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ABSTRACT

We present an unsupervised algorithm for detection of mov-
ing targets in highly dynamic scenes. These are scenes whose
background is subject to stochastic motion, due to the pres-
ence of multiple moving objects (crowds), water, trees sway-
ing in the wind, etc. The algorithm is inspired by biologi-
cal vision. Target detection is posed as a problem of center-
surround saliency, which aims to identify the locations of the
visual field of maximal contrast with the background. Con-
trast is defined in terms of both appearance and motion dy-

namics, and measured using mutual information between stochas-

tic models, known as dynamic textures, which can account
for complex motion. This enables very robust target detec-
tion in the classes of scenes which have traditionally proven
most adverse to tracking. Extensive tests in the context of dy-
namic background subtraction have shown significantly supe-
rior performance to previous techniques.

1. INTRODUCTION

In a natural scene, objects of interest often move amidst com-
plicated backgrounds that are themselves in motion e.g. sway-
ing trees, moving water, waves and rain. The visual system
of animals is well adapted to recognizing the most impor-
tant moving object (referred to henceforth as the “target”), in
such scenes. In fact, this ability is central to survival, for in-
stance, by aiding in the identification of potential predators or
prey while ignoring unimportant motion in the background.
Apart from the obvious importance in visual systems of the
biological world, target detection is extremely useful for vari-
ous computer vision applications such as object recognition in
video, activity and gesture recognition, tracking, surveillance
and video analysis. For instance, a robot or an autonomous
vehicle could benefit from a module to identify objects ap-
proaching it amidst possibly moving backgrounds like dust
storms, to do effective path planning.

However, unsupervised moving target detection, often posed

as the related problem of background subtraction, is hard to
solve using conventional techniques in computer vision(see
(Sheikh & Shah, 2005) for a review). Extracting the fore-

ground object moving in a scene where the background it-
self is dynamic is so complex that even though background
subtraction is a classic problem in computer vision, there has
been relatively little progress for these types of scenes.

A common assumption underlying many techniques for
background subtraction is that the camera capturing the scene
is static. (Stauffer & Grimson, 1999; Elgammal, Harwood,
& Davis, 2000; Wren, Azarbayejani, Darrell, & Pentland,
1997; Monnet, Mittal, Paragios, & Ramesh, 2003; Tavakkoli,
Nicolescu, & Bebis, 2006). However, this assumption places
severe restrictions on the applicability of such techniques to
real-world video clips, that are often shot with hand-held cam-
eras or even on a moving platform in the case of autonomous
vehicles. Conventional techniques to address this problem in-
volve explicit camera motion compensation (Jung & Sukhatme,
2004), followed by stationary camera background subtraction
techniques. But these methods are cumbersome and require a
reliable estimate of the global motion. In extreme cases, when
the background itself is highly dynamic, a unique global mo-
tion itself may not be possible to estimate.

Another disadvantage of most current approaches is that
they model the background explicitly and assume that the
algorithm will initially be presented with frames containing
only the background (Monnet et al., 2003; Stauffer & Grim-
son, 1999; Zivkovic, 2004). The background model is built
using this data, and regions or pixels that deviate from this
model are considered part of the target or foreground. Hence,
these techniques are supervised, and the initial phase could be
thought of as training the algorithm to learn the background
parameters. The need to train such algorithms for each scene
separately limits their ability to be deployed for automatic
surveillance tasks, where manual re-training of the module
to operate in each new scene is not feasible.

A further shortcoming in typical algorithms is that they
often make unjustified assumptions on the motion character-
istics of the target. For instance, it is often assumed that the
foreground moves in a consistent direction (temporal persis-
tence) (Wixson, 2000; Li, 2004; Bugeau & Perez, 2007), with
more rapid appearance changes than the background (Sheikh
& Shah, 2005). However, these are not always valid, espe-
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Fig. 1. (a) and (b) Two consecutive frames from a video clip
with camera motion. (c¢) the optical flow information overlaid
on (a). There is no consistent pattern of optical flow in the
foreground region in the image.

cially when there is egomotion. As an illustration, two con-
secutive frames from a video clip shot with a moving camera
are shown in Figures 1(a) and (b). The camera panning is
such that the objects of interest, viz. the two cyclists, undergo
very small motion in the image coordinates. Figure 1(c)
shows the optical flow between the two frames. The back-
ground is changing rapidly and there is no consistent pattern
of flow vectors in the foreground region. The inversion (with
respect to the stationary camera scenario) of the motion char-
acteristics of background (which is, in this case, fast moving
and temporally coherent) and foreground (whose motion is
barely existent and mostly random) can be a major challenge
for existing background subtraction techniques.

To address these limitations of existing algorithms, we
propose a novel paradigm for unsupervised target detection
using motion saliency. The algorithm is based on the idea that
in the absence of high-level goals (such as explicit search for
a known object) the target consists of the most salient loca-
tions of the visual field. Salient locations in turn are those that
enable the discrimination between center and surround at that
location with smallest expected probability of error. This is
formalized in a biologically inspired framework referred to as
the discriminant center-surround hypothesis (Gao & Vascon-
celos, 2005, 2007) and, by definition, produces saliency mea-
sures that are optimal in a classification sense. This frame-
work can be applied to any type of stimuli and features, and
optimal saliency detectors have already been derived for vari-
ous stimulus modalities for static images, including color and
orientation (Gao & Vasconcelos, 2007). In this work, we
extend the notion of discriminant center-surround saliency to
moving stimuli. By defining saliency in a discriminant sense,
we eliminate the need to separately model the background or
the target. A single model for representing the motion of a
region of the video is sufficient and the most salient moving

object is simply the one that best stands out among other ob-
jects in the video with respect to this model. As the algorithm
compares the regions against one another, it depends only on
the relative disparity between their motion characteristics,
and therefore is invariant to camera motion.

In order to extend this architecture to moving stimuli, prob-
abilistic models that capture the motion patterns in video are
needed. In this work, we choose dynamic textures (Doretto,
Chiuso, Wu, & Soatto, 2003) to model motion due to their
versatility in modeling complex moving patterns and the rich
statistical formulations they lend themselves to. In particu-
lar, dynamic textures provide a unified generative stochastic
model for appearance as well as motion, and these can be
conveniently incorporated into a discriminant center-surround
framework.

The main contributions of this work are as follows. (a)
The proposed algorithm is completely unsupervised and does
not require initial training. This enables the algorithm to adapt
to any scene without manual intervention. (b) By modeling
the video sequences using dynamic textures, saliency in mo-
tion and appearance are both taken into account in a princi-
pled manner, without the need to model either explicitly. The
proposed discriminant motion saliency algorithm can auto-
matically distinguish between object and background motion
due to the distinct appearance and motion characteristics of
the two regions. (c) Finally, being a discriminant technique,
the algorithm ignores egomotion, and can handle video clips
shot with a moving camera.

The remaining sections of the paper are organized as fol-
lows: the discriminant saliency architecture is presented in
Section 2. Representation of the target and background us-
ing dynamic texture models are discussed in Section 3. The
target detection algorithm is summarized in 4. Experimental
evaluation and results form Section 5.

2. DISCRIMINANT CENTER-SURROUND
SALIENCY

Discriminant saliency (Gao & Vasconcelos, 2007) is defined
with respect to two classes of stimuli: the class of stimuli
of interest, and the background or null hypothesis, consist-
ing of stimuli that are not salient. The locations of the vi-
sual field that can be classified, with lowest expected proba-
bility of error, as containing stimuli of interest are denoted as
salient. This is accomplished by setting up a binary classifica-
tion problem which opposes the stimuli of interest to the null
hypothesis. The saliency of each location in the visual field
is then equated to the discriminant power (expected classi-
fication accuracy) of the visual features extracted from that
location in differentiating the two classes.

Formally, let V be a d dimensional dataset indexed by lo-
cation vector [ € L ¢ R? and consider the responses to visual
stimuli of a predefined set of features Y (e.g. raw pixel values,
Gabor or Fourier features), computed from V at all locations
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Fig. 2. Tllustration of discriminant center-surround saliency.
Center and surround windows are defined around each image
location, and the distribution of a previously defined set of
features Y estimated from the two windows. The saliency
of the location is a measure of how disjoint the two feature
distributions are.

[ € L. A classification problem opposing two classes, of class
label C(l) € {0, 1}, is posed at location [. Two windows are
defined: a neighborhood W 1] of [ which is denoted as center,
and a surrounding annular window ’W? which is denoted as
the surround. The union of the two windows is denoted the fo-
tal window, W; = W) UW/. Let y be the vector of feature
responses at location j. Features in the center, {y|j € ‘W 11 1,
are drawn from the class of interest (or alternate hypothesis)
C(I) = 1, with probability density pyc()(y|1). Features in the
surround, {y”|j € W}, are drawn from the null hypothesis
C() = 0, with probability density pyic¢)(y/0). An illustra-
tion of the center-surround classification problem, for a static
image, is shown in Figure 2.

The saliency of location /, S(l), is the extent to which
the features Y can discriminate between center and surround.

This is quantified by the mutual information between features,
Y, and class label, C,

S
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This mutual information is an approximation to the ex-
pected probability of correct classification (more precisely one
minus the Bayes error rate) of the classification problem that
opposes center to surround (Vasconcelos, 2003). So, a large
value of saliency S (/) implies that center and surround have
a large local feature contrast, which enables their discrimina-
tion with low probability of error. Conversely, the locations
where the classification as a target has the smallest expected
probability of error can be identified by searching for maxima
of S(I). The function S (I),[ € L is referred to as the saliency

map of the dataset V. It can also be written as

1
prico(yle)
S = log —————dy (2
0] CZ(;PC(I)(C) f Pyico)(¥le) log or(¥) y 2)
1
= ZPC(I)(C)KL(pY\C(I)(Y|C)”pY(Y)) 3)
c=0
where )
KL(pllq)=fpy(y)10gp g)dy

is the Kullback-Leibler (KL) divergence between the proba-
bility distributions px(x) and gx(x) (Kullback, 1968). This
allows an alternative interpretation of saliency as a measure
of the average distance between the feature distribution over
each window and the average of the two distributions. This
is a measure of the (lack of) overlap between the distributions
associated with center and surround.

3. REPRESENTATION OF VIDEO USING DYNAMIC
TEXTURES

The discriminant saliency formulation of (1) is generic and
does not vary with the type of stimulus or features Y used.

In specific, by adopting suitable models for spatiotempo-
ral stimuli (i.e. video), this formulation is robust enough to
compute motion saliency in highly dynamic scenes. This en-
ables the design of powerful target detection algorithms by
simple reduction of target detection to the complement of
saliency detection. Under this formulation, the design of an
algorithm capable of handling highly dynamic scenes only re-
quires the use, in (3), of probability models py|cq)(ylc) that
can capture the variability associated with such video scenes.
We adopt the dynamic texture (DT) model of (Doretto et al.,
2003), due to its ability to account for this variability, while
jointly modeling the spatial and temporal characteristics of
the visual stimulus in an elegant unified stochastic framework.

A dynamic texture is an autoregressive generative model
that represents the appearance of the stimulus y, € R” (the
two-dimensional image stimulus is first converted into a col-
umn vector of length m), observed at time ¢, as a linear func-
tion of a hidden state process x; € R" (n << m) subject to
Gaussian observation noise. The state and appearance pro-
cesses form a linear dynamical system (LDS)

X; = AX,_|1 +V;
y: = Cx; + w, “)
where A € R™" is the state transition matrix, C € R™" the
observation matrix, and v, ~;,; N (0,Q) and w; ~,;, N (0,R)
are Gaussian state and observation noise processes, respec-
tively. The initial state is assumed to be distributed as x; ~
N (141,S1), and the model is parameterized by

®:(A’C7Q»R9”15S1)' (5)
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Fig. 3. Illustration of a dynamic texture model. The first three
basis images are shown on the left, and the corresponding
state space variables plotted as a function of time. At each
time instant, a video frame is represented as a linear combi-
nation of the basis images, with weights given by the value of
the corresponding state variable.

The hidden state space sequence X, is a first order Markov
chain that encodes stimulus dynamics, while y, is a linear
combination of prototypical basis functions (the columns of
C) and encodes the appearance component of the stimulus at
time ¢. Dynamic texture modeling of a sequence of images is
illustrated in Figure 3'.

3.1. Learning dynamic texture parameters

Given center and surround regions, DT parameters could in

principle be learned by maximum likelihood (using expectation-

maximization (Shumway & Stoffer, 1982), or N4SID (Over-
schee & Moor, 1994)). However, due to the high dimension-
ality of video sequences, these solutions are too complex for
motion saliency. A suboptimal alternative, that works well in
practice(Doretto et al., 2003), is to learn the spatial and tem-
poral parameters separately. Given N sequences, y(lli, e, y(lNT),
of 7 frames each (where y(') [y(’) ...y, sampled from a
DT, let Y., = [y(lli, ... ,y(ll\?] € RmXNT be the matrix com-
posed by concatenating all sequences. If Y., = USV7 is its
singular value decomposition (SVD), the DT parameters are
estimated as follows,

C = Ul : n] (first n columns of U) (6)
fc(l’)T = CTy(’) 7
A = X X)) (3)
N 11
AN A(l) A(l)T
Q = N(T_I)ZZ &) ©)

=1 j=I

I'The bottle sequence from (Zhong & Sclaroff, 2003) is used in this exam-
ple.

N -1
R = wOwNT
N(T— 1) Z 7 ()

i=1 j=1

(10)

(1)

where, X/, [)2(11;, e, A(IN)] is the matrix of state estimates,
99 = £~ A%?, and #? =

M’ the pseudo-inverse of M, ¥,” =
y" — €Y fort e 1...7. Finally, the 1n1t1al state parameters

are estimated as,

1 N

A B )

A = N;X (12)
1Y

S1 — N Z ﬁ(ll)(ﬁ(ll))T _Ijllle (13)

i=1

Using the learned model parameters, we can compute prob-
ability distributions over the DT. The states of a DT form a
Markov process with Gaussian conditional probability for x,
given x,_; (for any #). So for Gaussian initial state conditions,
the joint distribution of the state sequence, X;.r = [x] ...x/]"
is also Gaussian (Chan & Vasconcelos, 2005)

P(Xlz-r) = G(X1:T9”7 E) (14)
where u = [ ulT coooopl ]T and the covariance is
S, (AS)” (AT'S)T
AS, S, (AT_ZSQ)T
X= ) ) . (15)
A™IS;, ATZS, - S:
Similarly, the image sequence y;.. is distributed as
P(Yir) = G(Yi:, 7, @) (16)

where ¥ = Cu and ® = CEC” + R, and C and R are block
diagonal matrices formed from C and R respectively:

cC 0 - 0 R O --- 0
0 C - 0 0O R - 0
c=| . . . . LR=
0O 0 - C 0 0 --- R

At any location [ of the video, the densities of (15) can
be estimated from a collection of spatio-temporal patches ex-
tracted from the center and surround windows. The evaluation
of the KL divergence between DTs is needed for the compu-
tation of S (),with (3).

Let po(y1.) and p;(y,.;) be the probabilities of a sequence
of 7 frames under two DTs parameterized by ®¢ and @, cor-
responding to the surround and the center respectively. For
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Fig. 4. Tllustration of the center and surround windows used to
compute the saliency of location /. Conditional distributions
are learned from the center and surround window, while the
marginal distribution is learned from the total window. The
saliency measure S (/) is finally computed with (3).

Gaussian pg and pq, the KL divergence has the closed-form (Cover

& Thomas, 1991):

KL (po llp1) a7

1 D] -1 2

3 [log @ +tr ((I)1 (I)O) + ”‘yo - '}/1”(1)1 —-mt
where m is the number of pixels in each frame. Direct eval-
uation of the KL is computationally intractable, since the ex-
pression depends on @ and ®,, which are very large covari-
ance matrices. An efficient recursive procedure is, however,
available (Chan & Vasconcelos, 2004).

4. TARGET DETECTION ALGORITHM

In an unsupervised task, in the absence of any information re-
garding a specific previously known target, motion saliency
provides an objective way of defining the target : the tar-
get consists of those regions of the video with high motion
saliency. So, moving target detection is performed by first
computing the saliency measure S (/) at each location / of the
video.

Center and surround windows are centered at the location,
and a collection of spatio-temporal patches extracted from
each window. Prior probabilities for both classes are assumed
to be equal to % DT parameters are then learned from the
center, surround, and total windows, to obtain the densities
Prico @I, pyica(¥(@I0), and py(y(r), respectively. S (1)
is finally computed with (3), a the recursive implementation
of (16) (Chan & Vasconcelos, 2004). The procedure is illus-
trated in Figure 4. Those pixels which have a saliency value
above a predetermined threshold are marked as belonging to
the moving target. The motion saliency based target detection
algorithm is summarized in Algorithm 1.

5. EXPERIMENTS AND RESULTS

To evaluate target detection performance, the proposed algo-
rithm was tested on sequences collected from the web. Frames

Algorithm 1 Target Detection via Computation of Motion

Saliency

1: Input: Given video V indexed by location vector / €

Lc R3, state-space dimension n, center window size n,,
patch size n,, temporal window 7.

2: forl e Ldo

3:  Identify center ‘W 11 and surround (W?.

4:  List all overlapping patches of size n, X n, X 7in ’W}
and W)

5. From the patches learn dynamic texture parameters
for center ®([), surround @(/) and the total @(/) us-
ing (5)-(12).

6:  Compute the mutual information, S ([), between class-
conditional and total densities (3), using the recursive
implementation of (16).

7. end for

8: Choose threshold value 7. Find regions where ligrger =

{leL:S()>T}.
9: Output: Target locations ligyger

s

Fig. 5. Results of target detection on a skiing clip shot with a moving
camera, with heavy snowfall in the background: (a) original (b) detected
target

from some of these sequences are shown in panel (a) of Fig-
ures 5 - 7. In all cases, the background is highly dynamic.
In addition, most sequences were shot with significant cam-
era motion. Figure 5, presents frames from a sequence which
depicts a person skiing in heavy snowfall. A pair of cyclists
ride through a grassy plain in Figure 6, while an aircraft land-
ing is tracked using a moving camera in Figure 7. Due to the
extreme variability in background these clips are challenging
for conventional foreground detection techniques.

To perform target detection, the sequences were converted
to grayscale, and saliency maps computed at sub-sampled lo-
cations of the video, using a grid scaled down by a factor of
4 spatially and 2 temporally. At each grid location, the center
window occupied 16 X 16 pixels and spanned 11 frames - 5
past frames, the current frame, and 5 frames in the future.

Saliency maps obtained using the proposed algorithm on
the test clips are shown in panel (b) of Figures 5, 6 and 7.
Video sequences of these and various other detection exam-
ples are available from www.svcl.ucsd.edu/~projects/
background_subtraction. Even though the background
is extremely dynamic, the relevant targets are detected accu-



Fig. 6. Results of target detection on clip showing a pair of cyclists. The
camera is moving to track the cyclists, causing very large variability in the
background: (a) original (b) detected targets

Fig. 7. Results of target detection on clip showing an aircraft landing.
The camera is moving to keep the aircraft in focus, causing variability in
the background which consists of buildings, cars and trees: (a) original (b)
detected target

rately, in all three cases.

To enable a quantitative analysis, all sequences were man-
ually annotated with the groundtruth for the objects of in-
terest. The saliency maps were then thresholded at a large
number of values, and using the groundtruth information false
alarm (@) and detection rate (8) were computed. These were

used to generate receiver operating characteristic (ROC) curves.

Using the ROC curves, the equal error rate (EER), defined as
the error at which false alarm equals miss rate (o = 1-3), was
also estimated. The EER represents a quantitative measure of
target detection performance of the proposed algorithm. The
low EER (average of around 4.7% shows that the proposed
algorithm identifies the target reliably with low false positive
rate. Table 1 shows the EERs for the three clips of Figures 5
-17.

EER
skiing 3%
cyclists 8%
landing 3%

| Average [ 4.7 % ‘

Table 1. Equal Error Rates for the sequences tested. The pro-
posed algorithm has very low EER for all clips, showing that
it can accurately detect the target with very low false postive
rate.

6. CONCLUSION

In this work, we have proposed an algorithm for unsupervised
moving target detection based on center-surround saliency.
The new algorithm is inspired by biological vision, and ex-
tends a discriminant formulation of center-surround saliency
previously proposed for static imagery. By using dynamic
texture models for motion, we derive an information theo-
retic measure of motion saliency. The discriminant center-
surround framework, in combination with the modeling power
of dynamic textures leads to a robust and versatile algorithm
that can be applied to scenes with highly dynamic backgrounds,
even when the camera is moving. The algorithm combines
spatial and temporal components of saliency in a principled
manner. Being completely unsupervised it does not require
any training and can thus be automatically deployed to new
scenes, with no need for manual supervision or parameter tun-
ing. As the algorithm can work even for moving cameras, it
can also be incorporated into hand-held or vehicle mounted
sensing devices.

Potential applications for the army include automated surveil-
lance with alerts for specific events, detection of events in
archived video, crowd monitoring, detection of breaches of
borders and other secure areas, path planning for autonomous
vehicles and automated target tracking.
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