MAGNETIC UXO RECOVERY SYSTEM (MURS) (BRIEFING SLIDES)

John Millemaci
National Defense Center for Energy and Environment
100 CTC Drive
Johnstown, PA 15904-1935

JUNE 2009

DISTRIBUTION STATEMENT A: Approved for public release; distribution unlimited.

To be presented at the UXO/Countermine/Range Forum, 27-30 August 2009, in Orlando, FL.

AIRBASE TECHNOLOGIES DIVISION
MATERIALS AND MANUFACTURING DIRECTORATE
AIR FORCE RESEARCH LABORATORY
AIR FORCE MATERIEL COMMAND
139 BARNES DRIVE, SUITE 2
TYNDALL AIR FORCE BASE, FL 32403-5323
The Magnetic UXO Recovery System (MURS) conceptual design was developed for a National Defense Center for Energy and Environment (NDCEE) task, funded by Environmental Security Technology Certification Program (ESTCP), and a partnership with AFRL/RXQF. Provides a brief overview of MURS - Automated Ordnance Excavator (AOE), electromagnet, power source, and the systems capabilities. Provides shakedown, live demonstration, cost analysis, and conclusion of robotic area clearance at the test area at Massachusetts Military Reservation (MMR).
Magnetic UXO Recovery System (MURS)

UXO/Countermine/Range Forum
Orlando, FL, August 2009

Mr. John Millemaci, NDCEE
Mr. Bill Lewis, Integrated Innovations, Inc.

The NDCEE is operated by: Concurrent Technologies Corporation
Acknowledgements

- The MURS conceptual design was developed as part of an NDCEE Task in 2004.
- Current efforts have been funded by the ESTCP (project MM-732) and have allowed final design and fabrication of the system, as well as shakedown and demonstration.
Agenda

- Technology description and capabilities
- Shakedown
- Live demonstration
- Cost analysis
- Conclusions
Technology Description

The MURS consists of:

- Automated Ordnance Excavator (AOE)
 - Caterpillar 325L hydraulic excavator
 - Air Force Research Laboratory (AFRL) remote operation control system
- Electromagnet
- Power source
- Claw to facilitate extraction
Capabilities

- **AOE**
 - Weight: 60,000 pounds
 - Boom reach: 25 feet
 - Digging depth: 15 feet
 - Lift capacity: 10,000 pounds
 - Capable of remote operation from two miles away

- **Electromagnet**
 - Walker Magnetics Scrapmaster® D series 57-inch magnet
 - Magnetic field intensity of over 500 Tesla

- **Power Source**
 - 20kW diesel generator
Shakedown

- Tyndall AFB was chosen
 - Test range with ample space
 - “Clean” space, free from munitions
 - Next to fabrication shop
- Predominantly sandy soil
- Two areas 10 feet by 20 feet marked as demo areas
 - One left intact with the native soil
 - One excavated down to 4 feet and filled with clay
- Sparse to no vegetation in both areas
Shakedown

- Inert ordnance
- Pre-positioned to replicate a variety of potential scenarios
- Ordnance and scrap buried at different depths and orientations
 - 60mm mortars to 500-lb bombs for the excavation testing
 - 2000-lb bomb for determining lift capacity
- Shallow water (4 ft) in a plastic pool
 - 81mm mortar, 500-lb bomb, GATOR mine, and 105mm HEAT projectile
Shakedown

- Inert UXO
 - Some on the surface
 - Most individually buried at depths down to 18 inches
 - Orientation consisted of H, V-nose up, V-nose down, and 45-degree tilt to the vertical

<table>
<thead>
<tr>
<th>ORDNANCE DESIGNATOR</th>
<th>DESCRIPTION</th>
<th>ORDNANCE DESIGNATOR</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>M42</td>
<td>9</td>
<td>GATOR mine</td>
</tr>
<tr>
<td>2</td>
<td>BDU33</td>
<td>10</td>
<td>BLU26</td>
</tr>
<tr>
<td>3</td>
<td>105 mm HEAT</td>
<td>11</td>
<td>Number not used</td>
</tr>
<tr>
<td>4</td>
<td>105mm HEP</td>
<td>12</td>
<td>81mm mortar</td>
</tr>
<tr>
<td>5</td>
<td>8” projectile</td>
<td>13</td>
<td>75mm projectile</td>
</tr>
<tr>
<td>6</td>
<td>MK81 250lb bomb</td>
<td>14</td>
<td>Number not used</td>
</tr>
<tr>
<td>7</td>
<td>MK82 500lb bomb</td>
<td>15</td>
<td>60mm mortar</td>
</tr>
<tr>
<td>8</td>
<td>BLU3</td>
<td>16</td>
<td>Anti-Tank (AT) practice mine</td>
</tr>
</tbody>
</table>
Shakedown

- Without using the claw, the MURS was able to retrieve UXO at approximately 6 inches buried depth in clay and 12 inches in sand.
- Using the claw, recovery of larger, buried items was documented up to 12 inches in clay.
- The larger ferrous objects were easier to attract with the magnet and easier to locate using the claw.
- Orientation of munitions in-situ appears to have an impact on effectiveness of the magnet.
- During the underwater testing, the 500-lb bomb and 105mm HEAT were retrieved from 16-18 inches of water; the GATOR mine from 22 inches; and the 81mm mortar from 24 inches.
Live Demonstration

- Massachusetts Military Reservation
Live Demonstration

- Central impact area
- Soil is naturally hummocky; includes craters from 60 years of range operations
- Very dense, mature scrub oak required range clearing
- 10 acres were gridded out in 1-acre plots; one of these plots was used to obtain data
- Potential UXO
 - 75/90/105/155mm artillery projectiles
 - 37/40/50/70/81mm, 3/4.2 inch mortars
 - HE, inert, and practice charges
 - TNT, Comp B, and black powder fillers
Live Demonstration - CONOPS

- Following mapping, drive MURS remotely to the contaminated site
- Place the magnet over the suspected UXO or range scrap
- Turn magnet on to extract UXO
- Place the “attached” UXO or scrap in a pre-determined place for disposal by the EOD team

Keeps EOD team safe during extraction stage
Live Demonstration

- EM-61 used prior to and after MURS
Performance Against Objectives

- Remote control operation deemed intuitive, easy to use by the operators. Training took less than 1.5 hour.
- Setup time required approximately 1 hour.
- MURS did not appear to damage the grassy surfaces it drove on.
- Removal rate was effective – on one occasion, MURS picked up six items in less than 10 minutes.
- No measurable remnant magnetic signature was detectable in soil.
- Reliability was good with only one problem in the 50 hours needed to clear the selected one acre.
Cost Analysis

<table>
<thead>
<tr>
<th>Item/Phase</th>
<th>MURS</th>
<th>MURS/acre</th>
<th>Manual/acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tool</td>
<td>$625,000</td>
<td>$4,100</td>
<td>Negligible</td>
</tr>
<tr>
<td>Mob/demobilization</td>
<td>$15,500</td>
<td>$2,450</td>
<td>Negligible</td>
</tr>
<tr>
<td>Setup</td>
<td>$1,100</td>
<td>$110</td>
<td>Negligible</td>
</tr>
<tr>
<td>Operational costs</td>
<td>$1,150</td>
<td>$1,150</td>
<td>Negligible</td>
</tr>
<tr>
<td>Removal</td>
<td>$8,000</td>
<td>$43,350</td>
<td></td>
</tr>
<tr>
<td>Cost per acre</td>
<td>$15,810</td>
<td>$43,350</td>
<td></td>
</tr>
<tr>
<td>Cost per anomaly</td>
<td>$103</td>
<td>$293</td>
<td></td>
</tr>
</tbody>
</table>
Conclusions

Although line of sight appeared to limit MURS at times, the system was demonstrated to have the following attributes:

- Very cost-effective compared to manual method
- Reduces worker exposure/increases safety
- Can work in a variety of weather conditions including rain
Acknowledgements

- NDCEE Executive Agent: Mr. Tad Davis, DASA (ESOH)
- NDCEE Program Director: Mr. Hew Wolfe, ODASA (ESOH)
- NDCEE Program Manager: Mr. Tom Guinivan, ODASA (ESOH)
- NDCEE Contracting Officer’s Representative: Mr. Tom Moran, ODASA (ESOH)
- Government Technical Monitor: Mr. Brian Skibba, AFRL, Robotics
- NDCEE Project Manager: Mr. John Millemaci

This work was funded through the Office of the Assistant Secretary of the Army (Installations and Environment) and conducted under contract W74V8H-04-D-0005 Task 0475. The views, opinions, and/or findings contained in this paper are those of the author(s) and should not be construed as an official Department of the Army position, policy, or decision unless so designated by other official documentation.