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ABSTRACT

This paper applies Cramér-Rao theory to synthetic aperture
radar (SAR) in order to establish optimal performance bounds
on target parameter estimation. The Cramèr-Rao bound (CRB)
establishes a lower bound on the error variance of unbiased
or asymptotically efficient parameter estimates [8]. Bounds on
the estimation of various target parameters are developed, and
the extension to multistatic SAR (MSAR) is considered.

1. INTRODUCTION

A standard one-pass SAR image can be regarded as the es-
timation of the 2-dimensional position and complex scattering
coefficients at fixed points on the ground. CRBs applied to
scatterer position and reflectivity offer the smallest possible
error variances on those estimates independently from the
method of estimation. The bounds can be used to enhance
system design by optimizing performance with respect to
system parameters. In [1] we considered the CRB for scatterer
reflectivity with the assumption that the sensor position is
known with respect to all scatterers on the ground, the only
source of random error being measurement noise. By creating
a scattering model with a limited number of scatterers, bounds
were derived for all reflectivities simultaneously. We now
derive CRBs for the joint estimation of the 3-dimensional
features, as well as reflectivities. In this case all scatterer
positions in range, cross-range and elevation are considered
unknown. The CRBs are in general dependent on the scatterer
parameter values, the radar parameters and the relative position
of the radar to the scatterers. To estimate scatterer heights,
vertical excursion of the radar platform is required when
forming the synthetic aperture. The development is extended
to multistatic SAR where a single radar is transmitting and
several radars are receiving.

Previous literature describes the use of CRBs for SAR
parametric estimation techniques. In [9], maximum likelihood
estimation of interferometric SAR parameters are compared
with derived bounds. In [3], CRBs are used to evaluate spectral
estimation methods applied to curvilinear SAR. However,
we are offering a more general approach to the analytical
capabilities of Cramér-Rao theory for any aperture, scattering
model or radar properties that might answer the questions
posed by SAR engineers. For instance, given a simulated
scattering model, what range, azimuth and elevation should
the positions of the synthetic array be located if the goal is

to minimize the error on height estimation? In the multistatic
case, how many receivers are needed and where should they be
positioned in order to achieve some minimum variance on the
complex reflectivities? The simplicity of Cramér-Rao theory
allows for, what would otherwise be very computationally
complex, a convenient means to optimize SAR and MSAR
waveforms. It is our intention to provide those in the SAR
research community a tool to efficiently evaluate and optimize
existing or developmental signal processing algorithms.

2. THE SCATTERING & SIGNAL MODELS

The scattering model consists of a finite number of scatterers
located within a square grid of cells that are placed on the
nominal ground level at ground range y = 0 m and cross-
range x = 0 m. Although the bounds for all scatterers are
computed, our analysis is on one scatterer (hereafter called
the target) located at the center of this grid given its bounds
will reflect the worst case. Figure 1 shows scatterer n located
at cross-range xn, range yn and height hn, with the radar
located at xac, yac and hac as a function of time t.

Fig. 1. Dimensional description

The signal model, over the observation time on the array,
is [1]

s(t) =
N∑

n=1

anAn(t), (1)

An(t) =
Nf∑
k=1

1
R2

n(t)
ejωk(t− 2Rn(t)

c ), (2)
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where the summation in equation (1) is over all scatterers
n = 1 . . . N in the grid, and the summation on k in equa-
tion (2) represents the inclusion of frequency samples ωk,
k = 1 . . . Nf , from the passband linear FM pulse. Rn and
an are the slant range and complex reflectivity of scatterer n,
respectively, and c is the speed of light. The slant range at
time t may be expressed as

Rn(t) =
√

∆x2
n(t) + ∆y2

n(t) + ∆h2
n(t), (3)

where ∆hn(t) = (hn − hac(t)). Other differential lengths are
defined similarly and are described in Figure 1.

The received signal model is,

r(t) = s(t) + n(t), t = 1, . . . T, (4)

where n(t) is a stationary white, circular Gaussian random
process.

3. CRB DERIVATION

In this section we define θ to be the vector of real pa-
rameters to be estimated, in no particular order. For each
target or scatterer, this includes the two quadrature reflectivity
components, and the three positional components. Due to the
complex white noise model, a sufficient statistic for θ is given
by S =

∑
t Re

{
(r(t) − 1

2s(t))s∗(t)
}

, which is Gaussian with
mean 1

2

∑
t |s(t)|2 and variance σ2

0

∑
t |s(t)|2. Here, σ2

0 is the
noise variance in each quadrature component at time t. It is
easy to show that the ijth component of the Fisher Information
Matrix (FIM) is given by

Jij = 1

2
∑

t
|s(t)|2

(∑
t

∂
∂θi

|s(t)|2
) (∑

t
∂

∂θj
|s(t)|2

)
×

×
(

1∑
t
|s(t)|2 + 1

2σ2
0

)

(5)
Bounds on the variance of unbiased estimators for θ depend
on the first-order partial derivatives of the squared signal
magnitude. When θi belongs to the kth scatterer,

∂

∂θi
|s(t)|2 = 2s∗(t)

∂

∂θi
(akAk(t))

4. NUMERICAL RESULTS

In typical SAR imaging, the reflectivity of a large ground
area is estimated to include a large number of scatterers.
However, when performing CRB analysis it is necessary to
limit the number of scatterers in the simulated model to
avoid computational complexity. The size of the grid and
the density of scatterers should be enough to reproduce the
effects of an infinitely large scattering area around the target,
but small enough to limit the number of computations and
the size of the matrix J to be inverted. The influence from
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Fig. 2. CRB for a1 vs. grid size

surrounding scatterers decreases relative to their distance from
the target. In [1] we showed the CRB for the target reaches a
maximum value when the single side dimension of a square
grid of scatterers reaches approximately 14 m (given the
target scatterer is at the center of the grid). The scatterers
are separated by a distance of 1m from each other and the
radar parameters used in this experiment are as follows: center
frequency fc = 450 MHz, bandwidth B = 60 MHz, and
synthetic aperture length L = 5000 m. In Figure 2 one can
see that scatterers placed beyond a 14 m × 14 m square grid
have little impact on estimating the target reflectivity for the
system considered here.

Other considerations to limit the number of computations
are the pulse repetition frequency (PRF) and the frequency
sampling rate (FSR) of the linear FM pulse should be limited.
The PRF and FSR are minimized with the assurance that quasi-
grating lobes in the azimuth and ground range dimensions,
respectively, are physically beyond the limits of the scattering
model. Figure 3 shows the magnitude response of the white
noise matched filter in the azimuth and range dimensions
(given the operational parameters mentioned above) with a
PRF of 1 pulse/sec and a frequency sampling period of 10
MHz. It is evident that the first quasi-grating lobes (indicated
by the arrows) are beyond the distance from the target (∼ 7 m)
required to emulate an infinitely large area arou dimensions.

The complex reflectivities of the scatterers are randomly
generated and represented as

an = α + jβ (6)

where
α, β ∼ N (0, σ2

a). (7)

Assuming the components α and β are statistically indepen-
dent Gaussian random variables, the magnitude of an will
be Rayleigh distributed [7]. The mean and variance of the
scatterers (clutter) are respectively,

µc = σa

√
π
2

σ2
c = (2 − π

2 )σ2
a

(8)
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Fig. 3. Magnitude response in x and y dimensions

We define the target to have a similar complex reflectivity
distributed as (7) but with a different variance σ2

t . The signal
to clutter ratio (SCR) can be computed as,

SCR =
µ2

t

µ2
c

=
σ2

t

σ2
a

(9)

The simulations described in this paper have an SCR of 0 dB
since we are denoting the target as an ordinary scatterer to be
estimated.

It is intuitively expected that height estimation is an ill-
posed problem for standard SAR [1]. Allowing some vertical
excursion in forming the aperture provides additional infor-
mation and conditions the matrix J. The Fisher information
matrix for one scatterer can be written as,

J = 4|a1|2
c2σ2

0

T∑
t=1

Nf∑
k=1




∆x2
1(t)ω

2
k

R6
1(t)

∆x1(t)∆y1(t)ω
2
k

R6
1(t)

∆x1(t)∆h1(t)ω
2
k

R6
1(t)

c ∆x1(t)ωk

2a∗
1R5

1(t)

∆y1(t)∆x1(t)ω
2
k

R6
1(t)

∆y2
1(t)ω2

k

R6
1(t)

∆y1(t)∆h1(t)ω
2
k

R6
1(t)

c ∆y1(t)ωk

2a∗
1R5

1(t)

∆h1(t)∆x1(t)ω
2
k

R6
1(t)

∆h1(t)∆y1(t)ω
2
k

R6
1(t)

∆h2
1(t)ω

2
k

R6
1(t)

c ∆h1(t)ωk

2a∗
1R5

1(t)

c ∆x1(t)ωk

2a1R5
1(t)

c ∆y1(t)ωk

2a1R5
1(t)

c ∆h1(t)ωk

2a1R5
1(t)

c2

4|a1|2R4
1(t)




.

(10)
The diagonal of J−1 will yield bounds for the scatterer
parameter estimates. If multiple scatterers are included in the
model, the diagonal elements of the center 4 x 4 block diagonal
matrix of J−1 correspond to the bounds of the target.

Computations were performed on a 7 × 7 cell grid (49
scatterers) with the target scatterer having reflectivity a1 at
the center cell. The cells are arranged so that the cell centers
are 2.5 meters apart. The position of the scatterer within each
cell is random, uniformly distributed in range and cross-range.
The heights of all the scatterers are also random, Gaussian
distributed with mean height 3 m and standard deviation

σh = 1. An illustration of one scattering realization is seen in
Figure 4. It is possible that scatterers, for a given realization,
can be located below the nominal ground level.

A simulated experiment examines the CRB for an aircraft
with a sinusoidal flight path. There are a total number of 100
pulses over the aperture. The aircraft is moving at 112 m/s
(218 knots) with spacial frequency 1

5000
cycle

meters and amplitude
300 m. The radar is restricted to a plane in the x and h
dimensions at a ground range of 3000 m from the target (∆y
is not a function of time). The center cell is located at 0 m
in azimuth and 0 m in range. A simplification made in the
simulations is that the scatterer reflectivities do not change
with the radar look-angle. Cramér Rao bounds were averaged
for fifty scattering model realizations. Figure 5a shows the
planar position of the aircraft in azimuth and elevation. The
corresponding improvements in the average bounds as the
radar aperture is formed are seen in Figure 5b. (the bounds
are not computed for the first several array positions because
insufficient data results in poorly conditioned matrices. Con-
stant values were assigned to the plot in Figure 5b when the
aircraft’s position in azimuth is less than -3500 m relative to
the target.)

−7.5
−2.5 0 2.5

7.5 −7.5

−2.5
0

2.5

7.5

0

1

2

3

4

5

Range (m)
Cross−range (m)

H
ei

g
h

t 
(m

)

Fig. 4. Scattering model realization

5. MULTISTATIC SAR

Multistatic synthetic aperture radar is a developing area
of study that can improve the vulnerability to physical or
electronic countermeasures [10]. MSAR can also improve the
3-dimensional imaging quality and integration time relative to
the monostatic case [11]. Although the topic warrants a lengthy
discussion, our goal in this paper is to introduce Cramér Rao
theory on a simplified model of MSAR in anticipation of more
detailed publications.

The MSAR system under consideration has one aircraft
radar acting as a transmitter and receiver, while additional
aircrafts act as a receivers only. Similar to the monostatic
case, we are assuming there are no phase variations from the
scatterers as a function of look angle for any of the receivers.
Furthermore, the noise power σ2

0 is assumed equal for all
receivers. Finally, the method of communication between the
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radar platforms or to a common ground station, or how
the data is fused is not considered in this discussion. The
combined CRBs of the multistatic system offer a measure of
improvement in parameter estimation over monostatic SAR.

The received signal, given the simplifications mentioned
above, for the multistatic case of m = 1 . . . M receivers can
be written as,

r(t) =

M∑
m=1

N∑
n=1

an

Rn1(t)Rnm(t) ejωk(t−Rn1(t)+Rnm(t)
c ) + nm(t),

(11)
where Rn1 is the slant range from the transmitter to scatter n,
and Rnm is the range from scatterer n to receiver m, m = 1
being the transmitter/receiver radar. The Fisher information
matrix can be carried out in a similar fashion to the monostatic
case, and the parameter CRBs are located along the diagonal
of J−1.

The following simulations provide some insight into the
possible improvement with MSAR. The radars assumes the
same operational parameters as the radar in the previous
simulation.. An illustration of the set-up is seen in Figure 6.
The flight paths are located in a two-dimensional plane and
the arrow indicates the aircraft headings. The number indicates
the order in which the receivers are plotted for the various
parameter bounds in Figure 7. The solid line in each of
the four graphs represents the monostatic case, the dotted
line represents the addition of receiver 2 (bistatic SAR), and
the remaining lines represent the addition of receivers 3 and
4. The abscissa indicates the pulse number transmitted and
subsequently received by all four radars. Note the marked
improvement in the bound in the y dimension, for instance,
when the second receiver is included in the processing.

Another MSAR example employs a single transmit-only
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platform that is moving in a linear path offset from the target
by 10,000 m with a velocity of 175 m/s. Four receiving radars
move in sinusoidal paths at 50 m/s around the target area. The
receivers in are labelled Rx2, Rx3, Rx4, and Rx5 as indicated
in Figure 8. The results of the simulation are seen in Figure 9.

6. CONCLUSION

We have developed Cramér-Rao bounds for SAR and
MSAR. The bounds can be used for optimal system design,
for cooperative control of multiple platforms, or serve as a
reference for comparison with practical processing algorithms.
Particularly we showed that by including aperture in the ver-
tical dimension, it is possible to jointly estimate 3-D scatterer
features with single-pass SAR. We have also demonstrated
the potential improvement of multistatic systems. Using these
methods, optimization on the performance of SAR waveforms
or integrated multiple platforms is possible.

Further work in this area will incorporate the use of
improved, more realistic scattering models. We will detail a
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method to adaptively optimize the waveform as the synthetic
aperture is formed. Finally, we will address cooperative control
and optimization of multistatic SAR with respect to target
parameter estimates.
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