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Outline

• Wireless Integrated Microsystems (WIMS), 
Applications

• Gas Analysis Using µGC
• The “Actuator”: Integrated Gas Micropump
• Concluding Remarks, Future Trends
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Key Components:
Power Source, Micropower MicroController with Power Management and Data 
Compensation, Software, Wireless I/O, Integrated Programmable Transducers

with a High-Performance Standard Interface, Hermetic Packaging

Generic Architecture for  
Wireless Integrated Microsystems (WIMS)
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WIRELESS INTEGRATED MICROSYSTEMS 
(WIMS)

Integrated sensors and microactuators merged with 
micropower signal processing electronics and wireless 
communications on a common substrate, sometimes 

fabricated monolithically.

….. Bringing Together …..

• Integrated Sensors and Microactuators (MEMS)

• Micropower Microelectronics

• Wireless Communications
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Microsystem Drivers:  Power and Size 
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MEMS and Integrated Microsystems:
Pervasive Engineered Microsystems

Applications:
• Weather Forecasting and Environmental Monitoring
• Biomedical Systems:  Diagnostic and Therapeutic

• Homeland Security and Defense Applications 
• Communication Systems (RF and Optical)

• Consumer Electronics, Appliances, Entertainment
• Transportation Systems (vehicles, smart highways, infrastructure)

• Adaptive Automated Manufacturing Tools (including VLSI)
• Smart Homes and Wide-Ranging Consumer Products
• Space Probes and Launch/Satellite Instrumentation
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Sensors For Environmental Monitoring
• Physical/Radiative Parameters

• Barometric Pressure
• Humidity 
• Temperature 
• Others: flow, magnetic field, visible, IR

Capacitive sensors
Polymer-based sensors

Bandgap ckts.

µGCs
Electrochemical

Potentiometric

• Chemical Parameters (not yet developed)
• Organic Vapor Air Pollutants (EPA “189”)          
• Inorganic Gas Air Pollutants (SO2 , NOx )

• Liquid Pollutants (Heavy Metals)

Chemical (Gas) Sensing of Air Quality
A Micro Gas Chromatograph (µGC)
Targeting the top 45 gases from the EPA “Air Toxics” List
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Basic Operation of a Gas Chromatograph (GC)
• Collect sample of a complex mixture of air/gas sample over some time
• Adsorb the sample onto a pre-concentrator (PC) to increase concentration
• Apply a fast heat pulse to release the adsorbed gas from the PC
• Pass concentrated plug of gas through a long tube (column) coated with a polymer
• As the complex mixture passes through the column, different species will take 

different time to travel through the column, and so they get separated in time
• The separated mixture is passed over a sensor array or a mass spectrometer for 

identification of individual components and recognition of the complex gas.

Low-Concentration
Gas Mixture

Pre-
Concentrator

Long Separation
Column

Sensor Array

Time
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Versatile Microanalytical System for Trace Analysis            
of Complex Mixtures of Atmospheric Pollutants 

IntegratedµGC For Gas Analysis
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Resolution 
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Emergency ResponseScreening/surveillance
Prof. E. T. Zellers, University of Michigan

µGC
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Why Miniaturize the GC?

• Scaling Laws (+ and –)
+ Low mass: rapid, low power heating (cooling) 

+ Narrower columns: higher resolution with shorter columns

+ Lower “dead volumes”: higher resolution and sensitivity

+ Reduced sample size (mass): if proper detector is used

+ Reduced size and weight

– Larger pressure drop: makes pumping more difficult
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• 1970s: First “GC-on-a-Chip” (µGC): 1970-79 (Stanford)
— Terry, Jerman, Angell, IEEE Trans. Elec. Dev., 1979

• 1980s: Bruns, Microsensor Technology, Inc. (MTI)
— Commercial “mini” GC: Micromachined injector, TCD detector, conventional column

• 1994: Kolesar, et al. (TCU)
— Lab prototype: ammonia, nitrogen dioxide

• 1998- : Frye-Mason, et al. (Sandia)
� µChemLab – 1st MEMS subsystem for CWAs; Lewis et al., IEEE Sensors, 2006

• 1998- : Spangler (Technispan) 
— Modeling of column efficiency

• 1999: Yu, et al. (LLNL)
— Lab prototype: 8 lbs, 24 W

• 2000: Hesketh, et al. (GA Tech)
— Low-mass Parylene u-columns 

• 2000: Müller, et al. (Hamburg)
— SLS Microtech.: commercial prototype

• 2000- : Wise, Sacks, Pang, Najafi, Zellers, et al. (U. Mich.)
— WIMS Center: 1st all MEMS µGC for VOC mixtures

• 2004- : DARPA MGA Program
— Honeywell, Sandia, U. Illinois; ultra-small,-fast; CWA detection

• 2005: Lorenzelli et al. (U. Ferrara)
— Lab prototype; bio applications

• 1970s: First “GC-on-a-Chip” (µGC): 1970-79 (Stanford)
— Terry, Jerman, Angell, IEEE Trans. Elec. Dev., 1979

• 1980s: Bruns, Microsensor Technology, Inc. (MTI)
— Commercial “mini” GC: Micromachined injector, TCD detector, conventional column

• 1994: Kolesar, et al. (TCU)
— Lab prototype: ammonia, nitrogen dioxide

• 1998- : Frye-Mason, et al. (Sandia)
� µChemLab – 1st MEMS subsystem for CWAs; Lewis et al., IEEE Sensors, 2006

• 1998- : Spangler (Technispan) 
— Modeling of column efficiency

• 1999: Yu, et al. (LLNL)
— Lab prototype: 8 lbs, 24 W

• 2000: Hesketh, et al. (GA Tech)
— Low-mass Parylene u-columns 

• 2000: Müller, et al. (Hamburg)
— SLS Microtech.: commercial prototype

• 2000- : Wise, Sacks, Pang, Najafi, Zellers, et al. (U. Mich.)
— WIMS Center: 1st all MEMS µGC for VOC mixtures

• 2004- : DARPA MGA Program
— Honeywell, Sandia, U. Illinois; ultra-small,-fast; CWA detection

• 2005: Lorenzelli et al. (U. Ferrara)
— Lab prototype; bio applications

“Micro-GC” Efforts
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Particle 
filter

Internal standard

Microsensor array
(Micro-spectrometer)

Column 1      Column 2
∆T1 ∆T2

Preconcentrator/
focuser

Latching valves

Distributed vacuum pump

Sample Capture

Separation & Detection

TARGETED PERFORMANCE:
• 30-50 Organic-Vapor Pollutants per Analysis

• Detection Levels: < 1ppb per analyte
• Analysis times: 1 minute (general); 5 sec (specific)

• Realized in 10cc and at <10mW (average)

Integrated Micro Gas Analyzer
Based on Gas Chromatography
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Inlet 
filter Latching 

valve 
manifold

Column vias

Multi-sensor array

1-2 cm

Stacked, tunable 
separation columns

Pump via

Multi-stage preconcentratorCalibration-
vapor source

Distributed 
vacuum 
pump

Michigan WIMS µGC Vision

WIMS µGC Goals
Vol: 5 cm3

Energy/Analysis: 1 J 
(Power, Anal. Time):

(10 mW, 2 min.)
(250 mW, 4 s) 

WIMS WIMS µµGCGC GoalsGoals
Vol: 5 cm3

Energy/Analysis: 1 J 
(Power, Anal. Time):

(10 mW, 2 min.)
(250 mW, 4 s) 
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Multi-stage Preconcentrator Focuser (µPCF)

load desorb
3-Stage µPCF (Granular Adsorbent)

1.6 mg     +    1.0 mg     +     0.6 mg

100 m2/g 250 m2/g 1200 m2/g
Carbopack

B
Carbopack

X
Carboxen

1000

Device Features
• 3 mm x 9 mm active area
• 50-µm thick Si “floor”
• 50 x 3000 µm slats
(heat-exchangers)

• 220 µm gaps for adsorbents
• 385 µm tall
• Precon factors >5000-fold

Tian, Pang, Wise, Zellers, JMEMS, 2005
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LOW-MASS SILICON SEPARATION COLUMNS
Wise, Agah, University of Michigan
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THE WIMS µGC — Gen-0.6THE WIMS µGC — Gen-0.6

Calculator Size
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TEMPERATURE 
PROGRAMMED GAS 

SEPARATION
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• Thirty air pollutants spanning three orders of magnitude in vapor pres-
sure were separated in 4.2min on a single 3m Si-glass column coated 
with polydimethylsiloxane and temperature programmed at 20°C/min.  

• Producing 12,000 theoretical plates, this is the highest resolution 
micro-column ever reported. 

Zellers, Sacks, Wise, 
and many students
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Ultra- Small, Low-Power, and Fast Micromachined Separation 
Columns for Fast Detection of Chemical Warfare Agents

Agah, Potkay, Wise, Zellers, Sacks,…
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• Using 25cm silicon-glass columns programmed 
at 1600°C/min, a seven-component mixture of 
chemical warfare simulants can be separated in 
4 seconds

• CVD-sealed ultra-low-mass columns (above) 
promise still faster responses using entirely new 
column architectures (2D GC) 
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WIMS µGC Actuators

Distributed vacuum pump
Preconcentrator/focuser

Latching valves

~4 cm

Thermal modulator
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Huang (2006)
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KNF NMP05 pump 
(Macro-scale pump)

Stehr (1996)
Yang (2006)
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-pressure unknown

Jeong (2006)
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• No previous gas micropump meets the WIMS µGC requirements.
• Size and power consumption are not included in the graph.
• Low flow rate small stroke volume, slow op., gas compressibility.
• Low pressure weak force of a membrane, leakage.
• Single mode operation

Summary of Previous Gas Micropumps
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• Goal: Develop a miniature micropump for the µGC:
—Flow Rate: 2-50sccm, For Pressures: 0.2 to 0.5 Atm
—Power: <100mW
—Size: <1cm x 1cm x 2mm

Integrated Multi-stage Gas Micropump

Peristaltic multi-stage pump 

Pump Outlet valve
Inlet valve

∆P
∆P

∆P

∆P ∆P
∆P

V Diff
= Σ(∆P)

• Approach:
—Peristaltic multi-stage

High pressure
—Electrostatic actuation:

Fast, Low-Power
—Double-sided curved 

electrodes:
Large displacement  
High Flow

—Polymer Membranes
Large displacement
Low-Power

—Resonant Operation
High Flow
Low-Power

Re: USP # 7,008,193 K. Najafi, et.al., “Micropump
Assembly For A Microgas Chromatograph And The 
Like”, March 7, 2006

Fluidic Bucket Brigade: High Flow, Low-Pressure Per Stage
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The Operation of a Single Stage of the Pump

Bottom Si Wafer

Top Silicon Wafer

Bottom Pump
Chamber

Top Pump 
ChamberInlet µValve

(Checker-Board)

Outlet µValve
(Checker-Board)

Pump
Membrane

Top Pump
Electrode

Bottom Pump
Electrode

Valve
Membrane
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d

W
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• Two bonded Si wafers, sandwiching pump & valve membranes
• One membrane and two valves for each two pump chambers
• Checker-board active valves, dual electrode pull-pull 

electrostatic drive

Electrostatic 
Actuation 

Dual-Electrode 
Actuation 

Polymer 
Membrane  

Multi-Stage 
Design

Curved 
Electrode

Active Micro 
Valves

Dual-Chamber 
Layout
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Multi-Stage Layout and the Microvalves
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Gas flow through the 
top wafer structures

Gas flow through the 
bottom wafer structures

18-stage pump

P: pump
I: Inlet valve

T: Transfer valve

• The multi-stage pump can be layed out to generate any number of stages 
needed.  

• Layout of 18-stage pump shown below.  Two-, four-, and 18-stage pumps have 
been designed and fabricated.

• Gas flow is controlled by the integrated checkerboard 
microvalves shown on the right.

Hole on top electrode 
and valve membrane

Hole on bottom 
electrode
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Microfabrication and Technologies

Parylene Wafer Bonding
• Low-Temp, <230°C
• Thin Layers (<0.5µm)
• Reliable, No Voids

Curved Electrodes
• Efficient Electrostatic Drive
• High Force, Low-Voltage
• No Need for Special Techn.

Parylene Membrane 
Transfer

• Wafer-Level
• High-yield (>90%)
• Thin films, over 

deep cavities

Cavity 
Area

Bonded 
Area

Silicon

13.2um 
squares

Over 50-µm distance at the bonded wafer surfaceP-bonded wafer interface 
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Microfabrication and Technologies

Inlet valve

Top electrode

Bottom electrode

Microvalve membrane

Micropump

Dual electrodes

Pump 
membrane

Family of 
fabricated 
micropumps

• A complete fluidic path through 
two wafers

• Dual-electrodes
• Polymer membrane
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• New design concepts
— Pressure-accumulating multi-stage micro 

pump configuration
— Resonance-based high flow rate micro 

pump
— Checkerboard microvalve
— Dual-electrode ‘pull-pull’ type electrostatic 

micropump Honeywell concept.
— Dual-chamber (membrane-sharing) 

structure

• New fabrication technologies
— First development of a low-temperature 

wafer bonding technique using Parylene
with alignment capability

— First development of a Parylene
membrane transfer technology without 
sacrificial layers or wafers.

— First practical implementation and usage 
of a low-power out-of-plane curved 
electrode electrostatic actuation

— First use of stressed thin films’ buckling to 
produce an out-of-plane micro curved 
electrode.

A Multistage Peristaltic MEMS Pump for a µGC

USP #7,008,193 K. Najafi, et.al., “Micropump Assembly for 
A Microgas Chromatograph and the Like”, March 7, 2006

Micropump flow-rate vs. 
Operation frequency

0

0.5

1

1.5

2

2.5

3

3.5

4

0 5 10 15 20 25
Frequency (kHz)

Fl
ow

 ra
te

 (m
l/m

in
)

18-stage pump

4-stage pump

2-stage pump

Resonance peaks

18-stage peristaltic micropump
— Volume = 3.8 cm3

— Active timing control of microvalves
— 17 kHz operating frequency
— Produces air flow rates of 4 cm3/min 
— Generates pressures up to 18 kPa
— Total power dissipation of ~57mW
— Highest pressure of any micropump
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Pumping Air Bubbles
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25 cm GC 
microcolumn 8-sensor 

chemiresistor
array

4-stage 
micropump

off-chip injection

25 cm GC 
microcolumn 8-sensor 

chemiresistor
array

4-stage 
micropump

off-chip injection Non-polar stationary phase.  
Isothermal at room temp.

Integration of WIMS µColumn, µArray, and µPump
(µCAP Subsystem)
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• 4 VOCs:  acetone, benzene, toluene, 
butyl acetate 

• flow rate  =  0.25 cc/min 
• press. diff.   =  3.5kPa
• analyt. cycle =  7 seconds

25-cm µcolumn

Ultimate Application: First Reported!
Testing of a Gas Micropump In a µGC
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Latest Results from µCAP Subsystem
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Separation of 7 alkanes
in < 30 sec

Separation of 11 VOCs
in < 25 sec

High-Speed, Temperature-Programmed Vapor Separations
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From Sensors/Actuators to Instruments
Integrated Sensor/ActuatorIntegrated Sensor/Actuator

• Customized

• Work on one parameter

• Robustness hammered out 
of device, material, process

• Limited Selectivity, specificity, 
sensitivity

• Limited Dynamic Range

• Only Senses

• One device at a time

• Priced as commodity

• Monitor multiple parameters

• Generic for broad applications

• High Selectivity, Specificity, 
Sensitivity

• Wide Dynamic Range

• Measures and Monitors

• Robustness Delivered by µSystem

• Many devices, redundancy, range,

• Priced as an Instrument, now, 
but…

Integrated InstrumentsIntegrated Instruments
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From
MEMS ..to.. Micro-Instruments ..to.. Micro-Systems

MEM Devices
• Sensor
• Actuator
• Resonator
• Package
• Microstructure
• …

Chip-Scale Instruments
CSI-DARPA

µInstruments
• Atomic Clock
• µMechanical 

Comm/Processing
• Radiation Detectors
• Gas Analysis
• Chemical/Biological 

Analysis
• Warfare agents
• …

  CHEMICAL

  CHEMICAL
DELIVERY

   MECHANICAL

  ELECTRICAL
ACTIVATION

  THERMAL

  MAGNETIC

  ELECTRICAL

+

-

  GAS

  RADIATIVE

  MECHANICAL
 ACTUATION

• Smaller
• Lighter
• Better
• Cheaper
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