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ABSTRACT 

 

The Decisive Analytics Corporation (DAC) team 

describes a framework to fully integrate the tracking 

and discrimination processes in the Ballistic Missile 

Defense System (BMDS). 

 

 

1.  INTRODUCTION 

 

The contributions developed under this work center on 

fully integrating the tracking and discrimination 

processes in the Ballistic Missile Defense System 

(BMDS). The current architecture of the BMDS 

artificially separates the tracking and discrimination 

algorithms. Each model exists independently with no 

ability to influence the operation of the other. This 

situation precludes taking advantage of the inherent 

relationships that exist between a threat object’s type 

and its kinematics. Making full use of these 

relationships will improve both the accuracy of the 

tracking algorithm and the power of the discrimination 

model to distinguish the Reentry Vehicle (RV) from 

other, non lethal object types. This framework could be 

equally viable to Army Air and Missile Defense on 

Tactical Ballistic Missiles (TBM) and maneuvering Air 

Breathing Targets (ABT) by using kinematics as well as 

geometry to continue a track after it leaves and returns 

to the field of view. To enable this integration, the key 

contributions developed under this effort include:  

 

1. An implementation of a novel, hybrid, 

dynamic Bayesian Network inference 

algorithm and modeling language capable of 

representing discrete and continuous variables, 

2. An integrated tracking and discrimination 

solution we achieved through a single 

Bayesian network model, and  

3. A Multi-Hypothesis Bayesian Network 

(MHBN) technique that improves track 

correlation by managing and merging prior 

beliefs with new tracking and discrimination 

measurements. 

 

 

2.  INFERENCE ALGORITHM 

 

A cornerstone accomplishment of this SBIR was the 

development and implementation of a Bayesian 

inference algorithm suitable for use with hybrid, dynamic 

network models. The DAC team began with an 

implementation of a hybrid inference algorithm developed 

under a separate MDA-funded effort and added a dynamic 

capability. This algorithm represents systems with discrete 

and continuous variables (i.e. hybrid) as a possibly-large, 

yet structured Gaussian mixture models. A small example 

of a static hybrid network and its mixture representation is 

shown below in Figure 1. 

 

 

 

Through the work completed on this SBIR, the algorithm 

can now work with two time step representations of 

dynamic Bayesian networks. A small example network and 

its resulting Gaussian mixture are shown below in Figure 2.  

The algorithm makes use of several innovative techniques 

for managing state space explosions within a time slice and 

between time slices as the network evolves. These 

techniques include a means to efficiently enumerate the top 

most likely instantiations and corresponding Gaussian 

components in the network mixture and a collapsing 

algorithm approximation to identify and combine similar 

Gaussians as the network mixture is propagated forward in 
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Fig. 1 - A static, hybrid Bayesian network and a plot 

of its corresponding Gaussian mixture. 

Fig. 2 - A two time step, dynamic, hybrid Bayesian 

network and a plot of its corresponding evolving 

distribution. 
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time. Furthermore, to perform hybrid inference, the 

algorithm makes use of closed-form mechanics for 

marginalizing and conditioning on evidence when linear 

Gaussian relationships exist and an unscented transform 

(a numerical integration technique) to provide the best 

Gaussian approximation when modeling nonlinear 

relationships between continuous parent and child 

variables.  

 

 

3.  INTEGRATED TRACKING AND 

DISCRIMINATION 

 

Through this research, we have expressed the tracking 

and discrimination functions within a single, unified 

model and used our hybrid, dynamic Bayesian inference 

algorithm to solve it. This is depicted in Figure 3.  

The two time step, hybrid, dynamic Bayesian network 

shown in Figure 3 models an object being tracked and 

discriminated as it moves in three dimensions with a 

switching behavior, randomly coasting or thrusting at 

any time. Here we consider that the object can only be 

one of two possible object types (1 or 2), with each type 

having its own unique temperature profile depending on 

whether it is currently thrusting or coasting. As the 

graphic in Figure 3 illustrates, we have simulated a 

situation where a radar is available for tracking the 

object and an IR sensor can be tasked to perform 

discrimination.  

 

Using this integrated tracking and discrimination 

network, a truth model was generated for object type 2, 

along with a sequence of simulated kinematic and 

position measurements, with each measurement created 

with a random draw from the sensor error model 

distributions. The measurements were then applied to 

the hybrid, dynamic Bayesian inference algorithm 

developed under this effort to produce a sequence of 

filtered state estimates for the system as well as a 

sequence of posterior beliefs on object type.  A key 

objective of the work completed under this effort was to 

demonstrate what improvements in discrimination 

performance can be expected as a result of expressing 

the tracking and discrimination in a common mathematical 

language. To accomplish this goal, the DAC team 

constructed a “discrimination-only” network model by 

extracting the discrimination variables from the network 

depicted in Figure 3. Using the same sequence of simulated 

temperature measurements created for the integrated 

tracking and discrimination experiment, the DAC team 

created a time series of object type beliefs using the stand-

alone discrimination network. This series of discrimination-

only object type beliefs is shown plotted along with the 

beliefs from the integrated tracking-discrimination model in 

Figure 4.  

As the plot illustrates, the combined discrimination and 

tracking model is able to discriminate the correct object 

type with near certainty by time step 5. As expected, the 

stand-alone discrimination model converges to the correct 

solution as well, albeit at a much slower rate. While the 

example network we have used for this comparison does not 

employ real sensor data or ballistic motion models, these 

results are quite promising nonetheless.  

 

 

4.  MULTIPLE HYOPOTHESIS BAYESIAN 

NETWORK TRACK CORRELATION 

 

With an integrated network representation of tracking and 

discrimination, it is possible to apply the concepts of 

Multiple Hypothesis Bayesian Networks (MHBN) to the 

track correlation problem. Here, we assume a situation 

where strong posterior beliefs on type have been established 

for two objects that are being tracked.  For external reasons, 

the system is unable to collect against these two objects for 

a period of time, after which two new local tracks are 

established. At this point, there is uncertainty about the 

correlation of the new local tracks with the existing system 

tracks. The use of MHBN to manage each of the possible 

pairings of local-to-system tracks is a natural extension of 

the integrated tracking and discrimination network. Because 

there is a single Bayesian network representation of the 

Fig 3 - Representation of multi-sensor tracking 

and discrimination within a single network 

model. 
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existing system tracks for each object (prior to the 

sensor coverage gap), we can compute the likelihood of 

new, local measurements, given our previous beliefs on 

object type and forward-propagated kinematic state.  

 

To test this concept, the DAC team generated two truth 

models, one with object type 1 and the second with 

object type 2. For this exercise, the object types were 

endowed with identical thrust-coast kinematic motion 

models and differed only in the temperature profile 

distributions used for discrimination. In this way, the 

MHBN track correlation technique could be evaluated 

with and without discrimination information, providing 

another opportunity to quantify the benefits of 

integrated tracking and discrimination. For each object, 

a time sequence of sensor measurements was simulated, 

with each observation drawn from the sensors’ 

measurement error distributions. Using our hybrid, 

dynamic inference algorithm, we performed combined 

filtering and discrimination using these measurements 

for each track, up to a predefined point at which time a 

sensor coverage gap was simulated. After a number of 

seconds, the combined filtering and inference process 

started again, simulating the return of sensor coverage, 

using each track’s forward propagated network. 

Because the truth models were created to intersect there 

is a great deal of overlapping uncertainty in each track’s 

predicted kinematic state estimate after the coverage 

gap. For three time steps after the return of coverage, 

we evaluated the likelihood of a (now-local) 

measurement having come from each of our existing 

(system) track network models. Finally, as previously 

stated, we performed this entire experiment twice; once 

only using kinematic measurements to evaluate 

hypothesis likelihoods and again using kinematic and 

discrimination measurements to evaluate hypotheses. 

The results of both versions of the experiment are 

shown in Figure 5. 
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As Figure 5 shows, the correct measurement to track 

assignment hypothesis “CCC” across all three time steps is 

the most likely hypothesis when discrimination 

measurements are used along with kinematic measurements. 

However, the same correct hypothesis is not scored as most 

likely when we omit the discrimination measurement. 

Rather, we see that hypothesis “CII” is calculated to be the 

most likely without discrimination. Also, there is very little 

difference between the likelihoods of any hypothesis in this 

case. This result demonstrates the power of combining 

discrimination information with tracking measurements, as 

a unique discrimination signature can help to disambiguate 

cloudy kinematic state estimates. 

 

 

5.  ONGOING RESEARCH 
 

Recent efforts have centered on extending the capabilities 

of the inference algorithm and modeling language to 

support the development of a high-fidelity, single sensor 

network model for tracking and discriminating an object in 

ballistic motion. These have included an extension of the 

inference algorithm’s unscented transform numerical 

integration facilities to accommodate vector-valued 

functions, and a modification to the algorithm’s XML 

modeling language to express the notion of network 

variables with distributions given by a general system of 

equations. These steps enabled us to implement a 

differential equation solver to propagate the ballistic filter 

forward in time and embed the filter directly in the network 

via an XML file for a six state ballistic filter with a 

spherical-to-Cartesian measurement error model for a single 

sensor. We have also developed a test-bed environment to 

test the performance of the ballistic filter network model 

with noisy, simulated radar measurements collected against 

a ballistic truth model. The ballistic filter network model is 

shown in Figure 6. 

 

Fig 5 - Discrimination information disambiguates 

overlapping kinematics after a sensor coverage gap. 
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CONCLUSIONS 

 

The unified tracking and discrimination framework 

presented here shows promise to improve the rate of 

object type discrimination by making use of 

relationships that exist between an object’s type and its 

kinematics. The warfighter would benefit from this 

innovation through a reduction in the sensor resources 

required for positive discrimination of object type, 

allowing for more effective allocation of sensors during 

an engagement. This framework also provides for a 

robust track correlation technique to help disambiguate 

overlapping kinematic state estimates in high target 

density situations. 
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