation in 2008 ASTRO Annual Meeting, Boston, MA

3. X.Zhang, J. Wang, L. Zhu, and L. Xing, “Low-dose X-ray fluoroscopy for Image
Guided Radiation Therapy (IGRT)”, poster presentation in 2008 ASTRO Annual
Meeting, Boston, MA

4. J. Wang, T. Li, Z. Liang and L. Xing, “Dose reduction for kilovoltage cone-beam
computed tomography in radiation therapy”, oral presentation in 2008 AAPM
Annual Meseting, (selected for long presentation at the John S. Laughlin Science
Council Research Symposium), Houston, TX

5. J. Wang, L. Zhu, A. Chai, and L. Xing, “Temporal filtering of noise in low-dose x-
ray fluoroscopy”, poster presentation in 2008 AAPM Annual Meeting, Houston, TX

6. L. Zhu, J. Wang, Y. Xie, J. Starman, R. Fahrig, and L. Xing, “A patient set-up
protocol based on partially blocked cone-beam CT”, poster presentation in 2008
AAPM Annual Meeting, Houston, TX

7. J. Wang, T. Li, and L. Xing, “Iterative image reconstruction for on-board CBCT”,
poster presentation in 2008 Electronic Portal Imaging & Positioning Devices, San
Francisco, CA

V. Conclusions

In summary, an infrastructure has been established to execute the proposed research. Novel
image reconstruction and processing algorithms have been proposed for the treatment of prostate
cancer. A few milestones have been achieved toward the general goal of the project.
Implementation and evaluation of the image registration algorithms are current underway to
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integrate the developed image reconstruction algorithms to improve the current prostate IMRT

treatment.
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Abstract

Kilovotage cone-beam computed tomography (k\V-CBCT) has shown potentials
to improve the accuracy of a patient setup in radiotherapy. However, daily and
repeated use of CBCT will deliver high extra radiation doses to patients. One
way to reduce the patient dose is to lower mAs when acquiring projection data.
This, however, degrades the quality of low mAs CBCT images dramatically
due to excessive noises. In this work, we aim to improve the CBCT image
quality from low mAs scans. Based on the measured noise properties of the
sinogram, a penalized weighted least-squares (PWLS) objective function was
constructed, and the ideal sinogram was then estimated by minimizing the
PWLS objection function. To preserve edge information in the projection
data, an anisotropic penalty term was designed using the intensity difference
between neighboring pixels. The effectiveness of the presented algorithm was
demonstrated by two experimental phantom studies. Noise in the reconstructed
CBCT image acquired with a low mAs protocol was greatly suppressed after
the proposed sinogram domain image processing, without noticeable sacrifice
of the spatial resolution.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Integration of the kilovotage cone-beam computed tomography (kV-CBCT) with a linear
accelerator makes it possible to acquire a high-resolution volumetric image of a patient at
a treatment position. There is growing interest in using on-board kV-CBCT for a patient
treatment position setup and dose reconstruction in radiotherapy (Xing et al 2006, Yang et al
2007, Lee et al 2008). However, the repeated use of k\V-CBCT during the course of a treatment

0031-9155/08/112897+13%$30.00 © 2008 Institute of Physics and Engineering in Medicine Printed in the UK 2897
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has raised concerns of an extra radiation dose delivered to patients (Brenner and Hall 2007,
Islam et al 2006, Wen et al 2007). It has been reported (Wen et al 2007) that the dose delivered
from Varian’s kV-CBCT system with current clinical protocols is more than 3 cGy for central
tissue and about 5 cGy for most of the peripheral tissues during an IMRT (intensity-modulated
radiation therapy) treatment course for prostate cancer. The extra radiation exposure to normal
tissue during kV-CBCT will significantly increase the probability of stochastic risk of inducing
cancer and genetic defects. Based on the ALARA (as low as reasonably achievable) principle,
the unwanted kV-CBCT dose should be minimized to fully realize its advantages of precise
target localization during radiotherapy (Murphy et al 2007).

One way to reduce the radiation dose delivered to patients during the k\V-CBCT procedure
is to acquire CT projection data with a lower mAs level (can be realized by reducing the
tube current or pulse time). However, the image quality of the projection image and the
reconstructed CBCT image will be degraded due to excessive quantum noise as a result of
a low mAs protocol. Conventionally, noise in CT is suppressed by using a low-pass filter
to attenuate the high-frequency component of the projection data during reconstruction. The
high-frequency component contains information of both noise and edges, where a simple
low-pass filter cannot differentiate edge information from noise. Therefore, noise reduction
using a low-pass filter will result in loss of edges, which is not desirable for CT imaging.
Several edge-preserving filters (Hsieh 1998, Kachelriess et al 2001, Zhong et al 2004) have
been proposed to reduce noise in CT images based on local characteristics of the projection
data elements. More recently, statistics-based image domain (Li et al 2005a) and sinogram
domain restoration algorithms (Li et al 2004, La Riviere 2005, La Riviere and Billmire 2005,
Wang et al 2006) have shown advantages in noise reduction and edge preservation for low-
dose fan-beam CT. In the meantime, noise properties of CT projection data have been under
investigation (Li et al 2004, Whiting et al 2006) and the noise model of the sinogram data in
Radon space (i.e. line integrals) has been validated by experimental studies (Wang et al 2008).
In this work, we aim to improve the low-dose CBCT image quality by reducing noise in the
CBCT sinogram before image reconstruction. The noise reduction algorithm incorporates
the noise modeling of the CT sinogram data in Radon space (line integrals) to construct
a penalized weighted least-squares (PWLS) objective function (Fessler 1994, Sukovic and
Clinthorne 2000). The ideal solution of the line integrals is then estimated by minimizing
the PWLS objective function. The weighted least square is based on the first and second
moments of the noise in the sinogram data and an anisotropic penalty is designed to preserve
the edges in the sinogram. CBCT images are reconstructed by using the Feldkamp-Davis—
Kress (FDK) (Feldkamp et al 1984) algorithm after all sinogram images are processed by the
PWLS criterion sequentially. The effectiveness of the PWLS-based noise reduction algorithm
is demonstrated by two experimental phantom studies.

2. Methods and materials

2.1. CBCT sinogram smoothing

Ideally, the line integral of attenuation coefficients can be calculated by

N
i = In —l, 1
p N, D
where N;o and N; are the incident photon number and detected photon number at the detector
bini respectively. For ease of presentation, we refer the measurement as a photon number. Ina

real x-ray CBCT system, the measured signal is total energy deposit on the flat-panel detector.



Dose reduction for CBCT 2899

In the following of this paper, we refer the value of p; as the sinogram datum at the detector
bini. Mathematically, the PWLS cost function in the sinogram domain can be written as

Q(p) =G - PG~ p)+BR(D). @
The first term in equation (2) is a weighted least-squares criterion, where ¥ is the vector of
the measured sinogram data and p is the vector of the ideal sinogram data to be estimated.
The symbol T denotes the transpose operator. The matrix X is a diagonal matrix and its ith
element is the variance of sinogram data at the detector bin i. The second term in equation
(2) is a smoothness penalty or a priori constraint, where 8 is the smoothing parameter which
controls the degree of agreement between the estimated and the measured data.

The element of the diagonal matrix X is the variance of the corresponding sinogram
datum, and it determines the contribution of each sinogram datum to the cost function. Based
on the sinogram noise modeling in Li et al (2004) and Wang et al (2008), the variance of the
sinogram datum can be estimated by

af = exp(p;)/Nio. (3)
For a fixed incident photon number N;o, a sinogram datum with a larger value will have a
larger variance and therefore less contribution to the cost function since the weight of that
measured datum is 1/0,.2 as defined in equation (2). This can be understood by the following
observation. A larger sinogram datum value p; at the detector bin i indicates less x-ray
photons being detected, i.e. smaller N; in equation (1), or more photons being attenuated
along the projection path i. A detector bin receiving less photons will be associated with a
smaller signal-to-noise ratio (SNR) based on the Poisson noise nature of the detected x-ray
photons. Therefore, the weighted least-squares criterion reflects the above observation that
the measured datum with a lower SNR will contribute less for estimation of its ideal sinogram
datum.

To calculate the sinogram datum variance at the detector bin i via equation (3), we need
to estimate the incident photon number N;o for calculation of the sinogram variance. The
incident photon number is mainly determined by the protocols of tube current and the duration
of x-ray pulse (i.e. mAs). ldeally, the incident x-ray flux from the tube would be calibrated
as uniform as possible across a field of view (FOV), i.e. N;q is a constant for all the detector
bins. In reality, the x-ray flux is modulated to consider the concavity shape of the human
body by the bow-tie attenuating filter prior to arrival at the patients. Therefore, the incident
photon number will not be a constant across the FOV. To estimate the incident intensity over
the FOV at a specific mAs level, we performed the air scan and then averaged the projection
image over all projection view angles. Figure 1 shows the incident x-ray intensity with the
tube current 80 mA and duration of pulse 10 ms. The incident x-ray intensity can then be used
for estimation of the sinogram data variance {o?}.

The penalty term in equation (2) is a prior or smoothing constraint, which encourages the
equivalence between neighboring data elements. In Li et al (2004) and Wang et al (2006), a
penalty of a quadratic form with equal weights for all neighbors has been used for sinogram
smoothing of fan-beam CT:

R(p) =Y win(pi — pu)’, 4)

where n represents four nearest neighbors around pixel i and w;, is the weight for neighbor
n. With an equal weight for the four nearest neighbors, these neighbors play an equivalent
role in constraining the solution. As such, it provides a uniform regularization without
considering details of intensity variation and possibly the presence of edges in the sinogram
image. To preserve the edge information in the sinogram image of CBCT, we propose to use
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Figure 1. Incident x-ray intensities across the field of view with 80 mA tube current and 10 ms
pulse time. Relative intensity is mainly caused by the bow-tie filter.

anisotropic weights for different neighbors in the sinogram image. The weight of the neighbor
is determined by the magnitude of difference between neighbors and the concerned pixel. For
a larger difference between the neighbor and the pixel, the coupling between them should be
weaker and the weight w;,, should be smaller. This form of weight is chosen the same as the
conducting coefficient in the well-known anisotropic diffusion filter (Perona and Malik 1990):

Win = exp [— (p,-;pn>2], (5)

where the gradient determines the strength of the diffusion during each iteration and the
parameter § was chosen as 90% of histogram of the gradient magnitude of the sinogram to be
processed (Perona and Malik 1990).

Minimization of the objective function 2 can be performed efficiently by the iterative
Gauss—Seidel updating strategy. The updating formula for the solution of p is given by

2 k+1 k
(k+1) yit :301' (ZnEN’l winpf; )+ ZnENi2 winp1(1 ))
p. =
l 1+ :301'2 D Win

HEN,‘

: (6)

where the index k represents the iterative number, N} denotes those two nearest neighbors of
i whose index is smaller than i, N? denotes those two nearest neighbors of i whose index is
larger than i and V,denotes these four nearest neighbors of pixel i in the sinogram image. The
initial of p is given by the measured data y.

2.2. On-board kv-CBCT

The cone-beam CT projection data were acquired by ExactArms (kV source/detector arms)
of a Trilogy(tm) treatment system (Varian Medical Systems, Palo Alto, CA). The number of
projections for a full 360° rotation is around 634. The dimension of each acquired projection
image is 397 mm x 298 mm, containing 1024 x 768 pixels. The system has a FOV of 25 cmx
25 cm (full-fan mode) in the transverse plane and 17 cm in the longitudinal direction, which
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Figure 2. lllustration of the anthropomorphic head phantom used for evaluation of the PWLS
algorithm.

can be increased to 45 cm x 45 cm in the transverse plane by shifting the detector laterally
(half-fan mode).

Two phantoms were used to evaluate the performance of the proposed PWLS algorithm
in this study. The first phantom is a commercial calibration phantom CatPhan® 600 (The
Phantom Laboratory, Inc., Salem, NY). Details about the CatPhan® 600 phantom can be
found in Li et al (2005a). The second one is an anthropomorphic head phantom (see figure 2).
For each phantom, the x-ray tube current was set at 10 mA (low dose) and 80 mA (high dose)
during acquisition of CBCT projection images. At both mA levels, the duration of the x-ray
pulse at each projection view was 10 ms. The tube voltage was set to 125 kVp during all data
acquisitions. After each sinogram acquired with the low-mAs protocol was processed by the
PWLS algorithm described above, the CBCT image was reconstructed by the FDK algorithm.
The voxel size in the reconstructed image is 0.5 x 05 x 0.5 mm?®,

3. Resaults

3.1. CatPhan® 600 phantom

We first tested the proposed algorithm on the CatPhan® 600 phantom. Several representative
slices of the reconstructed CBCT are shown in figures 3, 4 and 6. In each of these figures, (a) is
the FDK reconstructed image from the projection data acquired with 10 mA tube current, (b) is
the FDK reconstructed image from the sinogram processed by the proposed PWLS sinogram
smoothing algorithm and (c) is the FDK reconstructed image from the sinogram obtained with
80 mA tube current.

Figure 3 shows that one slice of image contains a point-like object, which mimics a
fiducial marker. In figure 3(a), the point source is difficult to be observed. After the sinogram
was processed by the PWLS algorithm, the reconstructed image (figure 3(b)) is very similar
to that obtained with a high mA protocol (figure 3(c)). The point source was well recovered
and easy to be detected.
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Figure 3. One slice of the FDK reconstructed image of the CatPhan® 600 phantom containing
a point-like object: (a) from projection images acquired with 10 mA tube current, (b) after the
sinogram acquired with 10 mA tube current is processed by the PWLS algorithm and (c) from
projection images acquired with 80 mA tube current.

Figure 4 shows that one slice of image contains several strips with different sizes and
contrasts, which can be used to study the edge information in the reconstructed images. The
CT image reconstructed from the PWLS-processed sinogram is comparable to that obtained
with the 80 mA protocol in terms of detectability of the strips; see ROI2 in figure 4(c). To
show the difference between figures 4(a), (b) and (c), in figure 5 we plotted horizontal profiles
along the central strips (see ROI1 in figure 4(c)). It can be observed that the edges are well
preserved (compare profiles through figures 3(b) and (c)), while noise is effectively suppressed
(compare profiles through figures 3(a) and (b)).

To further quantitatively evaluate the effectiveness of the PWLS sinogram smoothing
algorithm, we calculated the contrast-to-noise ratio (CNR) at different regions of interest
(ROIS) in the images shown in figure 6. The CNR is defined as

CNR = M )

2 2
of + oy
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Figure 4. One slice of the FDK reconstructed image of the CatPhan® 600 phantom containing
several strips: (a) from projection images acquired with 10 mA tube current, (b) after the sinogram
acquired with 10 mA tube current is processed by the PWLS algorithm and (c) from projection
images acquired with 80 mA tube current.

Table 1. CNRs of four ROIs in figure 5.

ROI1 ROI2 ROI3 ROI4 ROI5

80 mA 1.83 7.31 4.75 151 0.89
10 mA 0.82 2.70 1.68 0.49 0.36
PWLS10mA g =0.05 1.92 6.88 4.75 1.33 0.85

where s is the mean value of the signal and wuy, is the mean value of the background. Five
circular objects (indicated by arrows in figure 6) with different intensities were chosen to
calculate CNRs. Table 1 lists the CNRs of these five ROIs. After a 10 mA sinogram was
processed by the PWLS algorithm, the CNR in the reconstructed image improved significantly.
It can be observed that the CNR of a PWLS-processed 10 mA image is comparable to that of
the image acquired with the 80 mA protocol.
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Figure5. Profiles through the central strips in figure 4 (indicated by ROI1).

3.2. Anthropomor phic head phantom

Results of the anthropomorphic head phantom are shown in figure 7. Figure 7(a) shows one
slice of the reconstructed images from projection data acquired with the 10 mA protocol.
Figure 7(c) shows the reconstructed image from the PWLS-processed 10 mA sinogram.
Figure 7(d) shows the same slice of the image reconstructed from the sinogram obtained with
80 mA. It can be observed that noise in 10 mA CT images is efficiently suppressed after the
sinogram is processed by the PWLS algorithm. The processed low-dose CT (10 mA) image
is very similar to its corresponding high-dose image (80 mA) by visual judgment. Standard
deviation of the noise in a uniform ROI (as indicated by an arrow in figure 7(d)) is 2.8 x 10~3in
a low-dose (10 mA) image and 0.951 x 1073 in its corresponding high-dose image. After
the low-dose sinogram is processed by the PWLS algorithm with a smoothing parameter
B = 0.05, the standard deviation of the same ROl is 0.955 x 10~2, which is fairly close to the
noise level of the 80 mA image.

To further illustrate how the edge information is affected by the PWLS sinogram
smoothing, in figure 7(e) we show the difference image between figures 7(a) and (c). In
the difference image, random noise is dominant and no edge or structure can be observed.
This indicates that the edge information is well preserved in the PWLS-processed images.

4. Discussion

Generally, noise reduction for CT imaging can be performed in three spaces: projection data
(either before or after logarithmic transform), filtered projection data (before backprojection
operation during reconstruction) and reconstructed CT images. During filtering and
backprojection operation, the noise properties will change significantly. Then noise modeling,
such as distribution of noise and variance of noise, is difficult in filtered projection data and
reconstructed image. Therefore, in this work we chose to work on the log-transformed data
to fully utilize the noise model of the projection data in the Radon space (Li et al 2004, Wang
et al 2008).



Dose reduction for CBCT 2905

©

Figure 6. One slice of the FDK reconstructed image of the CatPhan® 600 phantom containing
several circular objects with different intensities: (a) from projection images acquired with 10 mA
tube current, (b) after the sinogram acquired with 10 mA tube current is processed by the PWLS
algorithm and (c) from projection images acquired with 80 mA tube current.

Accurate noise modeling of measurement is fundamentally important in statistics-based
image processing algorithms. Meanwhile, the regularization term also plays an important
role in the performance of the algorithm. In CT sinogram processing, a commonly used
regularization takes a quadratic form with equal weights for neighbors of an equal distance
(La Riviere 2005, La Riviere and Billmire 2005, Li et al 2004, Wang et al 2006). Such a
quadratic penalty simply encourages the equivalence between neighbors without considering
discontinuities in the image and may lead to over-smoothing around sharp edges or boundaries.
In the presented algorithm, we proposed an anisotropic penalty to consider the difference
among neighbors. The idea was inspired by the well-known anisotropic diffusion filter (Perona
and Malik 1990), in which the gradient controls the strength of diffusion among neighbors. The
coupling between neighbors should be smaller if the absolute value of difference between them
is smaller and this kind of neighbors should contribute less to the solution of the concerned
pixel (see equation (6)). There are many choices that satisfy this behavior of weighting. In this
work, the form of the anisotropic weight was chosen the same as the conduction coefficients
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Figure 7. One slice of FDK reconstructed image of the anthropomorphic head phantom: (a)
from projection images acquired with 10 mA tube current, (b) using a low-pass Hanning filter
with cutoff 80% Nyquist frequency, (c) after the sinogram acquired with 10 mA tube current is
processed by the PWLS algorithm, (d) from projection images acquired with 80 mA tube current
and (e) difference image between (d) and (c).

in the anisotropic diffusion filter (Perona and Malik 1990). By such a choice, the anisotropic
quadratic form penalty discourages the equivalence between neighbors if the gradient between
them is large, and the edges or boundaries in the image will be better preserved. This effect is
similar to that of anisotropic coefficients in the diffusion filter.

In the presented method, the reconstruction of CT images was performed by an analytical
FDK algorithm for its speed and accuracy. During the FDK reconstruction process, noise
can also be suppressed by using a low-pass filter. It has been reported (Li et al 2004, La
Riviere 2005) that a statistics-based sinogram smoothing algorithm plus FBP reconstruction
is superior to conventional low-pass filters for noise suppression of 2D fan-beam CT. In this
work, we also reconstructed the CT image of the anthropomorphic head phantom using a
Hanning filter with a cutoff at 80% Nyquist frequency, see figure 7(b). It can be observed that
the image reconstructed from the PWLS-processed sinogram is superior to the result of the
Hanning filter in terms of noise suppression and structure preservation.

Similar to the cutoff frequency in the conventional low-pass filter during reconstruction,
there is also a free parameter 8 in the presented method which controls the trade-off of the
noise level and the structure preservation in reconstructed images. In this work, the choice
of B is determined by the visual judgment. The optimal choice of the parameter 8 can be
determined by more sophisticated ways such as the received operating characteristic (ROC)
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study. Nevertheless, the parameter 8 can be chosen according to the noise level of the sinogram
because from equation (6),the solution for the ideal sinogram, we can see that the parameter
B and variance o? are always coupled together. The noise level of the projection data is
mainly determined by two factors: incident photon number and line integrals. As such, the
parameter 8 could be optimized at a certain mAs level and treatment site for patients of a
similar size. In this work, however, the parameter is chosen empirically, which is justifiable
when the dependence of the parameter on the noise level is weak.

The method presented in this paper is based on the noise properties of the sinogram,
and the smoothing constraint or penalty is applied to the sinogram domain. Based on the
same noise model, the smoothing constraint can also be applied to the CT image domain, and
the statistical iterative reconstruction (SIR) algorithm can be used to obtain the attenuation
coefficient map by minimizing the objective function. The SIR-based algorithms showed
some advantages over the conventional filtered backprojection method for multi-slice helical
CT (Thibault et al 2007). However, an obstacle for practical use of SIR is the computation
burden, especially for large volume datasets of CBCT. It takes more than 10 h to reconstruct
the typical volume of multi-slice helical CT using SIR (Thibault et al 2007). It takes only
3 s for the presented sinogram smoothing method to process one projection image using
a PC with 3.0 GHz CPU. Parallel computing can speed up both SIR and sinogram-based
algorithms significantly using the cell broadband engine (Knaup et al 2006) and PC cluster
(Li etal 2005h). It is possible to achieve clinically acceptable time for the presented sinogram
smoothing algorithm through parallel computation. It is an interesting research topic to
quantitatively compare the performance of the SIR-based CBCT reconstruction algorithm and
the statistics-based sinogram smoothing method.

When CBCT is used for patient setup and target localization during radiotherapy, some
extra information may be taken into account for dose and noise reduction. For example, a
complete CT volume dataset with high clarity used for treatment planning is usually available
before the treatment. This will provide strong a priori information of the patient before each
CBCT scan. Prior information of planning 3D CT has been proved useful to improve the
image quality of 4D CBCT (Li et al 2007). It is expected that the radiation dose of CBCT
used for radiotherapy can be further reduced by incorporating the planning CT information
into the image restoration or reconstruction algorithms.

In the report of the AAPM task group 75 (Murphy et al 2007), several dose reduction
strategies for image-guided radiotherapy were discussed. For CBCT, dose reduction can be
achieved by narrowing field of view to avoid delivering radiation to an unnecessary region of
the patient (Murphy et al 2007). Compared with these hardware-based approaches, software
approaches (such as the one proposed in this paper) provide a more cost-effective means
for dose reduction of CBCT. In addition to the statistics-based reconstruction and restoration
algorithms, advanced analytical CBCT reconstruction algorithms (Leng et al 2007, Zhuang
et al 2006, Zou and Pan 2004, Zou et al 2005) may further improve the low-dose CBCT image

quality.
5. Conclusion

A PWLS algorithm with non-uniform weights was proposed to reduce noise in low-dose
onboard CBCT. In this method, the sinogram was first processed according to the PWLS
criterion. The weight for each measurement was chosen as sinogram datum variance, where
variance can be estimated accurately according to the sinogram noise model. To preserve
edge information during noise reduction, we proposed an anisotropic quadratic form penalty.
The quadratic form penalty encourages equivalence between neighbors and the anisotropic
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penalty provides the mechanism to control the influence of different neighbors according to
its corresponding gradient. The effectiveness of the proposed method is demonstrated by
two experimental phantom studies. The quality of the 10 mA CT image after its sinogram
processed by the PWLS algorithm is comparable to the image obtained with the 80 mA
protocol. These experimental results indicate that it is possible to reduce the CBCT radiation
dose by a factor of 1/8 without loss of useful information for radiotherapy.
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On-board cone-beam computed tomography (CBCT) is a new imaging technique for radiation
therapy guidance, which provides volumetric information of a patient at treatment position. CBCT
improves the setup accuracy and may be used for dose reconstruction. However, there is great
concern that the repeated use of CBCT during a treatment course delivers too much of an extra dose
to the patient. To reduce the CBCT dose, one needs to lower the total mAs of the x-ray tube current,
which usually leads to reduced image quality. Our goal of this work is to develop an effective
method that enables one to achieve a clinically acceptable CBCT image with as low as possible
mAs without compromising quality. An iterative image reconstruction algorithm based on a penal-
ized weighted least-squares (PWLS) principle was developed for this purpose. To preserve edges in
the reconstructed images, we designed an anisotropic penalty term of a quadratic form. The algo-
rithm was evaluated with a CT quality assurance phantom and an anthropomorphic head phantom.
Compared with conventional isotropic penalty, the PWLS image reconstruction algorithm with
anisotropic penalty shows better resolution preservation. © 2009 American Association of Physi-

cists in Medicine. [DOI: 10.1118/1.3036112]

Key words: cone-beam CT, low-dose, iterative reconstruction, PWLS, edge-preserving penalty

[. INTRODUCTION

Integration of the cone-beam computed tomography (CBCT)
with a linear accelerator' makes it possible to acquire volu-
metric image of high spatial resolution for a patient at treat-
ment position. There is growing interest in using on-board
CBCT for patient setup and dose reconstruction.’ Repeated
use of CBCT during a treatment course has raised concern of
the extra radiation dose delivered to patients.e"4 One cost-
effective way to reduce the CBCT dose is to acquire CT with
a lower mAs protocol. However, image quality will degrade
dramatically due to excessive noise,>® rendering the low-
mAs CBCT a less attractive option for the therapeutic guid-
ance.

In this work, we incorporate the noise properties of CBCT
log-transformed projection data’® in a statistical iterative im-
age reconstruction algorithm to improve the low-dose CBCT
image quality. Compared with analytical reconstruction algo-
rithms, a major advantage of iterative algorithms is that it
takes into consideration the image physics, noise properties,
and imaging geometry elegantly. Advantages of iterative re-
construction algorithms have been demonstrated in the image
reconstruction of emission tomographic images.g‘12 How-
ever, when applying iterative reconstruction algorithms for
CT imaging,”**" long computational time may pose a chal-
lenge for their clinical applications. With the development of
fast computers and dedicated hardwares,'®* iterative recon-
struction algorithms may be used for clinical CT reconstruc-
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tion in the near future. Recently, iterative image reconstruc-
tion algorithms have demonstrated superior performance for
reconstruction of the multislice helical CT (Ref. 20) and car-
diac micro-CT.?* Prototype products based on iterative re-
construction methods have been exhibited by major CT ven-
dors in a number of national and international meetings.

In statistics-based iterative reconstruction algorithms, to-
mographic images are reconstructed by minimizing or maxi-
mizing a cost function, which is constructed based on noise
characteristics of the measured data. There are usually two
terms in the objective function. The first term models the
statistics of measured data and the second term reflects a
prior information to regularize the solution. Many efforts”%?
have been devoted to investigate the noise models of the
measurements in CT. Accurate noise modeling is a prerequi-
site of a statistical iterative reconstruction algorithm. The
second term, i.e., the regularization term, also plays an im-
portant role for successful image reconstruction. One com-
mon choice of the regularization term is the Gaussian Mar-
kov random field in quadratic form.’*?*% Such quadratic
penalty with equal weights for neighbors of equal distance
encourages equivalence between neighbors without consid-
ering discontinuities in images, which may lead to over-
smoothing around edges or boundaries. Several edge-
preserving regularization methods have been proposed to
address this problem. For example, the edge-preserving Hu-
ber penalty, which penalizes neighbors of small differences
quadratically while applying a linear penalty on neighbors of

© 2009 Am. Assoc. Phys. Med. 252
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larger difference, has been used by Elbakri and Fessler®® for
CT image reconstruction and by Chlewicki et al.?” for posi-
tron emission tomography reconstruction. A line process has
been introduced by Geman and Geman® to define the edge
lattice during Bayesian restoration of images. Geman and
Reynolds29 proposed a finite asymptotic edge-preserving
function and Charbonnier et al.* introduced an auxiliary
variable in the prior constraint to mark the discontinuities in
the images. These modifications make the objective function
nonquadratic and complicate the computation. In this work,
we propose a quadratic regularization term with anisotropic
weights for different neighbors. The role of the anisotropic
penalty is to discourage the equivalence between neighbors
if the gradient is large; thus the edges or discontinuities will
be better preserved in the final reconstructed image.

In the following sections, we first introduce the penalized
weighted least squares (PWLS) objective function for image
reconstruction of CBCT based on the noise properties of
CBCT projection data. We then describe the proposed aniso-
tropic penalty in details. In Sec. Ill, the evaluation of the
proposed algorithm is presented using a quality assurance
phantom and an anthropomorphic head phantom, followed
by the discussion in Sec. 1V and the conclusion in Sec. V.

IIl. METHODS AND MATERIALS
[ILA. PWLS image reconstruction

Noise in x-ray CT projection data after logarithm trans-
form follows approximately Gaussian distribution and the
variance of the noise can be determined by an exponential
formula”®

o? = exp(py)/Ni, (1)

where N, is the incident photon number at detector bin i, p;
and af is the mean and variance of projection datum p;,
respectively. Based on the noise properties of CT projection
data, the PWLS cost function in the image domain can be

written as
D(u) = (p-Aw)'SHP-Aw) + BR(w). (2)

The first term in Eq. (2) is the weighted least-squares crite-
rion, where p is the vector of log-transformed projection
measurements, and w is the vector of attenuation coefficients
to be reconstructed. Operator A represents the system or pro-
jection matrix. The element of &; is the length of the inter-
section of projection ray i with pixel j and it is calculated by
a fast ray-tracing technique.31 In our implementation, the el-
ement of matrix A was precomputed, stored as a file, and
used as a lookup table later. The projection data p and the
attenuation map w is related by p=Au. 3 is a diagonal ma-
trix with the ith element of o?, i.e., an estimate of the vari-
ance of measured ¥; at detector bin i which can be estimated
from the measured projection data according to Eq. (1). The
element of the diagonal matrix plays the role of weighting in
the WLS cost function and it determines contribution of each
measurement. The symbol ’ denotes the transpose operator.
The second term in Eq. (2) is a smoothness penalty or a prior
constraint, where B is the smoothing or penalty parameter
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which controls relative contribution from the measurement
and prior constraint. The image reconstruction task is to find
attenuation map w by minimizing the objective function (2)
with a positive constraint. The Gaussian-Seidel updating
strategy was used for the minimization and details about the
implementation are described in the Appendix.

I1.B. Edge-preserving anisotropic penalty

The prior constraint in Eq. (2) enforces a roughness pen-
alty on the solution. The quadratic penalty with equal
weights for neighbors of the same distance has been used

widely for iterative image reconstruction'®*"?32>
1
R(u) = u'Ru = 52 > Wil = ), (3)
j mENj

where index j runs over all image elements in the image
domain, N; represents the set of neighbors of the jth image
pixel. The parameter w;,, was set to 1 for first-order neigh-
bors and 1/y2 for second-order neighbors in previous
applications.”**?* This type of penalty only takes distance
information of the neighbors into account. That is, the neigh-
bors of the same distance play an equivalent role in regular-
izing the solution, and vise versa. A major shortcoming of
the approach is that the regularization does not take the dif-
ference in intensities of the neighboring voxles (e.g., edges
or discontinuities) into account, which may lead to an over-
smoothed solution for reconstructed images. To overcome
this limitation, we propose an anisotropic penalty to regular-
ize the solution. In this formulation, the weight is smaller if
the difference between a neighbor and the concerned voxel is
larger, since the coupling between two such neighbors is
smaller. There are many choices that satisfy this behavior of
weighting. In this work, we chose the form of w;, to be the
same as the conduction coefficient in the well-known aniso-
tropic diffusion filter.** The weight w;, can be written as

2
w;m:wjmexp[— (ﬂg—"m) ] )
where the gradient and the parameter & determine the
strength of the diffusion during each iteration. The parameter
S can be set either by hand or to the value at 90% of the
histogram of the gradient magnitude of the image to be pro-
cessed. In this work, we set the value of & to be 90% of the
histogram of the gradient magnitude of the FDK recon-
structed image (which is used as the initial during iterative
reconstruction).

II.C. CBCT data acquisition

Cone-beam CT projection data were acquired by an Acu-
ity simulator (Varian Medical Systems, Palo Alto, CA). The
number of projections for a full 360° rotation is 680 and the
total time for the acquisition of one full circle of the projec-
tion data is about 1 min. The dimension of each acquired
projection image is 397 mm X298 mm, containing 1024
X 768 pixels. To save computational time during iterative re-
construction, the projection data at each projection view
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Fic. 1. The bead point object in the CatPhan® 600 phantom was used to
calculate the MTF of reconstructed images. Display window:
[0,0.03] mm™. The white square in the image indicates the region used to
calculate the standard deviation.

were downsampled by a factor of 2 and only 16 out of 768
projection data along the axial direction were chosen for re-
construction. The system has a field of view of 25cm
X 25 cm (full-fan mode) in the transverse plane and 17 cmin
the longitudinal direction, which can be increased to 45 cm
X 45 cm in the transverse plane by shifting the detector lat-
erally (half-fan mode).

Two phantoms were used to evaluate the performance of
the proposed PWLS algorithm. The first is a commercial
calibration phantom CatPhan® 600 (The Phantom Labora-
tory, Inc., Salem, NY). The second is an anthropomorphic
head phantom. In both phantom studies, the tube voltage was
set to 125 kVp. The x-ray tube current was set at 10 mA and
the duration of the x-ray pulse at each projection view was
10 ms during the acquisition of low-dose CBCT projection
data. During acquisition of the corresponding high-dose
CBCT image, the tube current was set at 80 mA and the
duration of the x-ray pulse was set at 12 ms. The projection
data were acquired in full-fan mode and the full-fan bow-tie
filter was used for both phantoms. The distance of source-to-
axis is 100 cm and source-to-detector distance of 150 cm.
The size of reconstructed image is 350 X 350 X 16 and voxel
size is 0.776 X 0.776 X 0.776 mm?.

11.D. Performance evaluation

We used the CatPhan® 600 phantom to study the spatial
resolution of images reconstructed by different algorithms.
The CTP591 module of the CatPhan® 600 phantom contains
a bead point object with a diameter of 0.28 mm (see Fig. 1).
The point object can be used to calculate the modulation
transfer function (MTF) which characterizes the spatial res-
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Fic. 2. MTF curves of two PWLS iterative image reconstruction algorithms
with different smoothing parameters. Curves in the blue color are results of
reconstruction using an isotropic quadratic penalty. Curves in the black color
are results of reconstruction using the edge-preserving anisotropic quadratic
penalty.

olution of images. The reconstructed image contains the
point object provides the point-spread-function for each re-
construction algorithm and the in-plane MTF can be ob-
tained by calculating two-dimension Fourier transform and
averaging over 27 angles. A 10X 10 matrix centered about
the point object was used to calculate the MTF after the
background value (which can be estimated by averaging the
values of a uniform background region) was subtracted from
the value of each pixel.

In the CTP404 module of the CatPhan® 600, there are
several circles of different intensities which can be used to
quantify the contrast-to-noise (CNR) of the reconstructed im-
ages in different reconstructions. We selected a low-contrast
region of interest (ROI) for calculation of the CNR in the
image reconstructed by different algorithms since a low-
contrast region is of interest in CT imaging. The contrast was
calculated as the absolute difference between the mean value
of the region inside the ROI and the mean value of the uni-
form background region. The noise level was characterized
by the standard deviation of a uniform area of size 15 pixels
by 15 pixels. The CNR was defined as the contrast divided
by the standard deviation.

I1l. RESULTS
lII.LA. CatPhan® 600 phantom
I1.LA.1. MTF measurement

Figure 2 shows the MTFs of two iterative reconstruction
algorithms with different smoothing parameters B ranging
from 1.0 X 10* to 30 X 10*. It can be observed that the spatial
resolution of the reconstructed image using an isotropic qua-
dratic penalty decreases as smoothing strength increases. The
frequency of 50% MTF for the iterative reconstruction using
the isotropic penalty decreases from 5.25to 2.91 1/cm as
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(e) ®

Fic. 3. CBCT of the CatPhan® 600 phantom: (a) analytical FDK recon-
structed image from projection data acquired using a low-dose protocol
(10 mA/10 ms) and (b) a high-dose protocol (80 mA/12 ms); (c) PWLS
iterative image reconstruction with the isotropic quadratic penalty from pro-
jection data acquired using a low-dose protocol and (d) with the proposed
anisotropic penalty; (e) PWLS iterative image reconstruction with the Huber
penalty; (f) analytical FDK reconstructed image after low-dose projection
data processed by the PWLS criterion (Ref. 34) with a smoothing parameter
of 0.09. Display window: [0,0.02] mm™.

the smoothing parameter increases from 1.0 10*to 30
X 10% In contrast, MTF curves of the image reconstructed
using the proposed edge-preserving anisotropic quadratic
penalty are clustered together with various smoothing param-
eters. This indicates that the spatial resolution in images re-
constructed using the anisotropic quadratic penalty is better-
preserved.

I11LA.2. Full width at half maximum measurement

We then tested the proposed algorithm on the CTP404
module of the CatPhan® 600 phantom. A representative slice
of the CBCT images obtained by different reconstruction
methods are shown in Fig. 3. Figure 3(a) is the low-dose
image reconstructed by analytical FDK algorithm. It can be
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observed that noise level is high in this low-dose CBCT
image. Figure 3(c) shows the image reconstructed by the
PWLS algorithm using the isotropic quadratic penalty with
the penalty parameter 8=30X% 10% Figure 3(d) displays the
image reconstructed by the PWLS algorithm using the pro-
posed edge-preserving anisotropic penalty with the same
penalty parameter. The noise in the images reconstructed by
iterative algorithms is greatly suppressed compared with the
image reconstructed using the analytical method. It is seen
that the edges were blurred in Fig. 3(c), as indicated by the
arrows in the image. This is not surprising since an isotropic
quadratic form penalty simply encourages equivalence
among neighbors along all directions without considering the
boundary information presented in the image. However,
edges were well preserved when the anisotropic penalty was
used as the constraint (see the corresponding area in Fig. 3(d)
indicated by the arrows).

To quantitatively analyze the gain by using the anisotropic
penalty in the iterative reconstruction algorithm, we then
studied the full-width-at-half-maximum (FWHM) of two
pointlike objects (one is brighter than background and the
other one is darker than the background) in the reconstructed
images. Figure 4 shows the profiles passing through two
pointlike objects in Figs. 3(c) and 3(d). Through those pro-
files, it can be observed that the major difference between the
solutions using isotropic and anisotropic penalties is nearby
edges. The intensity values in both images at a uniform re-
gion are nearly identical; see line along value 0.016 in both
Figs. 4(a) and 4(b). It can also be observed in Fig. 4 that the
peak of the profile from the image reconstructed using the
isotropic quadratic penalty is lower than that from the recon-
structed image using the anisotropic penalty, while the bot-
tom of the profile from the image reconstructed using the
isotropic quadratic penalty is higher than that from the re-
constructed image using anisotropic penalty. These observa-
tions show that there is a signal loss when an image is re-
constructed by the PWLS algorithm using the isotropic
penalty. The standard deviation of a uniform region (indi-
cated by a white square) is 0.50x107% in Fig. 3(c) and
0.54 X 1072 in Fig. 3(d). We then fitted the profile to a Gauss-
ian functional. The FWHM of brighter source is 3.48 pixels
for the image reconstructed with the isotropic penalty and
3.19 pixels for the anisotropic penalty. The FWHM for the
darker source is 3.71 pixels for the image reconstructed with
the isotropic penalty and 3.48 pixels for the anisotropic pen-
alty. In both cases, better edge preserving was observed in
the image reconstructed using the anisotropic penalty.

I11.LA.3. CNR measurement

Table 1 lists the CNR of two iterative reconstruction algo-
rithms with different smoothing parameters. It can be ob-
served that in both reconstruction algorithms the CNR in-
crease as smoothing parameter increases. The CNR of the
image reconstructed using the anisotropic penalty is slightly
larger than that of the isotropic penalty when the same
smoothing parameters are used. However, at the matched
resolution between the two methods, CNR was increased
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Fic. 4. Vertical profile through column 139 in Figs. 3(c) and 3(d). (a) shows
the profile through the hot spot and (b) shows the profile through the cold
spot. Edges are better preserved by using the anisotropic penalty as mea-
sured by the FWHM.

from 0.84 in the image reconstructed using the isotropic pen-
alty with 8=1.0x10* to 2.83 in the image reconstructed
using the anisotropic penalty with =30 X% 10%.

[lILA.4. Comparison study with the Huber penalty

In this section, we compared the proposed anisotropic
quadratic penalty with a representative edge-preserving non-
quadratic penalty: the Huber penalty.”®?” The Huber penalty
function has the following form:
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TaBLE |. CNRs of the low-contrast ROI in Fig. 3.
B (X10% 1 25 7.5 10 20 30

PWLS isotropic 0.84 098 1.40 1.60 2.35 3.01
PWLS anisotropic 077 082 104 1.20 2.22 2.83

FDK (10 mA/10 ms) 0.95

FDK (80 mA/12 ms) 2.66
HD t%/2, <o )

C et -6+ 62, |t =6

The Huber function penalizes the difference between neigh-
boring pixels quadratically if the absolute difference pixel
value [t| is smaller than some threshold # and it will apply a
linear penalty to the larger differences of |t|= @ which usu-
ally occur at edges.

Figure 3(e) shows the PWLS reconstructed CatPhan® 600
phantom by using the Huber penalty with threshold 6
=0.001 and the penalty parameter =35 X 10%. It can be ob-
served that the edges are better preserved in the images re-
constructed using the Huber penalty than the images recon-
structed by using the isotropic quadratic penalty. To
quantitatively compare the performance of the Huber penalty
and the anisotropic quadratic penalty, we calculated the MTF
of the CTP591 module of the CatPhan® 600 phantom at
matched noise level. Figure 5 shows the MTF curves from
the proposed anisotropic quadratic penalty with penalty pa-
rameter 8=30X% 10* and the Huber penalty with threshold
0=0.001. The penalty parameter B in the PWLS reconstruc-
tion with Huber penalty was set at 35 10* so that the noise
level in the reconstructed image is matched to the anisotropic
quadratic penalty. The standard deviation of the uniform re-
gion (indicated by a white square in Fig. 1) in the image
reconstructed using the Huber penalty is 0.73 X 1073 and is
0.70X 1072 in the image reconstructed using the anisotropic
quadratic penalty. MTF curves in Fig. 5 show that the aniso-

ol ..‘..,.'.. \~\~‘~\ 4
08} KN 1
07t . 1
w 06 \\x ~
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0.4} e
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0.3 FDK reconstruction 1
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’ —— PWLS with anistropic qudratic penalty
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0 1 2 3 4 5 6

Spatial Frequency (1/cm)

Fic. 5. MTF curves of the low-dose CBCT image reconstructed by different
algorithms at a match noise level.



257 Wang, Li, and Xing: Iterative CBCT reconstruction

MTF

N,
............. FDK “

031« « « Isotropic PWLS beta= 2e4\\\ ---- 3
02} —----- lsotropic PWLS beta=30e4  >~._ 1
0L === Anisotropic PWLS beta = 2e4 \\“\-____:
Anisotropic PWLS beta = 30e4
% 1 2 3 g 5 6

Spatial Frequency (1/cm)

Fic. 6. MTF curves of the high-dose CBCT image reconstructed by differ-
ent algorithms.

tropic quadratic penalty produces better image resolution at
the matched noise level. The advantage of the anisotropic
quadratic penalty may be attributed to that the Huber func-
tion depends on a hard threshold of the gradient while the
anisotropic quadratic penalty considers the gradient informa-
tion continuously by introducing Eq. (4).

[lILA.5. Comparison with high-dose CBCT

For the projection data acquired with a tube current of
80 mA and x-ray pulse duration of 12 ms protocol, we re-
constructed the CBCT image using the analytical FDK algo-
rithm. We first compared the MTF of the image recon-
structed by the analytical FDK algorithm with the image
reconstructed by iterative PWLS algorithms at a matched
noise level. The standard deviation of the uniform area is
5.95x 107* in the FDK-reconstructed image. By setting the
smoothing parameter 8=2 X 10 the standard deviation of
the same region in the PWLS-reconstructed image is 5.96
%107 with the isotropic penalty and 5.98x 10™* with the
anisotropic penalty. Figure 6 shows the MTF curves from the
image reconstructed by FDK and the iterative PWLS algo-
rithms. It can be observed that the MTF of the PWLS algo-
rithm with the anisotropic penalty is slightly better than that
of the FDK algorithm, whereas the MTF of the FDK algo-
rithm is better than that of the PWLS algorithm with isotro-
pic penalty. This demonstrates that better spatial resolution is
achieved by the PWLS algorithm using the proposed edge-
preserving anisotropic penalty. The same trend can also be
seen from the profiles through the pointlike objects in the
CTP404 module (Fig. 4). The FWHM obtained from the fit-
ted Gaussian function also shows that better spatial reso-
lution is achieved by using the PWLS image reconstruction
algorithm with the anisotropic penalty.

From Table I, it is seen that the CNR of the PWLS recon-
structed low-dose image using the anisotropic penalty with
the penalty parameter 8=30 X 10* is 2.83, which is slightly
higher than that of the FDK reconstructed high-dose
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image—2.66. In Fig. 6, we also show the MTF curve of the
PWLS algorithm using the anisotropic penalty with the pen-
alty parameter 8=30 X 10*. It can be observed that the MTF
of the PWLS algorithm with the anisotropic penalty is com-
parable to that of the FDK algorithm. This result suggests
that the PWLS iterative image reconstruction with the aniso-
tropic penalty is capable of producing images with a CNR
comparable to FDK-reconstructed high-dose images using
only about 1/10 dose without sacrificing image spatial reso-
lution.

I11.B. Anthropomorphic head phantom

Results of the anthropomorphic head phantom are shown
in Fig. 7. Figure 7(a) shows one slice of the image recon-
structed by the analytical FDK algorithm from projection
data acquired using a low-dose protocol (10 mA/10 ms);
Fig. 7(b) is the FDK reconstructed image for the same phan-
tom acquired with a high-dose protocol (80 mA/12 ms).
Figure 7(c) shows the same slice of a low-dose CBCT image
reconstructed by the PWLS iterative algorithm using the iso-
tropic penalty with the penalty parameter of 3=30x 10* and
Fig. 7(d) shows the low-dose CBCT image reconstructed by
the PWLS image reconstruction algorithm using the aniso-
tropic penalty with the same penalty parameter. Figure 7(e)
shows the PWLS reconstructed low-dose CBCT image using
the edge-preserving Huber penalty with threshold #=0.001
and the penalty parameter 8=35X 10% It can be observed
that noise in low-dose CT images is efficiently suppressed in
images reconstructed by the PWLS iterative reconstruction
algorithms. The quality of low-dose CBCT reconstructed by
the PWLS with anisotropic penalty is comparable to that of
the high-dose FDK reconstructed image. With the anisotropic
penalty in the PWLS iterative reconstruction, edges are bet-
ter preserved in the reconstructed image. In the regions indi-
cated by arrows in Fig. 7(d), it is seen that the structure is
well preserved in the image reconstructed using the aniso-
tropically penalized PWLS algorithm. The structure is
blurred if the isotropic penalty was used during the PWLS
reconstruction. This observation is consistent with the quan-
titative evaluation using the CatPhan® 600 phantom.

IV. DISCUSSION

The weighted least-squares criterion reflects that the mea-
sured data with a lower SNR will contribute less to the esti-
mation of the attenuation map. The PWLS objective function
is equivalent to the penalized maximum likelihood or maxi-
mum a posteriori criterion for Gaussian distributed noise.
This is consistent with the observations from repeated mea-
surements of x-ray CT projection data after logarithm
transform.”® The PWLS criterion for the CT projection data
can also be derived from Poisson noise model of detector
counts using the second-order Taylor expansion.16 Measure-
ment of x-ray counts can be modeled more accurately using
the compound Poisson noise of polyenergetic x-ray beam
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Fic. 7. CBCT of the anthropomorphic head phantom: (a) analytical FDK
reconstructed image from projection data acquired using a low-dose proto-
col (10 mA/10 ms) and (b) a high-dose protocol (80 mA/12 ms); (c)
PWLS iterative image reconstruction with an isotropic quadratic penalty
from projection data acquired using a low-dose protocol and (d) with a
proposed anisotropic penalty. (e) PWLS iterative image reconstruction with
the Huber penalty; (f) analytical FDK reconstructed image after low-dose
projection data processed by the PWLS criterion (Ref. 34) with smoothing
parameter 0.09. Display window: [0,0.02] mm™,

plus Gaussian electronic noise.?> The performance of itera-
tive reconstruction algorithms for x-ray CT may be further
improved by more accurate noise modeling.

The penalty reflects the prior information of the CT im-
ages. In this work, the anisotropic penalty of the quadratic
form was proposed to encourage smoothness among neigh-
boring pixels of similar intensities but discourage the
smoothness if a large difference exists between neighboring
pixels. Thus, edges are better preserved in reconstructed im-
ages. In radiotherapy, CT images of the same patient are
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usually available before treatment. The high-quality planning
CT images provide strong a priori information of the patient
and it may be used to improve the performance of iterative
image reconstruction algorithms. However, interfractional
variation in treatment position and deformation of organs
may make such application challenging. Dedicated registra-
tion algorithms® are necessary to extract information from
the planning CT as a prior constraint for iterative reconstruc-
tion.

Based on the same noise properties of projection data, the
PWLS objective function can also be constructed in the pro-
jection or sinogram domain where the penalty is applied be-
tween neighboring projection pixels.34 CT images can then
be reconstructed by analytical algorithms such as FDK.
Compared with fully iterative image reconstruction methods,
the strategy of projection smoothing followed by analytical
image reconstruction is advantageous in computational effi-
ciency because projection and backprojection cycles in the
iterative image reconstruction algorithm are avoided. Re-
cently, La Riviere and Vargas® have shown potential equiva-
lence between the image-domain based iterative reconstruc-
tion methods and the strategy of sinogram restoration plus
analytical filtered backprojection reconstruction. The studies
performed in their work® are based on a simple isotropic
quadratic penalty. It will be interesting to perform a similar
study based on the proposed anisotropic quadratic penalty.
The edge-preserving penalty in image domain may have
some advantages compared with the same penalty used in
projection domain because edges are better defined in the
image domain than of that in the projection domain. In this
work, we also included the results obtained using the strat-
egy presented in Ref. 34, i.e., the projection image is pro-
cessed according to the PWLS criterion before the analytical
FDK reconstruction. Figures 3(f) and 7(f) show the results
from the projection-domain approach34 with smoothing pa-
rameter 8=0.09 for the CatPhan® 600 phantom and the an-
thropomorphic head phantom, respectively. It can be ob-
served that the edges in the image reconstructed by FDK
from the PWLS processed projection image are blurred com-
pared with the image reconstructed by the PWLS using the
anisotropic quadratic penalty. For a quantitative comparison,
we calculated the MTF and noise level of the image of
CTP591 module. The MTF curve was plotted in Fig. 5 and
the standard deviation around the uniform region was 0.74
X 1072, The MTF curves in Fig. 5 show that PWLS image
reconstruction using the anisotropic quadratic penalty pro-
duces better image resolution at the matched noise level.
This initial comparison study indicates that the edge-
preserving penalty in the image domain produces higher im-
age resolution than the same penalty applied in the projection
domain because better edge definition is in the image domain
than the projection domain.

In this work, our effort was focused on the noise suppres-
sion of CBCT using the iterative reconstruction algorithm.
The presented iterative reconstruction algorithm can also be
used to improve image quality of the 4D-CBCT.***" In 4D-
CBCT, projection views for a specific phase are usually ir-
regular and undersampled. Direct reconstruction using the
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conventional FDK algorithm from phase-binned projection
data may lead to unacceptable results due to view aliasing
artifacts. Several strategies, such as using slow-rotating
imager37 and interphase motion model, 3 have been pro-
posed to enhance the image quality of 4D-CBCT. lIterative
reconstruction algorithms incorporate both data acquisition
geometry and sampling of projection views into the projec-
tion matrix automatically. Consequently, the quality of the
CBCT image so obtained is generally superior over that re-
constructed using an analytical method.*’

Although iterative reconstruction algorithms have shown
advantages for CT imaging in terms of noise suppression and
structure preservation, computational time could be a chal-
lenge for its practical use. In our implementation, we com-
puted the projection matrix A before iterative reconstruction.
The projection matrix was stored as a file and served as a
lookup table during iterations. It takes about 15 min to finish
one iteration to reconstruct the CBCT images of a size 350
X 350X 16 using a PC with 3 GHz CPU. Nevertheless, the
reconstruction can be sped up by graphics card
acceleration®®*! and parallel computation using PC clusters*?
and cell broadband engine.18

V. CONCLUSION

In this work, we presented a statistics-based iterative re-
construction algorithm for CBCT. The objective function
was based on the PWLS criterion. To preserve edges in the
reconstructed images, an anisotropic quadratic penalty was
proposed. Noise and artifacts in low-dose CBCT are greatly
suppressed using the presented PWLS reconstruction algo-
rithm. Comparison studies with reconstruction based on the
isotropic penalty have clearly shown the benefit of the pro-
posed approach. The statistical iterative reconstruction algo-
rithm significantly improves low-dose CBCT image quality
and may find useful clinical applications in the future.
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APPENDIX: IMAGE RECONSTRUCTION
ALGORITHM

The task for image reconstruction is to estimate the at-
tenuation coefficient distribution map w from the projection
data p by minimizing Eq. (2). In this study, the minimization
was performed iteratively using the Gauss—Seidel update al-
gorithm, similar to that in Ref. 25,

Medical Physics, Vol. 36, No. 1, January 2009

259

Initialization:
a=FDK{p}
F=Y-An
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The iterations can be stopped by setting a threshold for
the change of objective function or the number of iterations.
In all of cases presented in this work, we stopped the com-
putation at 20 iterations at which good convergence was seen
through the observation of the reconstructed image at each
iteration.
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Noise suppression in scatter correction for cone-beam CT
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Scatter correction is crucial to the quality of reconstructed images in x-ray cone-beam computed
tomography (CBCT). Most of existing scatter correction methods assume smooth scatter distribu-
tions. The high-frequency scatter noise remains in the projection images even after a perfect scatter
correction. In this paper, using a clinical CBCT system and a measurement-based scatter correction,
the authors show that a scatter correction alone does not provide satisfactory image quality and the
loss of the contrast-to-noise ratio (CNR) of the scatter corrected image may overwrite the benefit of
scatter removal. To circumvent the problem and truly gain from scatter correction, an effective
scatter noise suppression method must be in place. They analyze the noise properties in the pro-
jections after scatter correction and propose to use a penalized weighted least-squares (PWLS)
algorithm to reduce the noise in the reconstructed images. Experimental results on an evaluation
phantom (Catphan©600) show that the proposed algorithm further reduces the reconstruction error
in a scatter corrected image from 10.6% to 1.7% and increases the CNR by a factor of 3.6.
Significant image quality improvement is also shown in the results on an anthropomorphic phan-
tom, in which the global noise level is reduced and the local streaking artifacts around bones are
suppressed. © 2009 American Association of Physicists in Medicine. [DOI: 10.1118/1.3063001]

[. INTRODUCTION

In x-ray computed tomography (CT), scatter causes severe
distortions and contrast loss in the reconstructed images.'?
Scatter magnitude increases as the x-ray illuminated volume
size increases.? In an x-ray system with a large area detector,
such as a cone-beam CT (CBCT) system, the scatter-to-
primary ratio (SPR) can be as high as 8 in certain areas of the
projection images.*®

CBCT is being commonly used in many applications for
its large volume coverage. However, the high SPR severely
deteriorates the quality of CBCT image and hampers its
clinical usage. Many scatter correction methods have been
proposed in the literature, and research in this field is still
very active.*®® There are two major types of scatter removal
techniques. The first type performs scatter suppression dur-
ing the acquisition of projection data, based on the difference
between the incident angles of primary photons and scatter
photons. Typical examples include the antiscatter grid
method and the air gap method.®™* Although instant scatter
suppression is achieved using these methods, their efficacy is
usually limited. Siewerdsen et al., for example, showed that
an antiscatter grid was effective only in improving the
contrast-to-noise ratio (CNR) of low resolution CT images.11
Kyriakou et al. also reported that if an antiscatter grid is used
and the scatter is high, the imaging dose need to be increased
significantly to compensate for the primary loss due to the
insertion of the grid.12 An improved scatter correction capa-
bility has been demonstrated using the scatter correction
methods in the second category, where the scatter is cor-
rected using postprocessing techniques on the scatter con-
taminated projection images.>***® Due to the randomness of
scattering events, however, these methods implicitly or ex-
plicitly assume smooth scatter distributions and tacitly ignore
the existence of high-frequency scatter noise. The scatter
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noise is therefore left in the image after scatter correction,
resulting a degradation of CNRs in the reconstructed
images;.16 So far, the noise due to scatter in the x-ray projec-
tion image is generally considered as a low-dose imaging
problem, and little attention has been paid in the literature to
reduce the noise due to scatter correction. As the scatter cor-
rection techniques become more successful, this issue is be-
coming increasingly important.

The purpose of this paper is to investigate the role of
high-frequency noise in the CB projection image after scatter
correction and to provide a practical solution to noise sup-
pression in scatter corrected reconstructed images. We first
study the noise property of the projection images after scatter
correction according to Poisson statistics. A penalized
weighted least-squares (PWLS) algorithm is then applied to
effectively suppress the image noise.” The algorithm is
evaluated using phantom experiments on a clinical CBCT
system.

IIl. METHOD

II.LA. Noise in x-ray projections with and without
scatter correction

There are two major types of noise in x-ray projection
images. One is the image independent noise due to the elec-
trical and roundoff error, which can be considered as Gauss-
ian noise; the other is the image dependent noise due to the
statistical fluctuation of the x-ray photons that exit an object,
which can be considered as Poisson noise.’® We assume the
noise of the first type is small and consider only the Poisson
noise here.

Denote variables s and p as the detected scatter and pri-
mary signals with mean values Sand P, respectively. sand p
are Poisson distributed, i.e., s~Poisson(S and p

© 2009 Am. Assoc. Phys. Med. 741
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(@) (d)

(©)

Fic. 1. Reconstructed images of the Catphan©600 phantom with an oval body annulus. Display window: [-500 500] HU. The mean and standard deviation
(std) inside the white squares in the images are measured as mean+std HU. (a) No scatter correction and no noise suppression; CT number in the selected ROI
(white square): =117 +51 HU. (b) Scatter correction without noise suppression; CT number in the ROI: 17191 HU. (c) Scatter correction using the
proposed noise suppression algorithm, 4=0.0009; CT number in the ROI: 18 =52 HU. (d) Scatter correction using the proposed noise suppression algorithm,
B=0.0001; CT number in the ROI: 16 =108 HU. (e) Scatter correction with noise suppression using the standard Hamming filter; CT number in the ROI:
18152 HU. (f) Scatter correction using the proposed noise suppression algorithm, assuming s,=0; CT number in the ROI: 18+ 151 HU.
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- — without scatter correction

- - - scatter correction without noise suppression

— — —scatter correction with noise suppression, § = 0.0009
— scatter correction with noise suppression, § = 0.0001
- = noise suppression using Hamming filter
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Fic. 2. Measured MTFs using the Catphan©600 phantom. The algorithm
parameters are tuned such that the last three curves as shown in the legend
match.

~ Poisson(P). From the fact that the point spread function of
the scatter is broad and smooth,'® we assume s is indepen-
dent of p, and therefore, (s+p)~ Poisson(S+P). Denote ng
and n, as the statistical noises of the scatter and primary,
respectively, and one obtains

S=S+n,,

oy
p=P+np,.
Due to Poisson statistics,
var(ng) =S,

(2)
var(n,) = P.

Denoting |, as the incident photon intensity and q as the
line integral image without scatter correction, we have

lo )
= |n|l —
a=nl L

==In(s+p) +In(lo)

==In(S+ P) +In(lp) - SL

5N+ 1)+ O((ng+ ).

®)

The last step uses Taylor’s expansion at (S+P).

Since | is typically very large, the noise associated with
log(l) can be ignored. Assume (ng+n,) is small and ignore
the high order term, then the noise of g, n,., and its variance
are approximated as

Medical Physics, Vol. 36, No. 3, March 2009

L] @
var(ng) ~ ﬁvar(nsﬁ o)

= S PSP

- si P’ ®

When an effective scatter correction algorithm is applied,
the scatter mean value S is removed, while the high-
frequency noise ng is left in the corrected image. Similarly,
the scatter corrected line integral image g, can be written as

lo )
=|n|l ——
% n<s+p—S

I
In(—0 )
ng+ny+ P

= In(ng+n,+ P) + In(lo)

1
=In(P) +In(lp) = E(ns+ np) + O((Ns+ Np)?). (6)
The associated noise n. and its variance is approximated as

1
Ne=~ - E(ns+ np)

1
var(ng) = ;var(n; 0y

1
=m2(5*P)

1 S\?
= S+ P<1+ E) . (7)

Therefore, the ratio of the variances of n; and n,. is

var(n,) _ (1 . s>2

var(ng)

B (8)

Equation (8) shows that the noise is magnified after a
scatter correction is applied on the projection image. Since
the noise-free scatter signal S is spatially much smoother
than the noise-free primary signal P, the spatial distribution
of SPR (S/P) is typically nonuniform. In a projection image
on a human chest, for example, the SPR value is very low
around the object boundary (less than 0.2) and can be larger
than 8 in areas of small primary signals (e.g., behind bones).
As a result, the noise variance magnification across the pro-
jection image ranges from below 1.5 to more than 80. As will
be shown in Sec. 11, the nonuniform noise magnification not
only increases the noise level in the reconstructed image but
also results in local streaking artifacts.
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(b)

(d)

Fic. 3. Difference images after applying noise suppression on Fig. 1(b) using different algorithms. Display window: [-150 150] HU. (a) Scatter correction
using the proposed noise suppression algorithm, 8=0.0009. [Fig. 1(c)-Fig. 1(b)]. (b) Scatter correction using the proposed noise suppression algorithm, g8
=0.0001. [Fig. 1(d)-Fig. 1(b)]. (c) Scatter correction with noise suppression using the standard Hamming filter [Fig. 1(e)-Fig. 1(b)]. (d) Scatter correction
using the proposed noise suppression algorithm, assuming s.=0. [Fig. 1(f)-Fig. 1(b)].

11.B. The noise suppression algorithm

Based on the noise property of the scatter corrected image
as derived in Eq. (7), we modify and implement a previously
developed penalized weighted least-squares (PWLS)
method?° to suppress the image noise. The PWLS method is
a statistics-based algorithm that aims to estimate the ideal
linear integrals by minimizing the PWLS objective function.
The PWLS objective function models the first and second
moments of the projection data. Mathematically, the PWLS
cost function is written as

A(00) = (G - G0 S0~ Go) + BRGY). )

The first term in Eq. (9) is a weighted least-squares criterion.
The variable g is the vector of the scatter corrected line
integral data as shown in Eq. (6); the variable ¢ is the vector
of noise suppressed line integral data to be estimated. The
symbol T denotes the transpose operator. The matrix 3 is
diagonal matrix and its ith element is the variance of q. at
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detector pixel i. From Eq. (7), we approximate the variance
of g, based on the following equations:

pn=S+P

var(qe) = var(n)

18]
=~ 1+ —
s+P\" " P

~ i(1 + SPR)? (10)
zi(&)z

Pm\Pm~Se
~ ay
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(b)

Fic. 4. Reconstruction of the Catphan©600 phantom using the proposed
algorithm with an accurate scatter estimate in the scatter correction but an
inaccurate scatter estimate in the noise suppression. (a) Noise suppression
using the proposed algorithm, assuming scatter to be a constant fraction of
the smallest intensity in each projection; CT number in the ROI: 15+ 183
HU. Display window: [-500 500] HU. (b) Difference image [Fig. 4(a)-Fig.
1(b)]. Display window: [-150 150] HU.

where p,, is the measured projection data before scatter cor-
rection and logarithm operation; s, is the scatter estimate
obtained from scatter correction algorithms. With the non-
uniform weights included in the least-squares criterion, the
data with lower signal-to-noise ratios (SNR) contribute less
for estimation of the noise suppressed line integrals.

The second term in Eq. (9) is a smoothness penalty or a
prior constraint, where g is the smoothing parameter which
controls the degree of agreement between the estimated and
the measured data. A quadratic function as used in the pre-
vious publications® is adopted here,

R(g) = E > Win(Ch = ), (12)

I n
where n represents four nearest neighbors around pixel i and
w;,, is the weight for neighbor n. To preserve the edge infor-

mation, anisotropic weights are used as w;,. The weight of
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the neighbor is determined by the magnitude of difference
between neighbors and the pixel of concern,

o 2
win:exp<—(—q' 5q”> ) (13)

where & is another user-defined parameter which controls the
strength of edge preservation.

In our implementations, the parameter & was chosen as
such a value that 90% of the sinogram pixels in the projec-
tion images to be processed has a gradient magnitude smaller
than 8.2 The cost function (9) is minimized efficiently using
an iterative Gauss—Seidel updating strategy.”’ If standard
CBCT imaging parameters are used, the algorithm converges
to an optimal solution typically after about 20 iterations. On
a 3.0 GHz PC, the process takes about 3 s on each projection
image.

II.C. Scatter estimation

In this work, we use a measurement-based method for
scatter estimation. In each experiment, a lead strip was in-
serted between the x-ray source and the object, resulting in a
horizontal strip shadow on the detector with a width of ap-
proximately 2 cm. Since the lead strip attenuates almost all
the incident photons, the signal detected inside the strip
shadow only contains scatter. Assuming that the scatter dis-
tributions with and without the insertion of the lead strip are
approximately the same, we consider the measured scatter
signals using a lead strip as the scatter signals in a conven-
tional scan at the same location. To get rid of the noise in the
measurement, the detected signals inside the 2 cm strip
shadow were first averaged in the longitudinal direction and
then smoothed laterally using a moving average filter. The
resultant signal was used as the scatter estimate in a follow-
ing conventional scan.

11.D. Evaluation

The proposed method is evaluated using experiments on a
Varian Acuity CT simulator (Varian Medical Systems, Palo
Alto, CA). This CBCT imaging system is commonly used in
radiation therapy for verifying the patient geometry. A stan-
dard protocol as used in clinic was used in the experiments.
The x-ray tube operated at 125 kVp voltage and 80 mA with
the pulse width at each projection angle of 25 ms. Data of a
360° scan consist of about 680 projections with an angle
interval of about 0.5°. The dimension of each acquired pro-
jection image was 397.3X298.0 mm?, containing 1024
X 768 pixels. The source-to-axis distance (SAD) was
1000 mm and the source-to-imager distance (SID) was
1500 mm. To increase the field of view (FOV), a half-fan
mode was used, with the flat-panel detector shifted by ap-
proximately 160 mm.

Two phantoms were used in the experiments. The first
was an evaluation phantom which consisted of a Cat-
phan©600 phantom in the middle with a radius of 10 cm and
an oval body annulus in the periphery to expand the phantom
to an elliptical cylinder with a major axis of 38 cm and a



746 Zhu, Wang, and Xing: Noise suppression in CBCT scatter correction 746

(©

Fic. 5. Reconstructed images of the Catphan©600 phantom with an oval body annulus. Display window: [-500 1700] HU. A different slice from Fig. 1 is
shown to investigate the resolution performance. A zoom-in image of the line pairs inside the dashed rectangle is shown at the lower left corner in each image.
The dashed arcs indicate the sets of line pairs, of which 1D profiles passing through the center are compared in Fig. 6. (a) No scatter correction and no noise
suppression. (b) Scatter correction without noise suppression. (c) Scatter correction using the proposed noise suppression algorithm, 8=0.0009. (d) Scatter

correction using the proposed noise suppression algorithm, 8=0.0001.

minor axis of 30 cm. The uniform oval annulus is made of
the same material as that of the CTP 486 uniformity test
module inside the standard Catphan©600 phantom, and it
has an estimated CT number of ~15 Hounsfield Units (HU).
Due to the increased volume size, scatter was high in the
scan and the image quality was much worse than that when
only the Catphan©600 phantom was imaged. No bow-tie
filter was used in the experiments. The second phantom was
an anthropomorphic chest phantom. A bow-tie filter as used
in clinic was placed on in order to maintain a more uniform
photon statistics across the FOV. The reconstructed images
are presented in HU, i.e., with a CT number of -1000 HU
for air and a CT number of 0 HU for water-equivalent ma-
terials.

Images are reconstructed using the standard FDK
algorithm,23 without scatter correction and noise suppression,
with scatter correction but without noise suppression, and
with scatter correction and the proposed noise suppression
using different B values. The same filters are used in all the
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reconstructions. To demonstrate the advantage of the pro-
posed algorithm on noise suppression, two more reconstruc-
tions of the Catphan©600 phantom are carried out with the
same scatter correction. For a fair comparison, the noise sup-
pression parameters in these reconstructions are adjusted
such that the corresponding modulation transfer functions
(MTF) approximately match, indicating a similar spatial res-
olution performance. The first reconstruction uses a standard
low-pass Hamming filter in the filtering step in the FDK
algorithm to suppress the projection noise. The second re-
construction assumes zero scatter in the noise suppression
step after the scatter correction and directly uses the previ-
ously developed PWLS algorithm for the noise suppression,
i.e., assuming s,=0 in Eq. (11). The tungsten carbide inside
the Catphan©600 phantom with a diameter of 0.28 mm is
used for the MTF measurements.

Side-by-side comparisons of reconstructed images are
provided to illustrate the performance on noise reduction in
the proposed algorithm as well as its effect on the image
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Fic. 6. Comparison of 1D profiles passing through the center of the line
pairs indicated by the dashed arcs shown in Fig. 5.

resolution. Difference images before and after noise suppres-
sion are also presented. In the quantitative analysis, besides
image noise levels, image contrasts and CNRs in selected
regions of interest (ROI) with relatively uniform recon-
structed values are used. The image contrast is defined as

contrast = u, = up, (14)

where u, is the mean reconstructed value inside the ROl and
My 1S the mean reconstructed value in the surrounding area.
The CNR is defined as

‘/-Lr - :“b|

CNR = —F/——,
/0”r2+0'b
2

where o7 is the variance inside the ROI and of is the vari-
ance in the surrounding area.

(15)

[ll. RESULTS

Figure 1 shows the reconstructed images of the Cat-
phan©600 phantom with an oval annulus. The image distor-
tion is obvious in Fig. 1(a), where no scatter correction is
applied. Most of the shading artifacts due to scatter are elimi-
nated using the measurement-based scatter correction, as
shown in Fig. 1(b). However, the noise is magnified in the
scatter corrected image and the image quality is degraded.
Figures 1(c) and 1(d) are the images with noise suppressed
using the proposed method. To investigate the performance
of the algorithm on noise reduction and image resolution,
two different B values are used. The first value is relatively
large, and generates an image [Fig. 1(c)] with approximately
the same noise level in the selected ROI as that in the image
without scatter correction and noise suppression. The im-
provement of image quality is significant. A small B value is
used in the second implementation of the noise suppression
algorithm. This value achieves a less smoothed image as
seen in Fig. 1(d). Figure 1(e) is the result using a standard
Hamming filter on the projection images for noise suppres-
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ROI 2

Fic. 7. Catphan image without the oval body annulus used as the bench-
mark. A narrow collimator was also used to further reduce the scatter arti-
facts. Seven ROls are used in the quantitative analysis.

sion. Figure 1(f) is the result using the previously developed
PWLS algorithm. Equivalently, we assume s,=0 in Eq. (11)
of the proposed algorithm. The MTFs of the six reconstruc-
tions are measured and shown in Fig. 2. Note that we adjust
the noise suppression parameters such that Figs. 1(d)-1(f)
have approximately the same MTF curves. With similar per-
formances on image resolution, Hamming filtering and the
previously developed PWLS method reduce the noise stan-
dard deviation in the selected ROI from 191 HU to approxi-
mately 150 HU, and the proposed algorithm is able to further
reduce the noise standard deviation down to 108 HU. An
improved image quality using the proposed algorithm is also
evident in the comparison shown in Fig. 1. Figure 3 shows
the difference images of the same slice as in Fig. 1 before
and after noise suppression using different algorithms as de-
scribed above.

Figure 1(f) indicates that it is important to include the
scatter estimate in the proposed noise suppression algorithm.
Although scatter estimation/correction algorithms are now
becoming more and more successful, it is still challenging to
achieve an accurate scatter estimate in many applications.
Another reconstruction is carried out to study the sensitivity
of the proposed algorithm performance with respect to the
accuracy of the scatter estimation. When scatter correction is
inaccurate, residual scatter artifacts are dominant as com-
pared to the image noise. For a better illustration of the al-
gorithm performance on noise suppression, we use an accu-
rate scatter estimate for the scatter correction. In the noise
suppression step using the proposed algorithm, we assume
that scatter is uniform over the whole field and it equals a
constant fraction of the smallest intensity in each projection.
The algorithm parameters are tuned such that the corre-
sponding MTF curve matches those of Figs. 1(d)-1(f). The
reconstructed image and its difference image as compared to
the result without noise suppression [Fig. 1(b)] are shown in
Fig. 4. The inaccurate scatter estimation not only signifi-
cantly compromises the noise suppression capability of the



748

Zhu, Wang, and Xing: Noise suppression in CBCT scatter correction

748

TaBLE |. Contrast comparison of the selected ROIs (HU). The values in parentheses are the relative errors in
percentage (absolute values) with respect to the benchmark image shown in Fig. 7.

ROI

2 3 4

No scatter correction [Fig. 1(a)]

Scatter correction only [Fig. 1(b)]
Proposed algorthum, 8=0.0009 [Fig. 1(c)]
Proposed algorithm, 8=0.0001 [Fig. 1(d)]
Using a Hamming filter [Fig. 1(e)]
Proposed algorithm, s,=0 [Fig. 1(f)]

83 (66.1%)
283 (15.7%)
261 (6.4%)
267 (9.3%)
284 (15.9%)
281 (14.9%)

302 (65.0%)
998 (13.3%)
873 (1.1%)
876 (1.5%)
958 (11.0%
956 (10.8%)

-421 (60.7%)
-1131 (5.5%)
-1069 (0.2%)
-1067 (0.5%)
~1123 (4.8%)
-1123 (4.8%)

-98 (64.2%)
-279 (2.2%)
-272 (0.5%)
-270 (1.3%)
-282 (3.0%)
-279 (1.9%)

Benchmark (Fig. 7) 245 863 -1072 -273
ROI 6 7 mean error
No scatter correction [Fig. 1(a)] -61 (67.6%)  -37 (70.0%) -334 (67.9%) 65.9%
Scatter correction only [Fig. 1(a)] -213 (12.6%) -96 (22.8%) —1058 (1.9%) 10.6%
Proposed algorithm, 8=0.0009 [Fig. 1(c)] -190 (0.7%)  -121 (2.8%) -1037 (0.1%) 1.7%
Proposed algorithm, 8=0.0001 [Fig. 1(d)] -202 (6.7%) -102 (18.3%) -1010 (2.7%) 5.8%
Using a Hmming filter [Fig. 1(e)] -209 (10.4%) -116 (6.9%) -1075 (3.5%) 7.9%
Proposed algorithm, s,=0 [Fig. 1(f)] -209 (10.8%) -104 (16.9%) -1065 (2.5%) 8.9%

Benchmark (Fig. 7)

-189

-125 -1038

proposed algorithm [the noise standard deviation in the se-
lected ROI of Fig. 4(a) is 183 HU] but also results in addi-
tional streaking artifacts which are evident in the difference
image [Fig. 4(b)]. It is interesting to note that the proposed
algorithm with a zero scatter estimate [Fig. 1(f)] performs
better than that with a uniform scatter estimate [Fig. 4(a)].
The main reason is that the performance of the proposed
algorithm is determined by the estimation accuracy of the
spatial distribution of the image noise, instead of the total
magnitude. Using a constant fraction of the smallest intensity
in each projection as the scatter estimate gives a better esti-
mate on the total image noise magnitude than using zero
scatter estimates. However, it results in a spatial distribution
of noise variance more different from the truth. More discus-
sion on this issue will follow in a later section.

To further investigate the image resolution with respect to
the B values, Fig. 5 shows the reconstructed slices with the
resolution gauges. Note that a display window different from
that in Fig. 1 is used for a better display of the line pairs.
Zoom-in images of the line pairs from resolvable to irresolv-
able are provided at the lower-left corner of each image.
Figure 6 shows 1D profiles that pass through the centers of
the line pairs indicated by dashed white arcs in Fig. 5. With

TaBLE 1. CNR comparison of the selected ROIs.

B values properly chosen, the proposed method is able to
significantly reduce the noise of the reconstructed image
with a negligible resolution loss.

For a quantitative analysis of the image quality, another
scan was carried out on the Catphan©600 phantom without
the oval body annulus. A narrow collimator was used to fur-
ther reduce the scatter. The reconstructed image, as shown in
Fig. 7, is considered as a benchmark image. Seven ROIs as
indicated in Fig. 7 are used to calculate the contrasts, and the
results are summarized in Table I. The error relative to the
contrasts of the benchmark image is provided in parentheses.
The scatter correction greatly reduces the reconstruction er-
rors. The average reconstruction error is reduced from 65.9%
to 10.6% when the scatter correction is applied. Using the
proposed noise suppression algorithm, the average error is
further reduced to 5.8% when a small B is used and 1.7%
when a large B is used. The comparison also shows that
when the image resolution is matched, the proposed algo-
rithm is superior to the standard method using a Hamming
filter and the previously developed PWLS algorithm.

Table Il shows the CNRs for different ROIs. After scatter
correction, although the reconstruction error is greatly re-
duced and image contrast is increased, the average CNR de-

ROI 1 2 3 4 5 6 7 Average
No scatter correction [Fig. 1(a)] 1.37 457 6.57 168 128 074 578 3.14
Scatter correction only [Fig. 1(b)] 1.29 394 558 1.15 099 0.38 454 2.55
Proposed algorithm, 8=0.0009 [Fig. 1(c)] 4.12 14.16 17.14 4.87 328 209 18.47 9.16
Proposed algorithm, 8=0.0001 [Fig. 1(d)] 1.86  6.07 837 208 157 0.74 8.02 4.10
Using a Hamming filter [Fig. 1(e)] 1.60 4.90 6.86 142 121 057 581 3.19
Proposed algorithm, s,=0 [Fig. 1(f)] 158 497 698 143 114 048 559 3.17

Medical Physics, Vol. 36, No. 3, March 2009
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(b)

(d)

Fic. 8. Reconstructed images of the anthropomorphic phantom. Display window: [-500 500] HU. The mean and standard deviation (std) inside the white
squares in the images are measured as mean = std HU. (a) No scatter correction and no noise suppression; CT number in the selected ROI (white square):
—-291+43 HU. (b) Scatter correction without noise suppression; CT number in the selected ROI: 1+ 146 HU. (c) Scatter correction using the proposed noise
suppression algorithm, 8=0.001; CT number in the selected ROI: 17 + 46 HU. (d) Scatter correction using the proposed noise suppression algorithm, 8

=0.0001; CT number in the selected ROI: 18 + 89 HU.

creases from 3.14 to 2.55 due to the image noise magnifica-
tion. Using the proposed noise suppression algorithm, the
average CNR increases to 4.10 for a small 8 and 9.16 for a
large B.

Figure 8 shows the reconstruction results of the anthropo-
morphic phantom. Note that a bowtie filter was used in the
scan, which made the SPR more uniform. However, along
the projection lines which pass through highly attenuating
objects, such as bones, the SPR can still be very high (around
8) due to the extremely low primary signals. After the loga-
rithm operation, the noise in those projection data boosts up
after an effective scatter correction and results in streaking
artifacts in the reconstruction, which is obvious in Fig. 8(b).
As shown in Figs. 8(c) and 8(d), these artifacts are effec-
tively suppressed using the proposed algorithm, and the im-
age noise is also reduced. Figure 9 shows the difference im-
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ages before and after the proposed noise suppression. Figure
10 compares 1D central vertical profiles of the images shown
in Fig. 8.

IV. DISCUSSION

Majority of the existing scatter correction methods use
postprocessing techniques on the scatter contaminated pro-
jection images to improve the reconstruction accuracy. These
methods only partially solve the problem caused by scatter
and leave the high frequency components of the scatter sig-
nal intact, which often leads to degraded CNRs and image
quality. In this work, both theoretical analysis and physical
experiments show the effect of noise magnification in the
reconstructed image due to scatter correction. Experiments
were carried out on a clinical CBCT system with a com-
monly used protocol on phantoms with a human size. The



750 Zhu, Wang, and Xing: Noise suppression in CBCT scatter correction 750

(b)

Fic. 9. Difference images after applying noise suppression on Fig. 8(b)
using different algorithm parameters. Display window: [-150 150] HU. (a)
Scatter correction using the proposed noise suppression algorithm, B
=0.001 [Fig. 8(c)- Fig. 8(b)]. (b) Scatter correction using the proposed noise
suppression algorithm, 8=0.0001. [Fig. 8(d)-Fig. 8(b)].

results indicate that an effective scatter correction alone does
not provide satisfactory images in CBCT because the gain
from the scatter reduction is inevitably accompanied with
overwhelming noise-related artifacts. One traditional method
to deal with the noise problem is to increase the dose. How-
ever, the results on both the evaluation phantom and the an-
thropomorphic phantom show that the noise variance in-
creases by a factor of more than 10 when scatter correction is
applied. Since noise variance of a CT image is roughly in-
versely proportional to the total number of incident
photons,24 the dose needs to be increased by a factor of more
than 10 in order to make the noise level of the scatter cor-
rected image comparable to that without scatter correction.
This excessive dose increase is hardly acceptable in clinical
practice.?®

An improved PWLS algorithm is implemented in this
work to suppress the noise in reconstructed images. The
PWLS objective function models the first-order and second-
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Fic. 10. Comparison of 1D central vertical profiles of the images shown in
Fig. 8. The results using the proposed noise suppression algorithm with
different B3 values have a relatively large difference only in the noisy areas.

order statistics of the measurements and it is equivalent to
the penalized maximum likelihood (pML) or maximum a
posteriori (MAP) criterion for the independent Gaussian dis-
tributed noise. Indeed, the noise of CT line integrals can be
well approximated by Gaussian noise based on an experi-
mental study.?® Therefore, the minimization of the PWLS
objective function gives an optimal solution in a statistical
sense. In the previous work, we have shown that the perfor-
mance of the PWLS algorithm is better than those low-pass
filters during image reconstruction or noise reduction filters
based on local statistics of measurements.’’ In this paper,
both results on the evaluation phantom and the anthropomor-
phic phantom show effective reduction in global image noise
as well as local streaking artifacts around high attenuating
objects, such as bones. While a measurement-based scatter
correction method is used to demonstrate the nature of the
noise magnification problem incurring in the process of scat-
ter removal, the developed noise suppression algorithm is
expected to work effectively with other scatter correction
algorithms as long as they can provide accurate scatter esti-
mates.

One concern about a noise suppression algorithm is the
possible resolution loss due to smoothing. We compare the
proposed algorithm with the standard noise suppression
method using a Hamming filter on the projection images.
The comparison shows that when a similar image resolution
is achieved, the proposed algorithm is superior on noise sup-
pression. Our results also show that using a conservative
smoothing strategy, significant noise reduction is still achiev-
able with negligible resolution loss. The choice of parameter
B in the PWLS algorithm is a tradeoff between reconstruc-
tion accuracy and resolution loss. In adaptive radiation
therapy using CBCT, for example, the CBCT images are
used for dose calculation and the CT number accuracy is
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more important than the image resolution. In such an appli-
cation, an aggressive noise suppression strategy (a large B)
should be used.

The proposed algorithm is based on the previously devel-
oped PWLS algorithm. To show the significance of including
the scatter estimate s, in the the noise estimation formula
[Eq. (11)], we compare the results using the proposed new
algorithm and the previously developed PWLS algorithm.
The latter is equivalent to the proposed algorithm with a zero
scatter estimate. Similar to the comparison with the result
using Hamming filtering, the proposed algorithm achieves
lower noise when the same image resolution is maintained.
Note that this degraded ability of noise suppression using the
previously developed PWLS algorithm is not due to the un-
derestimation of total noise magnitude by assuming zero
scatter signals, since such an underestimation can always be
compensated for using a larger B in the algorithm. The es-
sence of the PWLS algorithms is to equalize the noise vari-
ance of different pixels by assigning different weights. The
presence of scatter greatly changes the spatial distribution of
the noise variance. Since the noise variance is proportional to
(1+SPR)? according to Eq. (10), and SPR spatially varies
from values close to zero to those larger than 8, the true
spatial distribution of the noise variance is quite different
from that if the scatter is assumed to be zero. The misesti-
mation of scatter results in incorrect estimation of noise spa-
tial distribution, and the corresponding weighting in the
PWLS algorithm is not able to equalize the noise variance of
each projection pixel. The noise suppression ability is there-
fore significantly compromised. To illustrate the importance
of accurate scatter estimation for a superior noise suppres-
sion performance, we also compare the result using the pro-
posed algorithm with a uniform scatter estimate. Since uni-
form scatter estimation results in an estimate of SPR
distribution much less accurate than that using a zero scatter
estimate, the noise suppression performance is also much
worse. Finally, we want to emphasize that the inaccuracy in
scatter estimation compromises the performance of noise
suppression using the proposed method, however, it does not
make reconstruction less accurate than that without noise
suppression. We can always tune the B value based on the
tradeoff between the noise suppression capability and the
image artifacts caused by inaccurate scatter estimation.

V. CONCLUSION

Scatter correction methods based on postprocessing fall
short in eliminating the high-frequency scatter noise and are
incapable of providing satisfactory CBCT image quality. Us-
ing a clinical CBCT system with conventional imaging set-
tings, we have shown that after scatter correction, the noise
variance in selected ROIs of the reconstructed image can be
increased by a factor of more than 10. We argue that a scatter
correction algorithm should be used together with a noise
suppression algorithm to achieve a satisfactory image. A
PWLS algorithm is proposed for the noise suppression. The
phantom experiments indicate that the algorithm is able to
further reduce the reconstruction error in a scatter corrected
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image without noise suppression from 10.6% to 1.7%, and
the average CNR in selected ROIs is also increased by a
factor of 3.6. The improvement in image quality is critical in
many clinical applications of CBCT, such as accurate dose
calculation and tumor target delineation in radiation therapy
planning.
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NOISE REDUCTION IN LOW-DOSE X-RAY FLUOROSCOPY FOR IMAGE-GUIDED

RADIATION THERAPY

JING WaNG, Pu.D., LE1 ZHu, PH.D., aNDp LE1 XING, PH.D.

Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA

Purpose: To improve the quality of low-dose X-ray fluoroscopic images using statistics-based restoration algorithm
so that the patient fluoroscopy can be performed with reduced radiation dose.

Method and Materials: Noise in the low-dose fluoroscopy was suppressed by temporal and spatial filtering. The
temporal correlation among neighboring frames was considered by the Karhunen-Loéve (KL) transform (i.e.,
principal component analysis). After the KL transform, the selected neighboring frames of fluoroscopy were
decomposed to uncorrelated and ordered principal components. For each KL. component, a penalized weighted
least-squares (PWLS) objective function was constructed to restore the ideal image. The penalty was chosen as
anisotropic quadratic, and the penalty parameter in each KL component was inversely proportional to its corre-
sponding eigenvalue. Smaller KL eigenvalue is associated with the KL. component of lower signal-to-noise ratio
(SNR), and a larger penalty parameter should be used for such KL component. The low-dose fluoroscopic images
were acquired using a Varian Acuity simulator. A quality assurance phantom and an anthropomorphic chest phan-
tom were used to evaluate the presented algorithm.

Results: In the images restored by the proposed KL. domain PWLS algorithm, noise is greatly suppressed, whereas
fine structures are well preserved. Average improvement rate of SNR is 75% among selected regions of interest.
Comparison studies with traditional techniques, such as the mean and median filters, show that the proposed
algorithm is advantageous in terms of structure preservation.

Conclusions: The proposed noise reduction algorithm can significantly improve the quality of low-dose X-ray fluo-

roscopic image and allows for dose reduction in X-ray fluoroscopy. © 2009 Elsevier Inc.

Low-dose fluoroscopy, Penalized weighted least-squares, Karhunen-Loeve (KL) transform, Noise reduction,

Anisotropic penalty.

INTRODUCTION

X-ray fluoroscopic imaging plays an important role in image-
guided radiation therapy (IGRT). There is growing interest in
using X-ray fluoroscopy for the management of organ motion
and gating in radiotherapy (1-4). Both room-mounted or-
thogonal X-ray fluoroscopic imaging system (2) and gan-
try-mounted fluoroscopy (3) have been developed for
tumor tracking and gating for radiotherapy. Recently,
a method for real-time tracking of implanted fiducial marker
was developed using combination of kV and MV imaging
(4). The X-ray fluoroscopic imaging provides additional in-
formation of tumor and patient structure; however, it is not
risk-free. The extra exposure to X-rays during fluoroscopy
may lead to adverse health effects in patients. Therefore,
low-dose fluoroscopic imaging is desirable in clinics.
Low-dose fluoroscopy can be achieved using a lower mA
and pulse length during acquisition images (5). With a lower

mAs acquisition protocol, the image quality will be degraded
because of excessive photon quantum noise. Several spatial
and temporal noise reduction algorithms (6—11) have been
studied to remove signal-dependent noise in the low-dose
fluoroscopic images. Temporal filtering techniques incorpo-
rate information from neighboring frames and can potentially
improve the performance of two-dimensional (2D) spatial fil-
tering. However, temporal filters could introduce motion
artifacts in the filtered fluoroscopic images if motion in the
fluoroscopy is not handled properly. One way to avoid mo-
tion artifacts resulting from temporal filters is to estimate
the motion information from the fluoroscopic image
sequences and compensate for it during filtering process.
Nevertheless, estimation of motion fields from 2D image
sequences is challenging because of its ill-posed nature and
excessive noise (12—14). In this work, we aimed to reduce
noise at low doses through improved temporal filtering and
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statistics-based image restoration. Instead of estimating ex-
plicit motion fields from 2D image sequences, we considered
the correlation between neighboring frames of fluoroscopy
by using the Karhunen-Log¢ve (KL) transform. The KL trans-
form has been proved to be useful in image restoration (15)
and tomographic image reconstruction (16, 17). The KL
transform considers similarities as well as differences
between neighboring frames. For each KL component, the
noise was reduced according to the penalized weighted
least-squares (PWLS) criterion. The presented method was
evaluated using two phantom experimental studies.

METHODS AND MATERIALS

In this section, we first introduce the PWLS criterion for spatial
noise filtering. We then describe the KL transform for temporal fil-
tering, followed by the summary of the implementation of the KL
domain PWLS algorithm. We later describe the data acquisition of
two experimental studies.

Spatial filtering using the PWLS criterion
Mathematically, the PWLS objective function can be described
by the following equation:

—1

o) = (y—a)" > (- i) + BR(w). 1

The first term in Eq. 1 is a weighted least-squares (WLS) criterion,
where y is the vector of the measured data and 7 is the vector of ideal
fluoroscopy to be estimated. T denotes the transpose operator. The
matrix Y is the covariance matrix of y and its ith diagonal element
0’ is the variance of measured data at detector bin i; it determines
the contribution of each measurement to the objective function be-
cause it plays the weighting role in the WLS criterion. The variance
of each measurement can be estimated from the mean-variance rela-
tionship of Fig. 1. To obtain the mean-variance relationship of low-
dose fluoroscopic images, 600 repeated fluoroscopic images of the
anthropomorphic chest phantom were acquired when the platform
was static. Mean and variance of each pixel were then calculated
from repeated measurements and plotted in Fig. 1. It can be observed
that mean and variance of measured data are linear, which reflects
the Poisson noise nature of X-ray photons. A non-zero intersect
can also be observed and is caused by background electronic noise.

The second term in Eq. 1 is a smoothness penalty or a priori con-
straint, where £ is the smoothing parameter that controls the degree
of agreement between the estimated and the measured data. A com-
monly used penalty is a quadratic term (17, 18):

R(u) = wRp = Z > kin (1 — 1)° )

meN;

where index j runs over all elements in the fluoroscopic image, and
N;represents the set of neighbors of the j-th pixel. The parameter k;,,
indicates the relative contribution of different neighbors and is usu-
ally set to 1 for first-order neighbors and 1/+/2 for second-order
neighbors. One drawback of this choice is that it considers only dis-
tance information of neighbors to regularize the solution and may
lead to oversmoothing in the restored image, especially around
sharp edges. To avoid oversmoothing around edges, we chose an
edge-preserving penalty (19) by incorporating the gradient informa-
tion into the parameter kj,,. The weight can be written as:
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Fig. 1. Linear relationship between mean and variance of X-ray
fluoroscopic image.
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This new parameter has a form similar to the anisotropic diffusion
filter (20), in which the gradient and the parameter ¢ determines the
strength of diffusion during each iteration. The parameter ¢ provides
local control of smoothness and can be chosen as a value such that
90% of the pixels in the image to be processed have a gradient mag-
nitude smaller than 6. The parameter k/,, is small if the gradient be-
tween the neighbor and the concerned pixel is large. The neighbors
with large gradient usually occur at the edges, and equivalence be-
tween such neighbors is discouraged by introducing Eq. 3. There-
fore, the edges will be better preserved in the de-noised image.

web 4C/FPO

The minimization of the PWLS objective function (1) can be per- Q2

formed efficiently using Gauss-Seidel updating strategy (21):

_ meN} meN? @)
i - L4 Bw; > ki 7

meN;

yi+ﬂai2< Z im 7:+1)+ Z kzm r:>
(n+1)

where index n represents iterative number, N, il denotes the two near-
est neighbors of i in which the index is smaller than i, N denotes
those two nearest neighbors of i in which the index is larger than
i, and N; denotes these four nearest neighbors of pixel i in the fluo-
roscopic image. The initial of # is given by the measured data y.

Temporal filtering using the KL transform

In fluoroscopy, different image frames are highly correlated for
the same patient, especially among neighboring frames. One way
to use the correlation among neighboring frames is the KL transform
(KLT). Following KLT, the selected neighboring fluoroscopy
frames were decomposed to uncorrelated and ordered principal
components. Each KL component was associated with an eigen-
value, which can be effectively used during spatial filtering of fluo-
roscopic imaging. In this work, two frames of the image preceding
the frame under consideration were chosen to perform KLT. This
selection of neighboring frames is based on idea that only previously
obtained frames are available to process the chosen frame in real
time. The KL transform is defined as:
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()

Fig. 2. Fluoroscopic image of the quality assurance phantom: (a) acquired with X-ray tube current 10 mA and pulse length 2
ms; (b) image (a) processed by the Karhunen-Loeve (KL) domain penalized weighted least-squares (PWLS) noise reduction
algorithm; (c) acquired with X-ray tube current 10 mA and pulse length 10 ms. (d) Image in panel a processed with the KL
domain PWLS using an isotropic quadratic term as a penalty. In panel a, b1, b2, b3, and b4 indicate the background region for
the calculation of signal-to-noise ratios. Blurred edges can be observed in panel d. ROI = region of interest.

y = A3, 3)

where j is vector of selected frames of fluoroscopy and is arranged in
a such way that each row comprised one frame of the fluoroscopic
image. y is the KL-transformed fluoroscopic image, and A is the
KLT matrix that can be calculated from y. From the selected frames
of fluoroscopy ¥, the elements of the covariance matrix K, can be cal-
culated by:

B
k']kl _1 ; Yik — yll - )’1) (6)
where y; ; is the datum of fluoroscopy ¥ at detector bin i of k-th frame,
vi, is the datum of y at detector bin i of I-th frame. y; and y; are the
mean of fluoroscopic image of k-th frame and /-th frame respectively.

B is the number of detector bins for each fluoroscopy and index k or /
runs over the selected nearby frames. From the covariance matrix K,
the KLT matrix A can then be calculated based on

KA =A'D. @)
InEq.7,D = (1iczg{dl}l3:I , where d; is the /-th eigenvalue of K..
After the KLT, the covariance K; of y will be:

K, = AKA = diag{d,}; ,. (8)

Equation 8 implies that the covariance matrix of the KL-trans-
formed data is diagonal, that is, the covariance of the signal between
different frames after the KLT will be zero. Therefore, the data sig-
nals of different KL. components are no longer correlated so that
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Fig. 3. Profiles across the bars in Fig. 2 (indicated by a dashed line
in Fig. 2a). KL = Karhunen-Loeve; PWLS = penalized weighted
least-squares.

PWLS objective function can be constructed for each KL principal
component separately. For each principal component in the KL do-
main, the PWLS cost function can be expressed as (16—18):

G- ) > 7 Gi-) + (B/d)R(@),  ©)

where ¥; and 7, are the /-th KL components of § and u respectively,
and Y, is the diagonal weighting matrix of in the KL domain which
can be estimated by:

@, (i) =

Z; = diagl9|Qip,},.,, (10)

where Q; = diag{o? & }3_,is the variance matrix of the projection at bin
i, alz . is the variance of ¥ and ¢, is the [-th KL basis vector. R(ii;) is the
edge-preserving penalty term which can be defined as:

é(ﬁ/ = MIRL{/ 5 Z Zk”” Uiy — uml

i meN;

an

Equation 9 shows that the smoothing parameter in the KL domain
shall be chosen as (8/d}), and the PWLS criterion for each KL com-
ponent becomes adaptive to its corresponding eigenvalue. This
choice is favorable because the smoothing parameter varies
adaptively according to the signal-to-noise ratio (SNR) of that com-
ponent. A smaller KL eigenvalue is usually associated with a compo-
nent having a lower SNR (16) and, therefore, a larger smoothing
parameter is used to penalize this noisier data component.

In summary, implementation of the presented KL domain PWLS
noise reduction approach for the low-dose fluoroscopy can be
described as follows:

1. For a j-th frame fluoroscopic image, the (j-1)-th and the (j-2)-th
frame of the images are selected for the KL transform.
2. Compute the covariance matrix k, from the selected frames of the
projections.
. Calculate the KL transform matrix A according to Eq. 7.
4. Apply the KL transform on the selected frames of fluoroscopic
images.
. Perform PWLS minimization on each KL component.
6. Apply inverse KL transform on the processed KL components
for the estimate of the ideal fluoroscopy at the chosen j-th frame.

w
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Table 1. SNRs of different ROIs in figure 2.

ROI1 ROI2 ROI3 ROI4
10 ms 9.7 10.5 14.3 9.9
2 ms 5.8 3.8 6.2 5.3
KL domain PWLS 2 ms 8.3 7.9 12.8 7.5

6=200

Abbreviations: KL = Karhunen-Lo¢ve; PWLS = penalized
weighted least-squares; ROI = region of interest.

Data acquisition

The X-ray fluoroscopic images were acquired using an Acuity
simulator (Varian Medical Systems, Palo Alto, CA). The dimension
of the sensitive area of the detector is 397 mm x 298 mm, containing
1024 x 768 pixels. Two phantoms were used to evaluate the pre-
sented KLT and PWLS-based noise reduction algorithm. The first
phantom was a commercial quality assurance phantom, in which
several fine strips can be used to evaluate the fine structure preserva-
tion of the algorithm. The second phantom was an anthropomorphic
chest phantom. To simulate the respiratory motion of patients, each
phantom was placed on the top of a platform capable of sinusoidal
motion in the cranial-caudal direction. The amplitude of motion of
the platform was 3.5 cm, and the period of motion was set at 3 s.
The selected motion parameters correspond to those of a patient
with large respiratory motion and fast breathing (22). In both phan-
tom studies, the X-ray tube current was set at 10 mA, and the pulse
length of X-ray was 2 ms for low-dose and 10 ms for high-dose fluo-
roscopic image. The acquisition frame rate was 5 frames per second,
and all sequences consisted of 20 frames.

RESULTS

Quality assurance phantom

We first tested the presented algorithm on the quality as-
surance (QA) phantom placed on the moving platform.
The QA phantom contains several fine strips that can be
used to study the edge information in the processed images.
Figure 2a shows one frame of fluoroscopic images obtained
with X-ray tube current 10 mA and duration of X-ray pulse
length 2 ms. Figure 2b shows the same frame of image pro-
cessed by the presented KL domain PWLS noise reduction
algorithm. It can be observed that noise in the low-dose fluo-
roscopic image is greatly suppressed, and the image is com-
parable to that obtained with the 10-ms protocol (Fig. 2c).
One challenge for temporal filtration of fluoroscopic images
is that tailing artifacts may be presented in the motion portion
of the processed image (23). It can be observed in Fig. 2b
that the fine strips are well-preserved, and no tailing artifacts
have been introduced by the temporal filtering using the KL
transform. However, if the isotropic quadratic term was used
as the penalty term in the PWLS objective function, the
edges in the processed fluoroscopic images could be blurred.
Figure 2d shows the image processed by KL. domain PWLS
with isotropic quadratic penalty. It can be observed that the
fine structures have been severely blurred. Profiles through
the fine strips, as shown in Fig. 3, further illustrate these ob-
servations. Those results suggest that the edge-preserving
penalty is desired in the PWLS objective function.
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d)

Fig. 4. Fluoroscopic image of the anthropomorphic chest phantom. (a) Acquired with tube current 10 mA and pulse length
2 ms; (b) image in panel a processed by with the two-dimensional (2D) mean filter; (c) image in panel a processed with the
2D median filter; (d) image in panel a processed by the Karhunen-Loeve KL domain penalized weighted least-squares noise
reduction algorithm; and (e) image acquired with tube current 10 mA and pulse length 10 ms.

To evaluate the effectiveness of the presented algorithm
quantitatively, SNR of different regions of interest (ROIs)
was calculated. The SNR is defined as:

SNR — M7 (12)

Oy

where u, is the mean value the signal, u,, is the mean value of
background (a uniform region nearby the selected ROI), and
o, is the standard deviation of the signal. Four regions (indi-
cated by arrows in Fig. 2a) were chosen to calculate SNRs,
and the results are presented in Table 1. The improvement of
the SNRs in the image after the KL domain PWLS processing
varies according to the locations. The range of improvement in
SNRs is between 41% and 108%, and the average improve-
ment is 75% among the four chosen ROIs.

Anthropomorphic chest phantom
Results of the anthropomorphic chest are shown in Fig. 4.
Figure 4a shows one frame of fluoroscopic images obtained

with 2-ms pulse length protocol. Figure 4d shows the image
processed by the KL domain PWLS noise reduction algo-
rithm. It can be observed that the noise is greatly suppressed,
whereas the fine structures are well preserved. Figure 5 pro-
vides the difference image between Fig. 4a and 4d, in which
random noise is dominant and no edges or structures can be
observed. This indicates that good edge preservation can be
achieved by the KL domain PWLS noise reduction algo-
rithm. It can also be observed that the processed image ob-
tained with the 2-ms protocol is comparable to that
obtained with a 10-ms protocol (see Fig. 4e). We also com-
pared the presented algorithm with conventional filters such
as the mean and median filter. Figure 4b shows the corre-
sponding frame processed by the mean filter with a 3 x 3
window. Figure 4c shows the result from the median filter
with a 3 x 3 window. It can be observed that the image qual-
ity of the KL domain PWLS processed image is superior to
those images processed by the mean and median filter from
the bony structures indicated by the rectangular square in
Fig. 4b-4d.
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Fig. 5. Difference image of the chest phantom between the Karhu-
nen-Loeve domain penalized weighted least-squares processed
image (Fig. 4d) and the noisy low-dose image (Fig. 4a).

DISCUSSION

In this work, we proposed a temporal-spatial filter to reduce
noise in low-dose X-ray fluoroscopy. The KL transform was
used to account for correlation among neighboring frames of
fluoroscopic imaging. The explicit estimation of motion fields
are avoided during the de-noising process. The KLT decom-
poses the correlated image sequences into uncorrelated KL
components. Following KL T, the PWLS criterion is used to re-
store each KL component, and the smoothing strength of each
KL component is adaptive to its corresponding KL eigenvalue,
which reflects the SNR of the KL component. The weight in the
PWLS objective function is determined by the variance of each
measurement, which considers the signal-dependent nature of
Poisson noise. To preserve edges in the restored image, an an-
isotropic quadratic term was used as the penalty in the PWLS
objective function. The smoothing strength of the KL domain
PWLS filter is controlled by two parameters: the parameter
0 in the weight coefficient £/, which controls the strength of
local smoothing and the smoothing parameter §, which con-
trols the strength of global smoothing.

In the experimental studies, the phantoms were placed on
a moving platform that simulates a rigid-body motion. The
motion in a real patient is generally nonrigid or deformable.
The magnitude of deformable motion varies from voxel to
voxel, whereas the motion in a rigid body is uniform across

Volume WM, Number H, 2009

all voxels. Thus, a deformable motion is generally more chal-
lenging to handle with regard to registration problems (24).
However, the estimation of motion field (or displacement
field) between the neighboring images is not required in the
presented algorithm. Both the similarity and the difference
are modeled through the use of the KL transform. Because
of the elimination of voxel-to-voxel registration of the neigh-
boring images, the effectiveness of the method relies largely
on the behavior of the principle components of the system. In
the deformable case, because the motion occurs only on some
parts of the image, the ‘“‘average” motions are actually less
compared with the rigid-body motion. When the discrepancy
between the two images is small, KLT performance is gener-
ally better (25). Therefore, the proposed method should work
as well as it does in the case of rigid-body motion investi-
gated in this work. Indeed, KLT has shown excellent perfor-
mance in noise suppression for four-dimensional (4D)
positron emission tomography (16), 4D single photon emis-
sion computed tomography (25), and 4D-CT (26) in which
deformable motion exists. It is perhaps useful to mention
that a potential challenge when dealing with deformable mo-
tion is the validation of a fluoroscopic image noise suppres-
sion algorithm because of the general lack of the ‘“‘ground
truth.” This issue can be partially resolved with the develop-
ment of a deformable phantom (27, 28) and the use of inher-
ent tissue features (29).

In the presented algorithm, the KLT transform was used to
extract correlation information from neighboring images.
When neighboring images are not available (e.g., first two
image slices) or the correlation between them is weak, the
PWLS criterion can be used to suppress noise in the fluoro-
scopic image through spatial smoothing. The effectiveness
of the PWLS criterion in this regard has been proven in noise
reduction of cone-beam CT projection data (19, 30) in which
the data are equivalent to the X-ray fluoroscopic image. From
the results in these studies (19, 30), it is reasonable to conjec-
ture that PWLS criterion without KLT transform can also, to
a certain extent, reduce noise in low-dose X-ray fluoroscopy
by effectively using the spatial correlation of the voxels
within a fluoroscopic image.

In the processed low-dose fluoroscopic image of two phan-
toms, noise is greatly suppressed, but fine structures are well
preserved. Comparison studies with traditional techniques,
such as the mean and median filters, show that the proposed
algorithm is advantageous in terms of structure preservation.
The proposed noise reduction algorithm can significantly im-
prove the quality of low-dose X-ray fluoroscopic imaging
and may allow for image acquisition at significantly reduced
doses. Given that frequent X-ray imaging is increasingly be-
ing used for therapeutic guidance, this work should have an
important impact on IGRT clinical practice.
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