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A probabilistic analysis of the fatigue life of specimens subject to fretting fatigue was 

carried out.  A mechanics based fretting life analysis was applied that accounted for the local 

stress gradient at the edge of contact.  The random variables in the analysis included the 

initial crack size, coefficient of friction, crack growth rate law, and the contact pad profile.  

The variation in pad profiles was determined through statistical analysis of seventy-seven 

machined pads.  A probabilistic fatigue analysis was applied using Monte Carlo sampling to 

determine the statistics (mean and standard deviation) of the fatigue life prediction and the 

probabilistic sensitivities (partial derivatives of the fatigue statistics with respect to the input 

probability density function parameters).  

Nomenclature 

 = slope of shear force versus normal force in partial slip 

 = coefficient of friction 

ij = components of stress 

a = crack depth 

c = half surface crack length 

F = applied load in the fretting test 

h(x) = contact gap function 

K = stress intensity factor 

M = contact moment 

R = load ratio 

p(x) = contact pressure traction 

P = normal contact force 

q(x) = contact shear traction 

Q = shear contact force 

I. Introduction 

Fretting is a problem in many aerospace applications including the blade to disk attachment in turbine engines.  

Two fretting modes can contribute to damage in fretting: gross slip when the two surfaces slide resulting in wear, 

and partial slip when the two surfaces are nominally stuck together except for a small slip zone at the edge contact.  

The surface damage and wear caused by fretting is a costly maintenance burden and when combined with the very 

high local contact stresses due to fretting, it can result in disk or blade cracking and the potential for catastrophic 

failure.  A probabilistic analysis is often applied to problems to help determine the effect of variability of the model 

input parameters on the model outputs.  Prior work on statistical or probabilistic analysis in fretting includes 

modeling of the variability in the contact surface profile by Kumari and Farris [1].  Here, the measured profiles of 

the indentors in fretting fatigue tests were measured and statistically described and carried through the life prediction 

models to estimate the expected variability in stress and life.  Other probabilistic fretting analyses include work on 

fretting fatigue of riveted lap joints [2] and on rolling contact [3].  The objective of the current work is to develop 

and demonstrate a probabilistic fretting fatigue lifing approach for a dovetail fretting experimental configuration that 
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includes a broad range of input random variables, and to apply efficient sensitivity methods to determine the relative 

importance of the input variables.  A previously demonstrated stress and life prediction analysis is adapted to this 

effort.  Input probability density functions (PDF’s) were developed using available laboratory data.  A modular 

probabilistic sensitivity code was developed and applied to this analysis. 

II. Deterministic Fretting Analysis 

A series of fretting experiments was previously conducted [4] to improve understanding of fretting behavior in 

Ti-6Al-4V and to test life prediction models.  The geometry of the fretting samples was a dovetail shaped specimen 

that was designed to represent the attachment 

between a turbine engine blade and disk.  The tests 

were conducted at room temperature, which is 

consistent with the operating conditions of a fan 

disk.  The contact interface was bare Ti-6Al-4V on 

bare Ti-6Al-4V, but several coatings and residual 

stress surface treatments applied to the contact 

interface were also tested.  The analysis in the 

current work was limited to the bare Ti-6Al-4V 

tests.  A schematic of the fretting fatigue test rig 

modeled in this analysis is shown in Figure 1.  The 

experimental setup consists of the dovetail 

specimen (one-half of the specimen is shown in 

schematic), two fretting pads, and a steel fixture.  

The fretting pads are held in the steel fixture at a 

45 flank angle, and the dovetail specimen is pulled with a cyclic load, F, into the fretting pads.  Both the dovetail 

specimen and pads were machined from Ti-6Al-4V with a thickness of 7.62 mm, modulus E = 116 GPa, and 

Poisson’s ratio  = 0.31.  The nominal fretting pad geometry was a 3 mm flat with 3 mm blending radii.  The 

normal, P, and shear, Q, contact forces were measured indirectly from strain gage instrumentation of the 

experiments.  More details of the experimental 

setup and instrumentation can be found in Golden 

and Nicholas [4].  10 tests were run at values of 

Fmax ranging from 18 kN to 30 kN at a load ratio R 

= 0.1.  

A fracture mechanics based fretting life 

prediction analysis for dovetail specimens was 

developed and demonstrated using these and other 

experimental test data and is described in Golden 

and Calcaterra [5].  The objective of this prior 

work was to demonstrate lifing methods that could 

be applied to more complex 3-D structures found 

in turbine engines, however, the current problem 

can be simplified to a 2-D problem.  The analysis 

was broken into two parts: a finite element method 

(FEM) analysis and a 2-D numerical contact stress 

analysis.  A finite element analysis is needed in this 

problem to determine two sets of quantities.  The 

first quantity, described here, relates to the 

behavior of the contact force history.  The second, 

which can be obtained from the same FEM model, 

is the bulk stress as shown in Figure 1 and is 

described below.  The dovetail geometry was 

modeled using a nonlinear contact FEM model.  

This analysis yields the contact force history for P 

and Q and an example is plotted in Figure 2.  This 

example shows a single loading and unloading starting from no load.  As the load is applied, the contact is initially 

in sliding (gross slip) and the contact forces follow the dashed line defined by the equation 

 
Figure 1. Schematic of the dovetail experiment and the 

analysis. 

 
Figure 2. A typical plot of Q versus P showing the partial 

slip slope  and the boundaries defined by  
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   (1) 

where  is the coefficient of friction.  Upon load reversal, the contact load path changes slope to the partial slip 

slope, , which is a characteristic of the component geometry and compliance.  The contact forces will follow the 

slope  for both increasing and decreasing loads until the dashed lines defining friction are reached.  Therefore, the 

two key inputs needed for prediction of the contact force history for a given applied load history are  and .  The 

coefficient of friction is a property that can only be measured, however,  can be predicted from the FEM analysis 

or measured by experiment.  Once these 2 parameters are known, the contact forces can be determined for a given 

applied force without additional FEM analysis through a procedure developed by Gean and Farris [6]. 

Once the contact forces were known, the 

contact stresses were calculated using a 2-D 

numerical contact stress analysis.  Figure 1 shows a 

schematic of the equivalent contact geometry, 

defined by the gap function, h(x), used in this 

analysis.  In the experiments described here, h(x) 

was simply the profile of the fretting pads that are 

pressed into contact with the flat dovetail 

specimens.  Rather than use the prescribed profiles 

in the analysis, the as-machined profiles were 

obtained using a contacting profilometer to 

quantify the actual profiles.  The analytical tool, 

CAPRI (Contact Analysis for Profiles of Random 

Indenters) described in McVeigh et al. [7], was 

developed to solve the singular integral equation 

that defines this contact problem using any 

reasonable function, h(x), as measured from the 

profilometry.  The output of CAPRI is the pressure, 

p(x), and shear, q(x), tractions due to the applied 

contact forces.  An example of these tractions is shown in Figure 3.  Next, CAPRI was used to determine the 

subsurface stress field under the contact due to p(x) and q(x).  Note the peaks located near the edges of contact in 

Figure 3.  These peaks in the pressure, shear, and the subsurface stresses were driven by the geometry near the edges 

of contact and typically result in crack initiation and growth from the edge of contact. 

The last step in the analysis is the fracture mechanics based fatigue crack growth prediction.  Here, the total 

stresses along the expected crack growth path are needed to calculate the stress intensity factor range, K.  To get 

the total stress solution both the contact stresses from CAPRI and the bulk stress as shown in Figure 1 were 

superposed.  The bulk stress was the stress distribution induced in the component due to the remotely applied 

loading and the geometry of the component.  A procedure to obtain the bulk stress distribution for a dovetail 

geometry was described by Golden and Calcaterra [5] which required both the FEM model and CAPRI results.  

Once the full subsurface stress distribution was known, the mode I stress gradient could be extracted along the 

expected crack path at the edge of contact.  Since the stress gradient was nonlinear, weight function stress intensity 

factor solutions were applied [8].  The crack propagation life was then integrated using a crack growth model of the 

form 

  (2) 

where da/dN is the crack growth rate.  Integration of life was performed using the Euler method starting from a 

small initial fretting crack typically 25 mm in depth, until fracture.  Crack growth properties from previous testing 

on the same Ti-6Al-4V material used in the US Air Force High Cycle Fatigue program [9] were used. 

III. Statistical Analysis 

The random variables for the probabilistic fretting analysis performed in this study were chosen from the key 

input variables of the deterministic analysis described above.  These key input variables included the initial crack 

size, the coefficient of friction, the slope  that defines the contact forces during partial slip, the crack growth law 

parameters, and the parameters defining the shape of the pad profile.  PDF’s were developed for each of these 

 
Figure 3. Pressure and shear tractions from CAPRI 
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random variables from measurements and test data available both from the dovetail fretting experiments and from 

other fatigue and fatigue crack growth experiments.  The details of the development of these PDF’s are described 

below.  A summary of the resulting PDF’s are shown in Table 1. 

A. Initial crack size 

The deterministic fretting fatigue life prediction analysis described above is based on fracture mechanics based 

crack propagation.  To perform this analysis an initial crack size is required.  Previous work [8] has shown that the 

initial fretting cracks tend to be shallow, low aspect ratio (a/c) surface cracks that often appear to be several shallow 

micro-cracks that have coalesced.  Here, a is the surface crack depth and c is the half surface length.  Investigations 

of naturally initiated cracks in smooth bar fatigue specimens in Ti-6Al-4V with the same microstructure [10] have 

revealed that the cracks appear to initiate almost exclusively at primary alpha grains that intersect the surface of the 

specimen.  These naturally initiated cracks in the primary alpha grains form readily identifiable facets on the 

specimen fracture surface.  Measurements of these initial cracks were made in a prior study [10] on fatigue 

variability of Ti-6Al-4V, where repeated tests were conducted at a few constant amplitude stress levels.  The 

resulting distribution of primary alpha grain facets was used here to represent the expected variability in initial 

fretting crack depth.  Since it has been shown that typically multiple surface cracks form and coalesce in fretting, a 

constant, low aspect ratio of a/c = 0.2 was used.  The mean and standard deviation of the measured naturally 

initiated crack sizes is listed in Table 1.  It was determined that a lognormal distribution was the best fit to the data. 

B. Coefficient of friction and the partial slip slope 

As described above and depicted in Figure 2, the coefficient of friction and the partial slip slope of Q versus P 

were measured during each test.  The accuracy of these measurements, however, was limited to the accuracy of the 

strain gage instrumentation of the tests and the finite element analysis that was used to convert fixture strain to 

applied load.  Additionally, variability in friction was expected from test to test.  Both the measurement uncertainty 

and inherent variability in the tests needed to be captured in the probabilistic model.  To achieve this, data was 

collected from twenty-three fretting tests all of which were conducted under similar loading conditions.  All tests 

were bare Ti-6Al-4V on Ti-6Al-4V contact (no coatings) and all were loaded at R = 0.1.  The measured values of 

friction coefficient and partial slip slope, , were found to be correlated since.  The uncertainty in the expected 

values of friction and partial slip slope along with their correlation was modeled using a multivariate normal 

distribution.  The results are tabulated in Table 1. 

C. Fatigue crack growth parameters 

The crack growth rate curves used for crack propagation predictions were based on fatigue crack growth tests 

previously conducted [9].  Four tests from two different labs were fit to a bilinear Paris crack growth model for R = 

0.1 and -1, where, da/dN is the crack growth rate and K is the stress intensity factor range.  The Walker model [11] 

was used to collapse the data from the different R values using an equation of the form 
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where b is the intersection point for regions 1 and 2, defined as  
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
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The values of the Walker exponent m were determined in the previous program [9] and different values were 

used for R < 0 and R > 0.  The statistics of the curve fit were modeled using a multivariate normal.  The coefficient 

Ci and the exponent ni were found to be correlated for each segment of the bilinear crack growth model.  The mean, 

standard deviation, and correlation coefficients are summarized in Table 1.  The values of the model parameters 

resulted units of MPam for K, and m/cycle for da/dN.  
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D. Pad profile 

The nominal geometry for the contact pad is 

shown in Figure 4.  The prescribed profile is the 

geometry that was requested on the part drawings 

provided to the machine shop.  The central segment 

of the prescribed profile is flat with a length of 3.00 

mm.  The edges of the profile have constant radii 

of 3.0 mm. Due to variations due to machining, 

however, the as-machined profiles differ from the 

prescribed profile in the part drawing.  The contact 

pad profiles were measured using a contacting 

profilometer prior to being tested.  The contact 

profilometer had a vertical resolution of 

approximately 10 nm.  Two examples of measured 

profiles are plotted in Figure 2.  Note that the scale 

on the y-axis is significantly magnified to highlight 

variations in the measured profiles.  It is clear from 

these measured profiles that the central flat section 

of the pad is not truly flat and that the radii at the 

edges do not always match the prescribed radii either in position or sharpness.  Additionally, there is measurable 

variability in the profile geometry from pad to pad.  It was desired to capture this variability through a statistical 

analysis so it could be used in the subsequent probabilistic analysis.  To achieve that objective, seventy-seven 

contact pads were measured using the contact profilometer.   

In order to model the contact profile variability in the probabilistic analysis, a mathematical description of the 

contact profile was needed that could capture the important features of the profile.  Key features were believed to be 

the actual radii of the edges of the pad as these can significantly affect the stress at the edge of contact.  Also 

important was the flatness of the central portion of the pad.  A rounded pad versus a very flat pad could also 

significantly affect the contact stresses.  A piecewise curve with twenty-one parameters was defined to represent the 

measured contact profiles and was written as 
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 (5) 

where x and y represent a Cartesian coordinate system with x along the profile and y the height of the profile.  

The central segment of the profile (a2<x<a3) was represented by a sixth order polynomial to allow the nominally flat 

section to have curvature.  Just outside the central section were two circular arcs to represent the radii at the edges of 

contact.  Just beyond the radii were flat taper sections.  Through various constraints the number of parameters was 

reduced from twenty-one to thirteen.  The constants k
L
, k

R
, b

L
, b

R
, y0

L
, x0

L
, x0

R
, R

L
, R

R
, c1, c2, c3, c4, c5, and c6 were 

determined from nonlinear regression of each of the measured seventy-seven profiles.  These constants were 

referred to as i, where i ranged from 0 to 12.  The remaining 8 constants in Equation 1 were functions of i as 

defined by the constraints.  Scatter plots of these 13 regression parameters are shown in Figure 5, which shows that 

many of the parameters are highly correlated.  Finally, the results of the nonlinear regression from all 77 profiles 

were fit to a multivariate normal distribution.  The mean and standard deviation of the regression parameters are 

listed in Table 1.  Sample realizations of these fitted profiles are plotted in Figure 6 along with the prescribed 

profile.  The measured and the sampled profiles often differ significantly from the prescribed profile, particularly 

near the edge of contact. 

 

 
Figure 4. Prescribed and measured machined pad 

profiles. 
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Figure 5. Scatter plots of the profilometry regression 

parameters, 0 through 12 

 
Figure 6. Randomly sampled pad profiles compared to the 

prescribed profile. 
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IV. Analysis Methods 

A. Monte Carlo Sampling 

Monte Carlo sampling was carried out to determine the moments (mean and standard deviation) of the cycles-to-

failure.  This procedure involved repeated generation of realizations of the random variables and execution of the 

deterministic fretting fatigue algorithm to determine cycles-to-failure.  The deterministic fretting fatigue algorithm 

was simplified as much as possible to minimize the computational time needed for each set of random variable 

samples.  This included calculation of the contact forces using the method demonstrated by Gean and Farris [6], 

rather than modeling the contact in a FEM analysis.  The CAPRI run time was minimized by reducing the number of 

Fast Fourier Transform terms to the minimum required and optimizing the solver parameters for this problem.  

Finally, a linear fit of the bulk stresses as a function of the contact forces was created from a series of FEM analyses, 

rather than using a new FEM analysis for each Monte Carlo run.  Eliminating the FEM analyses from the calculation 

of fretting fatigue life reduced the computational time to approximately 1.2 s per sample when running in parallel 

with 4 processors on an Intel Xeon quad core workstation.  This made running the Monte Carlo analysis with a 

significant number of samples possible.  The ensemble of cycles to failure, Nf, results were then analyzed to 

determine the mean and standard deviation.  Sufficient samples were executed to ensure high confidence in the 

computed moments. 

B. Sensitivity analysis 

Probabilistic sensitivities play an important role in determining insight into the dominant factors governing a 

probabilistic analysis and provide information as to potentially effective methods to improve the reliability. There 

are a number of methods in the literature such as scatter plots [12], Pearson or Spearman correlation [13], regression 

methods [14], and the Score function method [15], among others, that can provide useful information. 

1. Scatter plots 

Scatter plots are a two-dimensional point plot of the sample points version the correspond response points. The 

sample realizations for each random variable (X) and the corresponding results (Y) are plotted on separate axes. If a 

random variable is not important, no pattern should be discernable, that is, the samples for X should mimic its 



Table 1. Summary of random variable statistics 

Random Variable No. Mean St. Dev. Distribution Type 

Initial crack size, ai (in) X1 5.95x10
-4

 3.34x10
-4

 Lognormal 

Friction coefficient, ave X2 0.302 0.021 Correlated normal  

23 = - 0.375 Partial slip slope,  X3 1.96 0.120 

Crack growth, log10(C1)  X4 -12.7 0.486 Correlated normal 

45 = -0.9973 Crack growth, n1 X5 7.19 0.715 

Crack growth, log10(C2) X6 -10.1 0.157 Correlated normal 

 67 = -0.9751 Crack growth, n2 X7 3.81 0.146 

Profile, 0  = k
L
 X8 0.181 5.84x10

-3
 Correlated normal 

Profile, 1  = y0
L
 X9 -2335 410 

Profile, 2  = R
L
 X10 2333 411 

Profile, 3  = x0
L
 X11 -1612 37.7 

Profile, 4  = R
R
 X12 2289 379 

Profile, 5 = x0
R
 X13 1620 35.4 

Profile, 6   = k
R
 X14 -0.183 4.96x10

-3
 

Profile, 7   = c1 X15 -2.00x10
-4

 6.20x10
-4

 

Profile, 8   = c2 X16 -1.21x10
-6

 1.01x10
-6

 

Profile, 9   = c3 X17 1.53x10
-10

 6.38x10
-10

 

Profile, 10 = c4 X18 9.80x10
-13

 6.16x10
-13

 

Profile, 11 = c5 X19 -3.77x10
-17

 1.87x10
-16

 

Profile, 12 = c6 X20 -3.80x10
-19

 1.59x10
-19
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marginal distribution. Conversely, if a random variable is important, the pattern of realizations for X will be 

distinctly non-random.  Scatterplots are an inexpensive but qualitative method.  

2. Regression and correlation 

Linear regression (LR) methods are well known and widely available tools for assessing variance contribution. 

LR approximates the relationship between response and the random variables as 

   ii xfy 0)(x  (6) 

 where f is an arbitrary function of the random variable Xi. In general, LR may contain quadratic and interaction 

terms of any number of variables. The correlation coefficient (Pearson or Spearman) for each random variable 

provides an indication of the contribution of that variable’s variance to the response variance. 

3. Segmented input distributions 

Sensitivities based upon segmented input distributions involve dividing the input samples into two or more 

separate groups based on the output samples.  The output and related input samples are sorted in ascending values 

based upon the output results.  If the variable has no effect, the distributions in each group will be the same as the 

marginal distribution.  If not, then the variable has a significant effect.  Various statistical tests such as Cramer-von 

Mises, Mann-Whitney, etc. can be employed to determine if the distributions are significantly different.  

4. Score function 

The Score function method computes the partial derivative of the response (cycles-to-failure) with respect to the 

parameters of the input PDFs.  The probabilistic sensitivities (partial derivatives of the response moments (mean and 

standard deviation) with respect to the parameters of the random variable pdf’s) can be obtained for negligible cost 

Probabilistic sensitivities such as Z/i represent the sensitivity of the mean of cycles-to-failure with respect to the 

mean of random variable Xi. 

IV. Results 

A. Probabilistic Life Prediction 

The probabilistic fretting fatigue life 

prediction tool was exercised at several 

experimental load cases.  Results were generated 

at the 5 applied loading conditions (Fmax = 18, 20, 

22, 24, and 30 kN) used in the dovetail testing 

program.   Lives were generated at each loading 

condition using 1000 samples of the random pad 

profiles, coefficient of friction, and contact force 

partial slip slope.  These results are plotted on 

lognormal probability paper in Figure 7 along 

with the experimental lives.  The experimental 

lives shown were as follows: 1,371,000, 

10,000,000, and 693,000 cycles at 18 kN; 

995,000 and 919,900 cycles at 20 kN; 249,900, 

346,200, and 497,800 cycles at 22 kN; 164,000 

cycles at 24 kN; and 105,000 cycles at 30 kN.  

These data were quite limited for an evaluation of 

a probabilistic life prediction, however, they were 

still useful to ensure the predictions were near the 

test results.  The comparison in Figure 7 shows 

that at the higher loads the predictions were 

closer than at the lower loads.  Since the 

predictions were entirely based on fatigue crack 

growth from a small crack, this could indicate 

that a significant period of crack formation could 

be taking place at the longer lives. 

The results plotted in Figure 7 were generated 

with just 1000 samples to minimize processing 

 
Figure 7. Probability plot of experimental (points) and 

predicted (lines) lives at several applied loads  
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time for each condition analyzed.  Since the 

number of samples was relatively small, an 

understanding of the variance in the estimates of 

mean and standard deviation of Nf was important.  

Variance estimates of the modes of the distribution 

were calculated at each of the applied forces and 

listed in Table 2.  Since the distribution of Nf was 

fairly lognormal, the modes of the distribution of 

the logarithm of Nf were calculated.  The columns 

showing the 95% confidence bounds of the mean 

were then converted back to cycles.  The 

coefficient of variance (COV) was calculated 

entirely in log units.  Interestingly, the COV 

decreased with increased applied loading, which 

was consistent with fatigue test results in Ti-6Al-

4V [10] and is generally true in metallic aerospace 

materials.  Also, in Table 2 the estimates of the 

modes of the distribution were calculated for larger 

numbers of samples at Fmax = 22 kN.  With more 

samples, the confidence bounds shrink 

significantly as expected.  In addition to quantifying the modes of the distribution, PDF’s were fit to the distribution.  

Figure 8 is a plot of two PDF types fit to the Nf results at Fmax = 22 kN.  The kernel line is a nonparametric estimate 

of the PDF, while the lognormal curve was fit using the mean and standard deviation of the logarithm of Nf.  The 

differences in the PDF’s showed that the distribution of failure lives was weighted toward longer lives.  This can 

also be observed in Figure 7, and this trend increased with lower applied loads. 

 

B. Sensitivity Results 

1. Scatter plots and correlations 

Figure 9 below shows the scatter plots that relate cycles-to-failure (y axis) with each random variable (x axis) for 

10,000 samples. The scatter plot for random variable X2 shows a definite pattern. Correlation coefficients (Pearson 

or Spearman) for each variable relate to the amount of variance in Y that can be apportioned to Xi. The results for 

Pearson correlation coefficients, given in Table 3, indicate that variable X2 (coefficient of friction) is by far the 

dominant variable, contributing 65% of the variance in Nf. It must be pointed out, however, that the correlation 

coefficients are obtained without consideration for  the simultaneous variations in other random variables. A better 

estimate of variable importance can be determined using linear regression, discussed below. 

 

 
Figure 8. PDF estimates of Nf for 10,000 samples 

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            

Table 2. Mean and standard deviation of the Monte Carlo analysis results including confidence bounds
 

  95% confidence for mean of  log10(Nf) (cycles) 95% confidence for COV of  log10(Nf) 

Fmax (kN) Samples Lower Mean Upper Lower COV Upper 

18 kN 1000 833,200 864,000 895,900 4.11% 4.28% 4.46% 

20 kN 1000 480,500 495,600 511,200 3.66% 3.82% 3.98% 

22 kN 1000 319,400 328,400 337,700 3.40% 3.54% 3.69% 

22 kN 10,000 323,200 326,200 329,200 3.67% 3.72% 3.77% 

22 kN 50,000       

24 kN 1000 215,600 221,200 227,000 3.26% 3.40% 3.55% 

30 kN 1000 92,900 95,100 97,300 3.08% 3.21% 3.35% 
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2. Linear Regression 

 In this research, an LR model of the form  

 



y(X)  0  iX i   (8) 

was used, where X denotes a vector of random variables, 



y  represents the cycles-to-failure and the ’s are 

coefficients that are fit to the analytical results.  Table 4 shows the results of a “best model” fit using a specified 

number of variables.  For example, using only 2 variables, the combination of X2 and X16 account for the largest 

percentage of the variance in Nf.  Note, once X2 is included in the model, adding X16 adds 17 percent to the R
2
 sum, 

however, the R
2
 value using the Pearson correlation coefficient for X2 without considering any other random 

variables is 25%.  From the results one can see quickly the diminished returns offered after the first few random 

variables.  For example, if only 5 random variables are used in an LR model, this model would account for 85% out 

of a possible 91% of the output variance.  It is somewhat surprising that a simple linear model with respect to the 

random variables can account for such a large percentage.  

 

Figure 9. Scatter plots of the model output cycles to failure, Nf, versus 

the input random variables, X1 through X20 



Table 3. R-squared values for 

the random variables 

Variable R
2
 

X1 0.024 

X2 0.645 

X3 0.093 

X4 0.001 

X5 0.002 

X6 0.006 

X7 0.002 

X8 0.002 

X9 0.004 

X10 0.004 

X11 0.003 

X12 0.005 

X13 0.017 

X14 0.008 

X15 0.007 

X16 0.063 

X17 0.013 

X18 0.020 

X19 0.020 

X20 0.038 

 



Table 4. Best model linear regression results 

Number R
2
 C(p) Random Variables in Model 

1 0.645 28,370 X2          

2 0.713 21,020 X2 X16         

3 0.754 16,620 X2 X9 X10        

4 0.824 9000 X2 X16 X18 X20       

5 0.846 6660 X1 X2 X16 X18 X20      

6 0.855 5710 X1 X2 X13 X16 X18 X20     

7 0.874 3640 X1 X2 X6 X7 X16 X18 X20    

8 0.883 2690 X1 X2 X6 X7 X13 X16 X18 X20   

9 0.898 1060 X1 X2 X6 X7 X16 X17 X18 X19 X20  

10 0.901 720 X1 X2 X6 X7 X13 X16 X17 X18 X19 X20 

 

Nf Nf Nf Nf Nf

Nf Nf Nf Nf Nf

Nf Nf Nf Nf Nf

Nf Nf Nf Nf Nf

X1 X2 X3 X4 X5

X6 X7 X8 X9 X10

X11 X12 X13 X14 X15

X16 X17 X18 X19 X20

10



Table 5 shows the results using LR considering natural groupings of random variables.  The variables were 

partioned into 4 groups: (X1 - initial crack size, X2-X3 coefficient of friction – partial slip slope, X4-X7 crack growth 

parameters, X8-X20 geometry profile).  The results indicate that group 2 (the coefficient of friction– partial slip slope 

is dominant followed by the geometry profile.  Surprisingly, the traditionally dominant random variables in fatigue, 

crack growth rate and initial crack size are not significant in terms of their contribution to the output variance, e. g., 

these parameters could be modeled deterministically. 

 

3. Segmented Distributions 

 10,000 samples were sorted by cycles-to-failure then segmented into three groups: early failures, middle 

failures, and late failures.  That is, samples in the first group failed early (low cycles-to-failure), and samples in the 

third group failed last, etc.  Nonparametric density estimation methods [16] were used to develop PDF’s for each 

random variable for each group of samples and for the total ensemble of samples.  Figure 10 shows the PDF’s for 

three random variables that exhibit a large, moderate and minimal effect due to segmentation.  The violet, red, and 

green distributions derive from the early, middle and late cycles-to-failure.  The black dashed line indicates the PDF 

using the total ensemble of samples.)  

V. Summary and Conclusions 

A new probabilistic fretting analysis was developed to investigate the relative importance of typical fretting input 

variables on the predicted failure lives.  Several random variable inputs were identified and pdf’s were quantified 

using laboratory data.  Monte Carlo sampling of the input pdf’s was performed and a deterministic analysis was 

repeatedly run using the sampled inputs to obtain a distribution of predicted fretting lives.  The results showed that 

significant scatter in fretting lives can be expected based on variability in the material properties, contact profiles, 

coefficient of friction, and contact force response. Interestingly, the dominant variables in terms of contribution to 

the cycles-to-failure variance were the coefficient of friction and several terms within the geometry profile; whereas, 

the traditionally dominant variables, initial crack size and crack growth, were not significant. 
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Table 5. Linear regression group analysis showing the effect of each random variable 

group on the model R
2
 

Group RV Added # RV Model R
2
 R

2
 C(p) F value 

1 X2, X3 2 0.645 0.645 28,370 9080 

2 X8 – X20 15 0.210 0.855 5710 1110 

3 X4 – X7 19 0.030 0.885 2420 660 

4 X1 20 0.022 0.908 20 2410 

 

   

Figure 10. Segmented PDF’s showing large (X2), moderate (X16) and minimal (X5) effects 
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