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Modeling and Simulation of Cavitation during Hot Working 

P.D. Nicolaou, A.K. Ghosh, and S.L. Semiatin 
Air Force Research Laboratory, Materials and Manufacturing Directorate, 

AFRL/RXLM, Wright-Patterson Air Force Base, OH 45433-7817 

INTRODUCTION 

Many metallic materials develop internal cavities when subjected to large 

uniaxial or multiaxial tensile strains at elevated temperatures.  These materials include 

conventional alloys of aluminum, titanium, copper, lead, and iron as well as emerging 

intermetallic materials such as titanium aluminide alloys [1-3].  For a given material, 

with a given microstructure, the extent of cavitation depends on the specific 

deformation conditions (e.g., strain rate, temperature, and stress state).  In most cases, 

cavitation may lead to premature failure at levels of deformation far less than those at 

which flow-localization-controlled failure would occur.  Cavitation is a very 

important phenomenon in hot working of materials because it may yield inferior 

properties in the final part let alone lead to premature failure during forming. 

Cavity formation usually comprises three distinct but simultaneously 

occurring stages, i.e. nucleation, growth, and coalescence. An important requirement 

for cavitation during deformation under either conventional hot-working (high-strain-

rate) conditions or superplastic forming is the presence of a tensile stress.  Under 

conditions of homogeneous compression, on the other hand, cavitation is typically not 

observed.  In fact, cavities produced during tensile flow may often be closed during 

subsequent compressive flow.  Similarly, it has been demonstrated that the 

superposition of a hydrostatic pressure during hot forming can reduce or even 

eliminate cavitation [4].   

This article deals with the modeling and simulation of cavitation phenomena. 

It is divided into six sections.  Experimental observations of cavitation are briefly 

summarized first.  The next two sections review the modeling of cavity nucleation and 
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cavity growth; the former topic is treated more extensively in a companion article in 

this volume.  The discussion of cavity growth focuses on both mesoscale and 

microscale models under uniaxial versus multiaxial tensile-stress conditions; 

mesoscale models incorporate the influence of local microstructure and texture on 

cavitation.  Descriptions of cavity coalescence and shrinkage are summarized in the 

following two sections.  The last part of this article deals with the simulation of the 

tension test to predict tensile ductility and to construct failure-mechanism maps. 

CAVITATION OBSERVATIONS 

Optical and SEM microscopy are the usual techniques applied to quantify 

cavity formation within metallic materials.  Specifically, samples are sectioned along 

one or more directions and are prepared for metallograhic analysis.  Low 

magnification optical microscopy permits a gross examination of the sample, while 

SEM investigation enables the observation of cavities in greater detail.  Optical 

micrographs with magnifications between 50X and 200X are typically analyzed using 

commercial software packages (e.g. NIH, Image J) to obtain measurements of several 

important features of cavities, e.g. average radius, shape, angle with respect to the 

principal directions.  Further analysis of such measurements is used to the determine 

the cavity area fraction, cavity volume, cavity density, and cavity shape [5, 6].  

Higher magnification SEM analysis is often conducted in selected areas of a 

specimen in order to establish cavity nucleation sites, nucleation strain, onset of 

coalescence, coalescence mechanisms, etc. relative to microstructural features (triple 

points, second phase particles) that influence cavitation behavior.  As an example, 

Figure 1a shows a typical optical micrograph used to determine the cavity features in 

Ti-6Al-4V following hot tension testing [5]; a corresponding high magnification SEM 

micrograph (Figure 1b) reveals the onset of coalescence of cavities. 
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Experimental measurements and observations of cavitation are summarized in 

Table 1 in which the broad test conditions and major conclusions related to cavitation 

behavior are summarized for a number of different alloys[7-18].  This list is not 

exhaustive, but provides an overview of the extent of the phenomenon.  Observations 

for aluminum alloys are not included here inasmuch as they are discussed in the 

companion article by A.K. Ghosh.   

As microscopic examinations reveal, cavitation comprises three distinct stages 

that usually occur simultaneously: nucleation, growth, and coalescence.  The 

modeling of each of these stages is briefly described in the following sections. 

MODELING OF CAVITY NUCLEATION 

Nucleation represents the first stage of cavitation.  Cavities nucleate by (i) the 

intersection of matrix slip bands with non-deformable second-phase particles or with 

grain boundaries, (ii) sliding along grain boundaries giving rise to stress 

concentrations at triple junctions that are not relaxed by diffusional transport, and/or 

(iii) the condensation of vacancies at grain boundaries.   

Once a cavity is generated, the propensity for it to grow (or shrink) is 

determined from the local stress-equilibrium [19, 20].  Specifically, a cavity is stable 

when its size exceeds a critical radius rc, which is given by the following relation:  

             ( )c p ir =2 γ+γ -γ σ   ,       (1) 

in which γ, γp, and γi denote the surface energies of the cavity/void, the particle, and 

the particle-matrix interface; and σ is the applied stress.  This criterion implies that 

flow hardening is required to continuously nucleate and grow cavities, which usually 

does not occur during conventional hot working or superplastic flow (except in cases 

of significant grain growth). The equation also leads to required stresses for initiation 

and early growth which are unrealistically high.  Therefore, other methods based on 
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nucleation and growth from inhomogeneities/regions of high local stress triaxiality 

have been developed.  For example, Ghosh, et al. [21] have developed a constrained-

plasticity model in which nano-cavities nucleated by slip intersections with non-

deformable second phase particles or grain boundaries grow due to stresses normal 

and/or parallel to the interface by local plasticity at the tip of a crack-like defect.  In 

this case, the stress state is highly dilatational, and the early rate of growth is thus 

extremely rapid. The growth rate of a cavity decreases significantly as its size 

increases and becomes comparable to the microstructural feature that produces the 

constraint.  Such models are described in more detail in the companion article on 

cavity nucleation. 

MODELING OF CAVITY GROWTH 

Cavity growth follows nucleation.  Cavity-growth mechanisms can be 

classified into two broad categories: (i) diffusion-controlled growth and (ii) plasticity-

controlled growth.  Diffusional growth dominates when the cavity size is very small.  

As the cavity size increases, diffusional growth decreases very quickly, and plastic 

flow of the surrounding matrix becomes the controlling mechanism [19, 22].  An 

example of a cavity-growth-mechanism map, defining the different regimes, is shown 

in Figure 2.   

Diffusion-controlled growth has been modeled [22-24] assuming spherical, 

widely spaced, and non-interacting cavities.  The variation of the cavity radius r with 

effective strain ε  is given by the following expression: 

( )
D

2

kdr Dδ σ P 2γ 1= Ω + +
dε 2kTε r 3 σ rσ ln λ/2r -3/4

⎛ ⎞
⎜ ⎟
⎝ ⎠&

    (2) 

Here, D is the diffusion coefficient, δ is the grain boundary thickness, k is 

Boltzmann’s constant, Ω is the atomic volume, ε&  is the effective strain rate, σ  is the 
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effective stress, λ is the cavity spacing, P is the applied hydrostatic pressure, γ is 

surface energy, and kD is a constant dependent on the geometry of the deformation. 

 The diffusional-growth mechanism is of limited engineering importance 

because the great majority of cavity growth occurs by a plasticity-controlled 

mechanism under the conventional hot-working conditions employed in industrial 

forming processes. In such cases, the cavity-growth rate depends on the deformation 

temperature, the strain rate, and the stress state.  The remainder of this section, 

therefore, deals with the modeling of cavity growth under both uniaxial and multiaxial 

stress conditions. 

Plasticity-Controlled Growth under Uniaxial-Tension Conditions  

The plasticity-controlled growth of an isolated, non-interacting cavity during 

uniaxial tensile deformation is given by the following equation: 

  ,    or  (o oV=V exp η(ε-ε ) ( )o
ηr=r exp ε-ε
3

⎛
⎜
⎝ ⎠

o
⎞
⎟    (3a) 

or   dV =ηV
dε

 dr ηr=
dε 3

      (3b) 

In Equations (3), V and r are the cavity volume and radius respectively; Vo and ro are 

the volume and radius of the cavity at a strain oε  at which it becomes stable; ε 

denotes axial strain; and η is the individual cavity-growth rate parameter [18, 19, 25]. 

The cavity growth rate η is related to material parameters such as the strain rate 

sensitivity m, which itself is a function of deformation parameters (strain rate and 

temperature).  For a planar array of spherical, non-interacting, grain-boundary cavities 

under tensile straining conditions, the following relation between η and m has been 

derived [26]: 

( )
( )

2-mm+1 2η=1.5 sinh
m 3 2+m

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟

⎝ ⎠ ⎣ ⎦
 .     (4) 
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This theoretical relationship has been found to describe experimental observations for 

a wide range of cavitating metals and alloys.  

 The measurement of the cavity-growth rate of an individual cavity is difficult 

because continuous nucleation and cavity coalescence takes place in parallel with 

growth.  To overcome this problem, the cavity volume fraction Cv is measured; its 

variation with strain is described by a relationship similar to Equation (3), i.e.,  

                     Cv = Cvo exp[ηAPP(ε-εο)] ,                                   (5)  

in which the apparent cavity-growth rate ηAPP replaces the individual cavity growth 

rate η.  The parameter ηAPP is an “average” incorporating the growth of individual 

cavities, continuous cavity nucleation, and coalescence; ηAPP is readily determined 

from semi-log plots of Cv versus ε [18, 27] (e.g., Figure 3).  The data in Figure 3 

correspond to a gamma titanium aluminide alloy tested in tension at a temperature of 

1000°C and a strain rate of 10-4 s-1.  The slope of the fitted line equals ηAPP [18].  

 Simulations of cavity growth with continuous nucleation have led to the 

delineation of the difference between ηAPP and η.  Typical simulation results (Figure 

4) show the ratio ηAPP/η as a function of the cavity nucleation rate N (defined as the 

number of cavities that initiate per unit volume and per unit strain) and the strain rate 

sensitivity. This ratio is close to unity when the cavity nucleation rate is low; 

however, it deviates from unity as N increases. In addition, it has been found that the 

dependence of ηAPP/η on the strain rate sensitivity m is relatively weak [27].   

 The applicability of simple relations such as Equations (3) and (5) has been 

established by the modeling work conducted by Hancock [28] and Stowell [29].  

 Hancock Model.  This plasticity-controlled growth analysis considers a single 

cylindrical hole in an incompressible viscous solid [28].  The model gives rise to an 

additional surface-tension term in Equation (3b), i.e., γ/r, in which γ is the surface 
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energy and is typically of the order of 1 J/m2.  The term γ/r may be viewed as a radial 

stress introduced on the surface of the cylindrical void.  For such a void, the resulting 

equation is the following 

dr η 3γ= r-
dε 3 2σ

⎛
⎜
⎝ ⎠

⎞
⎟  .       (6) 

The above expression reveals that the surface-tension term is negligible when the 

applied stresses are high, which is typically the case under hot-working conditions. 

 Stowell Model.  The model of Stowell for plasticity-controlled cavity growth 

was developed for superplastic alloys.  The analysis focuses on a cylindrical 

representative volume element with a diameter equal to the cavity spacing and a 

length equal to the grain diameter [29].  The model accounts for the increase in strain 

rate in the region where the cavity is present relative to that in the uncavitated region.  

An initial cavity elongates with strain, leading to the definition of an equivalent radius 

r = (1/3) (a+2b), in which a and b denote the major and minor axes of the elliptical 

cavity, respectively.  This approximation for the equivalent cavity radius becomes less 

accurate as the aspect ratio a:b increases.  Assuming that the cavity volume (V) is 

proportional to r3 and the cavity density (number of cavities per initial unit volume 

Vo) is N, the Stowell analysis leads to an expression similar to Equations (3). 

Stowell’s model has some limitations, mostly related to the assumptions that a 

fixed number of cavities grow from the beginning of the deformation and there is no 

interaction between neighboring cavities.  In addition, it assumes the same law for the 

different directions of cavity growth. 

Plasticity-Controlled Growth under Multiaxial Stress States 

 The stress state developed during industrial metalworking operations is 

usually multiaxial.  To describe cavity growth, modifications must therefore be made 

to relations such as Equation (3a and b), which is strictly applicable for deformation 
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under uniaxial-tension conditions.  For this purpose, the simplest approach consists of 

the application of a relation similar to Equations (3) in which the uniaxial-tension 

cavity-growth parameter η is replaced by a cavity-growth parameter for the complex 

stress state, i.e., ηts, and the uniaxial strain ε is replaced by the effective strain ε .  A 

complex stress state is quantified by considering the stress ratio, σM/σ , i.e., the ratio 

of the mean to effective stress.  The cavity-growth rate-parameter ηts is simply a 

function of σM/σ , i.e., 

   
ts

Mση =F
η σ

⎛
⎜
⎝ ⎠

⎞
⎟  .        (7) 

Thus, the multiaxial-stress analog of Equation (3a) is as follows: 

( )
ts

o o
ηr=r exp ε-ε
3

⎡ ⎤
⎢ ⎥
⎣ ⎦

  or  ( )M
o o

η σr=r exp F ε-ε
3 σ

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
. (8) 

The function F(σM/σ ) is therefore required to describe cavity growth under multiaxial 

stress states. As described next, the function F(σM/σ ) has been determined using  

continuum mechanics approaches [30-33] as well as a semi-empirical methods [34].   

 McClintock Model.  McClintock used a continuum approach to obtain 

equations that describe the growth of voids of different geometries under different 

stress conditions [32, 33, 35].  The initial focus was on the description of the growth 

of cylindrical voids in a linear hardening material subject to an axisymmetric stress 

state or in a rigid, non-hardening material under axisymmetric deformation 

conditions.  This was followed by an assessment of the growth of voids within a 

moderately work-hardening material.  The overall result was a law that describes the 

growth, within a shear band, of a cylindrical void of elliptical cross section in a linear-

hardening matrix under arbitrary biaxial loading [36,37], i.e.,  
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( ) ( )1 dr 1 σ= sinh 1-n
r dε 2 1-n τ

⎡ ⎤
⎢ ⎥⎣ ⎦

     (9) 

in which τ is the shear stress within the shear band, σ is the normal stress across it, ε  

is the effective strain, and n is the strain-hardening exponent.  A simple modification 

of Equation (9) provides an order of magnitude estimate for the growth of elliptical 

cavities by taking an average of the three principal stresses, i.e.  

( ) M

o

σdR α= sinh 1-n
dε 1-n τ

⎧ ⎫⎡ ⎤⎪
⎨ ⎢ ⎥
⎪ ⎪⎣ ⎦⎩ ⎭

R⎪
⎬      (10) 

Here, R denotes the average of the three semi-axes of the cavity, α is a constant of the 

order of unity, and σM is the mean stress. This model shows that the void growth 

decreases as n increases. By analogy with Equation (3b), the term within the angular 

brackets in Equation (10) equals ηts/3.  The value of ηts can be readily calculated from 

a relation derived by Rice and Tracey which is described next.  

 Rice-and-Tracey Model. A continuum-mechanics approach was also 

employed by Rice and Tracey [30] to describe the growth of a spherical cavity within 

a plastic, non-hardening material obeying the von Mises yield criterion.  The strain 

field was assumed to comprise three contributions: (i) a uniform strain field due to 

plastic deformation of the matrix, (ii) a spherically-symmetric strain field resulting 

from the change of the cavity volume but involving no shape change, and (iii) a strain 

field (decaying at remote distances) which arises from changes of the void shape but 

not its volume.  The analysis of Rice and Tracey revealed that the contribution of the 

change of the cavity shape to the strain is minimal; on the other hand, the other two 

factors had a much more potent effect.  In fact, they showed that by neglecting the 

cavity-shape-change strain field, the error introduced was less than 1 pct.  This 
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analysis led to the determination of the following dependence of ηts on the stress ratio 

σM/σ : 

ηts = 0.558 sinh(3σM/2σ ) + 0.008 ν cosh(3σM/2σ ),   (11) 

in which ν is a function of the principal strain rates, i.e., ( )2 1 3ν= -3ε ε -ε& & & , with 

321 εεε &&& ≥≥ . 

 Pilling-and-Ridley Model.  An alternate, semi-empirical approach [34] has 

also been used to quantify the effect of the hydrostatic pressure P on the cavity growth 

rate ηts for superplastic alloys which often exhibit extensive cavitation.  The empirical 

relationship between ηts and η is the following 

ts Pη =η 1+2
σ

⎛
⎜
⎝ ⎠

⎞
⎟ .       (12) 

P is taken to be negative if it is compressive and positive if it is tensile.  Because σM = 

P + σ /3, P/σ  = σΜ/σ -1/3, Equation (12) can then be rewritten in terms of the stress 

ratio, i.e., 

ts Mσ1η =η +2
3 σ

⎛
⎜
⎝ ⎠

⎞
⎟        (13) 

By combining Equations (8) and (13), therefore, the cavity size for a multiaxial stress 

state can be calculated. 

Application of Models.  The applicability of relations for ηts/η such as 

Equations (10) to (13) [38] has been determined by comparing model predictions to 

experimental measurements.  The collected measurements correspond to a variety of 

materials deformed under different stress states (e.g., equibiaxial tension, plane-strain 

tension, uniaxial tension of notched specimens, etc.) and processing conditions (i.e., 

temperature, strain rate).  The experimental data fall within a broad scatter band 

(Figure 5).  Model predictions are also shown in this figure.  A comparison of the 
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scatter band and trend lines for the various equations indicates that none of the models 

provides precise predictions of the measurements.  Nevertheless, the semi-empirical 

model described by Equation (13) does mirror the observed trend better than the 

others.  In fact, the upper and lower limits of the experimental scatter band follow this 

relation (Equation (13)) multiplied by a factor Q equal to 0.75 or 1.25, respectively.  

Thus, the general correlation of cavity growth and stress state is described by the 

following relationship: 

( )M
o

ση 1r=r exp Q +2 ε-ε
3 3 σ

⎡ ⎤⎛ ⎞
⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

o .             (14) 

The usefulness of the correlation described by Equation (14) has been 

confirmed using two different sets of cavity-size measurements (Figure 6).  The first 

set came from experiments involving a range of stress triaxialities developed during 

notched-tension testing of a titanium alloy [39], while the second focused on results 

from the equi-biaxial-tension testing of an aluminum alloy [40]. 

Measurements of the average diameter of cavities developed during notched-

tension testing of Ti-6Al-4V (with a colony-alpha microstructure) at 815°C and a 

nominal strain rate of 0.1 s-1 [39] are plotted as a function of the stress ratio σM/σ  in 

Figure 6a.  The individual data points correspond to two different cavity-growth-

strain-ranges, ε-εo.  In addition, predictions for η = 6.5, values of the constant Q 

between 0.75 and 1.25, and the same levels of ε-εo (i.e., ~0.14 and ~0.22) are also 

shown in the graph as shaded areas.  It can be seen that the correlation embodied in 

Equation (14) bounds the experimental measurements well. 

Measurements (data points) of the effective-strain dependence of the average 

diameter of cavities developed during the equi-biaxial-tension testing (σM/σ  = 0.66) 

of a fine-grained, modified 5083 aluminum alloy at two different strain rates and a 
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temperature in the superplastic range are shown in Figure 6b [40].  Applying Equation 

(14) with Q= 0.75 and 1.25, a cavity-growth rate in uniaxial tension of η = 3.2, and an 

assumed nucleation strain εo  of zero (solid lines), it is seen that model predictions 

bound the observations for this material as well. 

Cavity-Growth Rate along the Principal Directions 

In many cases, cavities do not grow as simple spheres whose radii increase 

with strain; rather, they grow as ellipsoidal voids.  Hence, the use of a single cavity-

growth parameter η (or ηts) is not justified.  In such cases, it is often useful to quantify 

the cavity-growth rate along each of the principal directions of the ellipsoidal cavity.  

In particular, the change of the size of a cavity along direction i may be described by 

the relation 

Li = Lio exp(ηi ε )       (15) 

in which Li and ηi denote the size and cavity-growth-rate parameter along direction i. 

As an example, directional cavity-growth has been observed during the hot 

torsion testing of Ti-6Al-4V [41]. The cavity-growth rates along the three principal 

specimen directions (z, r, θ) were determined by measuring the cavity sizes, Lz, Lr and 

Lθ via optical microscopy on the z-r and z-θ cross-sections.  The measured average 

cavity lengths (Lz, Lr, and Lθ) as a function of effective strain (Figure 7) indicated that 

the cavity-growth parameter is indeed directional in nature {η}, i.e., 

{ }
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

46.0
41.0

05.0

θη
η

η
η r

z

. 

The volumetric cavity growth rate η equals the sum (trace) of the components of the 

above matrix, i.e.  

η = ηz +ηr + ηθ,  or  η = 0.92 
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The value η = 0.92 was found to be in broad agreement with the value of η if the 

cavities had been treated as spherical in shape.  

Micromechanical Models of Plasticity-Controlled Growth 

Classical plasticity-controlled models, such as those discussed above, neglect 

the effect of local texture and microstructure on cavity growth.  As such, their 

principal use is for the prediction of the average cavity size and volume fraction 

developed during hot working or superplastic forming.  However, it is the size of the 

largest cavities that play the most important role with respect to the properties and 

performance of a finished product.  To this end, so-called micro-mechanical models 

that enable such predictions have been developed to fill this gap. 

Micro-mechanical models [42, 43] focus on quantifying local stresses and the 

partitioning of strain between adjacent grains (or colonies in the case of a lamellar 

microstructure) due to differences in crystallographic orientation.  The first analyses 

were developed for alpha/beta titanium alloys with a colony-alpha microstructure in 

which cavitation is quite severe.  The plastic anisotropy of the alpha (hcp) phase leads 

to colonies with markedly higher or lower Taylor factors, which therefore behave 

differently during deformation. 

Micro-mechanical cavity-growth models comprise three elements: (i) an 

analysis to estimate the approximate stress ratio within adjacent hard and soft grains 

or colonies, (ii) a self-consistent calculation for the partitioning of the macroscopic 

strain/strain rate to differently-oriented grains/colonies, and (iii) a plasticity-controlled 

model incorporating stress-state effects to estimate the actual cavity-growth kinetics 

(e.g., Equation (8)).  The basic assumptions of these models are (i) the cavity formed 

at the boundary between a hard grain/colony and a soft grain/colony is small relative 

to the grain size and hence has little influence on the stresses and strains that are 
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developed in the absence of the cavity, and (ii) cavities grow into softer 

grains/colonies.   

Uniaxial Tension.  For uniaxial-tension deformation, the stress ratio (σM/σ ) 

controlling cavity growth within the soft colony is given by the following expression 

[42]: 

m n

M h h h
h

s s s

σ M ε ε 1=f -1 +
σ M ε ε 3

⎡ ⎤⎛ ⎞ ⎛ ⎞
⎢ ⎥⎜ ⎟ ⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

&

&
               (16) 

in which M, ε& , ε  denote the Taylor factor, strain rate, and strain of a hard (subscript 

h) or soft (subscript s) grain/colony, respectively; fh is the volume fraction of the hard 

grains/colonies; and m and n denote the strain-rate sensitivity and the strain-hardening 

exponent, respectively.  The partitioning of strain/strain rate between hard and soft 

grains/colonies, which is needed as input for both the stress-state (Equation (16)) and 

the cavity-growth (Equation (14) for Q=1) calculations, may be estimated from the 

self-consistent calculations [44], in which the relative strain rates are a function of the 

volume fraction of the hard grains/colonies and the ratio of strength 

coefficients/Taylor factors of the hard and soft grains/colonies. In Figure 8, model 

results of the ratio of the strain rate of higher-flow-stress grain/colony to the 

macroscopic (imposed) strain rate ( h totε ε& & ) and the corresponding ratio for the lower-

flow-stress grain/colony ( s totε ε& & ) are given as a function of the ratio of the strength 

coefficients kh/ks and the volume different fraction f of the hard grain/colony. The 

strain rate in the higher-flow-stress (hard) phase is less than in the lower-flow-stress 

phase.  The difference increases as either f decreases and/or kh/ks increases. 

 A typical application of the model for cavitation during hot tension of Ti-6Al-

4V with a colony-apha microstructure is shown in Figure 9. Here, measured radii r 

(for cavities larger than 3 μm) (data points) are plotted as a function of the Taylor 
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factor ratio Mh/Ms.  The solid lines represent model predictions; the strain at which 

each measurement corresponds is shown in the legend.  The shaded bands correspond 

to a range of the fraction of the hard phase fh between 0.4 and 0.8 (increasing from 

right to left, as shown by the arrow in the graph) and three different cavity-growth 

strain intervals, i.e., ε-εo = 0.18, 0.35, and 0.55, in which εo denotes the cavity-

nucleation strain.  The line within the shaded area corresponds to fh = 0.6.  The model 

reveals that for a given Mh/Ms, the cavity radius increases as the fraction of the hard 

phase increases at the expense of the soft one, largely because the strain 

accommodated by the soft phase increases. However, the cavity radius has a stronger 

dependence on the strain at nucleation (ε-εo) than fh. Overall, the experimental 

observations in Figure 9 are well bounded by the model predictions for a cavity-

growth-strain range between 0.18 and 0.55, with the majority of cavity measurements 

lying close to the ε-εo = 0.18 condition[42]. 

 Multiaxial Stress States. The principal aspects of the micro-mechanical 

analysis of cavity growth under a macroscopic multiaxial stress state also comprise 

estimates of the local stress state, the partitioning of strain/strain rate between hard 

and soft grains/colonies using a strain-partitioning model [44], and the application of 

the cavity-growth equation (Equation (14), for Q=1) to the soft colony.   

The macroscopic stress state is assumed to comprise three principal stresses 

(e.g., axial (σz), radial (σr), and hoop (σθ) for axisymmetric deformation), which can 

be determined from finite-element-method (FEM) analysis.  The microscopic local 

stresses in the hard and soft grains/colonies are determined by taking into account the 

yield functions of the hard and soft colonies and the relevant local-equilibrium 

equations. For a material obeying the von Mises yield criterion, the yield-function 

relationships are: 
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2
    (18) 

The subscripts θ, r, and z refer to the specific principal stress components; the 

subscripts h and s refer to the hard and soft colonies, respectively; and hσ  and sσ  

denote the flow stress of the soft and hard colonies, respectively. 

 The macroscopic axial ( ) and radial ( ) stresses which are determined 

from FEM analysis are each assumed to be a rule-of-mixtures average of the 

corresponding stress components in the hard and soft colonies, thus satisfying the load 

equilibrium considerations, i.e., 

mac
zσ

mac
rσ

( )
h

mac
z h z hσ =f σ + 1-f σ

s

sr

z      (19) 

( )
h

mac
r h r hσ =f σ + 1-f σ        (20) 

Furthermore, the hoop stress is usually taken to be essentially the same in the soft and 

hard grains/colonies and is equal to the macroscopic (FEM) stress , i.e., mac
θσ

h

mac
θ θ = θσ =σ σ

s
        (21) 

If the flow stresses of the hard ( hσ ) and the soft ( sσ ) colonies are known, the 

axial and radial stresses in each colony can be determined by solving Equations (17) 

to (21).  More typically, sσ  and hσ  are determined by applying the self-consistent 

model to estimate the strain rates and hence the flow stresses in the hard and soft 

colonies [43, 44].  

Having determined the stress components, the stress ratio σM/σ  in both the 

hard and soft colonies can be calculated.  Because the soft colony undergoes more 

strain than the hard colony, micromechanical cavity-growth calculations are typically 
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based on the strain in the soft colony and the value of ηts corresponding to its stress 

ratio.  The values of the strain and ηts in the softer colony are then used to estimate the 

size of the largest colonies per Equation (8). 

The micromechanical model for the size of the largest cavities developed 

under a state of multiaxial stress has been validated via observations for the hot 

pancake forging of cylindrical Ti-6Al-4V preforms with a colony-alpha structure [43] 

(Figure 10).  Typical calculations of the stress ratio (σM/σ ) developed within the hard 

and soft colonies at the equatorial free surface reveal that the stress ratio in the softer 

colony is very sensitive to the Taylor factor ratio Mh/Ms, whereas it exhibits a much 

weaker dependence on Mh/Ms and has smaller values for the harder colonies.  Model 

predictions for the size of the largest cavities (based on the calculated stress ratio, the 

corresponding values of ηts, and the strain in the softer colony from the strain-

partitioning model) are compared to measured radii of the large cavities (data points) 

as a function of distance form the free surface in Figure 11.  This comparison shows 

that the model mimics the observed behavior with the best fit obtained for Mh/Ms 

between 1.5 and 3.  

MODELING OF CAVITY COALESCENCE 

Cavity coalescence refers to the stage at which voids link together leading to 

final fracture.  In most models, cavity coalescence/linkage is assumed to occur 

between first and second nearest-neighbor cavities only.  If it is postulated that there is 

no nucleation of new cavities, then two coalescence mechanisms are possible [45-47], 

viz., 

(i) Impingement: This mechanism refers to the exhaustion of the ligament 

between the two cavities.  As two cavities grow, the ligament between them is 
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reduced until the outer surfaces of the cavities come into contact.  This condition is 

described by the following relation: 

s - (ri + rj) = 0 ,              (22) 

in which s denotes the center-to-center cavity spacing, and ri and rj the instantaneous 

radii of cavities “i” and “j”, respectively. It is important to note that a small initial 

inter-cavity spacing does not necessarily imply that coalescence will occur, because 

the horizontal and vertical spacing as well as the cavity-growth rate are both 

important.  

(ii) Internal necking:  Rupture of matrix material between two cavities occurs 

as a result of plastic instability and flow localization, much as though the cavities and 

matrix between them form a microscopic tension specimen.  Various criteria for 

describing coalescence via such an internal-necking process have been based on (1) a 

critical matrix-ligament strain, εcr, (2) a critical stress, or (3) a critical void volume 

fraction.  The first criterion is the one applied in most cases. 

The critical matrix ligament strain εcr, depends on the initial cavity spacing 

and the individual cavity growth rate η.  This strain can be determined by considering 

the deformation of a “microspecimen” containing two cavities along its mid-plane, 

which act like a geometric defect.  Details of such simulations are given below in the 

section on tensile ductility.  Here, typical results for such a mechanism are 

summarized in terms of the critical strain as a function of the center-to-center cavity 

distance and the cavity growth rate, η (Figure 12) [47]; the critical strain increases as 

d increases and/or as η decreases. 

Cavity coalescence may also be regarded as a process which in effect 

increases the average cavity growth rate. In particular, the effect of pairwise 
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coalescence on the average cavity growth rate dr dε  can be estimated from the 

following equation [48]: 

( )( ) ( )v i

v

8C Φη 0.13r-0.37 dr dε δε + dr dεdr =
dε 1-4C Φηδε

i  ,  (23) 

in which Cv is the instantaneous volume fraction of cavities, η is the uniaxial-tension 

cavity-growth parameter (Equation (3)), δε  (=dε ) is a small increment of strain, 

(dr/dε )i is the rate of growth per unit strain of an isolated cavity (= ηr/3 from 

Equation (3)), and Φ is given by: 

Φ = (1 + η ε δε/3 + (η δ ε )2/27) .     (24) 

Equation (23) can be easily applied to predict average cavity size by a simple 

spreadsheet analysis, in which strain is the independent variable and the average 

cavity size the dependent variable.  An example of the application of Equation (23) is 

shown in Figure 13 for a material with an individual cavity growth rate (η) equal to 3.  

The cavity size for coalescence or no coalescence along with the corresponding cavity 

volume fraction  are shown in this figure.  These results show that the effect of 

coalescence on the average cavity radius becomes noticeable when the cavity volume 

fraction exceeds ~7 pct. 

In spite of prior research in this area, coalescence mechanisms are still not 

fully understood due to the experimental challenge in obtaining reliable data for the 

population of cavities during the process.  These difficulties are associated primarily 

with the complex shapes of cavities.  However, the recent application of novel 

experimental techniques has partially overcome such challenges. For example, Dupuy 

and Blandin [22] and Martin, et al. [49] have conducted X-ray micro-tomography to 

obtain 3D images of cavity populations in a non-destructive manner (Figure 14).  

From this work, a coalescence or interlinkage parameter (IP) has been introduced.  
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This parameter is the ratio of the volume of the largest cavity to the total volume of 

cavities in the specific region investigated.  The micro-tomography results suggest 

that coalescence occurs over relatively large domains of strain and cavity volume 

fractions [22, 49].  For example, Figure 15 shows the variation of IP with the cavity 

volume fraction (which itself increases with strain) for aluminum alloy 5083 tested at 

525°C and a strain rate 10-4 s-1.  The value of IP is relatively low (< 0.05) for a cavity 

volume fraction ≤5% (corresponding to a strain of ~1.2), and then it increases sharply.  

MODELING OF CAVITY SHRINKAGE 

Cavities which nucleate and grow under a tensile state of stress may be 

reduced in size during a change in strain path during which the stress state becomes 

compressive.  A micro-mechanical model that describes cavity-shrinkage kinetics has 

been developed and applied [50].  In this approach, the stresses developed within the 

soft grains/colonies during a strain-path change which gives rise to compressive 

triaxiality are estimated in the same way as in the case of open-die forging, i.e., by 

applying the yield conditions and load-equilibrium equations.  To estimate the strain-

rate components and thus the densification rate , the stresses are 

inserted into a model for the consolidation of porous media [51], i.e., 

11 22 33ρ=ε +ε +ε& & & &

( ) ( )
2

'
ij ij M ij

K(ρ)j εε = 1+ν σ + 1-2ν σ δ
σ

⎛ ⎞
⎡⎜ ⎟ ⎣

⎝ ⎠

&
& ⎤⎦     (25) 

in which  denotes the strain rate tensor,  is the deviatoric stress tensor, σM the 

mean stress, 

ijε& '
ijσ

σ  is the effective stress, ν is the Poisson's ratio of the porous body, and φ 

is the stress intensification factor, and δij is the Kronecker delta. The function K(ρ) is 

associated with the relative density ρ; it is commonly assumed to be equal to ρ when 

the latter is greater than 90 pct.  
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 The applicability of Equation (25) to model cavity shrinkage has been 

demonstrated for Ti-6Al-4V with a colony-alpha microstructure subjected to torsion 

followed by reversed torsion or uniaxial compression (Figure 16).  Cavity-shrinkage 

predictions [50, 51] showed good agreement with such observations (Figure 17a and 

b).  The more rapid closure kinetics during compression compared to reversed torsion 

(as shown in the micrographs in Figure 16 were quantified correctly.  Such results 

were explained on the basis of the higher levels of compressive stress triaxiality in 

compression compared to those in reversed torsion, the orientation of cavities in 

torsion relative to the applied stresses, and dynamic spheroidization of the 

microstructure which affected the stress triaxility in torsion to a greater extent than in 

compression. 

MODELING AND SIMULATION APPROACHES TO PREDICT TENSILE 
DUCTILITY AND DEVELOP FAILURE MODE MAPS 

Cavitation may lead to premature failure and thus to a significant reduction in 

the tensile ductility or forming limit relative to that in materials that do not cavitate 

but fail instead by strain localization prior to fracture [52] .  For a given value of the 

strain rate sensitivity (m), the decrease in elongation for fracture-controlled failures 

due to cavitation depends on the rates of cavity nucleation and growth, the cavity 

shape and size distribution, and the spatial distribution of the cavities.   

Early models of the effect of cavitation on failure (e.g., Reference 53) focused 

only on the effect of cavity generation on flow stability in uniaxial tension.  In these 

approaches, it was assumed that that all cavities were spherical and uniformly 

distributed across a given cross-section; triaxiality and stress concentration effects 

were neglected.  The models postulated that cavitation increases the three dimensions 

of the specimen (length, width, thickness) in proportion to the level of cavitation.  Key 

results indicated that the progress of cavity generation renders deformation less stable 
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by reducing the effective values of both the strain-hardening exponent (which impacts 

the uniform elongation primarily) and the strain rate sensitivity (which affects the rate 

of flow localization following the onset of instability.)   

More recent models quantify the effect of cavitation on tensile ductility in 

more detail.  These approaches include those which do not or do incorporate the effect 

of stress triaxiality in the neck on cavitation. 

Long-Wavelength Models 

Long-wavelength models of the tension test seek to quantify cavitation and 

flow localization behavior by assuming that the neck developed after the onset of 

instability has a very long wavelength, and thus the stress triaxiality due to necking 

can be neglected [54, 55].  In such situations, cavitation and strain localization 

behavior are quantified by determining the relative deformation of two material slices 

(one with an initial defect of some sort) via a simple load-equilibrium approach.  In 

particular, the analysis is based on the principle that the load (= axial stress multiplied 

by the cross-sectional area) transmitted through the two slices representing the 

specimen is constant.  For a non-cavitating material, deformed in uniaxial tension, the 

following equilibrium expression is obtained: 

     (26) ( ) ( )1/mn/m
N Nexp(-ε/m)ε dε= 1-F exp -ε /m ε dεN

In Equation (26), the subscript N refers to an initial geometric defect, F; 

( )o oN oF= A -A A , in which Ao and AoN denote the area of the uniform and defected 

slice of the specimen.  

For a cavitating material, cavity growth decreases the effective cross-sectional 

area of the specimen. Combining Equations (5) and (26) and assuming a uniform 

distribution of cavities, the following equilibrium relation is obtained in long-

wavelength two-slice models: 
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Lian and Suery [56] were the first to develop and apply an expression of the 

form of Equation (27).  In their simulations, they assumed an initial cavity volume 

fraction (Cvo) between 10-3 and 10-4. Cavitation failure was assumed to occur when 

the cavity volume fraction in the defect region reached 30 pct.  From such analyses, 

maps showing the failure mode as a function of m and η can be derived.  The maps 

are divided into three regimes: (i) a regime in which the material fails by flow 

localization/necking, (ii) a regime in which cavity growth dominates and leads to 

failure without pronounced flow localization, and (iii) and an intermediate mixed-

mode regime in which both cavitation and necking contribute to failure.  Model 

predictions typically show good first-order agreement with observations in the 

literature despite the fact that a precise description of cavity nucleation and 

coalescence is not included in the analysis. 

Macroscopic, two-slice, long-wavelength model can be extended to establish 

the effect of superimposed hydrostatic pressure on the failure mode [57].  For given 

values of m and η, the predicted failure mode changes when the superimposed 

pressure is greater than a certain value.  It has been found that materials which fail 

without neck formation under zero-pressure conditions do indeed undergo flow 

localization prior to fracture when high pressures that suppress cavity growth are 

imposed. 

Analogous to the macroscopic, long-wavelength analysis to determine 

ductility and failure mode, microscopic load-equilibrium approaches have been 

developed to investigate the internal necking and failure of the ligament between two 

cavities and hence the cavity-coalescence phenomenon.  These latter techniques 
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typically rely on a representative micro-specimen (lying within the material) with a 

uniform rectangular cavity array (Figure 18).   In this case, a load-equilibrium 

analysis, such as that developed by Zaki [58], can be used to treat the straining 

process within the uniform and necked/defect portions of the specimen, the latter 

representing the ligament between two cavities.  The load-equilibrium equation is: 

( ){ }2/mn/m n/m
u u i o iε dε =ε 1-r exp η 3 ε dε⎡ ⎤⎣ ⎦ i    (28) 

in which n is the strain hardening exponent, m is the strain rate sensitivity, εu is the 

strain in the uniform region, and εi the strain in the defect portion of the specimen.  

Failure is assumed to occur when the ratio εi/εu tends toward infinity. It has been 

found that the strain rate sensitivity strongly affects the total strain when the 

individual cavity growth rate is low (< 3).   

Macroscopic Load-Equilibrium Approach with Stress Triaxiality 

 A load-equilibrium approach including the influence of stress triaxiality 

developed within the neck on flow localization and failure during tension testing 

provides more physically realistic estimates of ductility and failure mode than long-

wavelength models for both cavitating and non-cavitating materials [59, 60].  For a 

sheet or round-bar tension test, the formulation is based on (i) a discretized sample 

geometry rather than merely two slices (e.g., Figure 19), (ii) a description of the 

material flow (stress-strain) behavior, (iii) an appropriate load-equilibrium equation 

(to describe the relation between the strain rate in each slice to that in the middle 

slice), and (iv) a specified boundary condition (e.g., constant crosshead velocity).  

For a cavity free material flow behavior, the simple engineering power-law 

formulation is often used, i.e.: 

n mσ=Kε ε&         (29) 
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in which σ , ε , and ε&  denote the effective stress, effective strain, and effective strain 

rate, respectively, K, n, and m represent the strength coefficient, strain-hardening 

exponent, and the strain-rate-sensitivity index, respectively.  

At any instant of deformation, the axial load is the same in each element in 

order to maintain equilibrium.  When cavitation occurs, the load bearing area Alb 

differs from the apparent, or macroscopic, area Am.  Assuming spherical and 

uniformly spaced cavities, the relationship between the two quantities (denoting the 

initial (uncavitated) area as ) is: sp
oA

( )2/3
m lb vA = A 1-C , and ( )sp

lb oA =A exp -ε :    (30) 

The load borne by each slice is equal to the product of its load bearing cross-sectional 

area and axial stress; the axial stress is equal to the flow stress corrected for stress 

triaxiality due to necking and evaluated at a strain rate corresponding to that which the 

material elements experience.  The load equilibrium condition is thus described by: 

i i j
i lb T j lb Tσ A /F =σ A /Fj        (31) 

in which the subscripts and/or superscripts i and j denote the corresponding 

parameters for elements i and j, respectively; FT represents the triaxiality factor; and 

Alb is the load bearing area.  The triaxiality factor at the symmetry plane of the neck 

(as well as away from this plane, at least to a first order) is given by the following 

equations for round-bar ( ) and sheet ( ) specimen geometries: r
TF s

TF
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r
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in which w represents the specimen half diameter or half width, and U is the profile 

radius of the neck[61]. 

The matrix strain rate ε& , i.e. the strain rate of the cavity free material can also 

be related to the macroscopic sample strain rate mε& (measured from the rate of change 

of the specimen’s dimensions). Using power dissipation arguments, the relation 

between the two strain rates is the following [57]: 

( ) mε= 1 φ ρ ε& &  ,      (33) 

in which ρ is the relative density of the specimen (ρ= 1-Cv), Cv is the cavity volume 

fraction, and φ  is the stress intensification factor, which for spherical and uniformly 

distributed cavities is given by 2/3φ=1 ρ .  

 Equations (29) to (33) can be used to simulate the isothermal, hot tension test 

of a cavitating material.  Briefly, such simulations comprise the following steps: 

 Step 1: Specify the initial specimen geometry (width, thickness, length, and 

initial cavity volume fraction in each element) as well as the overall nominal (or true) 

strain rate for the tension test. Calculate FT for each element using Equations (32). 

 Step 2: Based on the geometry and local cavity volume fraction, determine the 

initial strain rate distribution for each element in the specimen relative to that in the 

central (reference) element using Equation (31). Determine absolute values of strain 

rate using the boundary condition. Here, use is made of the material constitutive 

relation (Equation (29) with the strain rate from Equation (33)).  

 Step 3: Impose an increment of deformation (based on the strain rate 

calculated in Step 2) and cavitation (based on Equation (5)) for each element, and 

determine the new specimen geometry, FT distribution, and local cavity volume 

fractions. 
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 Step 4: Calculate the engineering stress and strain. 

 Step 5: Calculate a new strain rate distribution using Equation (31) as in Step 

2. 

 Step 6: Repeat Steps 3 to 5 until failure 

Simulation outputs include predictions of engineering stress-strain curves and 

the total elongation at failure. For example, typical predictions of tensile elongation 

for sheet materials which exhibit strain-rate hardening [60] (with a rate-sensitivity 

index of m) and no strain hardening are shown in Figure 20.  The figure illustrates the 

increase of ductility with increasing m and decreasing ηAPP.  In addition, by 

incorporating a fracture criterion (e.g., fracture occurs when the cavity volume 

fraction in an element reaches 30 pct.), the competition between flow-localization and 

cavitation-controlled failure can be quantified and used to construct maps showing the 

failure mode as a function of m and ηAPP. For example, a failure-mode map for non-

strain hardening materials is plotted in Figure 21 [60].  For deformation under 

superplastic conditions (m > 0.3) and ηAPP > 2, the map shows that failure is 

fracture/cavitation controlled.  On the other hand, flow-localization-controlled failure 

is seen to predominate only for small values of the apparent cavity growth rate.  

Failure observations for several titanium aluminide alloys (Figure 22) illustrate 

the types of behavior that can be modeled by this approach.  For example, a flow-

localization type of failure (Figure 22a) has been observed for the orthorhombic 

titanium aluminide alloy Ti-21Al-22Nb deformed at 980°C and a nominal strain rate 

of 1.6x10-3 s-1 [63].  On the other hand, the gamma titanium aluminide alloy Ti-

45.5Al-2Cr-2Nb exhibits fracture prior to flow localization during tension testing at 

1200°C and a nominal strain rate of 10-3 s-1 (Figure 22b) [64].  The values of m, ηAPP 

and the corresponding failure modes that pertain to these (and similar) experimental 
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observations are cross plotted in Figure 21.  The solid data points represent fracture-

controlled failures, while the open ones flow-localization-controlled failures.  The 

predicted failure modes based on the values of m and ηAPP show good agreement with 

the observations. 

Hybrid Macro-Micro Modeling 

 The various features of the macroscopic load-equilibrium model with stress 

triaxiality and the micro-specimen (cavity-coalescence) model described in the 

previous two sections can be combined to develop a hybrid macro-micro model for 

the tensile behavior of cavitating materials [47].  In such a hybrid model, the critical 

strain (εcr) for inter-cavity ligament rupture due to internal necking at a micro-scale 

are determined from simulations of the deformation of a micro-tension specimen [58]; 

these simulations provide εcr as a function of cavity spacing d and material parameters 

such as the strain-rate-sensitivity index (m) and the cavity growth rate (η). The steps 

of this hybrid model are similar to the ones of the macroscopic load equilibrium 

approach.  The major difference lies in the fact that the load bearing area is 

determined from (i) the macroscopic area of each slice of the specimen and (ii) the 

projection of the void area in the horizontal plane of this slice. Therefore, the load-

bearing area is not necessarily constant within a particular slice at a given level of 

tensile elongation. Rather, it is smallest in regions heavily populated with cavities or 

in regions in which extensive coalescence has occurred. In addition, the location of 

the minimum load-bearing area within a given slice is not the same at two different 

levels of deformation because of cavity coalescence. For example, the minimum load-

bearing area may have been located in a region with the highest local cavity density 

during an initial deformation stage. However, because not all cavity coalescences take 

place simultaneously, but rather progress with strain, the minimum load-bearing area 
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at a later stage of deformation may have then been located where the maximum 

number of coalescences had occurred. 

Model predictions of engineering stress-strain curves from both a macroscopic 

model and a hybrid macro-micro model are presented in Figure 23 for a non-strain-

hardening material assuming a range of individual cavity growth rates η and a 

constant (i.e., no new nucleation) cavity density of N = 100 cav/mm2.  The hybrid 

model predicts that flow localization occurs earlier during the deformation/cavitation 

process compared to the macroscopic model.  Furthermore, flow localization appears 

to be more predominant in the hybrid model for the cavity-growth rates η considered.  

In fact, for η = 2, the shape of the engineering stress-strain curve suggests noticeable 

flow localization for the hybrid model, but a fracture-controlled failure mode for the 

macroscopic model.  The predicted trends are similar for higher initial cavity densities 

as well.  Such behavior can be ascribed to the fact that the hybrid analysis considers 

randomly-, rather than uniformly-, dispersed cavities within the specimen, and the 

cavity population and coalescence in a particular area affect the load-bearing area 

[47].  Therefore, the load-bearing area is constant within a slice for the macroscopic 

model.  On the other hand, this area varies even within the same slice for the hybrid 

model, inasmuch as it depends on the local cavity concentration and/or coalescences 

which occur in a particular (local) region of the slice.  As a result, as deformation 

proceeds, the load-bearing area is lower in the hybrid model.  Hence, the load-bearing 

area decreases more rapidly with strain in the hybrid model, and the engineering stress 

is lower and decreases more rapidly with engineering strain. 

SUMMARY 

The parameters that govern the cavitation process during the hot working of 

metals have been summarized.  Models of plasticity-controlled cavity growth, both for 
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uniaxial and complex (multiaxial) states of stress, are relatively advanced compared to 

those for the nucleation and coalescence of cavities.  In many cases, mesoscale 

models of plasticity-controlled growth can provide reasonable estimates of the 

average cavity size.  Microscale analyses enable the prediction of the size of the 

largest cavities by taking into account local microstructure and texture effects.  

Nevertheless, models of cavity nucleation and coalescence are important with respect 

to predicting overall tensile ductility.  Last, models are being developed to treat the 

shrinkage of cavities that result from changes in stress state/strain path during 

complex industrial hot-working processes.  
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List of Symbols 
 
a, size of major axis of an elliptical cavity 
Ao , area of the nominally uniform slice of the specimen 
Alb, load bearing area 
Am, macroscopic area of a tension specimen 
b, size of minor axis of an elliptical cavity 
γ, surface energy of the cavity 
γp surface energy of a particle 
γi surface energy of the particle-matrix interface 
Cv, cavity volume fraction 
Cvo, initial cavity volume fraction 
D, diffusion coefficient 
δ, grain boundary thickness 
δij , Kronecker delta 
ε , effective strain 
ε& , effective strain rate 

oε , strain at which a cavity becomes stable 
ε, axial strain 

1 2 3, ,ε ε ε& & & , strain rate along the principal directions 1, 2, 3 

ijε& ,strain rate tensor 
εΝ, axial strain at the neck of a specimen 
εi , strain in the defect portion of the specimen 
εu ,strain in the uniform region of the specimen 
fh, volume fraction of hard phase 
φ, stress intensification factor 
F, size of initial geometric defect (taper) 
FT, stress triaxiality factor 
η, individual cavity-growth rate parameter in uniaxial tension 
ηAPP , apparent cavity growth rate 
ηts, individual cavity-growth rate parameter in complex stress state 
ηi, cavity growth rate along principal direction “i” 
k, Boltzmann’s constant 
K, strength coefficient 
kD, constant dependent on the geometry of the deformation 
Li, cavity section along principal direction “i” 
λ, cavity spacing 
m, strain rate sensitivity 
M, Taylor factor 
Mh, Taylor factor of hard phase 
Ms, Taylor factor of soft phase 
n, stress exponent  
P, applied hydrostatic pressure 
 
rc, critical cavity radius 
r, cavity radius 
ro , radius at which a cavity becomes stable 
R, average of the three semi-axes of the cavity 
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r , average cavity radius 
ρ, relative density 
U , profile radius at the neck of a tension specimen 
W, half diameter or width of a tension speciment 
σ, external normal stress 
σ h, effective stress 
σ s, effective stress of soft phase 
σ , effective stress of hard phase 
σM, mean stress 
σz, principal stress along the longitudinal direction 
σr, principal stress along the radial direction 
σθ, principal stress along the hoop direction 

mac
zσ , macroscopic longitudinal stress 
mac
rσ , macroscopic radial stress 
mac
θσ , macroscopic hoop stress 
'
ijσ , deviatoric stress tensor 

s, center-to-center cavity spacing 
V, cavity volume 
Vo , volume at which a cavity becomes stable 
Ω, atomic volume 
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Figure Captions 

Figure 1. Cavitation observations for Ti-6Al-4V with a colony-alpha microstructure: 
(a) Optical micrograph and (b) SEM micrograph. 

 
Figure 2.  Schematic plot of the dependence of the cavity-growth rate on cavity radius 

for different rate-controlling mechanisms [19]. 
 
Figure 3. Measured cavity volume fraction as a function of axial strain from tension 

testing of a gamma titanium aluminide alloy.  The test temperature was 
1000°C and the strain rate was 10-4 s-1 [18]. 

 
Figure 4. Simulation results for the ratio of the apparent to individual cavity growth 

rates as a function of the cavity nucleation rate [27]. 
 
Figure 5.   Dependence of the ratio of the cavity-growth parameter under triaxial and 

uniaxial states of stress (ηts/η) on the stress triaxiality (σM/σ ). The 
measurements (shaded area) are compared to various model predictions 
[38]. 

 
Figure 6.  Comparison of predictions from Equation (14) of the average cavity size as 

a function of the stress triaxiality (σM/σ ) with measured cavity sizes 
(data points) developed during (a) notched-tension testing of Ti-6Al-4V 
[39] or (b) equibiaxial-tension testing of a fine-grained 5083 modified 
aluminum alloy [39,40].  

 
Figure 7.   Strain and direction dependence of the size of cavities developed during 

hot torsion testing of Ti-6Al-4V with a colony-alpha microstructure at 
815°C and a surface effective strain rate of 0.04 s-1 [41]. 

 
Figure 8.   Self-consistent model predictions of the average strain rates developed in 

the individual phases of a two-phase (hard (h) and soft (s)) mixture as a 
function of kh/ks, f, and the macroscopic (imposed) strain rate. The m 
value for both phases was 0.23 [44]. 

 
Figure. 9.  Comparison of measurements and predictions of the cavity radius as a 

function of the Taylor-factor ratio Mh/Ms for cavity radii greater than 3 
μm. The solid lines represent predictions for fh = 0.6 for three different 
ranges of the cavity-growth strain. The local fraction of hard orientations, 
fh, increases in the shaded region from 0.4 to 0.8 in the direction shown 
[42].  

 
Figure 10.  Montage of micrographs along the equatorial plane showing the variation 

of cavitation in the radial direction developed during hot pancake forging 
of Ti-6Al-4V with a colony-alpha microstructure [43].  

 
Figure 11.  Comparison of measurements and model predictions of the variation of the 

size of the largest cavities as a function of the distance from the free 
surface for a Ti-6Al-4V pancake hot forged to a 50 pct. height reduction 
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following preheating at 815°C [43].  Cavity-size measurements were from 
both axial (r-z) and in-plane (r-θ) sections.  

 
Figure 12. Dependence of the critical strain for ligament failure on the center-to-

center cavity spacing and the individual cavity growth rate η [47]. 
 
Figure 13.  Simulation predicions of the average cavity radius for cavities which do 

not or do coalesce (Equation (23)).  The cavity volume fraction is also 
shown on the graph. 

 
Figure 14.   Three-dimensional view of the largest coalesced cavities obtained via x-

ray tomography of a sample of aluminum alloy 5083 following 
deformation in tension at 525°C and 10-4 s-1 [22]. 

 
Figure 15.   X-ray tomography measurements of the cavity interlinkage parameter (IP) 

as a function of cavity volume fraction in a sample of aluminum alloy 
5083 following deformation in tension at 525°C and 10-4 s-1 [49].  

 
Figure 16.  Micrographs showing the effect of strain path on cavitation in Ti-6Al-4V 

samples with a colony-alpha microstructure deformed at 815°C and an 
effective strain rate of 0.04 s-1 via monotonic torsion, reversed torsion, 
and compression following monotonic torsion [51]. 

 
Figure 17a. Comparison of model predictions (lines) and experimental measurements 

(data points) of the cavity fraction as a function of effective strain during 
reversed torsion at 815°C of Ti-6Al-4V samples with two different levels 
of the initial cavity fraction.  The model predictions are plotted for two 
different ratios of the Taylor factor between the hard and the soft 
colonies (Mh/Ms) [50].   

 
Figure 17b. Comparison of model predictions (lines) and measurements (data points) 

of the cavity fraction as a function of the macroscopic effective strain 
during compression of Ti-6Al-4V samples following torsional pre-
deformation to a strain level denoted εin.  Prestraining and compression 
were both conducted at 815°C and an effective strain rate of 0.04 s-1 
[51]. 

 
Figure 18. Micro-specimen geometry utilized in cavitation analysis by Zaki [58].  
 
Figure 19. Discretization of the sheet specimen for the simulation of flow-localization 

and cavitation during isothermal hot tension testing [60]. 
 
Figure 20.  Macroscopic model predictions of total elongation as a function of m and 

ηAPP for sheet tension testing of samples with a 2-pct. taper and strain-
hardening exponent n = 0 [60]. The individual data points represent 
measurements taken from the literature. 
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Figure 21.  Failure-mode map developed from macroscopic model simulations of the 
sheet tension test [60].  Model predictions of the failure mode are 
compared to experimental observations (data points).  

 
Figure 22.   Micrographs of (a) an orthorhombic titanium aluminide alloy which failed 

in tension by flow localization [63] and (b) a near-gamma titanium 
aluminide alloy which failed in tension by fracture (cavitation) [64]. 

 
Figure 23. Hybrid (macro-micro) and macroscopic model predictions of engineering 

stress-strain curves for m = 3, N = 100 cav/mm2, and various values of η 
[47]. 
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Figure. 9.  Comparison of measurements and predictions of the cavity radius as a
function of the Taylor-factor ratio Mh/Ms for cavity radii greater than 3 
�m. The solid lines represent predictions for fh = 0.6 for three different 
ranges of the cavity-growth strain. The local fraction of hard orientations,
fh, increases in the shaded region from 0.4 to 0.8 in the direction shown
[42]. 
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