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Gravitational and magnetic anomaly inversion
using a tree-based geometry representation

Raymond A. Wildman'! and George A. Gazonas®

ABSTRACT

Gravitational and magnetic anomaly inversion of homoge-
neous 2D and 3D structuresis treated using a geometric pa-
rameterization that can represent multiple, arbitrary poly-
gonsor polyhedraand alocal-optimization scheme based on
ahill-climbing method. This geometry representation uses a
tree data structure, which defines a set of Boolean operations
performed on convex polygons. A variable-length list of
points, whose convex hull definesaconvex polygon operand,
residesin each leaf node of thetree. The overall optimization
agorithm proceedsin two steps. Step one optimizes geomet-
ric transformations performed on different convex polygons.
This step provides approximate size and location data. The
second step optimizes the points located on al convex hulls
simultaneously, giving amore accurate representation of the
geometry. Though not an inherent restriction, only the geom-
etry isoptimized, not including material valuessuch asdensi-
ty or susceptibility. Results based on synthetic and measured
data show that the method accurately reconstructs various
structures from gravity and magnetic anomaly data. In addi-
tion to purely homogeneous structures, a parabolic density
distributionisinvertedfor 2D inversion.

INTRODUCTION

Gravitational and magnetic anomaly inversion hasapplicationsin
many fields, including geophysical prospecting and archeology
(Oldenburg, 1974). Fortunately, exact forward models for comput-
ing gravitational and magnetic fields caused by either infinite polyg-
onal cylinders(2D) or arbitrary polyhedra (3D) exist so that compu-
tational modeling and inversion of such structuresis very efficient
(Hubbert 1948; Won and Bevis, 1987). Several methods for model -
ing and inversion have been explored, such asthose based on adata-
base of known masses (Bullard and Cooper, 1948), linear splines

(Murthy and Rao 1993), neural networks (Osman et a., 2006, Os-
man et al., 2007) continuous curves (Abdelrahman and Essa, 2005;
Essa, 2007), linearization of the nonlinear integral equation (Gao et
al., 2007), singular value decomposition (Lines and Treitel, 1984),
Fourier transform (Mareschal, 1985), simulated annealing (Mundim
etal., 1998), 2D binary grid methods (Krahenbuhl and Li, 2006), and
3D prism methods(Rao et al., 1999).

The method presented here focuses on the data structure used to
represent the geometry of theinverted structure. First introduced in
Wildman and Weile (2007), thedatastructureisabinary treethat de-
fines a set of Boolean operations performed on convex polygons.
Each convex polygonisdefined asthe convex hull of alist of points.
This representation can then use line segments to approximate any
geometry or topology. The method can represent exactly any poly-
gon and also approximate curved structures using an arbitrary num-
ber of linesegments. Also, multiple shapesareeasily represented us-
ing thetree structure; because the size of thetreeisunrestricted, any
number of shapes can beimaged.

Thismethod hasanumber of advantages. First, contrary to spline-
based methods, the number of points used in any single convex hull
isnot restricted. In spline approaches, using too few points can lead
toaninaccurate geometry. If too many pointsare chosen, the optimi-
zation can be inefficient. Second, the number of separate shapesis
unrestricted. Again, many spline-based methods require a priori
knowledge of the number of separate geometries, and the possible
intersection between shapescan bedifficult to handle. Third, thesize
of the search space scales up only as the geometry becomes more
complicated. In contrast, pixel-based methods rely on a discretiza-
tion of theregion that can betoo coarse or too fine. Finegridsare ca-
pable of a higher-resolution image; however, the search space is
much larger at the outset. Fourth, Fourier-based methods cannot re-
produce nonsmooth structures. The use of line segments allows for
accurate representation of corners, and because their length can be
arbitrarily small, curves are also well approximated. Finally, the
method easily extendsto three dimensions. Every geometric concept
used has an obvious 3D analog. (See 3D examplesin the results sec-
tion; however, the algorithm is not described in detail becauseit is
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124 Wildman and Gazonas

essentially identical tothe 2D algorithm.) Intotal, our method makes
no assumptionsregarding the number or complexity of the objectsto
beimaged.

Previously, agenetic algorithm (GA) was used with the above ge-
ometry representation for the electromagnetic inversion of conduct-
ing cylinders (Wildman and Weile, 2007). Although the GA ap-
proach showed the viability of the method, it required a significant
number of function evaluations; subsequently, a greedy search
method and acombined GA/local search method wereimplemented
to improve performance (Wildman and Weile, 2008). The method
discussed here forgoes any stochastic optimization and adapts a
Newton-likelocal search method, giving asimplified and more effi-
cient approach. Ultimately, the method uses |ocal search combined
with geometric operationsdiscussed in previouswork.

The local search is used to optimize two quantities: affine trans-
formations that are applied separately to each convex polygonin a
tree and the individual points on the convex hulls of each polygon.
Each optimization scheme has advantages. The affine transforma-
tion islower dimensional, leading to more efficient convergence of
the local search. Approximate size and location of geometry can be
determined using this optimization. Optimizing the individua
points is more efficient for recovering detailed shape information.
The overall optimization algorithm proceedsin two stages, only us-
ing higher dimensional searches after other options have been ex-
hausted. Theresult is an efficient search algorithm that typically re-
turnsresultswith low relative errorsin the gravitational or magnetic
field (on the order of 10-3 to 10~“ as measured in the £,-norm for
simulated targets) using on the order of, depending on the complexi-
ty of thetarget, 10° to 10* function evaluations.

Inthe next section, the geometry optimization method isdetailed.
The geometric data structureis reviewed, and alocal optimization-
based method for inversion is discussed. The numerical results sec-
tion explores the use of gravitational and magnetic data as well as
measured data from the literature. The final section discusses con-
clusionsand futurework.

GEOMETRY OPTIMIZATION

This section details the geometry encoding and optimization
scheme. Inthefirst subsection, the key datastructureisreviewed and

1

Figure 1. Convex hull of aset of points.

discussed. The second subsection detail s the optimi zation algorithm
which isacombination of aNewton-like search method and several
geometric operations. The objectivefunction, whichrelatestheerror
inapotential solutionto some synthetic or measured data, ispresent-
ed inthethird subsection. Next, the gradient-based search method is
reviewed and discussed in context with the given objective function
and geometry representation. Finally, the algorithm is reviewed in
total through an example.

Geometry representation

The basic principle behind this geometry parameterization is the
use of convex polygons to build more complex geometries and to-
pologies. Though unnecessary, convex shapesareideal becausethey
can be represented easily as the convex hull of alist of points. The
convex hull of aset of pointsisdefined asthesmallest convex set that
containsall pointsor, equivalently, theintersection of all half-planes
that contain the points (deBerg et al ., 2000). Figure 1 givesan exam-
ple of the convex hull (solid line) of aset of points (shown as black
dots).

Any list of three or more noncollinear points generates a valid
convex hull, making self-intersections impossible. A mathematical
definition of the convex hull (CH) of a set of N points, X

={p®, ..., p™},isgivenby
N N
CH(X) =9 2 aipV|a;=0, Vi, X oy =1(. (1)
i=1 i=1

Though this strict definition defines the set of (infinitely many)
points contained in aconvex hull, typical agorithmsreturn the sub-
set of points that are located on the vertices of a convex hull (as
shown in Figure 1 and denoted as matrix P throughout) rather than
theset of coefficients «;.

Inthiswork, line segmentsare used to connect points, giving alin-
ear, polygon-based approximation of target geometries. Thisisnot a
limitation of the method because splines or Bézier curves could also
be used (Farin and Hansford 2000; Mortenson, 1999). Additionally,
the number of pointson aconvex hull isnot restricted in any way, so
arbitrarily small line segments can be used to approximate curved
structures.

More complex structures, such as multiple and concave shapes,
can be generated by combining convex shapes. Oneway of combin-
ing convex polygons isto generate expressions involving Boolean
set operations such asunion, subtraction, and intersection applied to
convex polygon operands. Moreover, mathematical expressionscan
berepresented asbinary trees, which can be manipul ated with an op-
timization scheme. Here, the interna nodes of the tree represent
Boolean operationsand theleaf nodesrepresent convex polygons.

Onedifference between thiswork and Wildman and Weile (2007)
isthat only union operations are used. Figure 2 gives an example of
thisscheme. Consider aBoolean expression (showninFigure2aasa
tree) of theform

CH(X) U CH(A) U CH(©), (2)

where X, A, and ¢ represent three separate sets of points (shownin
Figure 2b, with dashed lines representing the convex hulls) and U
representsunion.

Thefirst step in generating the geometry defined by expression 2
is to compute the union of the convex polygons represented by
CH(X)andCH(A), asshowninFigure2c. Inthiscase, the polygons
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Gravity inversion using tree geometry 125

are separate, so computing theunionistrivial. Next, the union of the
result of the previous step (shownin Figure 2d asthe shapeswith Os
on the vertices) and the convex polygon represented by CH( ¢ ) is
computed. In Figure 2d, theresult of the union operationisshown as
the solid line, and the operands are shown as dotted lines. Figure 2e
illustratestheresult of expression 2.

Eval uating geometries such asexpression 2 requires several com-
putational geometry algorithms. First, there are anumber of convex
hull algorithms; should structures with alarge number of points be
necessary, O(nlog(n)) (in the total number of points n) algorithms
exist. Computing Boolean operations requires an algorithm known
as map overlay (de Berg et al., 2000). This algorithm computes a
partitioning of the plane based on the input polygons. Intersection
points and separate regions are identified so that Boolean opera-
tions can be performed. This algorithm also can be computed in
O(nlog(n) + I log(n)) time, where the computation time depends
on the number of intersections| (deBerg et a., 2000). Inthisimple-
mentation, the Computational Geometry Algorithms Library was
used for all 3D geometry operations.

Ultimately, this scheme applies an optimization process to the
data structure defined above. The data structure can be summarized
asaset of lists or arrays containing 2D (or 3D) points stored in the
leaf nodes of atree. Theinternal nodes of the tree define some Bool -
ean combination of the convex polygons that each point list repre-
sents. An optimization scheme applied to this data structure must
then operate on individual pointsand the actual structure of thetree.
A numerical optimization scheme is applied to the convex shapes
(directly optimizing the coordinates and geometric transforma-
tions), and decisions in the shape of the tree are made based on the
performance of several runsof the optimizer.

Optimization algorithm

Given the possible complexity of the geometry representation, an
optimization scheme must be designed to construct atarget geome-
try efficiently. To that end, the local optimization method used here
gently increasesthe dimension of the search space by optimizing dif-
ferent geometric transformations and carefully controlling the size
of the tree. The method proceeds in two stages: a split stage deter-
mines the approximate size, location, and geometric complexity of
the target and an optimize stage gives a more accurate image. Each
iteration of the split stage divides the leaf nodes of the tree into the
union of two separate convex polygons along one or more angles.
The best choice is saved and optimized. Once the change in the ob-
jectivefunctionissufficiently small, the optimize stage applieshigh-
er-dimension searches to the geometry to model the target more ac-
curately.

The optimization algorithm used here is the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) local search method (Dennis and Schna-
bel, 1996). BFGS is a hill-climbing method similar to Newton's
method. It differs from Newton's method in that it uses a specific
rank-two update to the Hessian matrix of approximated second de-
rivatives. Because the search spaceis multidimensional, line search
isused at afixed number of search directionsto find successive mini-
mized vectors. Throughout this paper, the term iteration refersto a
singleloop through astage of the global scheme, not separate search
directionswithin BFGS.

The dimension of the space searched by BFGS can be controlled
by optimizing various affine transformations, including scaling and
trandation. An affine transformation, essentially a linear transfor-
mation and atranslation, can be expressed as

X* = Ax + b, (3)

where A is a square matrix representing the linear transformation
and b isacolumn vector representing the transl ation. When applied
toaset of 2D points, expression 3 can berewritten as

P*=A(P-C)+B+C,
B =b[11...1];xn,

C=d11...1]14p, (4)

whereA isa2 X 2 matrix representing alinear transformation, b isa
2D column vector representing atranslation vector, cisa2D column
vector representing the center of mass of the set of points, and Pisa
2 X nmatrix representing the components of the n points. (For three
dimensions, the dimensionsof all matricesand vectorsareincreased
to3 X 3and3 X 1, respectively.)

a) c)

Figure 2. Decoding process. (a) Tree structure. (b) Point lists with
their convex hulls. (c) Union of two separate convex hulls. (d) Union
with remaining shape. (e) Final result.
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126 Wildman and Gazonas

Geometric transformscan beapplied (and optimized) by selecting
specific partsof an affinetransformation given by

A(Ser Sazr Sxr Sz = {SX SX] bty t) = E}

Sx Su z
(5)
Scaling intwo dimensionsinvolves optimizing the quantitiess,, and
S, With
S« O 0
A , = , b= . 6
R ol TR b

Similarly, trandationintwo dimensionsinvolvesoptimizingtheele-
mentsof b, t,, andt,,

A—{l 0} b(t,,t —{tx} 7
=10 11" (xaz)_tz- (7)

Combining scaling and transl ation gives afour-parameter optimiza-
tion problem:

S« 0 tx]
A , = . b(t,t) = . 8
(S s S2) [0 SZZ] (t. 1) L (8)

Figure 3 shows an example of an affine transformation applied to
arectangle, characterized by

A_{1.4 —0.1} b_[ 5 } o
ol 12 | - [1844 ] ©

whereA isunitlessand b ismeasured in kilometers.

In addition, aseparate transformation is applied to each point list
inatree. Givenk leaf nodesin atree, optimizing ascaling or transla-
tion transformation requires 2k parameters, each combined scaling
and translation requires 4k parameters, and each affine transforma-
tion requires 6k parameters. The initial guess for each leaf node is
chosen as the corresponding identity transformation with some
Gaussian random variable (with a small variance) added. (In three
dimensions, the corresponding opti mizationsrequire 3k, 6k, and 12k
parameters, respectively.)

Individual points are also optimized. Given a set of N points,
BFGS must optimize a set of 2N parameters (or 3N in three dimen-
sions) comprised of the componentsof each point. The set of optimi-
zation parametersisgiven by

a) Or

y (km)

15+

2 1 1 1 1 1 1 1 |
OO 5 10 15 20 25 30 35 40

x (km)

(1) (N)
P= [ p(xl) p(XN) ] : (10)
Pz" - Pz
Again, theinitial guess used with BFGSisthe original set of points
with somesmall random variable added.

Figure 4 shows a flow chart of the overall optimization scheme.
The method is broken into three stages: initiaize, split, and opti-
mize. Each stage consists of aloop over a set of optimizations, each
with a certain termination criterion. Termination criteria can be a
fixed number of iterations, achievement of afixed absolute error, or
stagnation measured as an insufficient changeintheerror.

Initialize

Theinitial geometry isalwaysacentered rectanglewithx and zdi-
mensionsequal to half the specified boundsof theregion. Thisstepis
denoted asthe Rectangle block in Figure 4. Next, theinitial geome-
try isoptimized using the scaling and trangl ation transforms givenin
equations 6 and 7. The two optimizations are repeated a set number
of times; typically two or three iterations are sufficient. Using only
scaling and transl ation optimizations gives approximate size and lo-
cationinformation.

Flit

The split stage determines the geometric and topological com-
plexity of the structure. The splitting operation splits a chosen | eaf
node along a given line into the union of two separate nodes while
adding the intersection points of the line and the hull to the newly
created leaf nodes. Including intersection points ensuresthat there-
sulting geometry isidentical totheoriginal . Figure5 showsan exam-
ple of the splitting process:. Figure 5ashowstheinitial and resulting
tree structure, and Figure 5b and ¢ shows the corresponding geome-
tries. (The centerline in Figure 5c is for illustrative purposes; the
added intersection points ensure that the resulting geometry isiden-
tical totheinitial.)

The“splital” block attemptsto determine the best choice of split
between all current convex shapes. Each convex shape isfirst split
along 0° and subsequently 90° and is optimized using the combined
translation/scaling givenin equation 8. (In threedimensions, the ob-
jects are split along the three planes that compose the coordinate
axes.) After all combinations of splitting are completed, the best re-
sultissaved. Next, optimization of afull affinetransformationisap-
plied to the newly split structure; however, the result of this optimi-
zationiskept only if one of the termination criteriaof the split stage

b) O
5,
B
<  10r
>~
151
20 1 1 1 1 1 1 1 |
0 5 10 15 20 25 30 35 40

Figure 3. Affinetransformation applied to arectangle. (a) Initial shape. (b) Affinetransformation applied.
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Gravity inversion using tree geometry 127

isachieved. Thetermination criteriaused here are the reduction be-
low anerror of 102 or thedifference betweentheinitial error and er-
ror after splitting below 10-2. Theformer criterion indicatesthat the
structure is likely accurate enough and further subdivision will not
aid thefinal step becausethelatter indicatesthat the splitting process
has stagnated.

Optimize

Thefinal stage simply optimizesthe divided structure alternating
between affine transformations (equation 5) and points (equation
10). In addition, new points may be added in between the two opti-
mization runs. In thisimplementation, apoint isadded in turn to the
midpoint of each line segment (or polygon centroid in three dimen-
sions) and slightly translated outward along the normal direction of
the line segment. The objective function of this structureis evaluat-
ed, and the new structure with the best objective function value is
saved. Finally, the termination criteria are similar to the split stage,
though both the error and differencein the error must be below 103
In addition, thisstep can beterminated after four or fiveiterations.

Objective function

An objective function must be defined to measure the perfor-
mance of the algorithm relative to some input data. The objective
function is then the relative error of a potential solution compared
with simulated or actual data produced by atarget geometry. Gravi-
tational and magnetic anomalies can be computed efficiently for po-
lygonal geometries such as those produced by the proposed geome-
try representationin Figure 2 (Won and Bevis, 1987).

For homogeneouspolygonal structures (represented asK lineseg-
ments), thevertical component of the gravity anomaly measured at a
station o; can beexpressed as

K

g = 2Gp >, Z(0), (12)
k=1

where G isthe gravitationa constant, p isthe density contrast of the
structure, and Z, isalineintegral over the kth segment of the struc-
ture. Analytical expressions for the line integrals Z, are available,
and oneefficient representationisgiven by Won and Bevis (1987):

Z(0) = Al (6 — 011 + Bm(%)] (12
K

where
A (P — ) (pPpl+ — pik+Ppl (13)
(P = P2 + (pyrY — ply?
(k+1) (k)
pz - pz
B="F"—"7—"", (14)
P — Bl
re = (p)% + (p)?, (15)
s
Py

Theterms p and pX represent the coordinates of the kth vertex of a
structure (equation 10, or, e.g., theresult of equation 2) relativetothe

station location o;, and index arithmeticisperformed cyclically. Sev-
eral special casesexist (e.g., r, = 0), detailsof which canbefoundin
Won and Bevis (1987). Also, magnetic anomalies m; are computed
inasimilar fashion. Finally, gravity anomaliesof polygonswith par-

Optimize

Initialize ¥ Split

Split all

Translate

¢ A
Scale Affine

Figure4. Optimization algorithm flowchart.

[ETTTELLLY

a)

Split, 90°

Figure5. Thesplitting process. (a) Treestructure. (b) Initial point list
with convex hull. (c) Union of two convex hullsat 90°.
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128 Wildman and Gazonas

abolic density distributions and 3D polyhedra can be computed as
giveninRaoet al. (1994) and Singh and Guptasarma (2001).

For 2D geometries, a set of Ny measurementsis taken at linearly
spaced stationsalong the z= 0, 0 = X = Y, line segment. (For 3D
cases, auniform grid of observation stationsis used to measure the
target data.) Although the altitudes of the stations are assumed to be
constant, local topography can be modeled by varying the station
height z. The objective function is defined asthe ¢, errorsrel ative to
some measured or synthetic datafor gravitational data

PO o P Rl )
OV Sy

and magnetic data
o Jzi”zﬂmi—mrﬂeaﬂz 8
"N S

where g; and g represent the gravitational anomaly at the ith sta-
tion of the search agent (as computed by equation 11) and target ge-
ometry, respectively, and m; and m™® represent the total magnetic
anomaly at the ith station. Because the magnetic field m isavector,
some combination of the magnetic field components m,, m,, and m,
must be used to obtain ascal ar objectivefunction. Thetotal magnetic
fieldisused andisgiven by (for 2D cases)

m = sin(¢"™)m, + sin(¢™")cos(¢™)m,, (19)

where ¢'™istheinclination angle of the ambient magneticfield mea-
sured in degrees below horizontal and ¢ is the strike angle of the
structurerelative to magnetic north measured in degrees. Inthreedi-
mensions, thetotal magneticfieldis

m = \m; + g + n. (20)

Finally, noi se can be added to synthetic datato simulateaphysical
system. Here, noiseis defined as an additive Gaussian random vari-
ablewith zero mean and astandard deviation given by some defined
signal tonoiseratio (S/N), measured in decibels (dB). The measured
dataisthengivenby

g = g’ + $(u, o)rms(gsM),

uw=0, o=10"SN2 (21)

where g™ is the simulated gravitational field at the ith station,
¢(u , o) isaGaussian random variablewith mean p and variance o,
and rms(-) indicates the root-mean-square average of the simulated
data. A similar expression isdefined for the magnetic datam™*.

BFGS applied to geometry optimization

BFGSformsthebasisof the proposed inversion scheme. Itisused
to optimize different sets of geometric transformations and also
point locations directly; however, the basic search method is the
sameregardless of the chosen optimization parameters. Again, most
stepsshownin Figure4involveapplying BFGSto thecurrent geom-
etry.

Toreiterate, BFGSisaNewton-likelocal search method that uses
an approximation of the Hessian matrix of second-order partial de-
rivativesto avoid costly (and possibly inaccurate) second-derivative
computations (Dennis and Schnabel, 1996). The method iterates
through anumber of search directionsthat are determined by solving

Hisc = — VI(xy (22)

for thekth search direction s,, where H . isthe approximated Hessian
matrix, Xy isavector of the independent variables used to compute
either f4or f,, andthegradient V f iscomputed viafinite difference.
The contents of the vector of independent variables depend on
which type of optimization is being used because, as discussed
above (equations 5-10), scaling, transl ation, affine transformations,
or point locations can be optimized. An affine transformation ap-
pliedtoasingleleaf node, for example, isrepresented by

X = [Sex Sizs Soxs Sz s Lol (23)

In total, computing f(x) involves applying the given transforma-
tion to the current tree-based geometry (equations 5-8), evaluating
the geometry (e.g., asin expression 2), computing the gravitational
or magnetic anomaly (equations 12—16), and computing the error
relativetothetarget asgiveninequations 17 and 18.

With anew search direction in hand, the next point, x,., 1, can be
found using aline search. Theline search proceeds by finding an a;
that minimizesthelinear model

() = f(xe + s, (24)

giving anew point
X411 = Xg T oS (25)

Given anew vector, the Hessian matrix must be updated to find the
next search direction. First, the gradient of the function at the new
point is computed and the difference of the gradients at the new and
previouspointsisdefined as

O = VX1 — VX (26)

TheHessian matrix i sthen updated using arank-two approximation,
givenby

T T
Hise(H
Hiot = He + 99  HisdHiso , 27)

Ok S« ScHis
whichisrank two becauseit isthe combination of two rank-one ma-
trices(i.e., an outer product of two vectors), each with adifferent ba-
sis vector. Finaly, the inverse of the Hessian matrix is required to
solve equation 22 and can be expressed as

T Ty -1
_ _ SOk + OHy "9k
Hiis = Ho b+ gk (Sng;z :

_ Hilges + sgeH?
SIng

For the initial approximate Hessian matrix H,, a diagonal matrix
is formed using values corresponding to the inverse squared of the
expected magnitude of the variablesto be optimized. Expected mag-
nitudesfor A arechosen as one, and magnitudesfor b can be chosen
assomefraction of thetotal region size, given by Xa and z,. For an
affinetransformation, theinitial Hessian matrix is

Ho = diag[1,1,1,1(CXmad) ~ - 1(CZrnad) 21, (29)

where diag[ -] indicates adiagonal matrix with the argument placed
aong the diagonal, and c isaconstant typically chosen as0.25. The
initial guessx, ischosen astheidentity operation for the chosen geo-
metric transformation or, for direct point optimization, the set of
points of the current geometry. In addition, a small random value
chosen from azero mean Gaussian distributionisadded to theinitial
guess. The variance of the distributionsis determined by the typical
maghitudesdiscussed above.

(28)
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For an affine transformation, matrix A is chosen as the identity
matrix and the elementsof vector b areset to zero, giving

Xo = [¢(1,107%) ¢(0,107%) ¢(0,107%) ¢(1,1079)
X B0, X107 %) $(0, CZpa, 107317 (30)

where ¢(u , o) isaGaussian random variablewith mean u and vari-
anceo.

Finally, BFGS can be run for agiven number of search directions
or until the objective function value or the magnitude of the gradient
fallsbel ow sometolerance. Here, aset number of search directionsis
chosen with a low number (15) for scaling and trandation and a
higher number (50) for affine transformations and point optimiza-
tion.

Algorithm example

Figure 6 showsthe progress of the algorithm through an example.
(Details of the parameters are given in the Results section.) The
method beginswith asingle rectangle (Figure 6a). The set of points

that make up the rectangle is labeled X, ={p@¥, . .., p®}. Al-
thoughtheinitial guessisconvex, theresult (Figure6a) isgiven by
P* = CH(X,). (31)

The matrix of point coordinates P* is used to compute the gravita-
tional anomaly (upper portion of Figure 6a) viaequation 11, and the
objective function value, given by equation 17, is 0.133. Initializa-
tion continues by applying afew scale and translate optimizations. A
scaling operation (equation 6) isoptimized first, given by

P* = A(S«, Sz)CH(Xy). (32)

(Here and below, the presentation is simplified by omitting the shift
of originshowninequation4.)

BFGSisappliedtothistwo-parameter problem, fo(s,, S,,), asdis-
cussed in the previous subsection. As shown in equation 22, BFGS
requiresthegradient of the objectivefunction. Thisisobtained using
afinite-difference approximation; for the example above, itisgiven

by
fo(Se + N1y Sy — oS
Vh(S0, 5 ~ o(Sx 152;) ngszz),
1
fo(Sas Sz + o) — fy(Ss S (39
h, '

The step sizeis given by h, = L8, x&°, where . is the machine
precision and x;® is the expected magnitude of the kth argument as
discussed inthe previous subsection.

Note that each gradient computation requires K + 1 function
evaluationsif K isthe number of arguments. AsK grows, thefinite-
difference computations can require many function evaluations,
though, fortunately, they are all independent and therefore easily
paralelizable. The 3D version of the algorithm takes advantage of
thisaseach function evaluationismorecostly thaninthe 2D case.

Next, atranslation optimization (equation 7) is performed, given
b

y P* = CH(xy) + Bt 1,). (34)
Again, this represents a two-parameter optimization problem in t,
andt,. These optimizationsarerepeated threetimes, withthefinal re-
sult shown in Figure 6b. The objective function value at thisstep is
0.062.

Finally, the result is optimized using a full affine transformation
(equation 5) to check for convergence. Thisoperationisgivenby

P* = A(S Sz » Si» SPICH(X ) + Bl 1),  (35)
and theresult is shown in Figure 6¢. The objective function valueis
0.04, which doesnot meet thetermination criteria.

a) ¢

g (mGal)

B~ o
f

pR=)

0.0p

0.5r
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1.0

1.5F

2.0
0

=7
p—
[=2] [=d

g (mGal)
2

X (km)

4 5 0 1 2 3 4 5

3
X (km) X (km)

Figure6. Anexampleof theinversion process. (a) Rectangle. (b) Transl ation and scaling optimizations. (c) Affineoptimization. (d) Splitting. ()

Affineoptimization. (f) Point optimization and final result.
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After theinitialization stage, the algorithm attempts to add more
convex shapes as necessary. The result of the previous stageis split
into two point sets, X, and X, and optimized twice, first after split-
ting at 0° and again at 90°. Each separate split is optimized using a
partial affineoperation (equation 8), now given by

P* = [Ay(Sy, SP)CH(Xy) + Byt , t1)]
U[AXSZ, S2)CH(X,) + By(t?,t2)], (36)

which isan eight-parameter optimization problem. In thisexample,
the better choice was 90° (Figure 6d), the result of which had an ob-
jectivefunction value of 0.01. Again, theresult isoptimized using a
full affine transformation to check for convergence, the result of
whichisshownin Figure6e. (Theoptimization problem hereiscom-
posed of 12 parameters and is similar to that given in equation 36.)
This result (Figure 6e) has a sufficiently low error (1.1 X 10-3) to
proceed to the optimize stage.

At this stage, two types of optimizations are run until atermina-
tion criterion is achieved. First, another full affine optimization is
performed (not shown). Next, new points can be added to either set
as described previously. In this example, no additional points were
added by the algorithm. Finally, the point sets, X;={pW¥,
.o, p9tand X, ={q®, ... ,q®}, are optimized directly. The
operation used by the optimizer isgiven by

P* = CH[x,(pY, . .. ,p®)]

U CH[X,(qY, ... ,q®], (37)

and atotal of 24 parametersarerequired for optimizationinthiscase
(six pointsin both X, and X,). The final result, with an objective
functionvalueof 3.8 X 105, isshownin Figure6f.

RESULTS

Severa results, both 2D and 3D and synthetic and measured are
presented. The first subsection gives results for synthetic magnetic
anomalies and the second comprises synthetic gravitational anoma-
lies. Thefinal subsection givesresultsfor measured datasetsof grav-
itational data. Finally, in each 2D figure, solid linesindicate the tar-

80

1)

= 60

(mG

> 40

0 5 10 15 20 25 30 35 40

200 5 10 15 20 25 30 35 40

x (km)

Figure 7. Inversion of a three-mass structure using gravitational
data. The target is shown as the solid line and the inversion as the
dashedline.

get structure and target data (or previously published result) and
dashed linesindicatetheresultsof theinversion.

Each example gives the total number of function evaluations,
which is arough measure of the computation time. The 2D method
was implemented in MATLAB and the 3D method was implement-
edinC**. For theMATLAB version, typical runtimeson a2-GHz
Pentium M laptop are around 7 minutes, though it is important to
note that MATLAB isinterpreted (not compiled) code and typically
isslower than any compiled code. The 3D version wasrun onaclus-
ter, withthefinite-difference computationsruninparalel. Runtimes
for thiscodeare ontheorder of an hour.

Gravitational anomaly

Asasynthetic example, afault was simulated as shown in the ex-
ample given in the previous section. Twenty stations were spaced
equally over 5 km; the density contrast was assumed to be Ap
= 0.276 g/cm?. Figure 6f showsthetarget asthe solid line, the opti-
mized result asthedashed line, and thesimul ated and inverted gravi-
ty anomalies at the top. This result required 5486 function evalua-
tionsto achievean error of 3.8 X 10-5.

Next, a synthetic structure made up of three masses— onelarge,
deep mass and two shallow, smaller masses as shown in Figure 7 —
was used as a target. Again, a set of 25 stations was placed over
40 km and the density contrast was the same as above. Figure 7
shows the results of the inversion, which achieved an error of 1.9
X 10~ “after 11,112 function evaluations.

Additionally, the structure was inverted in the presence of cor-
rupted data. First, anoiselevel of 50 dB was used, corresponding to
anoiselevel of approximately 0.14 mGal (rms average). The algo-
rithmwasrun twice, each timewith adifferent set of noisy data. The
resultsareshown in Figure 8. Next, anoiselevel of 40 dB was used,
giving an rms noise level of approximately 0.48 mGal. Figure 9
showstheresultsfor two separateruns.

As a 3D example, atwo-body structure was simulated with two
randomly generated convex shapes placed at different depths. This
example used 30 stations and profilesover a30 X 30 kmregion and
adensity contrast of Ap = 0.5 g/cm?. Figure 10 showsthesimul ated
and inverted gravity contours. The result shown in Figure 11 re-
quired 12,688 function evaluations to reach a fina error of 1.3
X 10~2. Inthisfigure (and other 3D plots), depthisindicated by the
shading, i.e., the shallowest parts of the structure are shown in white
and the deepest are shown in black.

Magnetic anomaly

The three-mass structure from the previous subsection was also
imaged using magnetic data. The structure covers approximately
40 km and is approximately 20 km deep. A magnetic anomaly was
generated assuming a susceptibility of y = 1072 (in Sl units), a
strike angle of 60°, and an ambient magneticfield of 50 uT at anin-
clinationangleof 0°. Datawere measured at aset of 25 stationsfrom
0 to 40 km. After 27,122 function evaluations, the result shown in
Figure 12 wasachieved; it hasan error of 2.2 X 10-4.

Finally, asynthetic 3D examplewasinverted. Thetarget structure
was composed of threerandomly generated convex shapesas shown
inFigure 14a. The structure had asusceptibility of y = 10-3andthe
ambient field was assumed to have astrength of 50 .T at aninclina-
tionangleof 60° and adeclinationangleof 0°. Thefinal result, which
used datafrom a30 X 30 point grid over a20 X 20 km area, had an
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Figure 8. Three-massstructureinverted in the presence of noisy datawith an S/N of 50 dB. (a) Run 1. (b) Run 2.
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Figure 10. Gravity anomaly contours (in milligals) over asynthetic structure. (a) Target. (b) Inversion.

Downloaded 30 Apr 2009 to 128.175.13.10. Redistribution subject to SEG license or copyright; see Terms of Use at http://segdl.org/



132 Wildman and Gazonas

error of 1.0 X 102 and required 29,901 function evaluations. Re-
sultsof theinversion areshownin Figures13and 14.

Measured data sets

Several measured datasetswerea soinverted, thefirst of whichis
an aeromagnetic anomaly described in Murthy et al. (2001). There, a

Figure11. (a) Target and (b) inverted structures.
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Figure 12. Inversion of athree-mass structure using magnetic data.
Targetisshown asthesolid lineand theinversion asthe dashed line.
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fault structure was assumed and several parameters, such asintensi-
ty of magnetization, depth, and position, were found. Here, an un-
known, linearly varying regional magnetic field is assumed and the
two coefficients are found during the optimization. The two coeffi-
cients of the regional field were added to the vector x at each step.
The data set comprised 26 stations over flat terrain, between 0 and
50 km. The values found in Murthy et al. (2001)
are used: Remnant magnetization was assumed
withanintensity of magnetization of 148 nT atan
angle of —97°, atotal field inclination angle of
35°, and astrikeangle of 90°.

The final result, shown in Figure 15, required
3403 function eval uationsto reach aminimum er-
ror of 4.2 X 10-3. The regional magnetic field
had a slope of —1.44 nT/km and an offset of
66 nT. Also, because a fault was being imaged,
theresultin Figure 15 actually extendsto approx-
imately 300 km, though only therelevant portion
of the fault is shown. Good agreement is seen
with theresult in Murthy et al. (2001), especially
thetop of thefault. Bothresultsarearound 7 km.

The first gravity anomaly, observed over the Weardale granite
body using 23 stations across 55 km of flat terrain and presented in
Murthy and Rao (1993), is shown in Figure 16. Again, a linearly
varying regional gravitational field was assumed and optimized si-
multaneously with thegeometry at each step. The optimization algo-
rithmrequired 16,380 function eval uationsto achieve afinal error of
5.0 X 103, Figure 16 showsthefinal geometry, with adensity con-
trast, asassumed in Murthy and Rao (1993), of Ap = —0.13 g/cm?;
itissimilar totheresultin Murthy and Rao (1993). Theregiona field
variation had a slope of 4.72 X 10-2 mgal/km and an offset of
—0.133 mgal. Asin Murthy and Rao (1993), the top of the structure
doesnot outcrop at the surface.

Next, a basin structure with a parabolic density distribution was
inverted. The Bouguer gravity anomaly datawas taken from Rao et
al. (1994) and had an initial density of Ap, = —0.5206 g/cm? and
decay parameter & = 0.0576 km~*. The data set was taken from 13
stationsover 48 km of flat terrain. Thefinal result (Figure 17) had an
error of 6.0 X 104 (5688 function evaluations) and is compared to
the result shown in Rao et al. (1994) (solid line). Asabasin, thein-
verted structure should have aflat top across the entire region, as-

m (nT)

5 10 15 20
X (km)

Figure 13. Magnetic anomaly contours (in nanoteslas) over astructure composed of threerandom bodies. (a) Target. (b) Inversion.
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Figure 14. (a) Target and (b) inverted three-body structure.

Figure 15. Inversion of aeromagnetic anomaly near Dehri, Bihar, In-
dia. Solutionfrom Murthy et al. (2001) isshown asthesolidline.
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Figure 16. Inversion of Weardale granite body. Solution from Mur- Figure 17. Inversion of LosAngeles basin. Solution from Rao et al.
thy and Rao (1993) isshown asthesolid line. (1994) isshown asthesolid line.
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Figure 18. Gravity anomaly contours(inmilligals) over the Gelibolu Peninsula. (a) Measured. (b) Inversion.
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Figure 19. Interpreted structure at the Gelibolu Peninsula. (a) Top

view. (b) Perspective view along dashed line. (c) Contour taken in
theplaneindicated by thedashed line.

sumed in Rao et al. (1994). Here, although no assumptions were
made, the top of the structure is mostly flat with some small devia-
tiontowardtheleft side.

Asafina example, ameasured 3D dataset wasinverted. TheBou-
guer anomaly was adapted from Figure 12 in Alboraet a. (2007), as
shown in Figure 18a. In thisinversion, 37 stations were used along
35 profiles over aflat area covering 18.5 X 17.5 km. The density
contrast was assumed to be Ap = 0.276 g/cm?. The final result,
whoseanomaly contour plotisshownin Figure 18b, required 42,465
function evaluations and had an error of 1.56 X 10~2. Figure 19
shows three views of the interpreted structure: top down view (Fig-
ure 19a), perspective view perpendicular to the planeindicated by a
dashed linein the previousfigure (Figure 19b), and a contour taken
intheplaneindicated by thedashed line (Figure 19c). In Alboraet al .
(2007), afault structure was predicted along the dashed line on the
right side of Figure 19a. This structure appears in the 3D result
shown here, verifiedin Figure 19c.

CONCLUSIONS

Our method for inverting gravitational and magnetic anomaly
data uses atree-based geometry description that combines arbitrary
convex shapes using Boolean operations. This approach is flexible
in that no knowledge of the number, approximate location, or com-
plexity of the target geometry isrequired. A BFGS-based optimiza-
tion algorithm uses successive runs of the local optimizer applied to
geometric transforms and actual points. Separate stagesin the algo-
rithm first determine approximate shape and complexity and finally
detailsof the structure. Results showed that different types of geom-
etries, both two and three dimensions, could be reconstructed accu-
rately using both gravitational and magneticinformation.

Inits current form, the method has some limitationsthat could be
overcome. First, only homogeneous structures were treated here.
The method could be extended to inhomogeneous structures by al-
tering the operations of the tree structure. Material valueswould be
added to the leaf nodesin the tree and optimized along with the ge-
ometry. Also, as geometries become more complex, the method at-
temptsto search larger spaces. This could be overcome by including
only afew of thetotal number of |eaf nodesin each optimization. An-
other possibility is the use of optimizers other than BFGS to avoid
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costly finite-difference computations. Stochastic, derivative-free
methods could be used or even automated differentiation with ad-
joint formulations.
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ALEXANDRIA VA 22315

CLEMSON UNIV

DEPT MECH ENGINEERS

M GRUIJICIC

241 ENGRG INNOVATION BLDG
CLEMSON SC 29634-0921

UNIV OF CALIFORNIA
CTR OF EXCELLENCE FOR
ADV MATLS

S NEMAT NASSER

SAN DIEGO CA 92093-0416

VIRGINIA POLYTECHNIC INST
COLLEGE OF ENGRG

R BATRA

BLACKSBURG VA 24061-0219



NO. OF

COPIES ORGANIZATION

5

DIRECTOR

LANL

P MAUDLIN

R GRAY

W R THISSELL

A ZUREK

F ADDESSIO

PO BOX 1663

LOS ALAMOS NM 87545

DIRECTOR

SANDIA NATL LABS

J BISHOP MS 0346

E SHERTEL JR MS 0382
W REINHART MS 1181

T VOGLER MS 1181

L CHHABILDAS MS 1811
M FURNISH MS 1168

M KIPP MS 0378

PO BOX 5800
ALBUQUERQUE NM 87185-0307

DIRECTOR

LLNL

M J MURPHY

PO BOX 808
LIVERMORE CA 94550

CALTECH

M ORTIZ MS 105 50

G RAVICHANDRAN

T JAHRENS MS 252 21
1201 E CALIFORNIA BLVD
PASADENA CA 91125

SOUTHWEST RSRCH INST
C ANDERSON

K DANNEMANN

T HOLMQUIST

G JOHNSON

JWALKER

PO DRAWER 28510

SAN ANTONIO TX 78284

TEXAS A&M UNIV

DEPT OF MATHEMATICS
JWALTON

COLLEGE STATION TX 77843

UNIV OF DELAWARE

DEPT ELECTRICAL & CMPTR ENGRG

D WEILE
NEWARK DE 19716

NO. OF

COPIES ORGANIZATION

2

SRI INTERNATIONAL

D CURRAN

D SHOCKEY

333 RAVENSWOOD AVE
MENLO PARK CA 94025

UNIV OF NEBRASKA
DEPT OF ENGRG MECH
D ALLEN

F BOBARU

Y DZENIS

G GOGOS

M NEGAHBAN

R FENG

JTURNER

Z ZHANG

LINCOLN NE 68588

JOHNS HOPKINS UNIV
DEPT OF MECH ENGRG
K T RAMESH
LATROBE 122
BALTIMORE MD 21218

UNIV OF UTAH

DEPT OF MATH

A CHERKAEV

E CHERKAEV

E SFOLIAS

R BRANNON

SALT LAKE CITY UT 84112

PENN STATE UNIV

DEPT OF ENGRG SCI & MECH
F COSTANZO

UNIVERSITY PARK PA 168023

UNIV OF DELAWARE
DEPT OF MECH ENGRG
T BUCHANAN

T W CHOU

126 SPENCER LAB
NEWARK DE 19716

INST OF ADVANCED TECH
UNIV OF TX AUSTIN

S BLESS

H FAIR

3925 W BRAKER LN STE 400
AUSTIN TX 78759-5316



NO. OF

COPIES ORGANIZATION

2

UNIV OF DELAWARE

CTR FOR COMPST MATRLS
J GILLESPIE

M SANTARE

126 SPENCER LAB
NEWARK DE 19716

COMPUTATIONAL MECH
CONSULTANTS

J A ZUKAS

PO BOX 11314

BALTIMORE MD 21239-0314

LOUISIANA STATE UNIV

R LIPTON

304 LOCKETT HALL

BATON ROUGE LA 70803-4918

APPLIED RSCH ASSOCIATES
D E GRADY

4300 SAN MATEO BLVD NE
STE A220

ALBUQUERQUE NM 87110

INTERNATIONAL RSRCH
ASSOC INC

D L ORPHAL

4450 BLACK AVE
PLEASANTON CA 94566

ORNL

ENVIRONMENTAL SCI DIV
W DOLL

T GAMEY

L BEARD

PO BOX 2008

OAK RIDGE TN 37831

UNIV OF ILLINOIS

DEPT OF MECHL SCI & ENGRG
A F VAKAKIS

1206 W GREEN ST MC 244

URBANA CHAMPAIGN IL 61801

UNIV OF ILLINOIS
ARSPC ENGRG

J LAMBROS

104 S WRIGHT ST MC 236

URBANA CHAMPAIGN IL 61801

NO. OF

COPIES ORGANIZATION

2

WASHINGTON ST UNIV
INST OF SHOCK PHYSICS
Y M GUPTA

J ASAY

PULLMAN WA 99164-2814

NORTHWESTERN UNIV

DEPT OF CIVIL & ENVIRON ENGRG
Z BAZANT

2145 SHERIDAN RD A135
EVANSTON IL 60208-3109

UNIV OF DAYTON
RSRCH INST

N S BRAR

300 COLLEGE PARK
MS SPC 1911
DAYTON OH 45469

TEXAS A&M UNIV

DEPT OF GEOPHYSICS MS 3115
F CHESTER

T GANGI

COLLEGE STATION TX 778431

UNIV OF SAN DIEGO

DEPT OF MATH & CMPTR SCI
A VELO

5998 ALCALA PARK

SAN DIEGO CA 92110

NATIONAL INST OF
STANDARDS & TECHLGY
BLDG & FIRE RSRCH LAB

J MAIN

100 BUREAU DR MS 8611
GAITHERSBURG MD 20899-8611

MIT

DEPT ARNTCS ASTRNTCS
R RADOVITZKY

77 MASSACHUSETTS AVE
CAMBRIDGE MA 02139

MIT

DEPT MATLS SCI ENGRG
E THOMAS

77 MASSACHUSETTS AVE
CAMBRIDGE MA 02139



NO. OF

COPIES ORGANIZATION

2

82

MATERIALS SCI CORP
A CAIAZZO

R LAVERTY

181 GIBRALTAR RD
HORSHAM PA 19044

DIR USARL

AMSRD ARL D

V WEISS

2800 POWDER MILL RD
ADELPHI MD 20783-1197

DIR USARL

AMSRD ARL SE
JPELLEGRINO

2800 POWDER MILL RD
ADELPHI MD 20783-1197

DIR USARL

AMSRD ARL SE SP

A EDELSTEIN

2800 POWDER MILL RD
ADELPHI MD 20783-1197

ABERDEEN PROVING GROUND

NO. OF

COPIES ORGANIZATION

DIR USARL
AMSRD ARL WM
B FORCH
S KARNA
JMCCAULEY
P PLOSTINS
JSMITH
T WRIGHT
AMSRD ARL WM B
JNEWILL
M ZOLTOSKI
AMSRD ARL WM BA
D LYON
AMSRD ARL WM BC
P WEINACHT
AMSRD ARL WM BD
P CONROY
R PESCE RODRIGUEZ
B RICE
AMSRD ARL WM BF
W OBERLE
AMSRD ARL WM M
R DOWDING
S MCKNIGHT

AMSRD ARL WM MA
JANDZELM
R JENSEN
ARAWLETT
M VANLANDINGHAM
E WETZEL
AMSRD ARL WM MB
M BERMAN
T BOGETTI
M CHOWDHURY
W DE ROSSET
W DRYSDALE
A FRYDMAN
D HOPKINS
L KECSKES
THLI
S MATHAUDHU
M MINNICINO
B POWERS
JTZENG
AMSRD ARL WM MC
R BOSSOLI
S CORNELISON
M MAHER
W SPURGEON
AMSRD ARL WM MD
J ADAMS
B CHEESEMAN
E CHIN
K CHO
B DOOLEY
C FOUNTZOULAS
G GAZONAS
JLASALVIA
P PATEL
C RANDOW
JSANDS
B SCOTT
R WILDMAN
CFYEN
AMSRD ARL WM SG
T ROSENBERGER
AMSRD ARLWM T
P BAKER
AMSRD ARL WM TA
S SCHOENFELD
M BURKINS
AMSRD ARL WM TB
N ELDREDGE
J STARKENBERG



NO. OF
COPIES ORGANIZATION

AMSRD ARL WM TC

T BJERKE

T FARRAND

K KIMSEY

M FERMEN COKER

D SCHEFFLER

S SCHRAML

S SEGLETES
AMSRD ARL WM TD

SBILYK

D CASEM

JCLAYTON

D DANDEKAR

N GNIAZDOWSKI

M GREENFIELD

R KRAFT

B LOVE

M RAFTENBERG

E RAPACKI

M SCHEIDLER

T WEERASOORIYA
AMSRD ARL WM TE

JPOWELL

B RINGERS

G THOMSON
AMSRD ARL VT UV

S WILKERSON
AMSRD ARL VT RP

JBORNSTEIN



INTENTIONALLY LEFT BLANK.



