
DEVS Unified Process for Web-Centric Development and Testing
of System of Systems

Saurabh Mittal, Bernard P. Zeigler
Arizona Center for Integrative Modeling and Simulation,

ECE Dept. University of Arizona, Tucson, 85721
{saurabh|zeigler}@ece.arizona.edu

Abstract
A critical aspect and differentiator of a System of
Systems (SoS) versus a single monolithic system is
interoperability among the constituent disparate
systems. A major application of Modeling and
Simulation (M&S) to SoS Engineering is to facilitate
system integration in a manner that helps to cope with
such interoperability problems. A case in point is the
integration infrastructure offered by the DoD Global
Information Grid (GIG) and its Service Oriented
Architecture (SOA). In this paper, we discuss a process
called DEVS Unified Process (DUNIP) that uses the
Discrete Event System Specification (DEVS) formalism
as a basis for integrated system engineering and
testing called the Bifurcated Model-Continuity life-
cycle development methodology. DUNIP uses an XML-
based DEVS Modeling Language (DEVSML)
framework that provides the capability to compose
models that may be expressed in a variety of DEVS
implementation languages. The models are deployable
for remote and distributed real-time executing agents
over the Service Oriented Architecture (SOA)
middleware. We also compare DUNIP with the Model
Driven Architecture (MDA) paradigm and provide
overview of various projects that led to the formulation
of DUNIP.

1. Introduction
In an editorial [6], Carstairs asserts an acute need for
a new testing paradigm that could provide answers to
several challenges described in a three-tier structure.
The lowest level, containing the individual systems or
programs, does not present a problem. The second tier,
consisting of systems of systems in which
interoperability is critical, has not been addressed in a
systematic manner. The third tier, the enterprise level,
where joint and coalition operations are conducted, is
even more problematic. Although current test and
evaluation (T&E) systems are approaching adequacy
for tier-two challenges, they are not sufficiently well
integrated with defined architectures focusing on

interoperability to meet those of tier three. To address
mission thread testing at the second and third tiers,
Carstairs advocates a collaborative distributed
environment (CDE), which is a federation of new and
existing facilities from commercial, military, and not-
for-profit organizations. In such an environment,
modeling and simulation (M&S) technologies can be
exploited to support model-continuity [Hux04]
and model-driven design (MDD) development [34],
making test and evaluation an integral part of the
design and operations life-cycle.

The performance and acceptance of any software
system depends on the validation by the customer that
is in part supported by the quality of the test-suite that
conducts tests on it. Consequently, it also depends on
the quality of the test cases used during the validation
process.

Model-based Software Engineering process is
commonly referred as Model Drive Architecture
(MDA) or Model-Driven Engineering or MDD. The
basic idea behind this approach is to develop model
before the actual artifact or product is designed and
then transform the model itself to the actual product.
The MDA is pushed forward by Object Management
Group (OMG) since 2001. The MDA approach defines
system functionality using platform-independent model
(PIM) using an appropriate domain-specific language.
Despite such positive benefits of MDA, it lacks
sufficient foundation needed to realize this vision. It is
underpinned by a variety of standards, some of which
have to specified (e.g. executable UML). It is too
idealistic and doesn’t involve round-trip iterative
nature of software engineering and systems
engineering perspective. CORBA also pushed forward
by OMG failed to provide distributed collaborative
environment and execution.

DEVS formalism [37] exists in many
implementations, primarily in DEVS/C++ and

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
20 MAY 2008

2. REPORT TYPE
N/A

3. DATES COVERED
 -

4. TITLE AND SUBTITLE
DEVS Unified Process for Web-Centric Development and Testing of
System of Systems

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Arizona Center for Integrative Modeling and Simulation, Tucson, AZ

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES
AFCEA-GMU C4I Center Symposium "Critical Issues In C4I" 20-21 May 2008, George Mason
University, Fairfax, Virginia Campus, The original document contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

23

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

DEVSJAVA [1]. Extensions of these
implementations are available as DEVS/HLA [31],
DEVS/CORBA [7], cell-DEVS [33], and
DEVS/RMI [35]. Since DEVS is inherently based on
object oriented methodology, and categorically
separates the model, the Simulator and the
Experimental frame. However, one of the major
problems in this kind of mutually exclusively system is
that the formalism implementation is itself limited by
the underlying programming language. In other words,
the model and the simulator exist in the same
programming language. Consequently, legacy models
as well as models that are available in one
implementation are hard to translate from one language
to another even though both the implementations are
object oriented. Other constraints like libraries inherent
in C++ and Java are another source of bottleneck that
prevents such interoperability.

In this research effort we propose a new process called
DEVS Unified Process (DUNIP) [27] that
utilized the Bifurcated Model-Continuity based life-
cycle methodology for a model-based design,
execution and collaboration for DEVS models. The
life-cycle begins by specifying the system
requirements in structured and restricted English that
facilitate the requirements gathering from the user.
Further, methodologies have been developed to
generate DEVS models from BPMN/BPEL-based and
message-based requirement specifications and various
other input formats. The DEVS models are auto-
generated from the specifications and are made
available for distributed collaboration using the DEVS
Modeling Language (DEVSML) framework. The
motivation for this work stems from this need of model
interoperability between the disparate simulator
implementations and provides a means to make the
simulator transparent to model execution. Service
Oriented Architecture (SOA) provides the needed
framework to develop interoperable applications. In
our case it is the interoperable modeling and simulation
framework. Although the performance of SOA for a
particular simulation exercise is in work, the basic
framework of model interoperability has been
achieved. Platform Independent Models (PIM) that are
based on XML have been implemented in Platform
Specific Implementations (PSM) such as Java and .Net
[28]. The interoperability has to exist at both the
modeling and the simulation layers. The models are
made available for remote and distributed execution
using the SOA framework through our developed
DEVS/SOA simulation architecture [24]. The
central point resides in executing the simulator as a
web service, a capability that is only provided by SOA-
based framework. Having a DEVS/SOA simulation

framework allows us to simulate models that
communicate in a platform independent manner, i.e.
the messages are exchanged using XML. The
development of this kind of frameworks will help to
solve large-scale problems and guarantees
interoperability among different networked systems
and specifically DEVS-validated models.

In our earlier work, we have also proposed a mapping
of DoDAF architectures into a computational
environment that incorporates dynamical systems
theory and a modeling and simulation (M&S)
framework [22]. The methodology will support
complex information systems specification and
evaluation using advanced simulation capabilities.
Specifically, the DEVS formalism will provide the
basis for the computational environment with the
systems theory and M&S attributes necessary for
design modeling and evaluation. We have
demonstrated how this information is added and
harnessed from the available DoDAF products towards
development of an extended DoDAF integrated
architecture that is “Executable”. There are potential
advantages of making DoDAF, a DEVS compliant
system. We explore the problem of DoDAF using our
developed DUNIP framework.

We also enumerate applications of DUNIP in many
active and ongoing research projects. To name a few:
the GENETSCOPE project [16] and the ATC-Gen
project [21] are in current use at Joint
Interoperability Test Command (JITC).

2. Background

2.1 Model-Based Software Engineering Process
The basic idea behind this approach is to develop
model before the actual artifact or product is designed
and then transform the model itself to the actual
product. The MDA is pushed forward by Object
Management Group (OMG) since 2001. The MDA
approach defines system functionality using platform-
independent model (PIM) using an appropriate
domain-specific language. Then given a Platform
Definition Model (PDM), the PIM is translated to one
or more platform-specific models (PSMs). The OMG
documents the overall process in a document called
MDA guide. MDA is a collection of various standards
like the Unified Modeling Language (UML), the Meta-
Object Facility (MOF), the XML Metadata Interchange
(XMI), Common Warehouse Model (CWM) and a
couple of others. OMG focuses Model-driven
architecture on forward engineering i.e. producing
code from abstract, human-elaborated specifications.

in t ext a

is

It is not required that one tool may contain all of the
features needed for Model Driven Engineering. UML
is a small subset of much broader scope of UML.
Being a subset of MDA, the UML is bounded by its
own UML metamodel. Progress has been made to
develop executable UML models but it has not gained
industry wide mainstream acceptance for the same
limited scope.

2.2 Model-Based Testing
Model-based Testing is a variant of testing that relies
on explicit behavior models that encode the intended
behavior of the system and possibly the behavior of its
environment [Utt06]. Pairs of input and output of the
model of the implementation are interpreted as test-
cases for this implementation: the output of the model
is the expected output of the system under test (SUT).
This testing methodology must take into account the
involved abstractions and the design issues that deals
with lumping different aspects as these can not be
tested individually using the developed model.

4. A test suite is ‘generated’ that is built upon the
underlying model and test case specifications.

5. Test cases from the generated test suite are run on
the SUT after suitable prioritization and selection
mechanism. Each run results in a verdict of
‘passed’ or ‘failed’ or ‘inconclusive’.

A summary of contributions to the Model-based
Testing domain can be seen at [Utt06].

2.3 DEVS Modeling and Simulation
Framework
Discrete Event System Specification (DEVS) [37] is
a formalism, which provides a means of specifying
the components of a system in a discrete event
simulation. In DEVS formalism, one must specify
Basic Models and how these models are connected
together. These basic models are called Atomic Models
and larger models which are obtained by connecting
these atomic blocks in meaningful fashion are called
Coupled Models (Figure 2). Each of these atomic
models has inports (to receive external events),
outports (to send events), set of state variables,
internal transition, external transition, and time
advance functions. Mathematically it is represented as

7-tuple system: M  X , S ,Y , , ,, t 
where X is an input set, S is set of states, Y is set of

outputs, in t is internal transition function, ext

external transition function,  is the output function,

and ta is the time advance function. The model’s

Figure 1: Graphical process extended further from
[Utt06]

Following is the process for Model-based testing
technique [Utt06] as shown in Figure 1:
1. a model of the SUT is built on existing

requirements specification with desired abstraction
levels

2. Test selection criteria are defined with an
objective to detect severe and likely faults at an
acceptable cost. These criteria informally describe
the guidelines for a test suite.

3. Test selection criteria are then translated into test
case specifications. It is an activity where a textual
document is turned ‘operational’. Automatic test
case generators fall into this step of execution.

description (implementation) uses (or discards) the
message in the event to do the computation and
delivers an output message on the outport and makes a
state transition. A Java-based implementation of DEVS
formalism, DEVSJAVA [30], can be used to
implement these atomic or coupled models. In
addition, DEVS-HLA [30] will be helpful in
distributed simulation for simulating multiple
heterogeneous systems in the System of systems
framework.

Figure 2: DEVS atomic and coupled models

3. DUNIP Elements
The development of distributed testing environment as
advocated by Carstairs would have to comply with
recent Department of Defense (DoD) mandates
requiring that the DoD Architectural Framework
(DoDAF) be adopted to express high-level system and
operational requirements and architectures [Dod03a,
Dod03b, CJC04, CJC06]. Unfortunately, DoDAF and
DoD net-centric [2] mandates pose significant
challenges to testing and evaluation since DoDAF
specifications must be evaluated to see if they meet
requirements and objectives, yet they are not expressed
in a form that is amenable to such evaluation.
Combining the systems theory, M&S framework and
model-continuity concepts leads naturally to a
formulation of a Bifurcated Model-Continuity based
Life-cycle process as illustrated in Figure 3.
The process can be applied to development of systems
using model-based design principles from scratch or as
a process of reverse engineering in which requirements
have already been developed in an informal manner.
As we shall see ahead in later sections, the said process
is used in both manners. The depicted process is a
universal process and is applicable in multiple
domains. The objective of this research effort is to
incorporate DEVS as the binding factor at all phases of
this universal process.

categorically separates the Model from the
Simulator for the same simple reason.

 Real-time Execution: The simulation can be
made executable in real-time mode and in
conjunction with Model-Continuity principles, the
model itself becomes the deployed code

 Test Models/Federations: Branching in the
lower-path of the Bifurcated process, the
formalized models give way to test models which
can be developed at the atomic level or at the
coupled level where they become federations. It
also leads to the development of experiments and
test cases required to test the system
specifications. DEVS categorically aids the
development of Experimental Frames at this step
of development of test-suite.

 Verification and Validation: The simulation
provides the basis for correct implementation of
the system specifications over a wide range of
execution platforms and the test suite provides
basis for testing such implementations in a suitable
test infrastructure. Both of these phases of systems
engineering come together in the Verification and
Validation (V&V) phase.

RReeaall--ttiimmee
eexxeeccuuttiioonn

Bifurcated Model-Continuity Based Life-Cycle
Methodology

The process has the following characteristics [38]:
 Behavior Requirements at lower levels of

System Specification: The hierarchy of system
specification as laid out in [Zeig] offers well-
characterized levels at which requirements for

Behavior
Requirements at
lower levels
levels of System
Specification

System
Theory

Model Structures
at higher levels of

System
Specif ication

Simulation
execution

Test Models/
Federations

Model
Continuity

Verificat ion
and

Validation

Experimental
Frames

system behavior can be stated. The process is
essentially iterative and leads to increasingly
rigorous formulation resulting from the
formalization in subsequent phases.

 Model Structures at higher levels of System
Specification: The formalized behavior
requirements are then transformed to the chosen
model implementations e.g. DEVS based
transformation in C++, Java, C# and others.

 Simulation Execution: The model base which
may be stored in Model Repository is fed to the
simulation engine. It is important to state the fact
that separating the Model from the underlying
Simulator is necessary to allow independent
development of each. Many legacy systems have
both the Model and the Simulator tightly coupled
to each other which restrict their evolution. DEVS

Figure 3: Bifurcated Model-Continuity based System
Life-cycle Process

3.1 Automated DEVS Model Generation and
DEVSML
This section describes various formats in which the
system behavior requirements could be expressed for
today’s systems and the methodologies leading to
generation of DEVS models in an automated manner.
The requirements are the most important part of any
system development and they are seldom specified in a
format that is helpful to the developer at large.
Consequently, it is refined throughout the system
development lifecycle until the developer as well as the
stake-holder settles on a common ground. Testing in
such iterative developmental cycle bears the burden of
‘meeting’ the system specifications. To automate both

the model generation and test case generation is a
current need of the system design process.
Consequently, taking first things first, this section
enumerates various formats and implementations in
which the requirements could be specified. They are as
follows:
1. State-based system specifications: In this

implementation, the system is specified using
state-machines with UML [29] tools such as
Rational Rose, Microsoft Visio or Enterprise
Architect . Sometimes the DEVS formalized state
machine is also available.

2. Rule-based system specifications using
restricted natural language processing (NLP):
Natural language such as English can be very
ambiguous. To make it more specific, either every
aspect must be taken into account for every
situation, which results in a voluminous record, or
the language itself must be restricted with chosen
keywords. A restricted NLP is provided and model
generation is described [27]

3. BPMN/BPEL based system specifications:
Business Process Modeling Notation (BPMN)
[bpm] or Business Process Execution Language
(BPEL) provide a very high level view of any
business process involving sub-processes. This
kind of requirement specification is largely
graphical in nature and the information is stored in
.wsdl and .bpel files for BPEL but in proprietary
format for BPMN.

4. DoDAF-based requirement specifications:
Department of Defense Architecture Framework
(DoDAF) [14] is the mandated framework for
any future government system architecture
specification and it suffers from various
deficiencies largely attributed to the fact that M&S
is not mandated in it.

Having analyzed the information set available in these
formats, DEVS information is extracted from these
sets. To specify a DEVS system, we have the
following basic MUST requirements:

1. Entities as Objects and their hierarchical
organization

2. Finite State Machines (FSMs) of atomic
models

3. Timeouts for each of the phases (States) in
atomic models

4. Entity interfaces as input and output ports
5. External incoming messages at Entity’s

interface at specified duration in specific State

6. External outgoing messages at Entity’s
interface at specified duration in specific State

7. Coupling information derived from
hierarchical organization and interface
specifications

8. Experimental Frame specifications

Various model specification formalisms are supported
and mapped into DEVSML models including UML
state charts [19], a table driven state-based
approach[28], Business Process Modeling
Notation (BPMN) [BPM, 5] or DoDAF-
based[22]. A translated DEVSML model is fed to the
DEVSML client that coordinates with the
DEVSML server farm. Once the client has
DEVSJAVA models, a DEVSML server can be used
to integrate the client’s model with models that are
available at other sites to get an enhanced integrated
DEVSML file that can produce a coupled DEVSML
model. The DEVS/SOA enabled server can use this
integrated DEVSML file to deploy the component
models to assigned DEVS web-server simulated
engines. The integration of DEVSML and DEVS/SOA
is performed with the layout as shown below in Figure
4. The result is a distributed simulation, or
alternatively, a real-time distributed execution of the
coupled model.

3.2 DEVSML Collaborative Development
DEVSML is a way of representing DEVS models in
XML language. This DEVSML is built on JAVAML
[BAD05], which is XML implementation of JAVA.
The current development effort of DEVSML takes its
power from the underlying JAVAML that is needed to
specify the ‘behavior’ logic of atomic and coupled
models. The DEVSML models are transformable
back'n forth to java and to DEVSML. It is an attempt
to provide interoperability between various models and
create dynamic scenarios. The key concept as a layered
architecture is shown in the Figure 5.
At the top is the application layer that contains model
in DEVS/JAVA or DEVSML. The second layer is the
DEVSML layer itself that provides seamless
integration, composition and dynamic scenario
construction resulting in portable models in DEVSML
that are complete in every respect. These DEVSML
models can be ported to any remote location using the
net-centric infrastructure and be executed at any
remote location. Another major advantage of such
capability is total simulator ‘transparency’. The
simulation engine is totally transparent to model
execution over the net-centric infrastructure.

DEVS
W eb-Service

Engine

DEVS Atomic
Skeletons with BPEL

Web-port Hooks

DEVS Atomic
Skeletons with BPEL

Web-port Hooks

DEVS
W eb-Service

Engine
6

DEVS Coupled 4b
in DEVSML

State-based 2
Specs DEVS Atomic 4a

in DEVSML

M essage-Based
Scenario

Specs with
Restricted

1 NLP

BPM N/BPEL
Based
Scenario
Specs

DoDAF
based
Scenario
Specs

Automated DEVS
Atomic behavior

3

DEVS
Model

Generator in
DEVSML

Automated DEVS
Coupled Scenario

D EVSM L
C om position

5

DEVSM L
Server

D EVSM L
Integration

6
Distribu ted
DEVS Execution
Over SOA

SIM U LA TIO N
SER VIC E S

DEVS
W eb-Service

Engines

Simulation-
Based
Testing

Figure 4: Net-centric collaboration and execution using DEVSML and DEVS/SOA

Figure 5: DEVS Transparency and Net-centric model
interoperability using DEVSML. Client and Server
categorization is done for DEVS/SOA implementation

The DEVSML model description files in XML
contains meta-data information about its compliance
with various simulation ‘builds’ or versions to provide
true interoperability between various simulator engine
implementations. This has been achieved for at least
two independent simulation engines as they have an
underlying DEVS protocol to adhere to. This has been
made possible with the implementation of a single
atomic DTD and a single coupled DTD that validates
the DEVSML descriptions generated from these two
implementations. Such run-time interoperability
provides great advantage when models from different
repositories are used to compose bigger coupled
models using DEVSML seamless integration
capabilities. More details about the implementation can
be seen at [25]

3.3 Automated Test-Model Generation from
DEVS models
Assuming that the DEVS model is easily specified
using State-based approach as described in [19,
28], the automated test-model generation is
constructed at Level 1 of Input/Output behavior
[37] taking DEVS component as a black-box. The
test-model is called the Observer model and its state-
machine is defined by the testee component’s state-
machine. The component model being tested is called
Testee and the component model doing the testing is
called Tester. The autogeneration mechanism is
described in detail in [27] and is outside of scope of
this paper.

3.4 DEVS/SOA: Net-centric Execution using
Simulation Service
The fundamental concept of web services is to
integrate software application as services. Web
services allow the applications to communicate with
other applications using open standards. We are
offering DEVS-based simulators as a web service, and
they must have these standardtechnologies:
communication protocol (Simple Object Access
Protocol, SOAP), service description (Web Service
Description Language, WSDL), and service discovery
(Universal Description Discovery and Integration,
UDDI).

The complete setup requires one or more servers that
are capable of running DEVS Simulation Service, as
shown in Figure 6. The capability to run the simulation
service is provided by the server side design of DEVS

Simulation protocol supported by the latest
DEVSJAVA Version 3.1[1]. The Simulation
Service framework is two layered framework. The top-
layer is the user coordination layer that oversees the
lower layer. The lower layer is the true simulation
service layer that executes the DEVS simulation
protocol as a Service.

From multifarious modes of DEVS model generation,
the next step is the simulation of these models. The
DEVS/SOA client takes the DEVS models package
and through the dedicated servers hosting simulation
services, it performs the following operations:

1. Upload the models to specific IP locations i.e.
partitioning

2. Run-time compile at respective sites
3. Simulate the coupled-model
4. Receive the simulation output at client’s end

Figure 6: Execution of DEVS SOA-Based M&S

The main server selected (corresponding to the top-
level coupled model) creates a coordinator that creates
simulators in the server where the coordinator resides
and/or over the other remote servers selected. The
DEVS/SOA web service client as shown in Figure 7
operates in the following sequential manner:

1. The user selects the DEVS package folder at his
machine

2. The top-level coupled model is selected as shown
in Figure 7

3. Various available servers are selected. Any
number of available servers can be selected.
Figure 8 shows how Servers are allocated on per-
model basis. The user can specifically assign
specific IP to specific models at the top-level
coupled domain. The localhost (Figure 7) is
chosen using debugging sessions.

4. The user then uploads the model by clicking the
Upload button. The models are partitioned in a
round-robin mechanism and distributed among
various chosen servers

5. The user then compiles the models by clicking the
Compile button at server’s end

6. Finally, Simulate button is pressed to execute the
simulation using Simulation service hosted by
these services.

7. Once the simulation is over, the console output
window displays the aggregated simulation logs
from various servers at the client’s end.

Figure 7: GUI snapshot of DEVS/SOA client hosting
distributed simulation

Figure 8: Server Assignment to Models

In terms of net-ready capability testing, what is
required is the communication of live web services
with those of test-models designed specifically for
them. The approach has the following steps:

1. Specify the scenario
2. Develop the DEVS model
3. Develop the test-model from DEVS models
4. Run the model and test-model over SOA
5. Execute as a real-time simulation
6. Replace the model with actual web-service as

intended in scenario.
7. Execute the test-models with real-world web

services
8. Compare the results of steps 5 and 7.

4. The Complete DUNIP Process
DUNIP can be summarized as the sequence of the
following steps:
1. Develop the requirement specifications in one of

the chosen formats such as BPMN, DoDAF,
Natural Language Processing (NLP) based, UML
based or simply DEVS-based for those who
understand the DEVS formalism

2. Using the DEVS-based automated model
generation process, generate the DEVS atomic and
coupled models from the requirement
specifications using XML or XFDDEVS
[28]

3. Validate the generated models using DEVS W3C
atomic and coupled schemas to make them net-
ready capable for collaborative development, if
needed. This step is optional but must be executed
if distributed model development is needed. The
validated models which are Platform Independent
Models (PIMs) in XML can participate in
collaborative development using DEVSML.

4. From step 2, either the coupled model can be
simulated using DEVS/SOA or a test-suite can be
generated based on the DEVS models.

5. The simulation can be executed on an isolated
machine or in distributed manner using SOA
middleware if the focus is net-centric execution.

The simulation can be executed in real-time as
well as in logical time.

6. The test-suite generated from DEVS models can
be executed in the same manner as laid out in Step
5.

7. The results from Step 5 and Step 6 can be
compared for V&V process.

The basic Bifurcated Model Continuity-based Life-
cycle process for systems engineering in Figure 3 in
light of the developments in DEVS area is summarized
in Figure 9 below. The grey boxes show the original
process and the colored boxes show the extensions that
were developed to make it a DEVS compliant process.
A sample demo movie is available at [15].

Many case studies came about as DUNIP was defined
and developed. Many of the projects are currently
active at Joint Interoperability Test Command (JITC)
and others are at concept validation stage towards a
deliverable end. Each of the projects either uses the
complete DUNIP process or a subset of it. As we shall
see on a case by case basis, DEVS emerge as a
powerful M&S framework contributing to the
complete systems software engineering process. With
the proposed DEVS Based Bifurcated Model-
continuity Life-cycle process, systems theory with its
DEVS implementation can support the next generation
net-centric application development and testing.

State-based
Specs

Message-Based
Scenario

Specs with
Restricted

NLP

BPMN/BPEL
Based
Scenario
Specs

DoDAF
based
Scenario
Specs

XML-Based Data Extraction towards DEVS Elements

RReeaall--ttiimmee
eexxeeccuuttiioonn

Simulation
Execution
SO ADEVS

Models
To

Services

DE VS
Behavior

Requirements
at lower levels

levels of
System

Specification

DE VS Model
Structures at

higher levels of
System

Specification

Transparent Sim ulators

DEVSML
Platform
Independent
Models

Verification and
Validation

System
Theory Platform Specific Models

Test Models/
Federations

Experimental
Frames

Figure 9: The Complete DEVS Unified Process

A recent Doctoral Thesis [27] provides a number
of examples that illustrate how the DUNIP can be
applied to import real-world simulation-based design
applications. Here we review briefly the following
case studies that were developed in more detail in
[27]:

 Joint Close Air Support (JCAS) model
 DoDAF-based Activity scenario
 Link-16 Automated Test Case Generator

(ATC-Gen project at JITC)
 Generic Network for Systems Capable of

Planned Expansion (GENETSCOPE project
at JITC)

Each of the projects has been developed independently
and ATC-Gen and GENETSCOPE are team projects.
All of the projects stand-alone and each applies
DUNIP (Table 1 in full or in-part). Table 1 below
provides an overview of the DUNIP elements used in
each of the projects. All of the DUNIP elements have
been applied at least once in one of the projects.

The JCAS system requirements come in many formats
and served as a base example to test many of the
DUNIP processes for requirements-to-DEVS
transformation [27]. JCAS requirements were
specified using the state-based approach, BPEL-based
approach and restricted natural language approach.
The JCAS case study describes how each of the three
approaches led to executable DEVS models with
identical simulation results. Finally, the simplest

executable model (that specified by the state-based
approach) was executed over a net-centric platform
using DEVSML and DEVS/SOA architecture.

The DODAF-based Activity scenario was specified
using the UML-based Activity diagrams. It illustrates
the process needed to transform various DoDAF
documents into DEVS requirement specifications.
New Operational View documents OV-8 and OV-9
were proposed [22] to facilitate the
transformation of DoDAF requirements into a form
that could be supported by DEVS-based modeling and
simulation. The population of these new documents
was described as well as how DEVS models could be
generated from them.

The ATC-Gen project at JITC is the project dealing
with automated Link-16 testing environment and the
design of ATC-Gen tool. A detailed discussion and
complete example are presented in [20].

The GENETSCOPE project [15] at JITC is
another project that employs the complete DEVS
software engineering process. Using automated XML
data mining, a ten year-old legacy model written in the
C language was transformed to an object-oriented
DEVS model with enhanced Model View Simulation
and Control paradigm [23]. The design elements of
GENETSCOPE tool were discussed and as was its
relationship with the overarching DoDAF framework
[23].

Project /
DUNIP Elements

JCAS
model

DoDAF-based
Activity Scenario

ATC-Gen
Project

GenetScope
Project

Requirement Specification Formats X X
State-based Specs X
Message-based Specs with restricted X
NLP
BPMN/BPEL based Specs X
DoDAF-Based Scenario Specs X X

XML-based Data Extraction X X X
DEVS Model Structure at lower levels of
Specification
DEVS model structure at higher levels of
System specification

X X X

X X

DEVSML Platform Independent Models X
Test Model Development X X
Verification and Validation using
Experimental Frames
DEVS/SOA net-centric Simulation X

X X X

Table 1: Overview of DUNIP application in available case-studies

5. Discussion
This section discusses the DUNIP process with current
state of the art in model-based engineering processes.
Two paradigms have been chosen: MDA and SCR.
MDA or Model-Driven Architecture is philosophy as
put forward by Object Modeling Group (OMG) that
comprises of many standards like UML, XMI, Meta-
Object Facility (MOF) and others. SCR is the Software
Cost Reduction methodology by Hartmeyer.

5.1 MDA and DUNIP
DUNIP is built on the paradigm of Model-Based
Engineering, or Model Driven Architecture (MDA).
However, the scope of DUNIP goes beyond the MDA
objectives. Potential concerns with the current MDA
state of art include:
 MDA approach is underpinned by a variety of

technical standards, some of which are yet to be
specified (e.g. executable UML)

 Tools developed my many vendors are not
interoperable

 MDA approach is considered too-idealistic lacking
iterative nature of Software Engineering process

 MDA practice requires skilled practitioners and
design requires engineering discipline not
commonly available to code developers.

Further, MDA does not have any underlying Systems
theory and groups like INCOSE1 are working with
OMG to adapt UML to systems engineering. Testing is
included only as an extension of UML, known as
executable UML [Mel02], for which there is no current
standard. Consequently, there is no testing framework
that binds executable UML and simulation-based
testing.

Despite these shortcomings, MDA has been adopted by
Joint Single Integrated Air Picture (SIAP) Systems
Engineering Organization (JSSEO) and various
recommendations have come forth to enhance the
MDA process. JSSEO is applying MDA approach
toward development of aerospace Command and
Control (C2) capabilities, for which a single integrated
air picture is foundational. The data-driven nature of
C2 System of Systems (SoS) means that powerful
MDA concepts adapt well to collaborative SoS
challenges.

Current DoD enterprise-level approaches for managing
SoS interoperability, like the Net Centric Operations
and Warfare Reference Model (NCOW/RM), DoD
Architecture Framework (DoDAF) and the Joint

1 International Council on Systems Engineering

Technical Architecture (JTA), simply do not have the
technical strength to deal with the extremely complex
engineering challenges [18]. We proposed enhanced
DoDAF [22] to provide DEVS-based Model
engineering. MDA as implemented by industry and
adapted by JSSEO, does have the requisite technical
power, but requires innovative engineering practices.

Realizing the importance of MDA concepts and the
executable profile of UML, the basic objective of
which is to simulate the model, JSSEO is indirectly
looking at the Modeling & Simulation domain as
applicable to SoS engineering. The following table
brings out the shortcomings of MDA in its current state
and the capabilities provided by DEVS technology and
in turn, DUNIP process.

MDA as applied to Integration of Process-Driven
SOA Models
In an independent study [36], Model Driven
Software Development (MDSD) was applied to the
integration of process-driven SOA models. UML2 was
used as the basis towards integration. Their approach is
based on the notion of domain-specific languages
(DSL) for modeling various types of models. Once
DSL has been identified, its meta-model is created that
represents this particular modeling domain. Meta-
models are defined in terms of meta-meta-model. In
UML, this is the meta object facility (MOF). They
created a meta-meta-model that would define both the
UML2 meta-model and their selected DSL extensions.
The whole objective is to find a common ground and a
way to express the relationship between a meta-model
and the implementation code. This kind of capability
where a single meta-meta-model can be used to
integrate two different DSLs towards a common model
allowing specific constraints of each meta-model is
very much needed in SOA domain as multiple tools
and standards exist preventing such integration. To
integrate two models with different DSLs, the models
are first decomposed at the meta-model level, required
information extracted and supplemented (on the basis
of meta-meta-model), which results in an integrated
model. In our DUNIP process, such collaboration
comes naturally due to the proposed DEVS atomic and
coupled Document Type Definitions (DTDs) that
specify any DEVS model in any domain specific
language implementations. The underlying DEVS
Modeling Language (DEVSML) meta-model that
defines these atomic and coupled DTDs is used for
validating any DEVS model. The current DEVSML
implementation has successfully integrated two DSL
implementations (GenDEVS-ACIMS and xDEVS-
Spain) on common DEVSML atomic and coupled
DTDs. These two DTDs have also been submitted to

DEVS standardization group towards standardization.
Their extension towards DEVS atomic and coupled
schemas are available online at [DASc,DCSc].

5.2 DUNIP and SCR
Software Cost Reduction (SCR) method allows
development of formal requirements using a tabular
notation. The SCR toolset includes an editor for
building the specifications, a consistency checker for
testing the specifications for consistency with formal
requirements model, a simulator for symbolically
executing the specifications and a verifier for checking
that the specifications satisfy selected applications
properties [17]. SCR has been used to define
requirements for embedded systems as well as
software systems. SCR is more exhaustive and
complete in terms of model checking and consistency
checking. It is at a higher order of resolution where

state variables can be a part of the specification
definition.

In DUNIP, although it is based on DEVS, the state-
variables are not considered in the automated DEVS
model generation as described in Chapter 4. Our
current work falls in the category of a subset of DEVS
specifications, where only message passing between
the components is considered. The motivation of this
research effort stems from the need of absence of an
M&S framework for Net-centric systems collaborating
over the GIG. The systems are at a much higher level
of abstractions than any embedded system where state-
variable bear much importance and criticalities. The
current version of DUNIP addresses the need of these
abstract systems. Inclusion of state-variables, more like
on the lines of SCR will be included in future, to
develop more sophisticated models.

Desired M&S Capability MDA DUNIP
Need for executable
architectures using M&S

Yes, although not a
standard yet

Yes, underlying DEVS theory
[37]

Applicable to GIG SOA Not reported yet Yes
Interoperability and cross-
platform M&S using GIG/SOA

Automated test generation and
deployment in distributed
simulation

-- Yes, DEVSML and DEVS/SOA
provides cross-platform M&S using
Simulation Web Services
[25, 26, 27]

-- Yes, based on formal Systems theory
and test-models autogeneration at
various levels of System
specifications [38, 27]

Test artifact continuity and
traceability through phases of
system development

To some extent,
model becomes the
application itself

Yes

Real time observation and
control of test environment

-- Dynamic Model Reconfiguration
and run-time simulation control
integral to DEVS M&S. Enhanced
MVC framework is designed to
provide this capability [23]

Table 2: Comparison of MDA and DUNIP

5.3 Potential Issues and Drawbacks
Building upon and integrating earlier systems theoretic
and architectural methodologies, DUNIP inherits many
of the advantages that such methodologies afford and
attempts to fill in the holes that they still leave.
However, as with the methodologies it draws upon,
and is inspired by, there are potential issues and
drawbacks that may be expected to emerge in its
application. The complexity and quality assurance
issues associated with the proposed methodology need
to be mitigated with the development of appropriate
tools and interfaces to simplify working with the
methodology. The need for such complexity-reduction

tools underlies the extended discussions of tools and
interfaces that have been provided here. Further quality
assurance demands provision of approaches to self-
checking DUNIP and its supporting infrastructures.

Finally, there remain many issues to resolve in the
manner in which the DUNIP methodology relates to
the defense-mandated DODAF. The latter is a
representational mechanism, not a methodology, and
does not discuss how an integrated architecture should
be constructed and evolved from existing systems.
DUNIP offers an approach based on systems theory
and supported by DEVS-based modeling and

simulation to tackle integration and interoperability
issues, but the integration with DODAF remains for
future consideration.

6. Conclusion
The proposed methodology can be used for integrating
heterogeneous constituents of an SoS and assessing
their real time interactions and interoperability. The
proposed methodology encompasses the advantages of
several interrelated concepts such as the systems
theory; DEVSML and DEVS/SOA; M&S framework;
and the model continuity concepts. Especially, since it
separates models from their underlying simulators;
enables real time execution and testing at multiple
levels and over a wide rage of execution platforms;
uses open standards; supports collaborative
development; and has the potential to provide
additional SoS architectural views. Although the
DUNIP was applied in part to many projects, presently,
there is no live case study that implements all the
aspects of DUNIP elements. Recall that DUNIP was
researched and developed in the context of many active
projects at JITC and ACIMS.

The SoS can be specified in many available
frameworks such as DoDAF, system theory, UML, or
by using an integrative systems engineering-based
framework such as DEVS. In this paper, we have
discussed the advantages of employing an M&S-
integrated framework such as DEVS Unified Process
(DUNIP) and its supporting DEVS/SOA infrastructure.
As components comprising SoS are designed and
analyzed, their integration and communication is the
most critical part that must be addressed by the
employed SoS M&S framework. The DEVS Unified
Process (DUNIP), in analogy to the Rational Unified
Process based on UML, offers a process for integrated
development and testing of systems that rests on the
SOA infrastructure. The DUNIP perspective led us to
formulate a methodology for testing any proposed
SOA-based integration infrastructure, such as DISA’s
Net-Centric Enterprise Services.

7. References
[1] ACIMS software site:

http://www.acims.arizona.edu/SOFTWARE/software.shtml
Last accessed April 2008

[2] K. Atkinson, “Modeling and Simulation Foundation for
Capabilities Based Planning”, Simulation Interoperability
Workshop Spring 2004

[3] Badros, G. JavaML: a Markup Language for Java Source Code,
Proceedings of the 9th International World Wide Web
Conference on Computer Networks: the international journal of
computer and telecommunication networking, pages 159-177

[4] Business Process Modeling Notation (BPMN)
www.bpmn.org

[5] Business Process Execution Language (BPEL)
http://en.wikipedia.org/wiki/BPEL

[6] Carstairs, D.J., “Wanted: A New Test Approach for
Military Net-Centric Operations”, Guest Editorial, ITEA Journal,
Volume 26, Number 3, October 2005

[7] Cho, Y., B.P. Zeigler, H.S. Sarjoughian, Design and
Implementation of Distributed Real-Time DEVS/CORBA, IEEE
Sys. Man. Cyber. Conf., Tucson, Oct. 2001.

[8] Chairman, JCS Instruction 3170.01D “Joint Capabilities
Integration and Development System,” 12 March 2004.

[9] Chairman, JCS Instruction 6212.01D “Interoperability and
Supportability of Information Technology and National Security
Systems,” March 8, 2006, 271

[10] DEVS Atomic Schema:
http://www.acims.arizona.edu/EDUCATION/ECE676Spring08/New

XMLSchema.xsd
[11] DEVS Coupled Schema:
http://www.acims.arizona.edu/EDUCATION/ECE676Spring08/Cou

pledDevs.xsd
[12] DoDAF Working Group , DoD Architecture Framework

Ver. 1.0 Vol. III: Deskbook, DoD, Aug. 2003.
[13] DOD Instruction 5000.2 “Operation of the Defense

Acquisition System,” 12 May 2003.
[14] DoD Architecture Framework Working Group 2004, DOD

Architecture Framework Ver. 1.0 Volume 1 Definitions and
Guidelines, 9 February 2004, Washington, D.C.

[15] DUNIP: A Prototype Demonstration
http://www.acims.arizona.edu/dunip/dunip.avi

[16] GENETSCOPE(Beta Version) Software User’s Manual,
available from ACIMS center, University of Arizona.

[17] Heitmeyer, C., Bull, A., Gasarch, C., Labaw, B., SCR: A
Toolset for Specifying and Analyzing Requirements.
Proceedings of the Tenth Annual Conference on Computer
Assurance (COMPASS '95), Gaithersburg, MD, June 25-29,
1995, pp. 109-122

[18] Jacobs, R., Model-Driven Development of Command and
Control Capabilities For Joint and Coalition Warfare, Command
and Control Research and Technology Symposium, 2004

[19] Martin, JLR, Mittal, S., Zeigler, B.P., Manuel, J., ”From UML
Statecharts to DEVS State Machines using XML”,
IEEE/ACM conference on Multi-paradigm Modeling and
Simulation, Nashville, September 2007

[20] Mak, E., Automated Testing using XML and DEVS, Thesis,
University of Arizona,

http://www.acims.arizona.edu/PUBLICATIONS/PDF/Thesis_EMak.
pdf

[21] E Mak, S Mittal, MH Hwang, “Automating Link-16
Testing using DEVS and XML”, Journal of Defense Modeling
and Simulation, to appear

[22] Mittal, S. "Extending DoDAF to Allow DEVS-Based
Modeling and Simulation", Special issue on DoDAF, Journal of
Defense Modeling and Simulation JDMS, Vol 3, No. 2.

[23] Mittal.S., Mak, E. Nutaro, J.J., “DEVS-Based Dynamic
Modeling & Simulation Reconfiguration using Enhanced
DoDAF Design Process”, special issue on DoDAF, Journal of
Defense Modeling and Simulation, Dec 2006

[24] Mittal, S., Risco-Martin, J.L., Zeigler, B.P. “DEVS/SOA: A
Cross-Platform framework for Net-Centric Modeling and
simulation in DEVS Unified Process”, submitted to
SIMULATION, under review.

[25] Mittal, S., Risco-Martin, J.L., Zeigler, B.P. “DEVSML:
Automating DEVS Simulation over SOA using Transparent
Simulators”, DEVS Syposium, 2007

[26] Mittal, S., Risco-Martin, J.L., Zeigler, B.P. “DEVS-Based Web
Services for Net-centric T&E”, Summer Computer
Simulation Conference, 2007

[27] Mittal, S, DEVS Unified Process for Integrated
Development and Testing of Service Oriented Architectures, Ph.
D. Dissertation, University of Arizona

[28] Mittal, S., , M.H., Zeigler, B.P., Hwang “XFD-DEVS: An
Implementation of W3C Schema for Finite Deterministic
DEVS”, in progress, Demo available at:
http://www.saurabh-mittal.com/fddevs

[29] Object Modeling Group (OMG) www.omg.org
[30] Sarjoughian, H.S., B.P. Zeigler, "DEVS and HLA:

Complimentary Paradigms for M&S?" Transactions of the SCS,
(17), 4, pp. 187-197, 2000

[31] H. Sarjoughian, B. Zeigler, and S. Hall, A Layered
Modeling and Simulation Architecture for Agent-Based System
Development, Proceedings of the IEEE 89 (2); 201-213, 2001

[32] Unified Modeling Language (UML),
http://www.omg.org/technology/documents/formal/uml.htm

[33] Wainer, G., Giambiasi, N., Timed Cell-DEVS: modeling and
simulation of cell-spaces”. Invited paper for the book
Discrete Event Modeling & Simulation: Enabling Future
Technologies, Springer-Verlag 2001

[34] Wegmann, A., “Strengthening MDA by Drawing from the
Living Systems Theory”, Workshop in Software Model
Engineering, 2002

[35] Zhang, M., Zeigler, B.P., Hammonds, P., DEVS/RMI-An Auto-
Adaptive and Reconfigurable Distributed Simulation
Environment for Engineering Studies, ITEA Journal, July 2005

[36] Zdun, U., Dustdar, S. (2007). Model-Driven Integration of
Process-Driven SOA Models. International Journal of
Business Process Integration and Management, Inderscience,

[37] Zeigler, B. P., T. G. Kim, and H. Praehofer. (2000).
Theory of Modeling and Simulation. New York, NY, Academic
Press.

[38] Zeigler, B.P., Fulton, D., Hammonds P., and Nutaro, J.
Framework for M&S–Based System Development and Testing
In a Net-Centric Environment, ITEA Journal of Test and
Evaluation, Vol. 26, No. 3, 21-34, 20

Biography

SAURABH MITTAL is an Assistant Research
Professor at the ECE Department, University of
Arizona. He received both MS and PhD in ECE from
the University of Arizona in 2004 and 2007
respectively. His research interests include modeling
and simulation, net-centric systems engineering,
DoDAF-based executable architectures,
interoperability and data engineering. He is a recipient
of Joint Interoperability Test Command's highest
civilian contractor 'Golden Eagle' award for the project
GENETSCOPE and NTSA award for Best Cross-
platform development in M&S area for the project
ATC-Gen. He is currently working on projects at JITC
and NGIT.

BERNARD P. ZEIGLER is Professor of Electrical and
Computer Engineering at the University of Arizona,
Tucson and Director of the Arizona Center for
Integrative Modeling and Simulation. He is
internationally known for his 1976 foundational text
Theory of Modeling and Simulation, recently revised
for a second edition (Academic Press, 2000),
He has published numerous books and research

publications on the Discrete Event System
Specification (DEVS) formalism. In 1995, he was
named Fellow of the IEEE in recognition of his
contributions to the theory of discrete event simulation.
In 2000 he received the McLeod Founders Award by
the Society for Computer Simulation, its highest
recognition, for his contributions to discrete event
simulation. He was appointed Fellow of the Society
for Modeling and Simulation, International (SCS),
2006.

DEVS Unified Process for Web-Centric
Development and Testing of System of

Systems

Saurabh Mittal, PhD
Bernard P. Zeigler, PhD

Arizona Center for Integrative Modeling and Simulation, Tucson, AZ
www.acims.arizona.edu

CRITICAL ISSUES IN C4I
20-21 May 2008
George Mason University, Fairfax, VA

Outline

• Why an M&S-Based Integrated Development and
Testing Framework?

• Today’s Model-Driven Architecture (MDA) Software
Engineering

• Background: Discrete Event Systems Specification
(DEVS) M&S Framework

• Proposed: DEVS Unified Process (DUNIP)
– Application to Web-centric Environments

• Evolution of DUNIP
• Comparing MDA and DUNIP
• Summary

Why an M&S-Based Integrated Development and
Testing Framework?

• Need new development and testing paradigm for web-centric
systems of systems (SoS)

• Examples
– Distributed C4I
– Global Information Grid (GIG)/Service Oriented Architecture
– Collaborative Unmanned Autonomous Systems

Net-Enabled Command &
Control

Example: Testing DISA’s Net-centric Enterprise Services (NCES)

Testing DISA’s Net-centric Enterprise Services (NCES)

Net-Enabled Command & Control

Today’s Model-Driven Architecture (MDA)
Software Engineering

• Model Driven Architecture (MDA) by OMG in 2001
• Defines system functionality using Platform Independent

Model (PIM), using an appropriate domain specific
language

• Entails various standards like UML, MOF, XMI, CWM
• Suffers from many shortcomings

– UML bounded by UML meta-model itself
– Executable UML not a standard yet
– Modeling and Simulation not well integrated

Model-Based Testing

• A variant of testing that relies on
explicit behavior of models

• Pairs of input-output are
interpreted as test-cases

• Output of model is the expected
output of System Under Test
(SUT)

• Must take into account the
required abstractions and
lumped behaviors and
parameters.

Background: DEVS M&S Framework

Discrete Event Systems Specification
(DEVS)

• Based on mathematical formalism
using system theoretic principles

• Separation of Model, Simulator and
Experimental Frame

• Atomic and Coupled types
• Hierarchical modular composition

Level Name System Specification at this level
4 Coupled

Systems
System built from component systems with coupling recipe.

3 I/O System
Structure

System with state and state transitions to generate the
behavior.

2 I/O
Function

Collection of input/output pairs constituting the allowed
behavior partitioned according to initial state of the system.
The collection of I/O functions is infinite in principle
because typically, there are numerous states to start from and
the inputs can be extended indefinitely.

1 I/O
Behavior

Collection of input/output pairs constituting the allowed
behavior of the system from an external Black Box view.

0 I/O Frame Input and output variables and ports together with allowed
values.

Source
System

Simulator

Model

Experimental Frame

Simulation
Relation

Modeling
Relation

message

Integrated M&S-Based System Development and Testing
Methodology

RealReal--timetime
executionexecution

Behavior
Requirements
at lower levels
of System
Specification

Model Structures
at higher levels of

System
Specification

Verification
and

Validation

Simulation
execution

Test Models/
Federations

Model
Continuity

Experimental
Frames

System
Theory

Provides Foundation for DEVS Unified Process (DUNIP)

DEVS Unified Process (DUNIP)

Supports
• Automated DEVS Model Generation from PIM to PSM

(Platform Specific Model)
• Collaborative Development using DEVSML (XML

representation)
• Automated Test Model Generation

Simulation Services provided by DEVS/SOA:
• Web-centric Execution of DEVS models
• Distributed, logical, and real-time modes

Automated DEVS Model
Generation

• State-Based System specifications
• Rule-Based System specifications using Natural

Language Processing (NLP)
• BPMN/BPEL Based System Specifications
• DoDAF-Based requirement specifications

Refer www.acims.arizona.edu Publications page

XM
L-B

ased D
ata Extraction tow

ards D
EVS Elem

ents

DEVS
Web-Service

Engine

DEVS
Web-Service

Engine

DEVS Atomic
Skeletons with BPEL

Web-port Hooks

DEVS Atomic
Skeletons with BPEL

Web-port Hooks
DEVS Atomic

in DEVSML

DEVS
Model

Generator in
DEVSML

DEVS Coupled
in DEVSML

DEVS
Web-Service

Engines

Simulation-
Based
Testing

DEVSML
Composition

DEVSML
Integration

Automated DEVS
Atomic behavior

Automated DEVS
Coupled Scenario

1

2

3

4a

4b

6

6

DEVSML
Server

Distributed
DEVS Execution
Over SOA

SIMULATION
SERVICES

5

State-based
Specs

Message-Based
Scenario

Specs with
Restricted

NLP

BPMN/BPEL
Based

Scenario
Specs

DoDAF
based

Scenario
Specs

DEVSML Collaborative Model Development

• DEVS PSM (Java) in XML language
• Based on JavaML Layered architecture
• Cross-transformation between XML and

Java
• Server farm and Simulation services

DEVS/SOA: DEVS on SOA with Simulation
services

• Client-Server architecture
(based on layered
architecture of DEVSML)

• Two layer service framework
– User layer

• Upload, Compile, Simulate
(centralized or distributed)

– Engine layer
• Initialize, DEVS-protocol

relation services, exit, console
output retrieval service

Run Example

DEVS/SOA Client

• Model partitioning, deployment and simulation
initialization

• Invoking simulation services from DEVS/SOA Server
farm

The Complete DUNIP

XML-Based Data Extraction towards DEVS Elements

RealReal--timetime
executionexecution

DEVS
Behavior

Requirements
at lower levels

levels of
System

Specification

DEVS Model
Structures at

higher levels of
System

Specification

Verification and
Validation

Simulation
Execution

SOADEVS

Test Models/
Federations

Models
To

Services

Experimental
Frames

System
Theory

State-based
Specs

Message-Based
Scenario

Specs with
Restricted

NLP

BPMN/BPEL
Based

Scenario
Specs

DoDAF
based

Scenario
Specs

DEVSML
Platform

Independent
Models

Platform Specific Models

Transparent Simulators

Evolution of DUNIP
Project /

DUNIP Elements
JCAS
model

DoDAF-based
Activity Scenario

ATC-Gen
Project

GENETSCOPE
Project

Requirement Specification Formats X X

State-based Specs X
Message-based Specs with
restricted NLP

X

BPMN/BPEL based Specs X
DoDAF-Based Scenario Specs X X

XML-based Data Extraction X X X

DEVS Model Structure at lower
levels of Specification

X X X

DEVS model structure at higher
levels of System specification

X X

DEVSML Platform Independent
Models

X

Test Model Development X X

Verification and Validation using
Experimental Frames

X X X

DEVS/SOA net-centric Simulation X

DEVS/SOA Infrastructure for GIG Mission Thread Testing

1. MAJ Smith tasks Intell to
reconnoiter objective area and
provide threat estimate

2. Posts taskings using
Discovery and Storage

5. Intell Cell issues alert via messaging
6. MAJ Smith pulls
estimate from Storage

3. Intell Cell initiates high priority collection
against objective, and collectors post raw output

4. Intell posts products via Discovery and Storage

Observing Agent
for Major Smith

Observing Agent
for Intell Cell

notes time of posting

Computes Time for Task,
Measure Performance

sends time to other Agent

Observing Agent
alerts other Agent

NCES GIG/SOA

• Test agents are DEVS models and
Experimental Frames

• They are deployed to observe
selected participant via their service
invokations

Comparing MDA and DUNIP
Desired M&S Capability MDA DUNIP
Need for executable architectures
using M&S

Yes, although not a
standard yet

Yes

Applicable to GIG/SOA Not reported yet Yes
Interoperability and cross-
platform M&S using GIG/SOA

-- Yes, DEVSML and DEVS/SOA
provides cross-platform M&S using
Simulation Web Services

Automated test generation and
deployment in distributed
simulation

-- Yes, based on formal Systems theory
and test-models autogeneration at
various levels of System
specifications

Test artifact continuity and
traceability through phases of
system development

To some extent,
model becomes the
application itself

Yes, supports model continuity

Real time observation and control
of test environment

-- Model Reconfiguration and run-time
simulation control integral to DEVS
M&S. Enhanced MVC framework is
designed to provide.Dynamic
capability

Summary

• DUNIP supports web-centric development and testing of SoS
• Advantages of several inter-related concepts

– DEVSML, DEVS/SOA, M&S framework, Model-Continuity
– Separation of model with the simulators
– Real-time execution
– Testing at multiple levels over wide range of platforms
– Collaborative model development
– Additional SoS architectural views

• Web-centric SoS can be specified by UML, DoDAF, or systems
engineering methodologies
– DUNIP provides an integrated development framework supporting these

approaches

devsworld.org acims.arizona.edu Rtsync.com

Books and Web Links

	10. 5_Mittal_Zeigler
	Mittal-slides

