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ABSTRACT

An investigation is made of the sound generated by the impingement of a ventilating

jet on the gas-water interface of a ventilated supercavity. A ventilated supercavity is a

gaseous envelope generated around an underwater vehicle that allows for order of magnitude

increases in vehicle speeds. However, the hydrodynamic noise generated by the supercavity

can interfere with successful deployment of the vehicle. One of the principal mechanisms of

noise generation is believed to be the impingement of the cavity ventilating gas jets on the

gas-water cavity wall. An understanding of the acoustic field generated by this interaction

has been developed by analysis of a series of model problems which approximate the

geometry and physical mechanisms involved in the jet-cavity interaction. The first problem

is that of a spherical, gas-filled cavity in water whose surface is excited by a planar ring of

axially projecting jets originating from the center of the sphere. The second involves a jet

of infinitesimal cross-section impinging at normal incidence on the gas-water interface. The

final problem makes use of a creeping mode diffraction theory to estimate the ‘self-noise’

produced by the impinging jets on the solid nose of the vehicle.

These problems provided insight into the general characteristics of the field and its

dependence on typical flow conditions. To apply these solutions to the problem of the

supercavity, experimental studies were made in collaboration with the Applied Research

Laboratory (ARL) at Penn State University. These included measurement of the unsteady

force exerted by a jet on an interface, the results of which have been used to make theoretical

predictions of the self-noise generated by a model-scale supercavity currently in use at ARL.

The final results of this project will aid current and future naval research into supercavity

noise and methods for its reduction.
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Chapter 1

Introduction

A ventilated supercavity is a gaseous envelope generated around an underwater vehi-

cle that allows for significant increases in vehicle speed. However, the hydrodynamic

‘self-noise’ generated by the supercavity can interfere with successful deployment of the

vehicle. In order to reduce or eliminate this problem it is necessary to understand and

quantify the noise production mechanisms. One of the principal sources of noise is be-

lieved to be the impingement on the supercavity wall of the cavity-ventilating gas jets,

and the outcome of this project will be an understanding of this mechanism and its

probable impact on the self-noise problem.

1.1 Motivation

The successful development of high-speed supercavitating underwater vehicles is an im-

portant U.S. Navy objective. All aspects of the technology are being vigorously promoted

by the Office of Naval Research and at various naval laboratories. The primary goal of

this project is to provide naval researchers with an understanding of the characteristics

of the sound generated by the ventilating jets of a supercavitating vehicle. This will fa-

cilitate current investigations of the overall sound generated by such vehicles, and permit
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the development of methods for its control and reduction.

1.2 Background

1.2.1 Cavitation

Cavitation is the development of a pocket of gas or vapor inside a liquid volume. It

is driven by a drop in pressure to a level below the liquid’s vapor pressure causing it

to change phase (the temperature-driven equivalent to this is boiling). Cavitation can

occur in liquids either in motion or at rest, and both in the body of the liquid or on

solid boundaries. The form of hydrodynamic cavitation, cavitation in flowing liquids,

of particular relevance to underwater vehicles is fixed cavitation, or cavitation which

develops attached to a solid boundary. The boundary geometry causes the detachment

of the liquid boundary layer from the solid wall, otherwise known as flow separation.

High velocity (and ergo low pressure) flow allows for cavitation inception in the separation

region. Here small cavities coalesce into a large cavity attached to the boundary. Without

separation and this region of relative calm, any small cavities which may form are unable

to attach to the boundary as they are rapidly convected away by the liquid flow [4, 14, 26].

If favorably low pressures persist, the cavity is maintained or may continue to expand

downstream of the inception cite. Cavities which initiate and close on the same solid

boundary are known as partial cavities. Cavities which terminate downstream of the

boundary or body on which they initiate are referred to as supercavities. The artificial

admission of gas, either into a region of separated flow to initiate a cavity or into a partial

cavity or supercavity to expand and maintain it, is called ventilation. Ventilated cavities

behave comparably with natural cavities except in the aft region of gas exhaustion and

fluid entrainment and the potential deformation of the cavity due to gravity (relevant

only at low flow velocities) [4, 14, 26]. The method of gas exhaustion as it applies to
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ventilated supercavitating vehicles is discussed below.

1.2.2 Supercavitating vehicles

An underwater vehicle can attain high forward speeds by the development of a gaseous

ventilated supercavity which eliminates skin friction and reduces drag by up to 90%

[7, 27]. The cavity is initiated downstream of a specially designed ‘cavitator’ on the

vehicle nose. It is expanded to contain the entire aft section of the vehicle, except for

control surfaces used for guidance, by the injection of gas from sources just aft of the

cavitator (Fig.1.1). The cavity can be maintained in a stable configuration by carefully

controlling the gas injection rate to avoid overpressures and instabilities that can cause

the cavity to pulsate [14, 27, 41, 43]. Under stable conditions, involving high speed

motion through the water, the gas exhausts from the rear end of the cavity by the

quasi-periodic shedding of ring vorticies with gaseous cores. At low speeds (i.e. at low

Froude numbers that are not necessarily relevant in the present context) the supercavity

resembles a hot ’plume’ and gas escapes through two trailing, hollow vortex tubes formed

by buoyancy-induced plume bifurcation [14, 39].

Cavitator
Gas Injector Interface Guidance Surfaces

Mean Flow

Vehicle/Model Fluid Entrainment 
and Gas Evacuation

Figure 1.1. Schematic experimental supercavity

The supercavity is a significant source of aerodynamic sound that can interfere with

the underwater vehicle’s guidance systems, inhibiting successful deployment [6, 18, 19, 32]

3

         Report No. ME09 - 13 Boston University, College of Engineering



(see Appendices A and B for a brief review of concepts from acoustic theory relevant to

this work). Turbulence in the aqueous boundary layer approaching the wetted trailing

edge of the cavitator from the nose generates sound and hydrodynamic pressure fluctua-

tions as it convects across the edge [19, 21, 48]. To analyze sources further downstream

it is reasonable in a first approximation to neglect pressure fluctuations within the cav-

ity because of the vast difference in mass densities of the gas and water, in which case

the gas-water interface can be treated as a pressure-release surface. Then the sound

generated by turbulence quadrupoles in the flow adjacent to the cavity edge should be

relatively unimportant, because the pressure-release interface causes the sound pressure

to vary as ρwv2M3, where the Mach number M = v/cw � 1, v being the flow velocity

and ρw, cw are respectively the mean density and sound speed in water [12]. Bubbles

and water droplets in the break-up region of the cavity far downstream are respectively

equivalent to monopole and dipole sources; except at extremely high frequencies their

importance is again greatly reduced by the proximity of the pressure-release cavity.

Observation suggests that the acoustic noise is dominated over a broad range of fre-

quencies by the unsteady impingement of the ventilating jets on the cavity wall [48]. The

jets ripple the gas-water interface, producing unsteady surface forces and a distributed

acoustic surface source of dipole type. In order to investigate the noise from this source

independently from other mechanisms at work in and around the supercavity, a theoret-

ical description of the impingement mechanism as an acoustic source is required.

To facilitate the development of these mathematics, we will consider a slightly modi-

fied gas injection system. On typical ventilated supercavitating vehicles, a gas deflector

is fitted over the gas injection site, as in Figure 1.2. This redirects the jets to impact the

cavity at shallow incidence. We will choose instead to consider that the gas deflector is

absent (as in Fig. 1.3), such that the jets impact the cavity at normal incidence. This

configuration allows for much simpler geometric approximations of the jet-cavity inter-

4
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action to be used in the theoretical work. Furthermore, the removal of the gas deflectors

from the experimental model will promote sound production via the impingement mech-

anism, expediting the in-water acoustic surveys of the supercavity to be performed by

naval researchers.

gas injection site
cavitator

gas injection site

ventilated
cavitycavity

Figure 1.2. Experimental vehicle inside ARL 305 mm water tunnel

mean flow jet impact

Figure 1.3. Experimental vehicle inside ARL 305 mm water tunnel with gas deflectors
removed and jets impinging at normal incidence on the cavity interface

5

         Report No. ME09 - 13 Boston University, College of Engineering



1.2.3 Discussion of existing literature

A literature survey revealed that the dynamics of jet impingement are well explored.

Extensive experimental and theoretical studies of impingement on both rigid and free

surfaces have been made (see [17, 36, 46] and their bibliographies as examples thereof).

A significant amount of attention has been payed to the heat transfer problem of jet

impingement on a plate due to its prevalence in manufacturing processes, however such

work is of no relevance for the supercavity problem. The acoustics of a jet impinging on a

plate have likewise been explored [28, 34, 40], though almost exclusively experimentally.

Furthermore, these studies focus on mechanisms of noise generation (such as shed vor-

ticity and turbulence) other than the unsteady motion of a free surface. No theoretical

description of the sound generated by jet impingement on a gas-water interface exists;

it is necessary to develop this formulation for the acoustic field using the equations and

methods fundamental to the study of hydroacoustics. The few existing studies which

may then prove relevant to the supercavity problem are those which provide information

about the unsteady pressure exerted by the jet on an impingement surface (as in Strong

et al. [45]). These experimental results may serve as a ‘check’ of empirical studies of the

supercavity jets and of the generality of the mathematical formulation of the generated

sound.

1.3 Approach

The problem was investigated by consideration of a series of model problems and related

experiments involving predictions made on the basis of approximations to the geometry

and physical mechanisms governing the jet-cavity interaction. The simplest approxima-

tion involves a ventilated supercavity in the form of a spherical, gas-filled cavity in water

whose interior surface is excited by a planar ring of axially projecting jets originating

6
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from the center of the sphere. This problem was not designed to predict the acoustic

field generated by the supercavity jets; it was a convenient starting point which provided

general insight into the behavior of the field and the source mechanisms at work in the

supercavity. The solution of the sphere problem yielded insight into the directivity of

the sound radiating into the water and the likely contributions from cavity resonances;

it also enabled the exploration of the importance of several damping mechanisms.

The second problem examined was the production of sound by a jet of infinitesimal

cross-section impinging at normal incidence on a planar gas-water interface. Its solution

was formulated in terms of the force exerted by the jet on the cavity wall. The resulting

prediction of the acoustic field helps in understanding the more complex issues involved

in the related problem of jet impingement on a cylindrical cavity.

To apply these general solutions to the problem of the supercavity an empirical knowl-

edge of the gas injection jets was required. This knowledge was gained through experi-

ments made in collaboration with the Applied Research Laboratory (ARL) at Penn State

University. These experiments included measurement of the unsteady force exerted by a

jet on an interface, the results of which were then used to make theoretical predictions

of the self-noise generated by a model-scale supercavity in use at ARL.

The results were used finally to estimate the contribution to the self-noise at the

vehicle nose from the jet impingement source. This was accomplished by use of a creeping

mode diffraction theory to model propagation of sound over the rounded nose region. To

do this the supercavity was modeled as a semi-infinite cylindrical cavity to the rear of a

solid, elliptical nose section with a prescribed surface impedance. The cavity is excited

by gas-jet impingement downstream of the cavitator which generates a separately derived

pressure field. This pressure field was used in the diffraction theory to predict the sound

at the nose and thereby permit more definitive conclusions to be drawn regarding the

presence of noise in the vicinity of the guidance system at the nose.

7
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1.4 Outline

Chapter 2 describes the general problem of a spherical ventilated cavity. The sound

produced by jet impingement on a planar gas-water interface is explored mathematically

in Chapter 3. The experiments measuring the force exerted by the scale-model vehi-

cle’s gas injection jets are detailed in Chapter 4, as are preliminary predictions for the

impingement generated sound. The impingement noise heard at the nose is determined

in Chapter 5. Chapter 6 summarizes the body of work and its findings and presents

recommendations for future research into ventilated supercavity acoustics.

8
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Chapter 2

Sound generated by a jet-excited

spherical cavity

This chapter examines the general behavior of the acoustic field generated by the im-

pinging jets. A spherical cavity in which gas enters from the center in a ring of radially

projecting jets is considered. This highly simplified geometry allows for general deduc-

tions about the generated sound without the difficulty implicit in a more complicated,

realistic cavity geometry. The mathematical problem is formally solved by series expan-

sion in Section 2.1. Section 2.2 discusses low frequency cavity resonances. High frequency

sound is addressed in Section 2.3. Specific results and conclusions are drawn by choosing

the volume of the cavity to be approximately the same as that of a typical experimental

supercavity. The work presented in this chapter has also appeared in Journal of Sound

and Vibration [13].

9
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2.1 The acoustic problem

2.1.1 Problem formulation

Figure 2.1. Configuration of the spherical cavity

Consider a spherical cavity of undisturbed radius a in water of mean density ρw and

sound speed cw which is at rest at infinity. Let the origin O be at the center of the cavity

(Fig.2.1) and introduce spherical polar coordinates (r, θ, φ) (0 < θ < π, 0 < φ < 2π),

where the latitude θ is measured from the positive x direction in the figure. Gas enters

the cavity via a thin, axisymmetric planar jet from a source at O, and impinges normally

on the cavity interface S along the great circle θ = π
2
. It is assumed that the mean

volume of the cavity and the mean density ρo of the gas in the cavity are maintained

constant by the steady exhausting of gas into the water from the ‘rear end’ of the cavity,

say the vicinity of the point A in Fig. 2.1.

Turbulence fluctuations in the jet are assumed to be axisymmetric and to exert an

unsteady radial force on the cavity interface equal to F (t) per unit length of the circle

of impingement on S. The definition of F (t) is made precise by requiring it to equal the

force that would be exerted on the interface by the jet when the interface is assumed to
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be rigid. The forced motion of the interface produces pressure fluctuations p(r, θ, t) that

satisfy

(
1

c2
o

∂2

∂t2
−∇2

)
p = 0, r < a, }

(2.1)(
1

c2
w

∂2

∂t2
−∇2

)
p = 0, r > a,

respectively within the cavity and in the water, where co is the mean speed of sound in

the gas.

The analytical problem is simplified by introducing the Fourier decomposition F (t) =∫∞
−∞ Fo(ω)e−iωt dω and considering first the solution for the case where the cavity is

excited by a time-harmonic radial force Fo(ω) per unit length. The solution of the time-

dependent problem can subsequently be found by application of the integral operator∫∞
−∞( · )e−iωt dω. Then time-harmonic pressure p(r, θ, ω) satisfies

(∇2 + k2
)
p = 0, where

⎧⎪⎨
⎪⎩

k = ko = ω/co, r < a

k = kw = ω/cw, r > a
(2.2)

The solution in the outer region r > a must exhibit outgoing wave behavior. The two

solutions in r <
> a are related by the conditions that the pressure and normal displacement

are continuous at the interface. Because the force per unit area applied to the interface

by the jet is (Fo/a)δ
(
θ − π

2

)
, the pressure will be continuous at r = a provided

p(a + 0, θ, ω) = p(a − 0, θ, ω) +
Fo

a
δ
(
θ − π

2

)
, 0 < θ < π. (2.3)

Similarly, because Fo corresponds to the force exerted on a rigid interface, continuity of
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normal displacement is satisfied by requiring

1

ρw

(
∂p

∂r

)
r=a+0

=
1

ρo

(
∂p

∂r

)
r=a−0

, 0 < θ < π, (2.4)

because velocity fluctuations within the jet at the interface are balanced by the unsteady

pressure gradient in the jet.

2.1.2 Solution in the general case

Within the cavity the time-harmonic solution that remains finite at r = 0 has the

expansion [18, 44]

p =
∞∑

n=0

Anjn(kor)Pn(cos θ), r < a, (2.5)

where jn is a spherical Bessel function of the first kind, Pn denotes the Legendre poly-

nomial of order n [1], and the coefficients An are to be determined. In the water the

pressure is expanded in terms of outgoing radiating waves in the form

p =
∞∑

n=0

Bnh
(1)

n (kwr)Pn(cos θ), r > a, (2.6)

where the Bn are constants and h(1)
n is the spherical Hankel function of the first kind [1].

The coefficients An, Bn are calculated from conditions (2.3) and (2.4). The first

supplies

∞∑
n=0

(
Bnh

(1)

n (kwa) − Anjn(koa)
)
Pn(cos θ) =

Fo

a
δ
(
θ − π

2

)
, 0 < θ < π, (2.7)

which, by means of the orthogonality relation
∫ π

0
Pn(cos θ)Pm(cos θ) sin θ dθ = 2δnm/(2n+

1) and the formula Pn(0) = cos(nπ
2

)Γ
(

n
2

+ 1
2

)/√
πΓ

(
n
2

+ 1
)

[1], reduces to
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Bnh
(1)

n (kwa) − Anjn(koa) =
Fo

a

(2n + 1)

2
√

π
cos

(
nπ
2

) Γ
(

n
2

+ 1
2

)
Γ
(

n
2

+ 1
) . (2.8)

Condition (2.4) yields

Bnkw

ρw

h(1) ′
n (kwa) − Anko

ρo

j ′
n(koa) = 0, (2.9)

where the prime denotes differentiation with respect to the argument. Hence

An =
(2n + 1)

2
√

π
cos

(
nπ
2

) Γ
(

n
2

+ 1
2

)
Γ
(

n
2

+ 1
) Fo

a jn(koa)(Zn − 1)
}

(2.10)

Bn =
(2n + 1)

2
√

π
cos

(
nπ
2

) Γ
(

n
2

+ 1
2

)
Γ
(

n
2

+ 1
) FoZn

a h(1)
n (kwa)(Zn − 1)

where

Zn =
ρwcw

ρoco

j ′
n(koa)

jn(koa)

h(1)
n (kwa)

h(1) ′
n (kwa)

. (2.11)

Now cos(nπ
2

) ≡ 0 when n is odd. Therefore, by replacing n in the above expressions

by 2n, using the result [1]

Γ(n + 1
2
)

Γ(n + 1)
=

√
π

1 · 3 · 5...(2n − 1)

2nn!
≡ √

π
(2n)!

(2nn!)2
,

and substituting into the expansions (2.5) and (2.6), we deduce the following desired

representations of the sound within the cavity and radiated into the water:

p(r, θ, ω) =
Fo

2a

∞∑
n=0

(−1)n (4n + 1)(2n)!

(2nn!)2

P2n(cos θ)j2n(kor)

(Z2n − 1)j2n(koa)
, r < a, (2.12)

=
Fo

2a

∞∑
n=0

(−1)n (4n + 1)(2n)!

(2nn!)2

Z2nP2n(cos θ)h(1)

2n(kwr)

(Z2n − 1)h(1)

2n(kwa)
, r > a. (2.13)
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2.1.3 Special limiting cases

It is also useful to note the corresponding forms of equations (2.12), (2.13) when (i) the

water is regarded as incompressible (i.e. when cw → ∞), and (ii) there is no gas in the

cavity (ρo → 0).

In case (i) there can be no damping of the sound in the cavity by radiation losses,

and we find

p(r, θ, ω) =
Fo

2a

∞∑
n=0

(−1)n (4n + 1)(2n)!

(2nn!)2

P2n(cos θ)j2n(kor)

(Z ′
2n − 1)j2n(koa)

, r < a, (2.14)

=
Fo

2a

∞∑
n=0

(−1)n (4n + 1)(2n)!

(2nn!)2

Z ′
2nP2n(cos θ)

(Z ′
2n − 1)

(a

r

)2n+1

, r > a. (2.15)

where

Z ′
n =

−ρwkoa

ρo(n + 1)

j ′
n(koa)

jn(koa)
. (2.16)

In case (ii), where the cavity is treated as a vacuum, Zn → ∞ and there are no

pressure fluctuations within the cavity (p ≡ 0 for r < a). Then expression (2.13) reduces

to

p(r, θ, ω) =
Fo

2a

∞∑
n=0

(−1)n (4n + 1)(2n)!

(2nn!)2

P2n(cos θ)h(1)

2n(kwr)

h(1)

2n(kwa)
, r > a. (2.17)

2.1.4 Suppression of coherent interior modes

Just inside the cavity interface the Bessel function jn(kor) = 1
2

(
h

(1)
n (kor) + h

(2)
n (kor)

)
in

the expansion (2.5) of the cavity pressure can be interpreted as representing a compo-

nent traveling wave ∼ h
(1)
n (kor) incident on the interface from within the cavity, and a

component ∼ h
(2)
n (kor) reflected from the interface. Waves reflected from the interface

will subsequently impinge again on the interface, possibly leading to the establishment
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of coherent resonant oscillations. At high frequencies scattering by small scale irregulari-

ties on the interface will induce incoherence in the interior reflected wave field tending to

suppress the growth of coherent resonances. By discarding the incident coherent compo-

nent h
(1)
n (kor) of the Bessel function we can therefore hope to mimic the effect of random

interface scattering.

This is equivalent to repeating the analysis leading to the predictions (2.12) and

(2.13) with jn(kor) replaced throughout by h
(2)
n (kor), and yields

p(r, θ, ω) =
Fo

2a

∞∑
n=0

(−1)n (4n + 1)(2n)!

(2nn!)2

P2n(cos θ)h
(2)
2n (kor)

(Ẑ2n − 1)h
(2)
2n (koa)

, r < a, (2.18)

=
Fo

2a

∞∑
n=0

(−1)n (4n + 1)(2n)!

(2nn!)2

Ẑ2nP2n(cos θ)h(1)

2n(kwr)

(Ẑ2n − 1)h(1)

2n(kwa)
, r > a, (2.19)

where

Ẑn =
ρwcw

ρoco

h(2) ′
n (koa)

h(2)
n (koa)

h(1)
n (kwa)

h(1) ′
n (kwa)

(2.20)

2.2 Low frequency resonances

The spectrum of sound radiated to large distances from a cavity tends to be dominated by

low frequencies, comparable to the fundamental Minnaert volumetric pulsation frequency

[6, 7]. This and other resonant oscillations of the cavity are excited by the jet. In this

section we examine this excitation. Predictions will be illustrated for the case of an

air-filled cavity in water at standard temperature and pressure (STP) when the cavity

has radius a = 7.0 cm, which corresponds to a cavity volume approximately the same as

that of a typical small scale experimental supercavity.
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2.2.1 Monopole resonances

The monopole is nominally the most efficient source, but it is relevant only at very low

frequencies. Volumetric pulsations are then analogous to oscillations of a mass-spring

system in which the moving ‘mass’ is the water displaced radially by the cavity, and the

‘spring’ stiffness is furnished by the compressibility of the contained gas. The compress-

ibility of the water makes a negligible contribution to the gross motion of the cavity at

low frequencies, when the acoustic wavelength is very much larger than the radius a of

the cavity. The resonance frequencies can therefore be calculated by ignoring the aqueous

compressibility, which is responsible only for relatively weak radiation-damping of the

oscillations. This is the only damping mechanism available to an ideal spherical cavity

when viscous and thermal effects are ignored [11, 30]. However, our model implicitly

assumes that the gas content of the cavity is maintained roughly constant by the steady

exhausting of the gas into the water, and we shall estimate below the damping arising

from this.

According to equations (2.14), (2.15) resonant oscillations of a mode of order 2n are

determined by the zeros of (Z ′
2n(koa) − 1) j2n(koa) = 0 when the water is regarded as

incompressible, where Z ′
2n is defined as in equation (2.16). Using the relation j′n(z) =

jn−1(z) − n+1
z

jn(z), the resonance condition is equivalent to

koaj2n−1(koa) − (2n + 1)

(
1 − ρo

ρw

)
j2n(koa) = 0. (2.21)

For the monopole n = 0, (2.21) reduces to [1]

koa −
(

1 − ρo

ρw

)
tan(koa) = 0. (2.22)

When ρo/ρw � 1 the smallest positive root of this equation is koa ≈√
3ρo/ρw, which cor-

responds to volumetric oscillations at the Minnaert radian frequency ω =
√

3ρoc2
o/ρwa2
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[11, 30] for which the pressure does not vary with position in the cavity.

For our model cavity with a = 7 cm the Minnaert frequency ω/2π ∼ 47Hz. But

this mode is actually atypical of monopole resonances, because it corresponds to the

special case in which the acoustic wavelength is much larger than the diameter of the

cavity. Higher frequency volumetric resonances (determined by the larger roots of equa-

tion (2.22)) involve pressure fluctuations within the cavity that oscillate between positive

and negative values with distance from the center. The first ten monopole modes are

listed in Table 2.1: the wavelengths 2π/ko of the higher order modes (N > 1) are always

smaller than the cavity diameter.

mode number N 1 2 3 4 5 6 7 8
koa 0.06 4.49 7.73 10.90 14.07 17.22 20.37 23.52

frequency Hz 47 3,474 5,972 8,429 10,874 13,312 15,748 18,181

Table 2.1. Cavity monopole wavenumbers and frequencies at STP (from Eq. (2.22)).

The Nth order monopole resonance wavenumber ko is well approximated at higher fre-

quencies by the formula

(koa)N =
(2N − 1)π

2

{
1 − 4(1 − ρo/ρw)

(2N − 1)2π2

}
, for N ≥ 4. (2.23)

2.2.2 Influence of dissipation

The amplitudes of resonant modes excited by the jet are governed by losses produced by

acoustic radiation, and by viscous and thermal diffusion [7, 11], and also by hydrodynamic

convection of vibrational energy from the cavity by the steady outflow of gas into the

water [18]. These mechanisms typically produce small corrections in the values of the

resonance frequencies predicted in the absence of dissipation. The first order effect is that

each undamped resonant frequency ω̂, say, is replaced by ω ≈ ω̂− iε, where ε = ε(ω̂) > 0

is a small imaginary part that would cause the corresponding unforced resonance to
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decay in amplitude like e−εt. According to Devin [11], the separate contributions to ε

from radiation, viscous and thermal damping are all of comparable magnitudes. We can

evaluate the effect of radiation from the solution (2.12), (2.13) which takes account of

the compressibility of the water, i.e. from the solutions of Z2n(koa) − 1 = 0:

ρwcw

ρoco

j ′
2n(koa)

j2n(koa)

h(1)

2n(kwa)

h(1) ′
2n (kwa)

= 1, where ko =
ω

co

, kw =
ω

cw

. (2.24)

It will be sufficient to consider the damping of the monopole modes (n = 0), and

in particular the dominant pulsational mode, for which ω̂a/co ≡ k̂oa ≈ 0.06 (N = 1 in

Table 2.1). By setting n = 0 in equation (2.24) we derive the analogue of the undamped

frequency equation (2.22)

koa −
(

1 − ρo

ρw

+ ikoa
ρoco

ρwcw

)
tan(koa) = 0, (2.25)

from which the compressible correction to the Minnaert approximation is readily deduced

to be:

koa ≈ k̂oa

(
1 − i

cok̂oa

2cw

)
, where k̂oa =

√
3ρo

ρw

. (2.26)

Therefore the minimum complex frequency of volumetric resonances is given by

ω =
co

a

√
3ρo

ρw

− iε, ε =
c2
o(k̂oa)2

2cwa
, (2.27)

where k̂oa ≈ 0.06 (Table 2.1).

This estimate of the radiation damping coefficient ε should be characteristic of the

damping also expected from viscous and thermal losses. However, it is important that

it be compared with the hydrodynamic damping produced by the efflux of gas from the

‘rear’ of the cavity. This is determined by the following argument.

Let E denote the mean energy density (per unit volume) of the resonance mode
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within the cavity. The rate at which energy of this mode is removed from the cavity by

convection in the gas exhausting into the water is QE , where Q is the volume velocity

of the exhausting gas, which is the same as the volume inflow rate in the jet. Hence, if

V = 4
3
πa3 is the cavity volume, the net monopole energy V E within the cavity decays at

a rate determined by
dE
dt

= −QE
V

. (2.28)

But E ∼ |p|2/ρoc
2
o and d|p|2/dt = −2ε|p|2, where ε is the corresponding imaginary part

of the resonance frequency associated with hydrodynamic damping, i.e. ε = Q/2V .

Hence, from (2.27), (2.28)

εhydrodynamic

εradiation

∼ Q/V

c2
o(k̂oa)2/cwa

. (2.29)

The typical gas inflow rate Q ∼ 0.01m3/s for our notional experimental supercavity

whose volume is the same as that of a sphere of radius a = 7 cm, Taking k̂oa = 0.06 and

using STP values for the other quantities in (2.29), we deduce that

εhydrodynamic

εradiation

∼ 0.02,

and therefore that the steady efflux of gas into the water has no significant impact on

damping.

This conclusion is doubly true for higher frequency modes which radiate more freely

into the water. The implication is that the acoustic properties of the cavity are not sig-

nificantly influenced by the gaseous exhaust. This is evidently a consequence of pressure

continuity across the cavity interface and in the exhaust flow.
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2.2.3 Quadrupole resonances

The case n = 1 in equation (2.13) represents a radiation field of quadrupole directiv-

ity. The corresponding resonance frequencies when the compressibility of the water is

neglected are determined by setting n = 1 in equation (2.21), i.e. by the roots of

(koa)3 − 9koa

(
1 − ρo

ρw

)
+

(
9 − 4(koa)2 − 3ρo

ρw

(
3 − (koa)2

))
tan(koa) = 0. (2.30)

The length scales of these wave modes within the cavity are no larger than the cavity

diameter. Indeed it is readily confirmed by expansion of the equation in powers koa that

there are no solutions satisfying |koa| � 1. Numerical solution of equation (2.30) yields

the results in Table 2.2, where the frequencies tabulated in the third line are for a 7 cm

spherical air cavity.

mode number N 1 2 3 4 5 6 7 8
koa 3.34 7.29 10.61 13.85 17.04 20.22 23.39 26.55

frequency Hz 2,585 5,636 8,205 10,704 13,175 15,632 18,082 20,526

Table 2.2. Cavity quadrupole wavenumbers and frequencies at STP (from Eq. (2.30))

Similar analyses of the resonances can be performed for the higher order modes (n > 1

in equations (2.12), (2.13)), but it is not necessary to present details here. It is clear that

the principal low frequency resonances occur for koa > 1, the only exception being the

special case of the Minnaert monopole. Experiments on cavitating jets all indicate that

the far field acoustic spectrum peaks in the neighborhood of a frequency comparable to

the Minnaert frequency [6, 7] and typically decays like ω−2 at higher frequencies. Our

results indicate a similar behavior for the cavity (the corresponding continuum spectrum

being formed by the aggregate contributions from the cavity resonances) although the

precise details for the spherical cavity and for a practical ventilated supercavity depend

on the frequency dependence of the appropriate jet forcing function Fo(ω).
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2.3 Directivity of the sound

The acoustic far field in the water satisfies kwr � 1. In this limit the asymptotic

approximation h(1)
n (z) ≈ (−i)n+1eiz/z permits the reduction of equation (2.13) to the

form

p(r, θ, ω) ≈ − iFoe
−iω(t−r/cw)

kwar

∞∑
n=0

An Z2nP2n(cos θ)

(Z2n − 1)h(1)

2n(kwa)
, kwr → ∞, (2.31)

where An = (4n + 1)(2n)!/{2(2n+1)(n!)2}. Therefore

∣∣∣∣p(r, θ, ω)

Fo/a

∣∣∣∣
2

≈ 1

(kwr)2

∣∣∣∣∣
∞∑

n,m=0

AnAmZ2nZ2mP2n(cos θ)P2m(cos θ)

(Z2n − 1)(Z2m − 1)h(1)

2n(kwa)h(1)

2m(kwa)

∣∣∣∣∣, kwr → ∞. (2.32)

This formula determines the directivity (∝ |p(r, θ, ω)|2) of the sound radiated into

the water. The directivity is plotted as a function of θ in Fig. 2.2 (on a polar plot, each

curve being normalized with respect to its maximum value) for a cavity filled with air

at standard temperature and pressure when kwa = 0.1, 1, 10, 100. The field shape is

spherically symmetric at very low frequencies (kwa < 0.1) characteristic of the Minnaert

monopole. As the frequency increases (for kwa greater than about 10, i.e. for frequencies

exceeding 38,600 Hz for a spherical cavity of radius 7 cm) the sound exhibits a progressive

tendency to radiate preferentially in the side-line direction with the directivity of the

principal side lobe being approximately sin2 θ, i.e. that of an axisymmetric dipole with

axis along the radial direction of the jet.

This dipole radiation is accompanied by narrow beams radiated in the fore and aft

directions (θ = 0, π). The presence of these beams appears to be an artifact of the

spherical geometry, and would likely be absent for the more realistic geometries, such

as that of the ‘cigar’ shaped cavity illustrated in Figure 1.1, because the interface is

effectively equivalent to a ‘pressure release’ surface along which sound cannot propagate.
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Figure 2.2. Directivity of the jet-excited sound for the general case of an air-filled
spherical cavity at STP determined by Eq. (2.32) when kwa = 0.1, 1, 10, 100. Each
curve is normalized with respect to its peak value.

This is illustrated by reference to the exact analytical solution for the case of a two-

dimensional jet impinging on a plane interface (Figure 2.3).

Figure 2.3. The problem of the sound produced by a two-dimensional jet impinging on
a nominally plane interface

For the simplest condition in which the pressure in the cavity (the lower region in

Figure 2.3) is negligible, the pressure radiated into the water consists entirely of the
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dipole field

p(r, θ, ω) ∼ −Fo

√
kw sin θ ei{kwr−π/4}

√
2πr

, kwr → ∞ (2.33)

where angle θ is defined as in Figure 2.3. Therefore, to better visualize the emergence

of the dipole we plot the directivity (again, ∝ |p(r, θ, ω)|2) of the sound normalized with

respect to its value at θ = π
2
, clipping the beams in the fore and aft directions, as in

Figure 2.4.

� = 0� = �

k w a  = 0.1

1

10
100

jet
cavity

Figure 2.4. Directivity of the jet-excited sound for the general case of an air-filled
spherical cavity at STP determined by Eq. (2.32) when kwa = 0.1, 1, 10, 100. Each
curve is normalized with respect to its value at θ = π

2
.

It is also of interest to compare these predictions with those for two of the special

cases discussed in §2.1.3 and §2.1.4. In §2.1.4 the effect on sound generation of wave

incoherence produced by a randomly irregular cavity interface is modeled by the formal

neglect of pressure waves incident on the interface from within the cavity. In this case

|p(r, θ, ω)|2 in the far field is given by equation (2.32) with Z2n,2m replaced by Ẑ2n,2m

defined in equation (2.16). The corresponding directivities (in Fig. 2.5) are seen to be

hardly changed from those predicted from equation (2.32) for the full solution, indicating
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that the directivity of high frequency resonances are essentially unaffected by ‘wrinkling’

of the cavity interface.

� = 0� = �

k w a  = 0.1

1

10
100

jet
cavity

Figure 2.5. Directivity of the jet-excited sound when the correction of Eq. (2.16) is
introduced into (2.32) to account for incoherent reflection of waves from the interface, for
an air-filled spherical cavity at STP when kwa = 0.1, 1, 10, 100. Each curve is normalized
with respect to its value at θ = π

2
.

Second, in case (ii) of §2.1.3 pressure variations within the cavity are absent (a ‘vac-

uous’ cavity interior). It now follows from equation (2.17) that

∣∣∣∣p(r, θ, ω)

Fo/a

∣∣∣∣
2

≈ 1

(kwr)2

∣∣∣∣∣
∞∑

n,m=0

AnAmP2n(cos θ)P2m(cos θ)

h(1)

2n(kwa)h(1)

2m(kwa)

∣∣∣∣∣ , kwr → ∞. (2.34)

Again, the typical field shapes plotted in Fig.2.6 are effectively identical with the corre-

sponding plots for the full solution.

This agreement occurs because, except at the resonance frequency, Z2n/(Z2n − 1) ∼
Ẑ2n/(Ẑ2n−1) ∼ 1 when ρw � ρo. This conclusion has been confirmed (and the accuracy

of the numerical procedure validated) by recalculating the directivities for the fully com-
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Figure 2.6. Directivity of the jet-excited sound in case (ii) of §2.1.3 (a ‘vacuous’ cavity
interior) determined by Eq. (2.34) when kwa = 0.1, 1, 10, 100. Each curve is normalized
with respect to its value at θ = π

2
.

pressible cavity for the case of §2.1.4 of incoherent interface scattering in cases where

ρo ∼ ρw (but with unchanged values of co and cw). The resulting directivities are con-

sistently found to be different from each other, and also different from the results in

Figs.2.4 - 2.6 for an air filled cavity.

2.4 Conclusions

The low frequency sound radiated by the spherical model of a supercavity is dominated

by the volumetric monopole modes excited by the jet. The amplitudes of motions near

the cavity are controlled by damping produced by the sound radiation, by viscous and

thermal losses in the cavity, and by the steady hydrodynamic flow of gas from the ‘rear

end’ of the cavity. For all frequencies of practical interest, the continuity of pressure

across the cavity interface and within the exhaust flow ensures that the hydrodynamic
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damping is negligible, and therefore that the acoustics of the system are effectively un-

affected by the gas exhaust flow.

The radiation from the cavity is omnidirectional at low frequencies, comparable to the

Minnaert frequency of the dominant monopole. As the frequency increases the radiation

directivity develops a principal side-lobe equivalent to that produced by a dipole acoustic

source with axis along the radial direction of the gas jet impinging on the interface. Our

numerical results for the spherical cavity with a jet impinging at θ = π
2

to the nominal

direction of the mean water flow indicate that this dipole radiation (of directivity ∼ sin2 θ)

is accompanied by narrow beams radiated in the fore and aft directions (θ = 0, π). These

beams are an artifact of the spherical geometry that is likely to be absent in more realistic

cavity geometries.

The theoretical results for the spherical cavity indicate that the side-line dipole is

well formed when kwa > 10. For the more general cavity this suggests that the dipole

becomes prominent at frequencies exceeding about 1.5cw/RHz, where R is the mean

radius of curvature of the interface at the point of impact of the jet. At such frequencies,

the self-noise generated by the gas jet might be expected to have a negligible influence

on control systems situated forward of the cavitator.
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Chapter 3

Analytical model for jet impingement

on a plane interface

This chapter describes the sound generated by a circular jet of small cross-section im-

pinging on a planar interface. We consider the scale-model vehicle depicted in Figure 1.1.

Ventilating gas is injected into the cavity via an axisymmetric ring of twenty radiating

jets which impinge on the cavity wall at normal incidence. Each jet impact is discreet

and will be considered as an independent source of sound. Given that each jet is identical

and the injection ring, vehicle, and supercavity are all axisymmetric, it is therefore only

necessary to compute the sound generated by the impingement of a single jet.

Next we consider that the estimated radius of curvature of the supercavity is more

than three times the diameter of the jet impact area, D. Furthermore, at the highest

frequencies ω of interest, kwD ∼ 1, where acoustic wavenumber kw = ω/cw and cw is the

speed of sound in water, so we will approximate the source as being acoustically compact

(see Appendix B). We can therefore approximate the site of the jet impact on the cavity

wall as locally plane, and the jet to be of infinitesimal thickness. As with the sphere

problem of the previous chapter, these simplifications eliminate difficulties associated

27

         Report No. ME09 - 13 Boston University, College of Engineering



with a more realistic cavity geometry. The predicted pressure field and its expression in

terms of the frequency spectrum of the force applied by the jet on the wall is determined.

3.1 Pressure fluctuations in the water

x1

x2

x3

gas�jet

water

cavity

interface
F(t)

Figure 3.1. Problem of a jet of infinitesimal cross-section impinging on a gas-water
interface

Let the mean position of the gas-water interface coincide with the plane x3 = 0 of

the rectangular coordinate system x = (x1, x2, x3), with water of density ρw and sound

speed cw occupying the region x3 > 0 (Fig. 3.1). The Mach number of the mean flow of

water over the interface is assumed to be sufficiently small that the convection of sound

can be ignored. Small amplitude fluctuations in the pressure p(x, t) (where t denotes

time) may therefore be taken to satisfy

(
1

c2
w

∂2

∂t2
−∇2

)
p = 0, x3 > 0, (3.1)

provided that turbulence sources of ‘noise’ within the flow are ignored [18].

A circular gas jet which is coaxial with the x3 axis is incident normally on the interface

from within the cavity x3 < 0. The jet exhausts at mean speed Uo from a circular nozzle
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of radius Ro whose exit plane is at x3 = −� (where Ro � �). The unsteady force F (t), say,

exerted by the jet on the interface is distributed over a circularly symmetric region of the

x1x2-plane centered on the origin of nominal effective radius R � �. This force excites

unsteady motions and pressure fluctuations within the water. When attention is confined

to the unsteady motions occurring at distances |x| � R and when, in addition, the

relevant acoustic wavelengths are much larger than R, it is permissible for the purposes

of calculation to assume that F (t) is concentrated at the origin, and corresponds to a

singular distribution of applied surface pressure equal to F (t)δ(x1)δ(x2). Furthermore,

the very large differences in the mean gas and water densities implies that to an excellent

approximation pressure fluctuations occurring elsewhere on the interface can be ignored

(for further discussion of this approximation see Chapter 2). The solution of equation

(3.1) is therefore required in x3 > 0 subject to the condition

p = F (t)δ(x1)δ(x2) on x3 = 0. (3.2)

To determine p we introduce a Green’s function G(x,y, t − τ) defined by

G(x,y, t − τ) =
1

4π|x − y| δ

(
t − τ − |x − y|

cw

)

− 1

4π|x − ȳ| δ

(
t − τ − |x − ȳ|

cw

)
(3.3)

where ȳ = (y1, y2,−y3) is the ‘image’ of the point y in the plane of the interface. The

Green’s function vanishes when either of x3, y3 lies on the interface, and satisfies

(
1

c2
o

∂2

∂t2
−∇2

)
G = δ(x − y)δ(t − τ), x3, y3 > 0, (3.4)

where G = 0 for t < τ (see Appendix B for a brief discussion of the derivation and use

of Green’s functions).
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The application of Green’s theorem and the radiation condition (see Appendices A

and B) to Eqs. (3.1), (3.4) now permits the pressure in x3 > 0 to be expressed in the

form [2, 6, 10, 29]

p(x, t) =

∮
S

(
p(y, τ)

∂G

∂y3

(x,y, t − τ)

−G(x,y, t − τ)
∂p

∂y3

(y, τ)

)
dy1dy2dτ (3.5)

where the integration is over all values of the retarded time −∞ < τ < +∞, and the

surface integral is over the cavity interface S: y3 = +0.

Substituting into the integrand from Eqs.(3.2), (3.3), we find that both the near and

far field pressure fluctuations in the water are given without further approximation by

the dipole formula

p(x, t) = − ∂

∂x3

[
1

2π|x| F

(
t − |x|

cw

)]
, x3 > 0. (3.6)

3.2 The pressure spectrum

It will be assumed that the unsteady component of the jet impact force F (t) (the net

force minus the mean force) is stationary random with frequency spectrum

ΦFF (ω) =
1

2π

∫ ∞

−∞
〈F (t)F (t + τ)〉 eiωτ dτ (3.7)

where the angle brackets 〈 〉 denote an ensemble or time average. Then (3.6) implies

that the corresponding pressure spectrum Φpp(x, ω) in the water is given by
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Φpp(x, ω) = ΦFF (ω)

∣∣∣∣ ∂

∂x3

(
eiko|x|

2π|x|
)∣∣∣∣

2

≡ ΦFF (ω)

4π2

cos2 θ

|x|4
(
1 + k2

w|x|2
)
, x3 > 0, (3.8)

where cos θ = x3/|x| determines the dipolar directional characteristics of both the near

and far pressure fields in the water, and kw = ω/cw is the acoustic wavenumber, and

Φpp(x, ω) =
1

2π

∫ ∞

−∞
〈p(x, t)p(x, t + τ)〉 eiωτ dτ. (3.9)

Equation 3.8 determines the pressure spectrum at x in the water in terms of the

spectrum of the impact force of the jet. In the next chapter, this formula will be used

to approximate the spectrum of the water-borne sound generated by the experimental

vehicle (Figure 1.1) by determination of the impact force spectrum ΦFF exerted by one

of the vehicle’s jets.
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Chapter 4

Jet impingement experiment

This chapter describes a canonical experiment performed to determine the frequency

spectrum ΦFF of the interaction force for a single jet impinging on an interface. We

again consider the vehicle depicted in Figure 1.1. The ventilating gas enters the cavity

axisymmetrically through twenty radially orientated nozzles equally spaced on a gas

injector ring close to the cavitator. Each jet impinges on the cavity interface at close to

normal incidence. In the impact region, turbulence and other water-borne disturbances

such as bubbles are rapidly convected away over a pressure release interface by the

mean flow of water outside the experimental cavity and exert a negligible surface force

and, therefore, are expected to have no effective influence on acoustic generation and

transmission. The wakes behind the ridges in the cavity created by the impinging jets

(see Fig. 1.3) are not acoustic sources because they convect along with the mean flow

velocity and exert no pressure on the water. Forces exerted by turbulence and bubbles

convecting over these wakes are identically canceled by equal and opposite images inside

the cavity (see Appendix B). Therefore, the dominant acoustic source associated with

ventilation jet impingement is the unsteady fluctuations of the cavity wall in the jet

impact region.
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The sound produced by these interactions is determined principally by the unsteady

forces exerted on the water at the interface by the impinging jets. In practice the ven-

tilating jets are fully turbulent on impact with the interface, and the properties of the

sound depend on the spectral content of the surface force. Typical gas speeds on im-

pact do not normally exceed ∼ 60 m/s. In these circumstances the very large difference

in the densities of the gas and water permit the interface to be regarded as rigid in a

first approximation. The unsteady impact force of the jet may then be identified with

that obtained when a jet is allowed to impinge on a rigid plate. To exploit this analogy

one of the ventilating jets of the test vehicle was directed at normal incidence onto the

plate-like measurement surface of a rigidly-fixed force transducer. Though made slightly

awkward by the vehicle body and mounting system, this method allowed us to capture

the properties and frequency dependence of the vehicle jet due to its unique orifice and

injection system, details which may be lost when using a simpler, stand-alone jet nozzle.

The spectrum of the exerted force was measured for a range of gas injection flow rates

and jet lengths. The results of these tests were used with the formulae determined in

Chapter 3 to make predictions for the sound generated by jet impingement on a planar

interface.

As discussed in Section 1.2, a literature survey revealed that investigations of the

acoustics of jet impingement [28, 34, 40] have focused on impingement on a plate and on

acoustic sources such as shed vorticity or turbulence; no work appears to have been done

on the acoustics of a jet impinging on an unsteady, free gas-water interface. Furthermore,

no examples of the direct measurement of the unsteady force exerted by an impinging

jet were found. Thus the few existing studies of relevance are those which provide

information about the exerted pressure. Strong et al. [45] describe an experiment in

which a jet was directed at a flat plate at various angles of incidence. Two surface

pinhole microphones were used to measure the correlation spectrum of the fluctuating
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surface pressure on the plate. Their measurements for normal incidence are compared in

this chapter with our experimental results for the surface force spectrum on the flat force

transducer. We also compare predictions of the impingement-generated sound using the

data from [45] with our predictions for the supercavity.

The first section (4.1) describes the supercavitating vehicle experimental setup. Sec-

tion 4.2 recounts the experimental method and executed trials. Data analysis and un-

certainty in the results are discussed in Section 4.3. Results for the exerted force spectra

are presented in Section 4.4. Using these results, predictions are made in Section 4.5

for the sound generated by jet impingement on a planar interface and compared with

corresponding predictions based on the results of Strong et al. [45] in Section 4.6. Con-

clusions are then inferred for the sound generated by jet impingement on a more realistic,

cylindrical cavity interface.

4.1 Experimental setup

Testing was conducted at the Garfield Thomas Water Tunnel facility at ARL using a

single ventilating jet of a 76 mm body-diameter experimental supercavitating vehicle like

that depicted in Figures 1.1 and 1.2. In normal operation the vehicle is rigidly mounted

in an ARL 0.305 m water tunnel test section (see Appendix C). Gas is injected into the

cavity axisymmetrically via a ring of 20 identical, radially directed jets. The diameter

of the exit orifice for each jet is 1.6 mm, and the exit planes are evenly distributed in a

ring of radius 25 mm centered on the axis of symmetry of the vehicle.

Gas enters the system by way of a line passing through the vehicle mounting strut

(Fig. 4.1). A line from each of six bottles of compressed gas is connected to a manifold

where the separate supplies are combined into single gas line. A seventh bottle of com-

pressed air provides a constant back pressure to this gas line at the manifold so that a
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constant flow rate of gas to the vehicle can be maintained as the supply bottles empty. A

ball valve in the supply line allows for rapid on/off control of the gas flow to the vehicle

when the bottles are open and feeding the line. The gas flow rate through the system

is monitored by a flow meter upstream of the ball valve, and is varied by adjustment of

the ball valve aperture.

gas supply bottles

to model

flowmeter ball valve

manifold

back pressure
gas bottle

supply line

back pressure line

Figure 4.1. Schematic of gas injection system

The model vehicle, without the cavitating nose section which was not required for

this experiment, was secured to a bench top. The gas injection system described above

was connected to the vehicle. Four of the jet orifices were plugged with wax held in place

with firmly fixed electrical tape, two each immediately clockwise and anti-clockwise of

the ‘test’ jet (see Fig 4.2). Though this increased the net flow through the remaining

open orifices by approximately 25% (relative to typical running conditions with all jets

operating), it was important to do this in order to isolate a single jet for measurement.

This isolated test jet was directed at normal incidence onto the 12.7 mm diameter mea-

surement surface of a PCB ICP dynamic force transducer (Fig. 4.3).
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- open orifice

- closed orifice - test jet orifice

- transducer

Figure 4.2. Arrangement of open and closed jet orifices

test jet orifice

force transducer

yoke

vehicle

translation table

plate

accelerometer

Figure 4.3. Experimental setup. The vehicle’s nose section, unnecessary for this ex-
periment, has been removed. In this photograph, only the test jet is exposed; the other
fifteen jets were subsequently unsealed as in Fig. 4.2 before testing was conducted.
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The force transducer was fixed at the center of a 6.35 mm thick 76.2 mm square

aluminum plate (Fig. 4.4). The plate was screwed onto a 127 mm tall heavy aluminum

yoke made massive in an effort to reduce structural vibrations induced by the impacting

jet (Fig. 4.5). The yoke was fastened on a 1-axis, 0.25 mm resolution translation table

mounted on the bench top. The axis of the translation table was parallel with the center

axis of the jet allowing for adjustment of the length of the test jet, defined to be the

distance between the jet orifice and the wetted surface of the transducer. Superglue was

used to fix an accelerometer to the plate, in close proximity with the transducer.

plate

force transducer

accelerometer

Figure 4.4. Plate and transducer assembly. The force transducer was threaded into
the center of the plate. The accelerometer fixed with superglue.

Figure 4.5. Massive yoke used for mounting of plate and transducer assembly
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4.2 Methods

The PCB dynamic force sensor directly measured the unsteady force exerted by the test

jet. Pertinent specifications for this and all of the electronic equipment used are pre-

sented in Appendix D. The force transducer was calibrated using a set of known masses.

This piezoelectric transducer cannot measure static loads, so the calibration technique,

similar to that used by the manufacturer, consisted of securing the transducer to the

benchtop with its measurement surface horizontal (i.e. facing upward), resting a mass

on the transducer, and measuring the output voltage when the mass was quickly re-

moved. This was executed three times each for masses between 0.05 and 2 kg. Assuming

the force exerted on the transducer by each mass was its weight, mg, these data and the

resulting calibration curve are shown in Figure 4.6. The calibration curve was fitted to

the data using the method of linear-least-squares.

0

0.5

1

1.5

2

2.5

0 5 10 15 20
force�(N)

vo
lta

ge
�(V

)

calibration�data calibration�curve

105.3�mV/N

Figure 4.6. Calibration data for unsteady force transducer

The accelerometer was used to measure the structural vibrations of the plate gener-

ated from both the test environment and the jet impact. Assuming a rigid mounting (the
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force transducer was threaded tightly onto the plate), this vibration is taken to be that

experienced by the force transducer housing. The accelerometer was calibrated using a

PCB 394C06 hand held 1-g shaker. The shaker is an oscillating piston which accelerates

the transducer at 1 g. The accelerometer was fixed to the shaker and the amplitude of

its output voltage recorded. This was repeated three times and the results averaged,

yielding a sensitivity of 14.566 mV/g.

The signals from the force transducer and accelerometer were fed through a PCB

480B21 signal conditioner, applying a gain of 10 to both the force sensor signal and

the accelerometer signal. The signals were then passed to a DSP SigLab 50-21 data

acquisition system. This system was connected to a laptop computer with accompanying

SigLab software used to record and process each signal. The software applied a fast-

Fourier transform (FFT) of 8192 points to 64 ms samples of the time series of each signal

to produce an autocorrelation spectrum with units of root-mean-square (RMS) voltage

squared in 15.6 Hz bins up to 50 kHz (see Bendat and Piersol [3] for a discussion of the

theory and application of spectral functions). An ensemble of 60 of these spectra were

averaged to produce a final resultant spectrum. Cross-correlation spectra between the

force sensor and accelerometer signals were also generated using the same transform and

averaging parameters.

Measurements were made for a variety of jet lengths � and gas injection volume flow

rates Q. A complete list of trial parameters is given in Table 4.1. Typical experimental

injection rates for the model test vehicle are 0.0047, 0.0071, and 0.0094 m3/s, producing

jet lengths of approximately 35 mm. A range of lengths around this median value were

tested to study the effect of jet length on the spectrum of the applied force and the

produced sound. For the shorter of these jet lengths, 15 and 20 mm, the entire impact

area of the jet lies within the face of the force transducer, assuming a jet spread half-angle
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of 12.5◦ [29] and finding the diameter D of the jet cross-section

D = 2(Ro + � tan(12.5◦)), (4.1)

in terms of the radius of the jet orifice Ro and jet length � (see Figure 4.7). Longer

jet lengths have cross-sections on impact larger than the force transducer measurement

surface. However, the bulk of the force exerted by a jet is produced by the flow in the

vicinity of the jet centerline, inferred by the variation of longitudinal velocity with radial

distance from the jet’s central axis. If the jet’s velocity drops off rapidly above 0.4a from

the centerline [29], we estimate from (4.1) that the force transducer is large enough to

capture the bulk of the force exerted by a jet up to 64 mm in length. It was therefore

assumed that for our jets of length > 20 mm, the force measured by the transducer is a

sufficient approximation to the force exerted over the entire impact area. Comparison of

the measured force spectra for the longer jet lengths with those for jet lengths of 15 and

20 mm will demonstrate the appropriateness of this assertion and the magnitude of any

introduced error.

� (mm) Q (m3/s) ×104

15 47, 71, 94
20 47, 71, 94
25 47, 71, 94
30 47, 71, 94
35 47, 71, 94
40 47, 71, 94
45 47, 71, 94

Table 4.1. Schedule of experimental trials

Each trial was repeated three times. In addition, the centerline jet exit velocity

Uo at the jet orifice was measured for a jet injection rate of Q = 0.0047 m/s using a

TSI VelociCalc probe air velocity meter. Direct measurement of the exit velocity for

the higher injection rates was not possible because of the limitations imposed by the
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Ro
D�

12.5°

Figure 4.7. Estimated shape of a fully turbulent jet

velocimeter’s usable range; these values will be interpolated from the lower injection rate

measurement using fluid dynamic theory. To make the measurement, the probe tip was

inserted into the center of the jet approximately 1 mm downstream of the jet orifice.

The VelociCalc is calibrated annually by the manufacturer, and the measurement was

repeated three times to account for statistical variability. The device is also equipped

with a temperature probe which was used to measure the ambient air temperature and

that of the jet at the jet orifice employing the same technique.

4.3 Data analysis

4.3.1 Post-processing

The determined calibration factor for each transducer was applied during post-processing

to convert the measured autocorrelation spectra from units of RMS voltage squared into

units of squared force (N2) or acceleration (g2) and the cross-correlation spectra from

units of RMS voltage squared into units of force×acceleration, N-g’s. Applying a method

similar to that used by Young, et al. [48], the spectra were then combined to eliminate

vibrational contamination in the measured unsteady force spectra (the source of this

contamination is discussed later). A cross correlation spectrum Xαβ(ω) (where angular
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frequency ω = 2πf) between two signals α(t) and β(t) is defined by [3]

Xαβ(ω) =
1

2π

∫ ∞

−∞
〈α(t)β(t + τ)〉 eiωτ dτ. (4.2)

The coherence between the signals is then given (in dimensions of α2) by [3]

Xαβ(ω) · Xβα(ω)/Aββ(ω), (4.3)

where Aββ(ω) ≡ Xββ(ω) is the autocorrelation spectrum of signal β. Applying this to

the experiment, vibrational contamination was approximately eliminated by subtraction

from the measured unsteady force spectrum of any coherence with the vibration spectrum

(measured by the accelerometer), according to

AFF,c(ω) = AFF (ω) − XaF (ω) · XFa(ω)/Aaa(ω), (4.4)

where AFF,c(ω) is the ‘corrected’ unsteady force spectrum, AFF (ω) and Aaa(ω) are re-

spectively the measured unsteady force and vibration spectra, and XaF (ω) and XFa(ω)

are cross-correlation spectra between the accelerometer and force transducer signals.

4.3.2 Uncertainty

The major source of error in these measurements is vibrational contamination of the force

sensor readings. Two sources of this contamination exist: background vibration from the

experimental environment and structural vibrations in the transducer mounting assembly

induced by the test jet. Transducer readings were collected with the jet off (i.e. Q = 0)

to record any environmental noise, as well as electrical noise inherent in the transducers

or electronics. These readings were consistently 10 to 40 dB below measurements taken

with the jet on except at the lowest (< 100 Hz) and highest frequencies (> 30kHz).
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Examples of the unsteady force and vibration spectra recorded for a jet with Q = 0 and

Q = 0.0047 m3/s, � = 35 mm are given in Figures 4.8 and 4.9.
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Figure 4.8. Comparison of the vibration spectra for jets of flow rates Q = 0 and
Q = 0.0047 m3/s and jet length � = 35 mm. The spectra are given in units of dB relative
to 1 g2.

Jet induced vibrations were partially eliminated by application of the coherence cor-

rection formula (4.4). Figure 4.10 presents an example of the unsteady force spectrum

recorded for a trial at Q = 0.0047m3/s and � = 35 mm before and after application of

the coherence formula. Noise up to 20dB was removed at frequencies across the entire

measured bandwidth. However, it appears that there is still significant contamination of

this unsteady force spectrum above 3000 Hz. Comparing corrected spectra for varying

jet lengths and injection rates (see an example in Figure 4.11), we find that this con-

tamination is consistently present in magnitude and frequency dependence in all of the

readings, implying that the contamination is due to structural vibrations, rather than

a true measurement of the unsteady force exerted by the jet. We will therefore choose
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Figure 4.9. Comparison of the unsteady force spectra for jets of flow rates Q = 0 and
Q = 0.0047 m3/s and jet length � = 35 mm. The spectra are given in units of dB relative
to 1 N2.

to estimate the unsteady force over these higher frequencies by projecting a curve which

continues the slope of the spectrum at lower frequencies (see Figure 4.12).

The normalized random statistical error ηr for each spectrum can be estimated as [3]

ηr =
1√
n

(4.5)

where n is the number of samples averaged in the ensemble. As given in Section 4.2,

60 samples were averaged in each ensemble for an error of ±0.13. Random error in the

readings as assessed by variation between duplicated runs (repeatability) is estimated at

±1.5 dB (see Fig. 4.13 for an example). Errors in frequency are systematic, dominated

by the chosen bin width of the Fourier transform, and are on the order of ±7.8 Hz. The

combined statistical and bias errors in the jet exit velocity measurements produced an

error of ∼ ±1 m/s.
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Figure 4.10. Comparison of the corrected and uncorrected unsteady force spectra
(AFF,c and AFF of Eq. 4.4, respectively) for Q = 0.0047 m3/s and � = 35 mm. The
spectra are given in units of dB relative to 1 N2.

Finally we consider the validity of the force spectra measured for jet lengths >20 mm,

for which the cross-sectional area of the jet at impact is larger than the force transducer

measurement surface. Figure 4.14 compares the corrected force spectra for trials at

each jet length � = 15, 20, 30, and 40 mm and injection rate Q = 0.0047m3/s. The

greatest disparity between the spectra occurs near 1000 Hz, which may imply that these

frequencies are dominant at the outer edge of the jet’s cross-section and they are not

being captured by the transducer at longer jet lengths. However, across the rest of the

measured bandwidth we find an average difference of approximately ±2 dB between the

spectra. This difference is of the same order as the statistical error between repeated

runs (see above); we therefore conclude that the force spectrum measurements for jets

with lengths longer than 20 mm sufficiently approximate the entire force exerted by the

jet across these frequencies. Furthermore, the disparity between the spectra occurs well

below the frequencies of interest for the self noise problem, so we consider it acceptable
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Figure 4.11. Comparison of the corrected unsteady force spectra for jets with Q =
0.0047 and 0.0094 m3/s and � = 15 and 35 mm. The spectra are given in units of dB
relative to 1 N2.

to use these measurements to make predictions for the sound generated by the longer

jets.
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Figure 4.12. Demonstrating the estimate of the unsteady force spectrum for frequencies
>3000 Hz. The given spectrum was measured for a jet of length � = 15 mm and injection
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Figure 4.13. Comparison of corrected force spectra for multiple trials at Q = 0.0094
m3/s and � = 35 mm. The spectra are given in units of dB relative to 1 N2.
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� = 15, 20, 30, and 40 mm. The spectra are given in units of dB relative to 1 N2.
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4.4 Results
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Figure 4.15. Measured force spectra for jets of gas injection rate Q = 0.0047 m3/s
and jet lengths � = 15, 25, 35, and 45 mm, normalized to mean force Fo in 15.6 Hz bins,
versus dimensionless frequency fDo/Uo.

The corrected unsteady force spectra are taken to be the spectra of the impact force

for a single jet on the supercavity’s gas-water interface (i.e. ΦFF (ω) ≡ AFF,c(ω)). Figures

4.15-4.17 depict the measured normalized impact force spectrum

10 × log10

(
ΦFF (ω)Uo

F 2
o Do

)

as a function of non-dimensional frequency fDo/Uo for the gas flow rates of 0.0047,

0.0071, and 0.0094 m3/s, respectively, where Fo is the mean force exerted by the jet, Do

is the diameter of the jet orifice, and Uo is the mean centerline jet velocity at the orifice.
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Figure 4.16. Measured force spectra for jets of gas injection rate Q = 0.0071 m3/s
and jet lengths � = 15, 25, 35, and 45 mm, normalized to mean force Fo in 15.6 Hz bins,
versus dimensionless frequency fDo/Uo.

Fo is defined by the momentum balance formula

Fo = ρAU2πD2

4
, (4.6)

where U is the mean jet velocity at impact, D is the diameter of the jet impact area,

and ρA is the mean density of the jet. The density ρA is approximated as that for air at

STP, 1.2 kg/m3, based on temperature readings of the jet which measured only about 3◦

lower than ambient. D is calculated for each jet length � from Do = 2Ro using Eq. (4.1).

As described in §4.2, the jet exit centerline velocity Uo was measured for the jets of Q

= 0.0047 m/s with a probe velocimeter. The value of Uo was determined for higher flow
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Figure 4.17. Measured force spectra for jets of gas injection rate Q = 0.0094 m3/s
and jet lengths � = 15, 25, 35, and 45 mm, normalized to mean force Fo in 15.6 Hz bins,
versus dimensionless frequency fDo/Uo.

rates by assuming a linear relationship between flow rate and velocity, i.e.

U2 = U1
Q2

Q1

(4.7)

where U1 and U2 are the exit velocities which correspond to injection flow rates Q1 and

Q2, respectively. This relationship is derived using the definition of the volume flow rate

out of the jet orifice Qo = Uo(π/4)D2
o.

The volume flow rate Q′ = U(π/4)D2 through any cross-section of the jet at length

� is given by [29]

Q′ = βQo
�

Ro

. (4.8)

For a circular jet orifice, the empirical value of β = 1.5 [29]. Applying the definitions of

Q′, Qo to (4.8), the mean jet impact velocity for a jet of length � is interpolated from the
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exit velocity using [29]

U = 1.5Uo

(
�

Ro

)(
D2

o

D2

)
(4.9)

This self-similarity relation breaks down near the jet orifice. For the shortest jet length �

= 15 mm, the impact velocity is unlikely to differ significanly from the exit velocity [16];

we will therefore take U ≈ Uo. Values of D and U (Do and Uo at the jet orifice, � = 0)

for each case are tabulated below.

� (mm) 0 15 20 25 30 35 40 45
Do, D (mm) 1.6 8.3 10.5 12.7 14.9 17.1 19.3 21.6

Uo, U (m/s); Q = 0.0047 m3/s 27.1 27.1 23.7 20.2 17.6 15.5 13.9 12.6
Uo, U (m/s); Q = 0.0071 m3/s 40.7 40.7 35.6 30.3 26.3 23.3 20.9 18.9
Uo, U (m/s); Q = 0.0094 m3/s 54.2 54.2 47.5 40.4 35.2 31.1 27.8 25.2

Table 4.2. Estimated values of jet diameter D and exit (� = 0) and mean impact
velocities Uo and U for each trial at jet length � and injection flow rate Q.

In all cases the spectra in Figures 4.15-4.17 peak near fDo/Uo ∼ 0.01 then drop off rapidly

like (fDo/Uo)
−2.5. For the purpose of presentation, the spectra for the intermediate jet

lengths of 20, 30, and 40 mm have been omitted; the normalized unsteady force spectra

of all of the collected data are presented in Appendix E.

Figure 4.18 presents the unnormalized measured force spectra plotted against fre-

quency for jets with test parameters Q = 0.0047 and 0.0094 m3/s and � = 15 and 35 mm.

This plot elucidates the relationship between injection rate and the magnitude of the

measured force spectrum as well as jet length and magnitude. Let us consider that the

unsteady component F of the force exerted by the jet scales with the mean component

of the exerted force Fo and the unsteady component of the jet’s impact velocity u scales

with the mean component of the impact velocity U . As ΦFF ∝ F 2 ∝ u4, then a dou-

bling of the injection flow rate (and e.g. the mean impact velocity U) results in four-fold

increase in the mean force, for a sixteen-fold or 12dB increase in F 2 ∝ ΦFF . Our data

approximate this well, with an estimated 10-15 dB increase in the unsteady force spec-
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trum with the doubling of the injection flow rate. There is also only a 2-3 dB difference

between the unsteady force spectra for jets of differing length; this is attributable to

statistical variability between runs.
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Figure 4.18. Measured force spectra for jets with test parameters Q = 0.0047 and
0.0094 m3/s and � = 15 and 35 mm. The spectra are given in units of dB relative to 1
N2.

4.5 Predicted acoustic power spectra

These impact force spectra can be used with the results of Chapter 3 to predict the

spectrum of the sound power generated by jet impingement on a planar interface. From

the definition of sound power (see Appendix A), the radiated sound power spectrum

Π(ω), the power spectrum for the sound which transmits to the far field, is given by

Π(ω) =

∫ 2π

0

∫ π/2

0

ΦPP (ω)

ρwcw

|x|2 sin θdθdφ (4.10)
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where the integration is over the surface of a large hemisphere in the water of radius |x|
centered on the centroid of the gas interface impact region. Note that in (3.8) the terms

in parenthesis represent respectively the near and far pressure fields, and the near field

term vanishes as |x| → ∞, yielding

Π(ω) = ΦFF (ω)
k2

w

6πρwcw

. (4.11)

A convenient nondimensional form is

ρwΠ(ω)

M2ρ2
AU2D3

=
ΦFF (ω)cw

F 2
o D

π(kwD)2

96
, (4.12)

where M is the jet Mach number U/cw relative to the speed of sound in water. The

variation of

10 × log10

(
ρwΠ(ω)

M2ρ2
AU2D3

)
dB

with reduced frequency kwD is plotted in Figures 4.19-4.22 for the measured cases � =

15, 25, 35, and 45 mm at 0.0047, 0.0071, and 0.0094 m3/s. Predictions of the radiated

sound power spectrum based on all of the measured force spectra are given in Appendix

E.

The predictions have collapsed to a common form across all frequencies, peaking in

0.005 < kwD < 0.05 and dropping off like kwD−0.5. This implies that the dominant

sound is in a frequency range where the wavelength λ = 2π/kw is much larger than the

characteristic length D, validating our hypothesis of acoustic compactness required by

the plane interface approximation. The relative differences between runs of varying flow

lengths are attributable to statistical variation for each run and the differing magnitudes

of the normalizing quantities. As Π ∝ ΦFF , Figure 4.18 and its discussion at the end of

§4.4 indicate that there is approximately a 10-15 dB increase in radiated sound power
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Figure 4.19. Predicted sound power spectra for jets of gas injection rate Q = 0.0047,
0.0071, and 0.0094 m3/s and � = 15 mm versus reduced frequency kw/D.

with a doubling of gas injection rate.

4.6 Comparison with Strong et al.

In order to have some independent support for these results we look to the work of Strong

et al. [45]. In their experiment an air jet with nozzle diameter 102 mm was directed at a

heavy plate. Two pinhole microphones flush mounted in the plate, one at the centroid of

the impact area and the second at various radial distances from this centroid, were used

to measure the correlation of the unsteady surface pressure on the plate for frequencies

between 40 and 10,000 Hz. Their results include the frequency spectral density of these

pressure fluctuations Φp(ω) (in their nomenclature) on the plate for a jet at normal

incidence. This is a measurement of the unsteady pressure exerted on the plate at the

centroid of the impact area, not a measurement of the pressure spectrum of the sound
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Figure 4.20. Predicted sound power spectra for jets of gas injection rate Q = 0.0047,
0.0071, and 0.0094 m3/s and � = 25 mm versus reduced frequency kw/D.

radiating from the jet impact region, which we have previously called Φpp(ω). These

data are reproduced in Figure 4.23, normalized by mean jet density ρA, jet exit velocity

Uo, and jet orifice diameter Do and plotted against the dimensionless frequency ωDo/Uo.

The pressure spectrum can be used to make a rough estimate of the spectrum of

the force exerted on the plate by the jet. As a first approximation we assume that all

frequency components of the pressure on the plate are fully correlated over the impact

area π
4
D2, i.e. we assume

ΦFF (ω) = Φp(ω)
(π

4
D2
)2

. (4.13)

This cannot be correct, because the correlation area of the surface pressure must be

smaller than π
4
D2. Therefore the approximation (4.13) will provide an upper bound

for the acoustic radiation spectrum. Again using Eqs. (4.1) and (4.6) to define the

experiment’s characteristic dimensions of mean impact velocity and mean force, the
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Figure 4.21. Predicted sound power spectra for jets of gas injection rate Q = 0.0047,
0.0071, and 0.0094 m3/s and � = 35 mm versus reduced frequency kw/D.

normalized force spectrum defined by (4.13) becomes

10 × log10

(
ΦFF (ω)Uo

F 2
o Do

)
≡ 10 × log10

(
ΦP (ω)Uo

ρ2
AU4Do

)

which is plotted in Figure 4.24 versus fDo/Uo. Also plotted are measured unsteady

force spectra for the supercavity jets; because the experiment in Strong et al. was

conducted with a jet length of 14Ro, we have chosen the most similar cases of � = 15 mm

(= 18.75Ro) and Q = 0.0047, 0.0071, and 0.0094 m3/s for comparison. As with the ARL

jets, the Strong et al. estimated unsteady force spectrum drops off like (fDo/Uo)
−2.5.

The apparent shift in the curve is likely a consequence of the differing normalization

values for each experiment, while the similar frequency dependence confirms the validity

of our measurement technique and estimation for higher frequencies.

The estimated force spectrum is used to predict the sound power spectrum generated
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Figure 4.22. Predicted sound power spectra for jets of gas injection rate Q = 0.0047,
0.0071, and 0.0094 m3/s and � = 45 mm versus reduced frequency kw/D.

when the jet impinges on a gas-water interface, given by Eq. 4.11. Figure 4.25 presents

the normalized sound power spectra

10 × log10

(
ρoΠ(ω)

M2ρ2
AU2D3

)
dB

(plotted against dimensionless frequency kwD) for the jet of Strong et al. compared with

corresponding predictions based on our measurements using a supercavitating vehicle

jet. The Strong et al. spectrum peaks near kwD = 0.2 and drops off like (kwD)−0.5.

The similarity of the frequency dependence between the predictions for the Strong et al.

and ARL jet again confirms the validity of our chosen measurement technique and the

generality of our mathematical solution for the acoustic pressure.
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Figure 4.23. Pressure spectral density at the centroid of the impact area for the jet
measured by Strong et al. [45].

4.7 Conclusions

Observations about the noise predictions for a plane interface can be used to postulate

similar characteristics for the sound generated by a ventilation jet impinging on a more

realistic cylindrical interface of a supercavity. The observed small differences in force

spectra associated with differences in the jet length indicate that for an experimental

supercavity, where an accurate determination of the jet length is not easily made, a

rough estimate of � to within, say, 5 mm, is sufficient to derive an adequate prediction

of the radiated sound.

The measured effect of increased flow rate on the magnitude of the impact force

spectrum for a single jet on a plane interface will likely be representative of the multiple

jet case for the supercavity. For the planar interface Fig. 4.18 and Eq. 4.11 indicate that

the sound power increases by 10-15 dB when the injection flow rate is doubled. This

may not be the case for multiple jets because of possible correlations between the surface
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Figure 4.24. Comparison of unsteady force spectra for ARL jets of Q = 0.0047, 0.0071,
and 0.0094 m3/s and � = 15 mm and the jet of Strong et al. [45].

force fluctuations produced by neighboring jets. In any event, because an increase in

the gas injection rate causes a rapid increase in sound power it would evidently be of

considerable interest to determine the minimum gas injection rate that can safely sustain

the supercavity of an underwater vehicle in a stable form.

It can be anticipated that the directivity of sound radiated from a real supercavity

must differ in detail from that from a planar interface because of possible interference

between neighboring jets and the fundamental geometric differences. On the planar in-

terface the jet produces a single dipole source projecting into the water, normally to

the interface, while the supercavity creates an axisymmetric array of dipoles projecting

normally off of the cavity into the water. However, the far field magnitudes and fre-

quency dependences of the generated sound should be similar. The sound power spectra

predicted for the plane interface indicate that most of the radiated sound is contained

in the frequency range 0.005 < kwD < 0.05. This confirms the assumption that the jet

impact region is acoustically compact, and therefore that the local geometry of the im-
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Figure 4.25. Comparison of predicted sound power spectra for ARL jets of Q = 0.0047,
0.0071, and 0.0094 m3/s and � = 15 mm and the jet of Strong et al. [45].

pact region is probably irrelevant. The power spectrum for the sound radiated from the

supercavity would be expected to exhibit a frequency dependence that is very similar to

that predicted for the plane interface, again with the peak acoustic frequencies between

0.005< kwD < 0.05.
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Chapter 5

Self-noise at the vehicle nose

In this chapter we predict the high-frequency impingement generated noise at the vehicle

nose. We choose to model the experimental ventilated cavity as a gaseous, circular

cylinder seated behind a solid ellipsoidal cavitating nose section (see Figure 5.1). The

ventilating jets exert an unsteady pressure on the cavity interface downstream of the

cavitator. This constitutes an acoustic source of dipole type which generates sound in

the water. By finding a suitable frequency-dependent transfer function we can relate the

jet-exerted pressure to the corresponding acoustic pressure, or ‘self-noise,’ at the vehicle

nose. The transfer function, computed for the simplified ellipsoidal nose and cylindrical

cavity geometry, takes account of diffraction of high frequency waves and creeping waves

on the nose and the surface transition from the solid nose section to the gas-water cavity

interface.

The solution for the acoustic pressure at the nose in terms of the transfer function

is given in Section 5.1. The transfer function is determined analytically in Section 5.2

and approximated numerically for high and intermediate frequencies in Section 5.3. In

Section 5.4, the spectrum of the sound at the nose is derived in terms of the spectrum of

the unsteady force exerted by a ventilating jet. In Section 5.5, the results of §5.3, §5.4
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are combined with the experimental results of Chapter 4 to predict the self-noise at the

nose generated by the experimental supercavitating vehicle.

5.1 Pressure fluctuations at the nose

Figure 5.1. Model of a cylindrical supercavity with an ellipsoidal cavitator.

We consider the undisturbed gas-water interface (SC in Figure 5.1) to be a circular

cylinder of radius r = a coaxial with the positive x axis, taking the origin at the midpoint

O of the rear, plane face of the cavitator. The surface SN of the cavitator in contact with

the water is defined in terms of the cylindrical coordinates of Figure 5.1 by the ellipsoid

r = a

√
1 − x2

b2
, −b < x < 0, b > a, (5.1)

where b and a are respectively the lengths of the semi-major and minor axes. The water

has density ρw and sound speed cw, and the material of the cavitator is assumed to be

locally reacting, such that at a point on SN where the acoustic pressure is p and the
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outward (into the water) normal component of velocity is vn we can write

p

vn

= − ρwcwZ, (5.2)

where Z is the dimensionless surface impedance. In practice the Mach number of the

relative mean flow over the supercavity is sufficiently small that the convection of sound

can be ignored. Also ignoring turbulence noise sources in the mean flow, the acoustic

pressure p(x, ω)eiωt of radian frequency ω in the water propagates like [6, 10, 12, 18, 32]

(∇2 + k2
w

)
p = 0, (5.3)

where kw = ω/cw is the acoustic wavenumber. The visco-thermal dissipation of the sound

is ignored, so that equation (5.2) implies

∂p

∂xn

+
ikwp

Z = 0 on SN, (5.4)

where xn is the local outward normal coordinate.

Consider the sound generated in the water by the impingement of ventilating gas

jets on the cavity wall SC. The jets produce a localized fluctuating surface pressure

pv(x, ω) on SC which is equivalent to an array of dipole acoustic sources radiating into

the water. The distribution and frequency of pv(x, ω) are known from the measurements

described in Chapter 4. The disparity between the mean gas and water densities allows

the interface to be treated as a pressure release surface, and we therefore assume that

pressure fluctuations elsewhere on SC can be neglected.

Let pN(ω) denote the acoustic pressure produced by jet impingement at the tip of

the nose SN (the intersection of the negative x axis and SN). To express this in terms of

pv(x, ω) we introduce a Green’s function G(x, ω) with outgoing wave behavior which is
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defined by (∇2 + k2
w

)
G = 0 (5.5)

in the water, subject to

∂G
∂xn

+ ikwG
Z = δ(y)δ(z) on SN,

G = 0 on SC,

⎫⎪⎬
⎪⎭ (5.6)

where δ(·) is the Dirac-delta function and the coordinates y,z are defined such that

x = (x, y, z) forms a right-handed Cartesian basis. This defines G to be an axisymmetric

function G(x, r, ω) of x and r =
√

y2 + z2.

Applying Green’s theorem and the radiation condition (see Appendix B) to (5.5) and

(5.3) yields [2, 10, 18]

∮
SN+SC

(
p(x, ω)

∂G

∂xn

(x, ω) − G(x, ω)
∂p

∂xn

(x, ω)

)
dS = 0, (5.7)

where the integration is over the combined surfaces SN + SC of the cavitator and the

cavity interface. The boundary conditions (5.4) and (5.6), and the requirement that

p ≡ pv on SC then imply that

pN(ω) =

∫
S

pv(x, ω) T (x, ω) dS, (5.8)

where the integration is over the impingement region S, say, of the cavity interface SC,

and T (x, ω) is a transfer function defined by

T (x, ω) ≡ −
(

∂G

∂r
(x, r, ω)

)
r=a

. (5.9)

T (x, ω) depends only on frequency ω and distance from the cavitator edge x; the ax-
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isymmetry of the cavitator and cavity demand a solution for the acoustic pressure at

the nose which is independent of the azimuthal location of the point on SC where pv is

applied.

5.2 Calculation of the transfer function

Figure 5.2. Reciprocal problem of the solution of the wave equation for the motion
produced in the water by a unit point source at the nose used to calculate the transfer
function

To calculate the transfer function we consider the reciprocal problem in which we

first calculate the motion produced on the jet impingement region S from a point source

at the nose (Figure 5.2). The region S lies in the geometric shadow of direct acoustic

radiation from the source. The behavior of the Green’s function in this region is therefore

governed by the diffraction of sound waves around the nose of the cavitator, SN (see

[8, 15, 24, 25, 31, 35, 37, 38, 47]). This will be analyzed by interpolation between

analytical predictions of G(x, r, ω) for large and small values of kwa, an extension of the

method of Howe et al. [23].
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5.2.1 Surface diffraction when kwa � 1

The surface diffraction of high frequency waves from the source can be represented in

terms of creeping modes. The incidence of these modes on the edge A of the cavitator is

first calculated; a separate calculation is then performed to determine their subsequent

propagation over the pressure release surface SC to impingement region S.

The creeping wave representation is found by choosing the local approximation G =

GN, where in the immediate vicinity of N GN satisfies the ’earth flattening’ approximation

of the wave equation [8, 15, 25, 31, 35, 37]

[
∂2

∂x2
n

+

(
1 − 2xn

℘

)
1

�

∂

∂�

(
�

∂

∂�

)
+ k2

w

]
GN = 0, xn � a, (5.10)

subject to
∂GN

∂xn

+
ikwGN

Z =
1

2π�
δ(�) at xn = 0, (5.11)

where � denotes curvilinear ‘radial’ distance on SN from the point source at the nose

along a meridional arc of the ellipsoid (5.1), and ℘ = a2/b is the radius of curvature of

SN at N.

Following the method of Howe et al. [23], we introduce the zeroth-order Hankel trans-

form

GN(xn, �) = 2π

∫ ∞

0

ĜN(xn, k)kJo(k�)dk, (5.12)

where J0 is the Bessel function of zero order. Therefore [42]

∂2ĜN

∂x2
n

+
2k2

℘

[
xn +

℘

2

(
k2

w

k2

)]
ĜN = 0, xn > 0, (5.13)

where, from (5.11),
∂ĜN

∂xn

+
ikwĜN

Z =
1

(2π)2
, xn = 0. (5.14)

67

         Report No. ME09 - 13 Boston University, College of Engineering



The solution for this system with outgoing wave behavior is [8, 37]

ĜN(xn, k) =
1

(2π)2
(5.15)

×
Ai

{
e−

iπ
3

(
2|k|2

℘

) 2
3
[
xn +

(
k2

w

k2 − 1
)]}

ei(k�−π
4
)

(
2|k|2

℘

) 1
3
e−

iπ
3 Ai′

{
e−

iπ
3

(
|k|℘
2

) 2
3
(

k2
w

k2 − 1
)}

+ ikw

Z Ai

{
e−

iπ
3

(
|k|℘
2

) 2
3
(

k2
w

k2 − 1
)} ,

where Ai denotes the Airy function [1] and the prime denotes differentiation with respect

to its argument. Putting xn = 0 on the surface, we find from (5.12) that

GN(0, �) =
1

2π
(5.16)

×
∫ ∞

0

kJ0(k�) Ai

{
e−

iπ
3

(
|k|℘
2

) 2
3
(

k2
w

k2 − 1
)}

ei(k�−π
4
) dk

(
2|k|2

℘

) 1
3
e−

iπ
3 Ai′

{
e−

iπ
3

(
|k|℘
2

) 2
3
(

k2
w

k2 − 1
)}

+ ikw

Z Ai

{
e−

iπ
3

(
|k|℘
2

) 2
3
(

k2
w

k2 − 1
)} ,

When kwa � 1 the Bessel function may be replaced by its large argument approximation

(J0(x) ∼√
2/πx cos(x−π/4) [1]), and the range of integration extended to −∞ < k < ∞

to give

GN(0, �) ≈ 1

(2π)
3
2
√

�
(5.17)

×
∫ ∞

−∞

√
k + iε Ai

{
e−

iπ
3

(
|k|℘
2

) 2
3
(

k2
w

k2 − 1
)}

ei(k�−π
4
) dk

(
2|k|2

℘

) 1
3
e−

iπ
3 Ai′

{
e−

iπ
3

(
|k|℘
2

) 2
3
(

k2
w

k2 − 1
)}

+ ikw

Z Ai

{
e−

iπ
3

(
|k|℘
2

) 2
3
(

k2
w

k2 − 1
)} ,

where |k| =
√

k2 + ε2 (ε → +0), with the branch cuts for
√

k ± iε taken respectively

from ∓iε to ∓i∞ in the k-plane.

As kw� → ∞ the main contribution to the integral is from the residues of poles at
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the zeros k = kn (n = 1, 2, 3, . . .) of

(
2|k|2

℘

) 1
3

e−
iπ
3 Ai′

{
e−

iπ
3

( |k|℘
2

) 2
3
(

k2
w

k2
− 1

)}
(5.18)

+
ikw

Z Ai

{
e−

iπ
3

( |k|℘
2

) 2
3
(

k2
w

k2
− 1

)}
= 0

in the upper k-plane. By making use of the formula Ai′′(ξ) = ξAi(ξ) [1] we accordingly

find

GN(0, �) ≈ 3e
3iπ
4

2
√

2π�

∑
n

√
kneikn�{

kw

Zkn
− ikn℘

2

(
2k2

w

k2
n

+ 1
) [

1 − (
1 − 1

Z2

) k2
w

k2
n

]} , kwa � 1. (5.19)

The solution is valid for ko� � 1 and is asymptotically accurate for � less than about

1
2
a [35]. Howe et al. [23] demonstrate how the geometrical theory of diffraction [31, 37]

can be used to extend the range of validity of the solution out to the edge A of the

cavitator. To do this the algebraic amplitude factor 1/
√

� involving the curvilinear

surface propagation distance � must be replaced by 1/
√

r and the complex phase kn� in

the exponential factor eikn� must be modified to account for the variation of the creeping

wavenumber kn = kn(�) because of the change in the radius of curvature ℘ = ℘(�) of

creeping surface rays with distance � along the propagation path on SN. The result can

be expressed in the form

GN(0, �) ≈ 3e
3iπ
4

2
√

2πr

∑
n

⎛
⎝ √

kn

kw

Zkn
− ikn℘

2

(
2k2

w

k2
n

+ 1
) [

1 − (
1 − 1

Z2

)
k2

w

k2
n

]
⎞
⎠

0

eiΨn(�), kwa � 1.

(5.20)

where the quantity (·)0 is evaluated at the nose N (where ℘ = a2/b) and the phase Ψn is

given by

Ψn =

∫ �

0

kn(�′) d�′, (5.21)
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in which kn is the appropriate solution of Equation (5.18) when ℘ = ℘(�′).

5.2.2 Diffraction at the cavitator edge

When the creeping surface wave (5.20) reaches the edge A of the cavitator (Figure 5.2)

it is further diffracted because of the change in surface condition from (5.11) on SN to

G = 0 on SC. Near A (where r → a) the approaching surface wave GN(0, �) has a slowly

varying amplitude but rapidly varying phase factor ∼ eikw�. The diffraction of this wave

at the edge was treated approximately by Howe et al. [23] by imagining the surface of

the cavitator to be deformed near A into a circular cylinder of radius a (depicted by

the broken lines in Figure 5.2) that forms a rigid upstream continuation of the mean

cylindrical cavity interface SC. The creeping wave (5.20) is then regarded as incident on

A from along this cylinder, and expressed in the form

GN(0, �) = GIe
ikwx (5.22)

where

GI =
3e

3iπ
4

2
√

2πa

∑
n

⎛
⎝ √

kna

kw

Zkn
− ikna2

2b

(
2k2

w

k2
n

+ 1
) [

1 − (
1 − 1

Z2

) k2
w

k2
n

]
⎞
⎠

0

eiΨn(	), (5.23)

and � = b E

(√
b2−a2

b2

)
is the curvilinear distance on the meridional geodesic on the

ellipsoidal cavitator SN from the nose N to the edge A, where E(ξ) is the complete

elliptic integral of the second kind [1].

Howe et al. [23] solved this diffraction problem for an acoustically hard cavitator by

the method of Weiner-Hopf [9, 33] in the limiting case where kwa � 1; the same method

is applicable here. Letting GS denote the edge diffracted component of G, in the region
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r > a we can write

G = GIe
ikwx + GS(x, r), (5.24)

where for some function A(k) we can put [10, 18, 33]

GS(x, r) =

∫ ∞

−∞
A(k)H

(1)
0 (γr)eikxdk, (5.25)

where H
(1)
0 is the zeroth order Hankel function and γ =

√
k2

w − k2, with branch cuts

in the k-plane extending from k = ±(kw + iε) (ε → +0) to ±∞, so that γ is positive

imaginary on the real axis when |k| > kw. The function A(k) is determined from the

conditions
∂G
∂r

+ ikwG
Z = 0, x < 0

G = 0, x > 0

⎫⎪⎬
⎪⎭ , r = a + 0 (5.26)

which supply the following dual integral equations satisfied by A(k)

∫ ∞

−∞

(
γH

(1)
1 (γa) +

ikw

Z H
(1)
0 (γa)

)
A(k)eikxdk = 0, x < 0, (5.27)∫ ∞

−∞

(
A(k)H

(1)
0 (γa) +

G1

2πi(k − kw − iε)

)
eikxdk = 0, x > 0. (5.28)

For kwa � 1, the Hankel functions H
(1)
0 , H

(1)
1 can be replaced by their large argument

approximations [1]. Solving by the Wiener-Hopf method [9, 33]

G(x, r) ≈ G1

(
eikwx +

i

2π

√
a

r

∫ ∞

−∞

K+(kw)ei{kx+γ(r−a)}dk

K+(k)(k − kw − iε)

)
, kwa � 1 (5.29)

where K+(k) is one of two functions K±(k) regular on the real k axis and respectively

in Im k >
< 0, and satisfying for real k

K+(k)K−(k) =
kw

Z +
√

(kw + iε)2 − k2 . (5.30)
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Taking the derivative of (5.29) on the cavity interface r = a,

(
∂G

∂r

)
r=a

=
GI

2π

∫ ∞

−∞

K+(kw)
√

kw + iε + k

K+(k)
√

kw + iε − k
eikxdk, ε → +0, kwa � 1, (5.31)

When x > 0 and kwx is large, the main contribution to the integral in (5.31) is from the

neighborhood of the branch point at k = kw + iε. By expansion of the integrand about

this point we find, to leading order, that

(
∂G

∂r

)
r=a

≈ GI

√
2kw

πx
ei(kwx−π

4 ), kwa � 1. (5.32)

Using (5.23) and the definition (5.9), we obtain from this the corresponding explicit

approximation for the transfer function

T (x, ω) ≈ − 3i

2πa2

√
kwa

x/a

∑
n

⎛
⎝ √

kna

kw

Zkn
− ikna2

2b

(
2k2

w

k2
n

+ 1
) [

1 − (
1 − 1

Z2

) k2
w

k2
n

]
⎞
⎠

0

ei{Ψn(	)+kwx},

(5.33)

for kwa � 1.

5.2.3 Behavior of the transfer function when kwa ∼ O(1)

The approximate behavior of the transfer function when kwa ∼ O(1) is obtained by

the method discussed by Howe et al. [23] in which the surface wave on SN incident on

the edge A of the cavitator is approximated by the surface potential produced by the

point source at N on a flat, infinitely extensive surface. In a first approximation at low

frequencies, this potential is the same as that generated by a source on a rigid surface,

for which

GN(0, �) = − eikw�

2π�
. (5.34)
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The influence on this wave of diffraction at the edge A will be assumed to be well

approximated by the formula (5.32) of §5.2.2, wherein we take

GI = − eikw	

2π�
(5.35)

where � is defined as in equation (5.23). Therefore (5.32) yields

T (x, ω) ∼ −1

2
1
2 π

3
2 a�

√
kwa

x/a
ei(kw(	+x)−π

4 ), kwa ∼ O(1). (5.36)

5.3 Transfer function: Numerical results

The properties of a compliant cavitator are most easily demonstrated by letting Z = 1

in the surface condition (5.4) on SN, corresponding to a locally reacting ‘ρc surface’. The

attenuation of creeping waves on SN is then governed by the solutions kn of equation

(5.18)) when Z = 1. At very high frequencies (kw℘ → ∞) the zeros are the same as

those for a pressure release surface [37], which are determined by the roots ζ = −ξn, n =

1, 2, 3, . . . of Ai(ζ) = 0, which are real and negative and given by [1]

ξ1 = 2.33818, ξ2 = 4.08794, ξ3 = 5.52056, ξn =

[
3π

8

(
4n − 1

)] 2
3

, n > 3. (5.37)

Each ξn determines a corresponding pole kn given approximately by

kn

kw

∼ 1 +
ξn

2

(
2

kw℘

) 2
3

e
iπ
3 , n = 1, 2, 3, . . . , kw℘ � 1. (5.38)

The exact dependencies on kw℘ of the real and imaginary parts of the solutions kn/kw

of equation (5.18) are plotted in Figures 5.3, 5.4 for n = 1, 2, 3. Re(kn) ∼ kw when kw℘

exceeds about 10, and Im(kn) increases rapidly with n for fixed kw℘. Indeed, as a result,
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it is readily verified that only the first term (n = 1) makes a significant contribution to

the sum on the right hand side of (5.33).

�0.5

0

0.5

1

1.5

2

1 10 100 1000

k w �

Re
(k
n/k

w
)

n�=�1

n�=�2

n�=�3

Figure 5.3. Real parts of the creeping mode wavenumbers kn/kw for n = 1, 2, 3 for a
ρc-cavitator (Z ≡ 1)

The comparison in Figure 5.5 of the numerical solution of (5.18) and the asymptotic

approximation (5.38) for this principal creeping mode (n = 1) indicates that (5.38) may

be used when kw℘ > 10. In particular it can be used to evaluate the phase Ψ1(�) for the

first term in the expansion (5.33). To do this it is convenient to introduce the parametric

representation (x, r) = (−b cos φ, a sin φ), 0 < φ < π
2
, of a point on the ellipsoidal nose

(5.1). Then

℘ =
1

ab
(a2 cos2 φ + b2 sin2 φ)

3
2 , d� = (a2 cos2 φ + b2 sin2 φ)

1
2 dφ, (5.39)
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Figure 5.4. Imaginary parts of the creeping mode wavenumbers kn/kw for n = 1, 2, 3
for a ρc-cavitator (Z ≡ 1)

and

Ψ1(�) ≈ kw� + ξ1

(
kwa2

2b

) 1
3

e
iπ
3

∫ π
2

0

dφ√
sin2 φ + (a2/b2) cos2 φ

= kw� + ξ1

(
kwa2

2b

) 1
3

K

(√
b2 − a2

b2

)
e

iπ
3 , (5.40)

where K denotes the complete elliptic integral of the first kind [1].

The magnitude of the transfer function |T (x, ω)| determines the strength of the self

noise at the nose N in terms of the impinging gas pressure field pv on the cavity interface.

Its variation for kwa � 1 is given by the first mode in (5.33) in the form

a2|T (x, ω)| ≈ 3

2π

√
a

x
(kwa)

1
2

∣∣∣∣∣∣
(k1a)

1
2 eiΨ1(	)

kw

k1
− ik1a2

2b

(
2k2

w

k2
1

+ 1
)
∣∣∣∣∣∣ (5.41)

This approximation is plotted as the ‘ρc-nose’ curve in Figures 5.7-5.9 for a cavitator
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Figure 5.5. Comparison of the real and imaginary parts of k1/kw for a ρc cavitator
determined by equation (5.18) (with Z ≡ 1) and the asymptotic approximation (5.38)
with n = 1.

of aspect ratio b/a = 5/3 and x = a, 2a, 3a downstream of the edge A of the cavitator.

The straight line labeled ‘flat nose’ in the figure is the corresponding low frequency

prediction given by (5.36) (in which �/a = (b/a)E(0.8) ≈ 2.125). The behavior at

intermediate frequencies is estimated by a smooth interpolating curve (− − −) between

these high and low frequency limits.

Figures 5.7-5.9 also depict the corresponding prediction of |T (x, ω)| for an acoustically

hard ellipsoidal cavitator of the same aspect ratio and distances from the cavitator edge,

which obtains in the formal limit Z → ∞. In this case equation (5.18) for the creeping

mode poles reduces to

Ai′
{

e−
iπ
3

( |k|℘
2

) 2
3
(

k2
w

k2
− 1

)}
= 0. (5.42)

Again only the pole k1 in the upper half plane nearest to the real k axis makes a significant
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Figure 5.6. Comparison of the real and imaginary parts of k1/kw for an acoustically
hard cavitator (Z → ∞) with the approximation (5.43) with n = 1.

contribution to the creeping wave amplitude. The calculated dependence of the real and

imaginary parts of k1/kw on kw℘ are shown in Figure 5.6. The asymptotic approximation

is given by
k1

kw

≈ 1 +
σ1

2

(
2

kw℘

) 2
3

e
iπ
3 , σ1 = 1.01879. (5.43)

The zeros of Ai′(ζ) lie on the negative real axis, and ζ = −σ1 is the root closest to the

origin. The approximation (5.43) has been used to evaluate the complex phase Ψ1(�) for

the hard cavitator, yielding

Ψ1(�) = kw� + σ1

(
kwa2

2b

) 1
3

K

(√
b2 − a2

b2

)
e

iπ
3 , (5.44)
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Figure 5.7. Frequency dependence of the creeping wave and low frequency (‘flat nose’)
approximations for 20 × log10(a

2|T |) (dB) at x = a for an ellipsoidal cavitator of aspect
ratio b/a = 5/3 for cases where the cavitator has a ρc-nose or is acoustically hard; the
broken line curves represent possible interpolations for intermediate frequencies.

5.4 Prediction of the sound pressure spectrum at the

nose

To predict the self-noise at the nose of our experimental supercavitating vehicle (Fig. 1.1)

we consider that the fluctuating surface pressure pv is generated by an axisymmetric array

of 20 jets of infinitesimal cross-section discreetly impinging the surface SC, hence

pv =
20∑
i=1

Fn(x, ω)δ(x − xn)
δ(θ − θn)

a
(5.45)
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Figure 5.8. Frequency dependence of the creeping wave and low frequency (‘flat nose’)
approximations for 20× log10(a

2|T |) (dB) at x = 2a for an ellipsoidal cavitator of aspect
ratio b/a = 5/3 for cases where the cavitator has a ρc-nose or is acoustically hard; the
broken line curves represent possible interpolations for intermediate frequencies.

where Fn is the unsteady force exerted by the nth jet applied at its centroid (xn, θn) and

θ is the polar angle about the x-axis. Using this to approximate the integral (5.8),

pN(ω) =
20∑

n=1

∫
S

Fn(x, ω)δ(x − xn)δ(θ − θn)T (x, ω)dxdθ

=
20∑

n=1

Fn(xn, θn, ω)T (xn, ω). (5.46)

where T (xn, ω) is the transfer function corresponding with the centroid of the nth jet. As

we are interested in the spectral content of the noise at the nose ΦP,N = 1
2π
〈pN(ω)p∗N(ω)〉,

we multiply each side by its complex conjugate and divide by 2π to find an expression
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Figure 5.9. Frequency dependence of the creeping wave and low frequency (‘flat nose’)
approximations for 20× log10(a

2|T |) (dB) at x = 3a for an ellipsoidal cavitator of aspect
ratio b/a = 5/3 for cases where the cavitator has a ρc-nose or is acoustically hard; the
broken line curves represent possible interpolations for intermediate frequencies.

for the sound pressure spectrum at the nose

ΦP,N(ω) =
1

2π

20∑
n=1

20∑
m=1

〈Fn(xn, θn, ω)F ∗
m(xn, θn, ω)〉T (xn, ω)T ∗(xm, ω) (5.47)

where * denotes the complex conjugate. As the jets are assumed to be statistically

independent, the terms of the double summation are non-zero only if n = m, leaving

ΦP,N(ω) =
20∑

n=1

ΦFF,n(ω)|T (xn, ω)|2 (5.48)

where ΦFF,n(ω) is the frequency spectrum of the force exerted by the nth jet on the

surface. If we consider, as in Chapter 3, that the 20 jets are statistically independent

and that they are equidistant from the nose so that x1 = x2 = x3...x20 ≡ x, then (5.48)
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reduces to

ΦP,N(ω) = 20ΦFF (ω)|T (x, ω)|2 (5.49)

5.5 Spectrum predictions at the nose

The experimental results of §4.4 and the numerical results of §5.3 are now used in

Eq. (5.49) to predict the impingement-generated sound pressure spectrum at the nose

of the experimental supercavitating vehicle. Figures 5.10-5.12 present the normalized

prediction for the sound pressure spectra

10 × log10

(
ΦP,N(ω)

Mρ2
AU3a

)

versus dimensionless frequency kwa for jets located at distances x/a = 1, 2, and 3 aft

of the cavitator edge, where M = U/cw is the Mach number of the jet relative to the

sound speed in water cw, ρA is the mean jet density (taken as 1.2 kg/m3) and U is the

jet impact velocity. Predictions for both the hard and compliant (ρc) nose are given

using the experimentally measured ΦFF (ω) for a gas injection rate of Q = 0.0094 m3/s

and � = 35 mm, chosen for being the most typical parameters of ARL’s model vehicle

experiments. U is therefore taken as 31.1 m/s (see Table 4.2). Predictions made using the

force spectrum measurements from Chapter 4 for each measured jet length and injection

flow rate are presented in Appendix E.

Differences between sound at the nose for the hard and ρc nose are small at low

frequencies (kwa < 1), but very large at high frequencies (kwa ∼ 10), on the order of

30dB or more. The sound spectra all peak near kwa = 0.1, with the predictions for

a hard nose dropping off like (kwa)−1 and the predictions for the ρc nose dropping off

like (kwa)−2. There is approximately a 2dB decrease in the sound amplitude between

the predictions when the jets are one and two cavity radii away from the cavitator edge
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Figure 5.10. Predictions of the sound pressure at the nose when x = a for an ellipsoidal
cavitator of aspect ratio b/a = 5/3 for cases where the cavitator has a ρc-nose or is
acoustically hard and gas is injected at Q = 0.0094 m3/s producing jets of length 35 mm.

(x = a, 2a), and a 1.5dB decrease between predictions for jets two and three cavity radii

away (x = 2a, 3a).

5.6 Conclusions

Comparing the predictions for the sound at the nose with the predictions for the radiated

sound in the water found in Chapter 4, there is a dramatic decrease in the presence of

high frequency sound at the nose, particularly for a compliant (ρc) nose section. This

suggests that the high frequencies (kwa ≥ 10) generated by the jet impingement source

have very low amplitudes at the nose and will have negligible impact on guidance systems

located forward of the cavitator.

Although we predict that high frequencies at the nose will be minimal, it is always

desirable to reduce the self-noise generated in and around the supercavity. An important
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Figure 5.11. Predictions of the sound pressure at the nose when x = 2a for an ellipsoidal
cavitator of aspect ratio b/a = 5/3 for cases where the cavitator has a ρc-nose or is
acoustically hard and gas is injected at Q = 0.0094 m3/s producing jets of length 35 mm.

conclusion from our predictions for the sound spectrum at the nose which applies to the

self-noise problem is that high frequencies are significantly damped by an acoustically

soft nose; we predict, for example, a 30 dB decrease in high frequencies between the

hard and compliant nose sections. Furthermore, small decreases to the amplitude of the

broadband sound at the nose may be achieved by increasing the distance between the

edge of the cavitator and the ventilating jets. This insight provides two strategies for

reducing the high frequency noise at the nose of a supercavitating vehicle. The first is

to choose the most acoustically compliant material for the nose section which still allows

for transmission of guidance communications and does not inhibit the vehicles hydrody-

namic performance. The second is to locate the ventilation jets as far downstream from

the cavitator as possible without inhibiting the generation of the supercavity or vehicle

performance.
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Figure 5.12. Predictions of the sound pressure at the nose when x = 3a for an ellipsoidal
cavitator of aspect ratio b/a = 5/3 for cases where the cavitator has a ρc-nose or is
acoustically hard and gas is injected at Q = 0.0094 m3/s producing jets of length 35 mm.
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Chapter 6

Conclusions

6.1 Summary

Ventilated supercavities yield dramatic reductions in vehicle drag, but they can be a

significant source of noise, some of which can inhibit successful deployment of a super-

cavitating underwater vehicle. The research described in this dissertation was motivated

by the need to understand the contributions to this noise made by the ventilating jets of

the supercavity. The problem was approached by the development of three general theo-

retical models for jet-cavity interaction supported by experiments. Empirical knowledge

of the cavity and ventilating jets determined from a scale-model experimental vehicle

were used with the theory to make specific predictions for the sound and self-noise gen-

erated by the ventilating jets.

The first theoretical problem involved an idealized, gas-filled spherical cavity whose

interface was excited by a planar ring of radially projecting jets originating from a source

at the sphere’s center. Analysis of this configuration provided a general understanding

of the directivity of the sound radiated into the water as well as the importance of

cavity resonances and damping mechanisms within the cavity. It was deduced that
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low frequency sound emanates from the spherical cavity omni-directionally, while higher

frequencies are generated by a source of dipole type, projecting sound outward and

normal to the cavity at the jet impingement site. It was determined that the amplitudes

of resonant cavity oscillations are controlled by sound radiation damping and by thermal

and viscous losses within the cavity; it was argued that the steady exhausting of gas

at the rear of a real supercavity has a negligible effect on damping. Another important

conclusion was confirmation of the validity of the effective pressure release nature of the

gas-water interface, which implies that the dominant source of sound radiated into the

water is associated with the direct impact of the ventilating jets on the cavity interface.

The second theoretical problem examined the sound generated in the water by a

turbulent gas jet of infinitesimal cross-section impinging at normal incidence on a plane

gas-water interface. The acoustic spectrum was represented in terms of the unsteady force

exerted on the interface by the jet. Theoretical results were combined with measurements

of the force spectrum for a jet impinging on a rigid wall to predict the acoustic spectrum

in the water. Results for a plane interface were then applied to develop an understanding

of the sound generated for a more realistic, cylindrical cavity.

Finally, a theory was developed to estimate the high-frequency self-noise at the vehicle

nose in terms of the pressure fluctuations at the cavity interface induced by the ventilating

jets. This was done by deriving an asymptotic approximation for a transfer function that

accounts for the diffraction of sound around an ellipsoidal surface of the vehicle nose.

Numerical predictions of the transfer function revealed the important role played by the

surface impedance of the nose; an acoustically hard nose results in significantly greater

acoustic amplitudes at the nose than an acoustically soft or compliant nose.

It was determined that as a first approximation the supercavity interface could be

treated as rigid. This allowed for empirical knowledge of the ventilating jets of an

experimental supercavitating vehicle to be acquired by means of an experiment involving

86

         Report No. ME09 - 13 Boston University, College of Engineering



the measurement of the frequency spectrum of the unsteady force exerted by a gas jet on

a plane, rigid surface. Results were combined with the theoretical predictions to make

specific predictions of the frequency dependence and amplitude of the sound generated by

a supercavitating vehicle. The experiments also confirmed an important approximation

of the theoretical model, namely that the impingement source region is acoustically

compact. The predictions of the sound generated by the measured supercavity jets

were compared with predictions made using an independent measurement of the surface

pressure on a flat plate produced by an air jet impinging at normal incidence. The

close coincidence between these predictions lends valuable support for the validity of our

measurement procedure.

6.2 Recommendations for future work

6.2.1 Extended experiments

The work described in this dissertation compliments experimental investigations of the

acoustics of ventilated supercavities on underwater vehicles. Our predictions for the self

noise at the nose should be investigated by the direct measurement of the sound at the

nose of a deployed supercavitating vehicle that uses the modified gas injection system

with radially projecting ventilation jets. Our results and the advanced acoustic levels

produced by the impact of the jets on the cavity interface at normal incidence will help

isolate impingement-generated sound from that created by other acoustic sources within

and around the cavity. The experiment should be conducted using a free-running vehicle

rather than one mounted in a water tunnel, where the enclosed test section creates a

reverberant field that may influence the measured self-noise levels.

As the experimental supercavitating vehicles evolve in scale and design, it will be

desirable to make predictions for the impingement-generated sound specific to each vehi-
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cle. The theoretical solutions are general and applicable to any cavity with a comparable

injection system. If acoustic compactness of the impingement source is maintained, that

is, if the jet impact diameter remains small relative to the wavelength of the relevant

acoustic frequencies, the sound predictions are easily made using empirical jet and cavity

information unique to each vehicle. The benchtop test described in Chapter 4 can be

easily setup and quickly executed using either a vehicle jet or a stand alone jet nozzle,

facilitating the production of theoretical results which compliment the acoustic investi-

gations for each model vehicle.

A possible extension to the self-noise predictions would be the development of so-

lutions for the self-noise generated by jets impinging at shallow incidence. This ar-

rangement more closely represents the acoustic source present due to the traditional gas

injection system on supercavitating underwater vehicles which includes gas deflectors

which redirect the ventilating jets. The prediction method could again be derived in

terms of the unsteady force exerted by a jet on the interface, and an analogous exper-

iment for measuring this force could be developed. The importance of considering this

more general problem will become apparent as understanding of all of the various acous-

tic sources in the supercavity improves. It is unlikely that a theory that uses a more

realistic geometry of the gas-impingement source would reveal any new insight relevant

to the problem of noise reduction; it would primarily provide a more accurate prediction

for the absolute levels of the impingement-generated sound.

6.2.2 Recommendations for achieving noise reduction

This dissertation is only a first step in the complete investigation of the self-noise problem.

However, it immediately provides valuable insight into the possible means of reducing

the self-noise at the nose of a supercavitating vehicle. The first insight, revealed by the

measurements of Chapter 4, is the relationship between ventilation gas injection rate
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and the amplitude of the generated sound. A doubling of the ventilation rate produces

a rapid increase in generated sound power, approximately 10-15 dB. This leads us to

recommend an investigation to determine the lowest gas injection rate capable of safely

maintaining a stable supercavity around the underwater vehicle.

Chapter 5 demonstrated that the impedance of the cavitating nose section material

has a significant impact on self-noise at the vehicle nose. Predictions for an acousti-

cally hard cavitator were dramatically louder than those for an acoustically compliant

nose. This result reinforces the importance of identifying a material for the nose which

minimizes the diffraction of sound from its trailing edge without compromising the trans-

mission of guidance system communications or hydrodynamic performance.

Another important conclusion from Chapter 5 is the demonstrated effect on the

sound at the nose of the distance between the vehicle’s ventilating jets and the edge

of the cavitating nose section. Proximity of the jets to the nose significantly increased

the magnitude of the self-noise at the nose. We therefore recommend exploring the

maximum distance between the vehicle’s nose section and gas injection site for which

the supercavity is successfully and safely developed and maintained without adversely

affecting the vehicle’s hydrodynamic performance or stability.
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Appendix A

Review of select topics in linear

acoustics

This appendix summarizes some of the fundamentals of acoustic theory pertinent to

this dissertation. The information herein is well known and included for completeness.

Material is taken from Blackstock [5], Howe [18], and Pierce [37]. See these references

and their bibliographies for greater detail on each topic or a more general review of the

principles of linear acoustics.

A.1 The linear wave equation

The acoustic wave equation is derived from the conservation and constitutive equations

which describe a fluid. We consider a fluid volume V defined by a surface S in which

body forces and thermal and viscous effects are negligible. The fluid inside the volume

has velocity u(x, t), pressure P (x, t), and density ρ(x, t) at a position x = (x1, x2, x3)

and time t.

Conservation of mass requires that the increase of mass inside V must be equal to

90

         Report No. ME09 - 13 Boston University, College of Engineering



the influx of mass through S. This is expressed by the continuity equation

Dρ

Dt
+ ρ∇ · u = 0, (A.1)

where the material derivative D/Dt = ∂/∂t + u · ∇.

Conservation of momentum holds that the time rate of change of momentum inside

V is equal to the sum of all forces acting on the fluid volume and the momentum flux

through the surface S. Neglecting body and viscous forces, momentum conservation can

be expressed by

ρ
Du

Dt
+ ∇P = 0. (A.2)

Finally we require an equation of state, a relationship between thermodynamic vari-

ables. We will assume that our fluid volume is isentropic, that is, the entropy s in the

volume is constant, e.g.

P = P (ρ) (A.3)

We consider that the pressure P and density ρ can be decomposed into a mean, or static,

and excess constituent, such that

P = po + p, (A.4)

ρ = ρo + δρ, (A.5)

where po and ρo are respectively the mean pressure and density in the fluid volume, δρ

is the excess density, and p is the excess or acoustic pressure. This leads to the Taylor

expansion of our equation of state (A.3)

P = po + A
ρ − ρo

ρo

+
B

2!

(
ρ − ρo

ρo

)2

+ ... (A.6)
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where A,B, etc. are empirically determined coefficients. We then introduce the sound

speed c in the fluid, defined by

c2 =
dP

dρ
=

A

ρo

+
B

ρo

ρ − ρo

ρo

+ ... (A.7)

Letting ρ → ρo, we find that c becomes a constant co and that A = ρoc
2
o. Applying the

decomposition (A.4, A.5), we arrive at the equation of state

p = c2
0 δρ

(
1 +

B

2!A

δρ

ρo

+ ...

)
. (A.8)

To simplify these equations, we consider that fluctuations in the fluid properties

induced by sound energy are very small. In a quiet fluid, P = po, ρ = ρo, and u = 0

across V . We also consider that the fluid is homogeneous, and that pressure and density

are constant across the volume. We will assume that when sound is introduced the excess

pressure and density and induced particle velocity are very small compared to their static

values, and take the relations

|δρ| � ρo, (A.9)

|p| � ρoc
2
o, (A.10)

|u| � co. (A.11)

Applying the decomposition (A.5), we expand the continuity equation (A.1) as

∂

∂t
(δρ) + u∇δρ + ρo∇ · u + δρ∇ · u = 0. (A.12)

Considering our small value approximations, we note that the second and fourth terms on

the left-hand side (LHS) above are an order of magnitude smaller than the first and third,
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and are therefore considered negligible. Eliminating them, we arrived at the linearized

continuity equation
∂

∂t
(δρ) + ρo∇ · u = 0. (A.13)

We next apply the same procedure to the conservation of momentum equation (A.2).

Expanding (A.2) in terms of the decompositions of pressure and density,

ρo
∂u

∂t
+ ρou · ∇u + δρ

∂u

∂t
+ δρu · ∇u + ∇p = 0. (A.14)

As before we consider the order of each term, and find that only the first and fifth terms

on the LHS are of first order. Dropping the negligible terms, the linearized conservation

of momentum equation is found to be

ρo
∂u

∂t
+ ∇p = 0. (A.15)

The equation of state (A.8) is linearized by inspection of its terms, yielding

p = c2
oδρ. (A.16)

Using this to eliminate δρ from the linearized continuity equation (A.13),

1

c2
o

∂p

∂t
+ ρo∇ · u = 0. (A.17)

Taking the difference of the time derivative of this equation with the spatial derivative

of the linearized momentum equation (A.15) results in the linear acoustic wave equation

(
1

c2
0

∂2

∂t2
−∇2

)
p = 0. (A.18)
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It is often convenient to consider sound transmission in the frequency domain rather

than the time domain. The wave equation is easily brought into the frequency domain

by applying a Fourier transform, yielding the Helmholtz equation

(k2
o + ∇2)p = 0, (A.19)

where the acoustic wavenumber ko = ω/co and ω is angular frequency.

Now we will consider a fluid volume which contains an acoustic source. The source

can be considered to add a volume source to the right side of the continuity equation

(A.13) and a force term to the right side of the momentum equation (A.15). Carrying

these terms through the above derivation yields

(
1

c2
0

∂2

∂t2
−∇2

)
p = F(x, t) (A.20)

where the volume and force terms have been replaced by a generalized pressure source

F(x, t). This result is known as the inhomogeneous wave equation.

The radiation condition In general, solutions of the wave equation and Helmholtz

equation can be decomposed into two parts which respectively describe an outgoing, or

forward-traveling wave and an incoming, or backward-traveling wave. Let us consider a

fluid at rest. At time t = 0, an acoustic source begins to generate sound in the fluid.

Causality requires that for t > 0 the wave energy from the source radiates outward and,

in the absence of other sources or bodies, there is no incoming energy. The consideration

that all incoming solutions of the wave equation must therefore be identically zero is

known as the radiation condition.
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A.2 Acoustic impedance, intensity, and power

Acoustic impedance quantifies the sound absorption of a fluid. It is defined as the ratio

of acoustic pressure to the particle velocity in the fluid. For an outgoing wave, the

characteristic impedance Zo of a medium is given as

Zo =
p

u
= ρoco. (A.21)

Rigid walls and pressure release surfaces A medium is considered acoustically

hard or rigid if its impedance Z → ∞. A normally incident plane wave traveling through

a medium with impedance Z1 is reflected back in its entirety when it reaches a medium

of impedance Z2 when Z1 � Z2. If instead Z1 � Z2, there is again no transmission

and the reflected wave identically cancels the incident wave; the interface between two

such media is termed a pressure release surface, so named because the acoustic pressure

there is identically zero. Media whose impedance Z → 0 are considered compliant, or

acoustically soft.

Acoustic intensity is the time average of the sound energy flow through a unit area

in the direction normal to that area. In integral form, acoustic intensity I is found as

I =
1

tav

∫ tav

0

pudt. (A.22)

The directivity of radiated sound is determined by the dependence of intensity on the

direction in which it is calculated. For sound which radiates omnidirectionally, intensity

on a spherical surface of radius r simplifies, applying the definition of impedance, to a

scalar quantity

I =
p(r)2

ρoco

. (A.23)

Finally, the acoustic power W passing through any surface S in the fluid is the integral
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of the sound intensity over that surface, so

W =

∫
S

IdS′. (A.24)

where S ′ is a differential element of the surface S. For omnidirectional sound, the power

through a sphere of radius r reduces to

W = 4πr2I. (A.25)
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Appendix B

Advanced topics from aeroacoustics

This appendix provides a brief overview of select topics from aeroacoustics pertinent

to this dissertation and is included for completeness. Material is taken from Howe’s

Acoustics of Fluid-Structure Interactions [18], Theory of Vortex Sound [20], and Hydro-

dynamics and Sound [22].

B.1 Acoustic compactness and the near and far fields

An acoustic source occupying a fluid region of characteristic dimension � and frequency

ω radiates sound of wavelength 2πco/ω. The source is considered acoustically compact

when � is much smaller than this wavelength, or ω�/co ≡ ko� � 1. The acoustic far field

exists at points |x| (taking the origin of coordinates at the source) many wavelengths

from the source, or where ko|x| � 1. The near field is thus that region in the immediate

vicinity of the source, for which ko ≤ 1.

Monopoles, dipoles, and quadrupoles A monopole is an acoustic source which

can be considered analogous to a pulsating sphere. Sound radiates from the source

omnidirectionally, diminishing in the far field (as |x| → ∞) like 1
|x| . A general expression
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for a monopole is a source of the form q(t)δ(x), where q(t) is the ’strength’ of the source.

A dipole is source of the form ∂
∂xj

[fj(t)δ(x)] with strength fj(t). As a monopole can

be likened to a pulsating sphere, a dipole is analogous to an oscillating sphere. Sound

emanates from the source as two lobes protruding in the direction of that oscillation (see

Figure B.1), diminishing like 1
|x|2 in the far field. A point dipole is also equivalent to two

monopoles of opposite strength a short distance apart.

dipole quadrupole

Figure B.1. Directivity of the sound from a dipole and quadrupole source

A source distribution equivalent to four monopoles (whose net source strength is

zero) is called a quadrupole. A quadrupole source has the general form ∂2Tij

∂xi∂xj
(x, t), and

in the far field its generated sound diminishes like 1
|x|3 . The directivity of a quadrupole

is depicted in Fig. B.1.

In general, any acoustic source can be represented as the sum of component sources of

monopole, dipole, quadrupole, and higher-order pole strength. Typically it is necessary

only to consider the leading order term when determining the radiated acoustic pressure

generated by the source.
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B.2 Aerodynamic sound

The sound generated by vorticity in an unbounded fluid is called aerodynamic sound.

Lighthill [32] developed the theory of vortex sound by reformulating the Navier-Stokes

equation into an exact, inhomogeneous wave equation whose source terms are important

only within the turbulent (vortical) region. It was determined that the solution in a

real fluid for the density fluctuations δρ in the far-field from a vortical acoustic source

is equivalent to the solution in an ideal fluid which is forced by a stress distribution Tij,

the Lighthill stress tensor. This is known as Lighthill’s acoustic analogy. Including this

stress term in the momentum equation used to derive the acoustic wave equation (see

Appendix A) yields Lighthill’s equation:

(
1

c2
o

∂2

∂t2
−∇2

)
c2
oδρ =

∂Ti,j

∂xi∂xj

. (B.1)

The problem of calculating aerodynamic sound in a real fluid is therefore found to be

equivalent to solving this equation for the radiation of sound in an ideal fluid produced

by a distribution of quadrupole sources whose strength per unit volume is Lighthill’s

stress tensor Tij.

B.3 Acoustic Green’s function

The Green’s function is an important tool for solving inhomogeneous wave equations.

The free-space Green’s function is the outgoing solution of the wave equation generated

by the point source δ(x−y)δ(t− τ) in an unbounded fluid located at a point x = y and

a time t = τ . Expressed mathematically,

(
1

c2
o

∂2

∂t2
−∇2

)
G = δ(x − y)δ(t − τ) (B.2)
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where G = 0 for t < τ . This has the solution

G(x,y, t − τ) =
1

4π|x − y|δ
(

t − τ − |x − y|
c2
o

)
. (B.3)

The inhomogeneous wave equation

(
1

c2
o

∂2

∂t2
−∇2

)
p = F(x, t) (B.4)

describes the behavior of waves generated by a distributed source F(x, t). This source

can be regarded as an array of point sources, such that

F(x, t) =

∫ ∫ ∞

−∞
F(y, τ)δ(x − y)δ(t − τ)d3ydτ. (B.5)

The solution for each constituent source of strength F(y, τ)δ(x − y)δ(t − τ)d3ydτ is

F(y, τ)G(x,y, t − τ)d3ydτ . Adding up these individual contributions we obtain

p(x, t) =

∫ ∫ ∞

−∞
F(y, τ)G(x,y, t − τ)d3ydτ (B.6)

=
1

4π

∫ ∫ ∞

−∞

F(y, τ)

|x − y| δ
(

t − τ − |x − y|
c2
o

)
d3ydτ (B.7)

=
1

4π

∫ ∞

−∞

F
(
y, t − |x−y|

c2o

)
|x − y| d3y. (B.8)

Green’s functions can be applied to more general acoustic problems involving solid

or fluid boundaries, and have equivalent expressions in both the time and frequency

domains. To demonstrate the use of Green’s functions in a general problem, we will

consider a simple example involving the solution of the homogeneous Helmholtz equation.

We consider an acoustic source on the boundary of a volume of fluid defined by some

surface S. The source generates an acoustic pressure p(x, ω) within the fluid volume
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which satisfies

(∇2 + k2
o)p = 0 (B.9)

subject to some boundary condition p = p′(x, ω) on S. We then introduce a Green’s

function G(x, ω) with outgoing wave behavior,

(∇2 + k2
o)G = 0 (B.10)

with the boundary condition G = G′(x, ω) on S. Taking the difference of G·(B.9) and

p·(B.10),

p∇2G − G∇2p = 0. (B.11)

Integrating over the fluid volume V ,

∫
V

(p∇2G − G∇2p) dV = 0. (B.12)

Introducing the vector identities

p∇2G = ∇2(pG) −∇ · (G∇p) −∇G · ∇p, (B.13)

G∇2p = ∇2(Gp) −∇ · (p∇G) −∇p · ∇G (B.14)

into the integrand we find

∫
V

[∇ · (p∇G) −∇ · (G∇p)] dV = 0. (B.15)

Applying the divergence theorem, this reduces to

∫
V

[∇ · (p∇G) −∇ · (G∇p)] dV =

∮
S

[
p

∂G

∂xn

− G
∂p

∂xn

]
dS = 0 (B.16)
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where xn is the vector outward normal to the surface S. The acoustic pressure p is then

solved for by substitution into the integrand of the Green’s function G and the boundary

conditions on S specific to the problem’s geometry and source parameters.

B.3.1 The reciprocal theorem

S

xA

xB

n

Figure B.2. Reciprocal acoustic problems of equal point sources at xA and xB.

An important and very useful concept in the application of Green’s functions for

solving acoustic problems is the reciprocal theorem. We consider two acoustic prob-

lems in which sound is generated in a fluid by two point sources at x = xA and

x = xB in the presence of a solid body defined by a surface S. The Green’s func-

tions G(x,xA, ω), G(x,xB, ω) which determine the acoustic pressure generated by each

respective source are defined by

(∇2 + k2
o)G(x,xA, ω) = δ(x − xA) (B.17)

(∇2 + k2
o)G(x,xB.ω) = δ(x − xB) (B.18)
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subject to the boundary conditions on S

∂G

∂xn

(x,xA, ω) =
G(x,xA, ω)

Z(x, ω)
,

∂G

∂xn

(x,xB, ω) =
G(x,xB, ω)

Z(x, ω)
, (B.19)

where xn is the vector normal to the surface S directed into the fluid and Z(x, ω) is the

surface impedance on S. Mathematically stated, the reciprocal theorem holds that

G(xA,xB) = G(xB,xA), (B.20)

that is, the acoustic pressure at xA produced by the point source at xB is equal to the

acoustic pressure at xB produced by an equal point source at xA. The reciprocal theorem

is particularly useful for simplifying acoustic problems in which the geometry local to

either the source or the point of interest complicates finding their solutions.

B.3.2 Method of images

y

y

x3 =�0

x1
x2

x3

rigid�wall

Figure B.3. Acoustic image problem

Another important concept in applying Green’s functions is the method of images.

Let us consider an acoustic source at a point y near an infinite rigid wall x3 = 0.

Recognizing that the acoustic pressure on the wall vanishes, we can choose to reformulate
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the problem by removing the wall and introducing a source of equal and opposite strength

located at the image point ȳ of the original source in the wall, that is, its reflection

through the plane x2 = 0; the sound generated from the image source identically cancels

that generated by the original source along x2 = 0, maintaining the boundary condition

of the original problem. This is applied in the use of Green’s functions by letting the

Green’s function G for the source near the wall be represented as the sum of the free-

space Green’s functions G′ for the sources at the original point and the image point,

or

G(x,y, ω) = G′(x,y, ω) − G′(x, ȳ, ω). (B.21)
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Appendix C

Garfield Thomas Water Tunnel

Figure C.1. Schematic of the ARL 0.3048-m diameter water tunnel facility

Experiments using the model supercavitating vehicle are conducted inside ARL’s

0.3048 m-diameter water tunnel facility. The tunnel is a closed circuit, closed jet system

which can achieve velocities up to 24.38 m/s under absolute pressures ranging between

20.7 and 413.7 kPa. The flow is controlled by a mixed flow peerless pump driven by

a 111.8 kW motor. The tunnel accomodates two test sections, a rectangular section

measuring 508 mm by 114.3 mm by 762 mm long (shown above), and a cylindrical test
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section measuring 304.8 mm in diameter by 762 mm long. The cylindrical test section is

used for the supercavitating vehicle tests.
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Appendix D

Equipment Specifications

This appendix presents the pertinent specifications for transducers and electronics used in

the jet impact force experiment. These include the unsteady force sensor, accelerometer,

velocimeter, flowmeter, signal conditioner, and data acquisition hardware.

D.1 Unsteady force transducer

Model PCB 208C01
Frequency Response 0.01 to 36000 Hz
Resolution 0.00045 N-rms
Measurement Range 44.48 N
Nominal Sensitivity 112.4 mV/N

Table D.1. Force transducer specifications
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D.2 Accelerometer

Model PCB 352B10
Frequency Response 1 to 17000 Hz
Resonant Frequency ≥ 65 kHz
Nominal Sensitivity 10 mV/g

Table D.2. Accelerometer specifications

D.3 Velocimeter

Model TSI 8345
Velocity Range 0 to 30 m/s
Temperature Range -17.8 to 93.3◦C
Velocity Sensitivity 3% or ±0.15 m/s,whichever is greater
Temperature Sensitivity ± 0.3◦C

Table D.3. VelociCalc specifications

This velocimeter is calibrated annually by the manufacturer.

D.4 Flowmeter

Model Sierra Instruments 780S-NAA-N5-E2-P3-V1-DD-MP-SR
Accuracy ±1%

Table D.4. Flowmeter specifications

This flowmeter is calibrated annually by the manufacturer.
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D.5 Signal Conditioner

Model PCB 480B21
Frequency Range 0.15 to 100 kHz
Voltage Gain (± 2%) 1:1

(± 2%) 1:10
(± 2%) 1:100

Spectral Noise (1 Hz)(Gain x1) -128 dB
Spectral Noise (10 Hz)(Gain x1) -140 dB
Spectral Noise (100 Hz)(Gain x1) -144 dB
Spectral Noise (1 kHz)(Gain x1) -147 dB
Spectral Noise (10 kHz)(Gain x1) -148 dB
Broadband Electrical Noise (1 to 10 kHz)(Gain x1) -110 dB/rms
Spectral Noise (1 Hz)(Gain x10) -115 dB
Spectral Noise (10 Hz)(Gain x10) -118 dB
Spectral Noise (100 Hz)(Gain x10) -122 dB
Spectral Noise (1 kHz)(Gain x10) -123 dB
Spectral Noise (10 kHz)(Gain x10) -129 dB
Broadband Electrical Noise (1 to 10 kHz)(Gain x10) -86 dB/rms

Table D.5. Signal conditioner specifications

D.6 Data Acquisition System

Model DSP Technologies SigLab 50-21
Frequency Response 0 to 50 kHz

Table D.6. SigLab hardware specifications

Computer: Dell Latitude D820 laptop computer

Software: Siglab Dynamic Signal Analyzer (VNA) v3.2

109

         Report No. ME09 - 13 Boston University, College of Engineering



Appendix E

Extended experimental results and

sound predictions

This appendix presents all of the unsteady force spectra measured during the experiment

of Chapter 4. Each test using the parameters of injection rate Q and jet length � (see

4.1) was repeated three times; we herein refer to these as runs A, B, and C. Also included

are the subsequent predictions of the impingement-generated sound power spectra, as

in §4.5 for each data set. An example of the prediction for the self-noise spectra at the

vehicle nose (as in §5.5) is given for each set of jet parameters � and Q.
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E.1 Measured force spectra (§4.4)
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Figure E.1. Measured force spectra for jets of gas injection rate Q = 0.0047 m3/s and
jet lengths � = 15, 25, 35, and 45 mm, run A, normalized to mean force Fo in 15.6 Hz
bins, versus dimensionless frequency fDo/Uo.
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Figure E.2. Measured force spectra for jets of gas injection rate Q = 0.0047 m3/s and
jet lengths � = 20, 30, and 40 mm, run A, normalized to mean force Fo in 15.6 Hz bins,
versus dimensionless frequency fDo/Uo.
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Figure E.3. Measured force spectra for jets of gas injection rate Q = 0.0071 m3/s and
jet lengths � = 15, 25, 35, and 45 mm, run A, normalized to mean force Fo in 15.6 Hz
bins, versus dimensionless frequency fDo/Uo.
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Figure E.4. Measured force spectra for jets of gas injection rate Q = 0.0071 m3/s and
jet lengths � = 20, 30, and 40 mm, run A, normalized to mean force Fo in 15.6 Hz bins,
versus dimensionless frequency fDo/Uo.
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Figure E.5. Measured force spectra for jets of gas injection rate Q = 0.0094 m3/s and
jet lengths � = 15, 25, 35, and 45 mm, run A, normalized to mean force Fo in 15.6 Hz
bins, versus dimensionless frequency fDo/Uo.
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Figure E.6. Measured force spectra for jets of gas injection rate Q = 0.0094 m3/s and
jet lengths � = 20, 30, and 40 mm, run A, normalized to mean force Fo in 15.6 Hz bins,
versus dimensionless frequency fDo/Uo.
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Figure E.7. Measured force spectra for jets of gas injection rate Q = 0.0047 m3/s and
jet lengths � = 15, 25, 35, and 45 mm, run B, normalized to mean force Fo in 15.6 Hz
bins, versus dimensionless frequency fDo/Uo.
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Figure E.8. Measured force spectra for jets of gas injection rate Q = 0.0047 m3/s and
jet lengths � = 20, 30, and 40 mm, run B, normalized to mean force Fo in 15.6 Hz bins,
versus dimensionless frequency fDo/Uo.
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Figure E.9. Measured force spectra for jets of gas injection rate Q = 0.0071 m3/s and
jet lengths � = 15, 25, 35, and 45 mm, run B, normalized to mean force Fo in 15.6 Hz
bins, versus dimensionless frequency fDo/Uo.
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Figure E.10. Measured force spectra for jets of gas injection rate Q = 0.0071 m3/s and
jet lengths � = 20, 30, and 40 mm, run B, normalized to mean force Fo in 15.6 Hz bins,
versus dimensionless frequency fDo/Uo.
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Figure E.11. Measured force spectra for jets of gas injection rate Q = 0.0094 m3/s and
jet lengths � = 15, 25, 35, and 45 mm, run B, normalized to mean force Fo in 15.6 Hz
bins, versus dimensionless frequency fDo/Uo.
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Figure E.12. Measured force spectra for jets of gas injection rate Q = 0.0094 m3/s and
jet lengths � = 20, 30, and 40 mm, run B, normalized to mean force Fo in 15.6 Hz bins,
versus dimensionless frequency fDo/Uo.
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Figure E.13. Measured force spectra for jets of gas injection rate Q = 0.0047 m3/s and
jet lengths � = 15, 25, 35, and 45 mm, run C, normalized to mean force Fo in 15.6 Hz
bins, versus dimensionless frequency fDo/Uo.
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Figure E.14. Measured force spectra for jets of gas injection rate Q = 0.0047 m3/s and
jet lengths � = 20, 30, and 40 mm, run C, normalized to mean force Fo in 15.6 Hz bins,
versus dimensionless frequency fDo/Uo.
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Figure E.15. Measured force spectra for jets of gas injection rate Q = 0.0071 m3/s and
jet lengths � = 15, 25, 35, and 45 mm, run C, normalized to mean force Fo in 15.6 Hz
bins, versus dimensionless frequency fDo/Uo.
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Figure E.16. Measured force spectra for jets of gas injection rate Q = 0.0071 m3/s and
jet lengths � = 20, 30, and 40 mm, run C, normalized to mean force Fo in 15.6 Hz bins,
versus dimensionless frequency fDo/Uo.
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Figure E.17. Measured force spectra for jets of gas injection rate Q = 0.0094 m3/s and
jet lengths � = 15, 25, 35, and 45 mm, run C, normalized to mean force Fo in 15.6 Hz
bins, versus dimensionless frequency fDo/Uo.
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Figure E.18. Measured force spectra for jets of gas injection rate Q = 0.0094 m3/s and
jet lengths � = 20, 30, and 40 mm, run C, normalized to mean force Fo in 15.6 Hz bins,
versus dimensionless frequency fDo/Uo.
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E.2 Predicted sound power spectra (§4.5)
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Figure E.19. Predicted sound power spectra for jets of gas injection rate Q = 0.0047,
0.0071, and 0.0094 m3/s and � = 15 mm, run A, versus reduced frequency kw/D.

121

         Report No. ME09 - 13 Boston University, College of Engineering



�50

�40

�30

�20

�10

0.001 0.01 0.1 1 10

k w� D

10
�x
�lo

g 1
0(�

w
�
/M

2
� A

2 U
2 D

3 )

Q�=�0.0094m�/s Q�=�0.0071�m�/s Q=�0.0047m�/s333

Figure E.20. Predicted sound power spectra for jets of gas injection rate Q = 0.0047,
0.0071, and 0.0094 m3/s and � = 20 mm, run A, versus reduced frequency kw/D.
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Figure E.21. Predicted sound power spectra for jets of gas injection rate Q = 0.0047,
0.0071, and 0.0094 m3/s and � = 25 mm, run A, versus reduced frequency kw/D.
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Figure E.22. Predicted sound power spectra for jets of gas injection rate Q = 0.0047,
0.0071, and 0.0094 m3/s and � = 30 mm, run A, versus reduced frequency kw/D.
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Figure E.23. Predicted sound power spectra for jets of gas injection rate Q = 0.0047,
0.0071, and 0.0094 m3/s and � = 35 mm, run A, versus reduced frequency kw/D.
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Figure E.24. Predicted sound power spectra for jets of gas injection rate Q = 0.0047,
0.0071, and 0.0094 m3/s and � = 40 mm, run A, versus reduced frequency kw/D.
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Figure E.25. Predicted sound power spectra for jets of gas injection rate Q = 0.0047,
0.0071, and 0.0094 m3/s and � = 45 mm, run A, versus reduced frequency kw/D.
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Figure E.26. Predicted sound power spectra for jets of gas injection rate Q = 0.0047,
0.0071, and 0.0094 m3/s and � = 15 mm, run B, versus reduced frequency kw/D.
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Figure E.27. Predicted sound power spectra for jets of gas injection rate Q = 0.0047,
0.0071, and 0.0094 m3/s and � = 20 mm, run B, versus reduced frequency kw/D.
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Figure E.28. Predicted sound power spectra for jets of gas injection rate Q = 0.0047,
0.0071, and 0.0094 m3/s and � = 25 mm, run B, versus reduced frequency kw/D.
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Figure E.29. Predicted sound power spectra for jets of gas injection rate Q = 0.0047,
0.0071, and 0.0094 m3/s and � = 30 mm, run B, versus reduced frequency kw/D.
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Figure E.30. Predicted sound power spectra for jets of gas injection rate Q = 0.0047,
0.0071, and 0.0094 m3/s and � = 35 mm, run B, versus reduced frequency kw/D.
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Figure E.31. Predicted sound power spectra for jets of gas injection rate Q = 0.0047,
0.0071, and 0.0094 m3/s and � = 40 mm, run B, versus reduced frequency kw/D.

127

         Report No. ME09 - 13 Boston University, College of Engineering



�50

�40

�30

�20

�10

0.001 0.01 0.1 1 10

k w� D

10
�x
�lo

g 1
0(�

w
�
/M

2
� A

2 U
2 D

3 )

Q�=�0.0094m�/s Q�=�0.0071�m�/s Q=�0.0047m�/s333

Figure E.32. Predicted sound power spectra for jets of gas injection rate Q = 0.0047,
0.0071, and 0.0094 m3/s and � = 45 mm, run B, versus reduced frequency kw/D.
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Figure E.33. Predicted sound power spectra for jets of gas injection rate Q = 0.0047,
0.0071, and 0.0094 m3/s and � = 15 mm, run C, versus reduced frequency kw/D.
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Figure E.34. Predicted sound power spectra for jets of gas injection rate Q = 0.0047,
0.0071, and 0.0094 m3/s and � = 20 mm, run C, versus reduced frequency kw/D.
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Figure E.35. Predicted sound power spectra for jets of gas injection rate Q = 0.0047,
0.0071, and 0.0094 m3/s and � = 25 mm, run C, versus reduced frequency kw/D.
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Figure E.36. Predicted sound power spectra for jets of gas injection rate Q = 0.0047,
0.0071, and 0.0094 m3/s and � = 30 mm, run C, versus reduced frequency kw/D.
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Figure E.37. Predicted sound power spectra for jets of gas injection rate Q = 0.0047,
0.0071, and 0.0094 m3/s and � = 35 mm, run C, versus reduced frequency kw/D.
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Figure E.38. Predicted sound power spectra for jets of gas injection rate Q = 0.0047,
0.0071, and 0.0094 m3/s and � = 40 mm, run C, versus reduced frequency kw/D.
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Figure E.39. Predicted sound power spectra for jets of gas injection rate Q = 0.0047,
0.0071, and 0.0094 m3/s and � = 45 mm, run C, versus reduced frequency kw/D.
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E.3 Predicted self-noise spectra at the vehicle nose

(§5.5)
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Figure E.40. Predictions of the sound pressure at the nose when x = a, 2a, 3a for an
ellipsoidal cavitator of aspect ratio b/a = 5/3 for cases where the cavitator has a ρc-nose
or is acoustically hard and gas is injected at Q = 0.0047 m3/s producing jets of length
15 mm.
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Figure E.41. Predictions of the sound pressure at the nose when x = a, 2a, 3a for an
ellipsoidal cavitator of aspect ratio b/a = 5/3 for cases where the cavitator has a ρc-nose
or is acoustically hard and gas is injected at Q = 0.0047 m3/s producing jets of length
20 mm.
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Figure E.42. Predictions of the sound pressure at the nose when x = a, 2a, 3a for an
ellipsoidal cavitator of aspect ratio b/a = 5/3 for cases where the cavitator has a ρc-nose
or is acoustically hard and gas is injected at Q = 0.0047 m3/s producing jets of length
25 mm.

133

         Report No. ME09 - 13 Boston University, College of Engineering



�160

�150

�140

�130

�120

�110

�100

�90

�80

0.01 0.1 1 10 100
k w a

10
�lo

g 1
0(�

P,
N
/M
� A

2 U
3 a
)

x�=�a x�=�2a x�=�3a

x�=�a x�=�2a x�=�3a

hard�nose

�c�nose

Figure E.43. Predictions of the sound pressure at the nose when x = a, 2a, 3a for an
ellipsoidal cavitator of aspect ratio b/a = 5/3 for cases where the cavitator has a ρc-nose
or is acoustically hard and gas is injected at Q = 0.0047 m3/s producing jets of length
30 mm.
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Figure E.44. Predictions of the sound pressure at the nose when x = a, 2a, 3a for an
ellipsoidal cavitator of aspect ratio b/a = 5/3 for cases where the cavitator has a ρc-nose
or is acoustically hard and gas is injected at Q = 0.0047 m3/s producing jets of length
35 mm.
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Figure E.45. Predictions of the sound pressure at the nose when x = a, 2a, 3a for an
ellipsoidal cavitator of aspect ratio b/a = 5/3 for cases where the cavitator has a ρc-nose
or is acoustically hard and gas is injected at Q = 0.0047 m3/s producing jets of length
40 mm.
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Figure E.46. Predictions of the sound pressure at the nose when x = a, 2a, 3a for an
ellipsoidal cavitator of aspect ratio b/a = 5/3 for cases where the cavitator has a ρc-nose
or is acoustically hard and gas is injected at Q = 0.0047 m3/s producing jets of length
45 mm.
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Figure E.47. Predictions of the sound pressure at the nose when x = a, 2a, 3a for an
ellipsoidal cavitator of aspect ratio b/a = 5/3 for cases where the cavitator has a ρc-nose
or is acoustically hard and gas is injected at Q = 0.0071 m3/s producing jets of length
15 mm.
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Figure E.48. Predictions of the sound pressure at the nose when x = a, 2a, 3a for an
ellipsoidal cavitator of aspect ratio b/a = 5/3 for cases where the cavitator has a ρc-nose
or is acoustically hard and gas is injected at Q = 0.0071 m3/s producing jets of length
20 mm.
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Figure E.49. Predictions of the sound pressure at the nose when x = a, 2a, 3a for an
ellipsoidal cavitator of aspect ratio b/a = 5/3 for cases where the cavitator has a ρc-nose
or is acoustically hard and gas is injected at Q = 0.0071 m3/s producing jets of length
25 mm.
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Figure E.50. Predictions of the sound pressure at the nose when x = a, 2a, 3a for an
ellipsoidal cavitator of aspect ratio b/a = 5/3 for cases where the cavitator has a ρc-nose
or is acoustically hard and gas is injected at Q = 0.0071 m3/s producing jets of length
30 mm.
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Figure E.51. Predictions of the sound pressure at the nose when x = a, 2a, 3a for an
ellipsoidal cavitator of aspect ratio b/a = 5/3 for cases where the cavitator has a ρc-nose
or is acoustically hard and gas is injected at Q = 0.0071 m3/s producing jets of length
35 mm.
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Figure E.52. Predictions of the sound pressure at the nose when x = a, 2a, 3a for an
ellipsoidal cavitator of aspect ratio b/a = 5/3 for cases where the cavitator has a ρc-nose
or is acoustically hard and gas is injected at Q = 0.0071 m3/s producing jets of length
40 mm.
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Figure E.53. Predictions of the sound pressure at the nose when x = a, 2a, 3a for an
ellipsoidal cavitator of aspect ratio b/a = 5/3 for cases where the cavitator has a ρc-nose
or is acoustically hard and gas is injected at Q = 0.0071 m3/s producing jets of length
45 mm.
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Figure E.54. Predictions of the sound pressure at the nose when x = a, 2a, 3a for an
ellipsoidal cavitator of aspect ratio b/a = 5/3 for cases where the cavitator has a ρc-nose
or is acoustically hard and gas is injected at Q = 0.0094 m3/s producing jets of length
15 mm.
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Figure E.55. Predictions of the sound pressure at the nose when x = a, 2a, 3a for an
ellipsoidal cavitator of aspect ratio b/a = 5/3 for cases where the cavitator has a ρc-nose
or is acoustically hard and gas is injected at Q = 0.0094 m3/s producing jets of length
20 mm.
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Figure E.56. Predictions of the sound pressure at the nose when x = a, 2a, 3a for an
ellipsoidal cavitator of aspect ratio b/a = 5/3 for cases where the cavitator has a ρc-nose
or is acoustically hard and gas is injected at Q = 0.0094 m3/s producing jets of length
25 mm.
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Figure E.57. Predictions of the sound pressure at the nose when x = a, 2a, 3a for an
ellipsoidal cavitator of aspect ratio b/a = 5/3 for cases where the cavitator has a ρc-nose
or is acoustically hard and gas is injected at Q = 0.0094 m3/s producing jets of length
30 mm.
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Figure E.58. Predictions of the sound pressure at the nose when x = a, 2a, 3a for an
ellipsoidal cavitator of aspect ratio b/a = 5/3 for cases where the cavitator has a ρc-nose
or is acoustically hard and gas is injected at Q = 0.0094 m3/s producing jets of length
35 mm.
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Figure E.59. Predictions of the sound pressure at the nose when x = a, 2a, 3a for an
ellipsoidal cavitator of aspect ratio b/a = 5/3 for cases where the cavitator has a ρc-nose
or is acoustically hard and gas is injected at Q = 0.0094 m3/s producing jets of length
40 mm.
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Figure E.60. Predictions of the sound pressure at the nose when x = a, 2a, 3a for an
ellipsoidal cavitator of aspect ratio b/a = 5/3 for cases where the cavitator has a ρc-nose
or is acoustically hard and gas is injected at Q = 0.0094 m3/s producing jets of length
45 mm.
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