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1    Objectives and Summary of Results 

Development challenges for large-scale distributed systems: Large-scale distributed real-time and embedded 
(DRE) computing systems increasingly form the basis of mission- and safety-critical applications essential to the De- 
partment of Defense's (DoD) operational vision. It is tedious, error-prone, and costly to develop, optimize, validate, 
and deploy these types of DRE systems using conventional software technologies. 

Component middleware and modeling as key enablers: A key enabler in recent successes with small- to medium- 
scale DRE systems (such as avionics mission computing systems) has been middleware that provides platform- 
independent execution semantics and reusable services that coordinate how application components are composed 
and interoperate. Component middleware frameworks like the CORBA Component Model (CCM) and Enterprise Java 
Beans (EJB) provide additional utility through well-defined interfaces that hide implementations (keeping client code 
from becoming unnecessarily tangled with low-level implementations in the component) and make code units easier 
to plug and unplug. In addition, architectural definition languages and meta-modeling environments have enabled 
software product managers to hide the complexities of dealing with lower-level implementation details by defining 
structural abstractions of components, interfaces, connectors, and system assemblies that can be visualized, analyzed, 
and that can drive automatic generation of a variety of forms of infrastructure code. 

Limitations and barriers to progress: Despite these successes, a number of barriers are preventing progress of 
effective verification and validation (V&V) for large-scale DoD systems. Absence of leverageable semantic content 
in higher-level architectures and models prevents significant V&V activities from being carried out at design time - 
leading to increased development time and costly errors. Despite the utility of software component technology for 
enabling reuse, the lack of compositional specifications causes developers to rely on crude notions of component com- 
patibility and composability which prevents rapid component assembly and leads to situations where (a) errors arise 
due to the composition of components that are not truely semanticly compatible, and (b) composition errors must be 
detected with costly testing techniques occurring much later in the development process. Even though security issues 
are increasingly important, existing security specification and enforcement mechanisms are overly-coarse, inflexible, 
non-declarative and non-compositional which makes it very difficult to specify and validate security policies seam- 
lessly in the design of modern component-based distributed systems. Despite the widespread use of software modeling 
techniques, the absence of checkable semantic connections between models/architecture and source code prevents de- 
signs and models from serving as faithful abstractions of lower-level implementations that can be leveraged for deep 
semantic reasoning and V&V. 

Our work: Our research on this project addressed the challenges of constructing large-scale DoD software-intensive 
systems by constructing an integrated modeling and specification framework that supports software product-line de- 
velopment based on widely-used component middleware frameworks that will likely form the basis of future DoD 
systems. Our approach centered around the following three innovations: 

• A powerful and flexible architecture modeling framework that builds on our earlier DoD-funded Cadena 
environment to provide rich type systems that capture important semantic properties directly in component- 
based architectures, 

• A logic-based compositional specification and verification framework for secure information flows/depen- 
dences in component-based systems, and 

• Code-level static analysis techniques that allow developers to discover and browse crucial information 
flows in large systems - leading to more effective engineering of safe and secure systems. 

Industrial partnerships and technology transfer: This project involved substantial collaboration with multiple 
industrial partners with deep ties to the US Air Force and Department of Defense. 

• Lockheed Martin Advanced Technology Laboratory, Cherry Hill, New Jersey. For two years (2006,2007) 
during the period of performance of this grant, Lockheed Martin funded this project's Pis ($ 190K total) to apply 
the basic research and software tools developed under this grant to model-based development and testing of 
large-scale systems. 



• Rockwell Collins Advanced Technology Center, Cedar Rapids, IA. Throughout the period of performance of 
this grant, Rockwell Collins funded the Pis ($240K total) to apply the logic and static-analysis-based techniques 
for reasoning secure information flow to development of network security research sponsored by NSA. 

• Microsoft Research, Redmond, Washington. co-PI Anindya Banerjee spent six months of his 2007-2008 sab- 
batical at Microsoft Research. While there, he worked with leading researchers in the area of contract-based 
software verification to help transition some of his work on formal reasoning about object-oriented languages 
into emerging technologies that are flowing into Microsoft development environments. This work produced 
several papers jointly authored by Banerjee and Microsoft engineers. 

• IBM, TJ. Watson Research Laboratory, White Plains, NY. Banerjee spent the other six months of his 2007- 
2008 sabbatical at IBM's Watson Research Laboratory. While there, he worked with leading researchers in 
the area of security for object-oriented languages to further develop his work on language-based security for 
object-oriented languages. Banerjee and IBM engineers. 

Impact: Our work has produced a number of high-quality publications at top conferences and journals, invitations 
for keynote talks at international venues, software design and verification tools that have been downloaded 3500+ 
times during the course of this grant, and industrial technology transitions that are likely to have a lasting impact in 
technology areas relevant to the Air Force. 

2    Summary of Findings 

2.1 Indus and Java program dependences 

The Indus framework is the only publicly available slicing framework for concurrent Java. Since its initial release in 
Sept 2004, it has been downloaded over 7500 times by individuals in over 52 countries, with 3000+ downloads since 
March, 2006. Feedback on the initial and subsequent releases suggest that there is a significant interest in the type of 
capabilities provided by Indus. Indus has been used in industrial research projects at Fujitsu and Aonix, and its the 
basis of industry funding provided to KSU by Lockheed and Rockwell Collins. 

The AFOSR funding provided on this grant has helped us make Indus available as a resource to the community. 
Within the past year, several papers have been published by other research groups in top conferences such as ACM 
Foundations and Software Engineering (FSE) and ETAPS Tools for Construction and Analysis of Systems (TACAS) in 
which Indus was a primary component of the research. The PI (Hatcliff) has been invited to give the keynote address 
on the Indus framework at the IEEE SCAM (Source Code Analysis and Manipulation) Workshop in Philadelphia 
in September 2006. In May 2007, Indus was demoed to security certification authorities at NSA as the basis of 
a IDE-integrated security analysis framework. Technology developed for Indus is currently being transitioned into 
development environments for application to security certification at Rockwell Collins. 

The technical results and rigorous theory for programming language dependence in our paper "A New Foundation 
For Control-Dependence and Slicing for Modern Program Structures" ((Below)). Have been used by several other 
research groups. In particular, Prof. Mark Harman - leader of the Software Engineering Group at King's College, 
London and director of CREST (Centre for Research on Evolution Search and Testing) - remarked "/ know that this 
will become one of *the* seminal papers on program dependence and slicing. In fact I am devoting the whole of the 
next ASTReNet workshop to a discussion of this paper and its consequences.". Publications 1,2,7 below report on this 
work. 

2.2 Logic-based Specification and Verification of Secure Information Flow 

The Multiple Independent Levels of Security (MILS) supported by NSA and the Air Force calls for systems to be de- 
veloped on top of a "separation kernel" which guarantees isolation and controlled communication between application 
components deployed in different partitions of the kernel. Our experience with MILS system development at Rockwell 
Collins confirms that there is a lack of (a) automated tool support for specification and verification of end-to-end MILS 
policies, (b) mechanisms for producing evidence that policies are enforced. 

To address these problems, a central line of work funded by this grant has been to develope a powerful Hoare-logic 
for reasoning about secure information flow (SIF-logic). The base line for our work (appearing just as this grant was 
awarded) was a paper by co-PIs Amtoft and Banerjee in the prestigious ACM Principles of Programming Languages 



(POPL) conference in 2006. We extended that work with a paper in the 2007 ACM Workshop on Formal Methods 
in Security Engineering (describing extensions to handle conditional information flow). We worked with Rockwell 
Collins engineers to design and implement a complete MILS policy language with this Hoare-logic providing the 
core semantics. Our investigations of real systems identified several key features: the language is compositional 
(necessary, since MILS is inherently a component-oriented approach), it is developer-friendly (we have been able to 
integrate a preliminary version directly with SPARK Ada information flow specification and checking used in several 
large-scale information assurance applications including those at Rockwell Collins), and it is expressive (capturing 
condition-based information flow and reasoning about heap data that cannot be handled in, e.g. SPARK). We believe 
that logic-based framework can unify MILS property specification and help automate certification of MILS component 
integration, e.g., in the Common Criteria MILS Integration Protection Profile, by acting as a formal and checkable "lin- 
gua franca" for MILS information flow policies. Publications 3,5,6,13, and 16 below report on advances to foundations 
for reasoning about secure information flow. 

2.3 Formalizing Component-Based Software Architectures 

Maintaining integrity, consistency, and enforcing conformance in architectures of large-scale systems requires speci- 
fication and enforcement of many different forms of structural constraints. While type systems have proved effective 
for enforcing structural constraints in programs and data structures, most architectural modeling frameworks include 
only weak notions of typing or rely on first-order logic constraint languages that have steep learning curves and that 
become unwielding when scaling to large systems. 

Publication 8 reports on the Cadena Architecture Language with Meta-modeling CALM - that uses multi-level type 
systems to specify and enforce a variety of architectural constraints relevant to development of large-scale component- 
based systems. Cadena is a robust and extensible tool that has been used to specify a number of industrial-strength 
component models and applied in multiple industrial research projects on model-driven development and software 
product lines. One of the goals of this research project was to integrate the compositional security contract framework 
discussed above with Cadena/CALM to achieve a model-based architecture framework with security contracts. One 
of the Ph.D. students supported on this grant, Edwin Rodriguez is addressing that problem in his Ph.D. that should be 
completed in Summer 2009. 

2.4 Compositional Interface Checking for Java 

Our vision of reasoning about components and their composition includes developing component interface specifica- 
tion languages and verification frameworks for checking that component implementations conform to their interface 
specifications. Despite its introduction over 30 years ago, symbolic execution has received renewed interest as an 
analysis framework for checking component interfaces, and for testing and bug finding. One key advantage of sym- 
bolic execution over real/concrete execution (e.g., traditional testing) is that one can avoid the burden of constructing 
numerous concrete input parameter values and instead use symbolic values and constraints to compactly represent 
sets of possible input values. Significant progresses have been made on using symbolic execution to generate unit test 
suites, but existing frameworks are still struggling with several issues including poor performance on heap data, lack 
of coverage goals tied to the space of heap configurations, and lack of support for dealing with open object-oriented 
systems and generating mock objects. 

We have pursued a line of work that seeks to demonstrate how a static analysis feedback and unit test case gen- 
eration framework, KUnit, built on the Bogor/Kiasan symbolic execution engine addresses the challenges above by: 
(a) providing an effective unit test case generation for sequential heap-intensive Java programs (whose computation 
structures are incomplete - open systems), (b) showing how the scope and cost of Kiasan/KUnit's analysis and test 
case generation can be controlled via notions of heap configuration coverage, and (c) leveraging method contract 
information to better deal with open object-oriented systems and to support automatic mock object creation. 

Papers 9-10 report on this framework as well as symbolic execution importance in the area of software model 
checking. In a broad experimental study on twenty-two Java data structure modules, we show that KUnit is able to: (a) 
achieve 100% feasible branch coverage on almost all methods by using only small heap configurations, (b) improve 
on competing tools for coverage achieved, size of test suites, and time to generate test suites. 
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5    Interactions and Technology Transitions 

5.1 Collaboration with researchers from Rockwell Collins 

Rockwell Collins has established itself as a leader in the construction and certification of MILS-based systems. As 
stated earlier, a separation kernel is the foundation of the MILS architecture. Rockwell's AAMP7 processor provides a 
micro-code based separation kernel. With funding from NSA, researchers at Rockwell Collins Advanced Technology 
Center (RC ATC) certified the AAMP7 separation policy - providing the first certified separation kernel. Subsequently, 
RC ATC engineers verified the separation policy of the Green Hills Integrity 178B RTOS (official award of certification 
is pending), which is the operating system used in a number of DoD platforms including Lockheed Martin's F-35 Joint 
Strike Fighter. Based on this ground-breaking work, Rockwell Collins is now building several information assurance 
products (involving over 200+ developers) on top of the AAMP7 following the MILS architecture. 

Rockwell Collins ATC has sought out and funded Kansas State as a research partner based on a belief that Kansas 
State's expertise in static analysis could be applied to automate and scale-up portions of the verification process. 
Indeed, early results in a collaborative investigation of the Rockwell Collins verification infrastructure and Kansas 
State static analysis framework indicate that many elements of the verification framework can be automated leading 
to: (a) a dramatic reduction in effort, (b) decreased time required to certify, and (c) the ability to handle more complex 
systems that place a much greater emphasis on concurrency and heap-allocated data. 

Given the fact that Rockwell Collins has one of the few certified foundations necessary for supporting MILS and 
has extensive ongoing MILS development, our team (via its significant collaboration efforts with RC ATC) has an 
excellent context for studying and advancing MILS technology and its application in large-scale system development. 
In particular, Rockwell Collins is planning a software product-line approach to produce multiple categories of infor- 
mation assurance devices. The manual aspects of current RC ATC certification will not be able to keep pace with the 
volume or scale of these systems. Thus, ongoing collaboration between RC ATC and KSU to automate generation of 
evidence of trust/dependability is crucial. 

5.2 Collaboration with researchers at Lockheed Martin 

Kansas State University researchers are seeking to dramatically improve MILS development and certification by ap- 
plying automated static analysis and verification technology whose development is currently supported by Lockheed 
Martins Software Technology Initiative (STI). STI is an IRAD program administered through Lockheed Martins Ad- 
vanced Technology Laboratory, and funded by Lockheed Martins Integrated Systems and Government Systems divi- 
sion. The STI effort aims to develop solutions to quickly integrate large-scale, distributed systems of newly developed, 
legacy and commercial-off-the-shelf (COTS) software. For the past two years, STI has given seed funding to a handful 
of university research projects such as the work at Kansas State that Lockheed Martin believes are especially promising 
and relevant to challenges faced by Lockheed Martin in developing large-scale distributed systems. 

For the first year under the STI program (Jan 2006-Dec 2006), STI funded applications of the Cadena architecture 
framework - one of the key technology components of this grant. For the second year (Mar 2007 - Dec 2007), STI is 
funding Indus static analysis tools that can mine information flows of large-scale systems and display discovered flows 
in a variety of visualizations that are effective for developers. Very little tool support exists that directly targets the 



concerns of MILS development, and we are now aiming to transition their techniques into a MILS-aware development 
environment. 

5.3 Collaboration with researchers from IBM 

Banerjee (co-PI) is spent six months of his sabbatical at IBM TJ Watson and will be working with IBM researchers 
(including Marco Pistoia - the author of several widely-read books on Java security). This collaboration has resulted 
in several publications listed above related to foundations of secure information. As of September 2007, Banerjee is 
serving the remaining six months of his sabbatical at Microsoft Research in Redmond. 

5.4 Collaboration with researchers from Princeton University 

This year, we have joined forces with Andrew Appel and Edward Felten's research groups at Princeton who have 
gained world-wide recognition for their work on proof-carrying code, infrastructure for trusted computing, and for- 
malization of security policies. Their decade-long effort has produced ground-breaking results in foundations of 
proof-carrying code, paradigms for trusted computing bases, efficient representation of machine-checked proofs as 
certificates, policy-enforced linking of untrusted components, and certificate-based authentication. 

We are now working to build on this previous work to obtain (a) a framework for representing proofs and evidence 
certificates for our secure information flow logic that can be verified by third-party tools, (b) a proof-carrying code 
paradigm in which the emitted proof information is focused on secure information flow, and (c) a certifying compiler 
supporting MLS/MILS applications. The idea is to obtain ground-breaking compiling technology that (a) generates 
not only code, but also proofs of correctness for MLS information flow properties and (b) actually has the ability to 
formally prove full functional correctness of compilation steps (including compilation of implementation languages, 
design models, and domain-specific languages for MILS policy and system configuration). This technology can radi- 
cally increase the trustworthiness of MILS by producing pervasive evidence of component and integration correctness. 

6    Type-based Formal Modeling of Component Architectures 

6.1    Background 

Maintaining long-lived, large, distributed, information and computation systems involves a number of challenges. 
Overall system functionality must be carefully decomposed and arranged into a modular architecture with precisely 
negotiated interfaces and a clear, hierarchical, organization. Requirements from multiple stake-holders competing 
in various dimensions such as separate domains of expertise (e.g., hardware interfacing, network, application logic), 
different levels of abstraction (e.g., supervision, team management, implementation), individual stages of development 
(e.g., integration of legacy-code, new implementation) etc., have to be systematically reconciled while incrementally 
adding concerns to the system architecture, a process which continually grows more and more complex throughout 
the system evolution. Architecture models have to be accurate and robust, i.e., their elements have to faithfully reflect 
capabilities of the system's execution environment, cater to the abstractions used by various domain experts, and adapt 
to architecture refinement, globally as well as in detail, while maintaining overall integrity. 

The architectural integrity and internal consistency of long-lived, large-scale, projects face many threats, starting 
with initial design and continuing throughout the system life-cycle. Industrial experience reports indicate a serious 
need for tools and processes that (a) enable concise, rigorous specification of architectural constraints and (b) provide 
mechanical checking of conformance to architecture constraints and ensure consistency between various architecture 
aspects [18, pp. 477-478]. This is even more the case in the context of a product line approach, where the degree of 
cost savings is directly tied to the ability to constrain and impose discipline on architecture elements to increase their 
potential for re-use over multiple related projects. 

At the programming language level, type systems have proven to be a very effective paradigm for enforcing con- 
straints on interaction of system units (e.g., class/method types must be compatible with their use), for ensuring that 
data structures conforming to certain structural invariants (e.g., tree shaped, list shaped), and for characterizing require- 
ments for converting data between different formats. While previous work on architectural definition languages (ADL) 
and meta-modeling frameworks (frameworks for creating domain-specific modeling languages and environments) has 
made significant strides toward supporting higher-level architecture development tasks involving specification of ar- 
chitecture units (e.g., components and subsystems), composition of those units, and interactions between units, many 



existing ADLs use weak type systems and incorporate only limited forms of type checking. Some existing frameworks 
that have been designed for architecture exchange [25, 21] defer type checking to other tools or provide external con- 
straint languages [83, 57] based on first-order logic that, while powerful, are sometimes difficult for engineers to 
understand, require verbose definitions to capture simple forms of type checking, become unwieldy and hard to man- 
age as systems scale. Finally, existing ADLs often fail to support several important capabilities needed for large-scale 
system development including the ability to (a) specify domain or platform specific languages for building open-ended 
collections of component and interface types, (b) incorporate multiple component models within a single system (as 
often needed when multiple systems are integrated to form a "system of systems", or for describing multiple levels of 
abstraction within a system), (c) specify relationships between architectural layers in multi-layered systems, and (d) 
flexibly combine and extend architectures as system development unfolds. 

In this work, we introduce CALM, a type-centric framework for rigorous meta-modeling and architecture definition 
of component-oriented systems. CALM enables rapid specification and scalable checking of many common forms of 
architectural constraints that occur in the context of large-scale system development. 

The specific contributions of our work are as follows. 

• We describe how CALM can specify industrial component models, component middleware platform capabili- 
ties, and domain-specific component modeling languages in a rigorous, mechanically leverageable meta-model. 
CALM also provides operations on meta-models that allow platform descriptions to be flexibly combined and, 
for example, arranged in inheritance hierarchies to describe refinements of architectural platforms. 

• We summarize the foundations of CALM's multi-tiered type system and we explain how (a) the type system 
enables architects to concisely specify important notions of architecture consistency and (b) how associated 
type checking enforces compliance of system architecture elements to type-based constraints, domain-specific 
modeling languages, and platform descriptions captured via typed meta-models. 

• We illustrate how the CALM meta-models can be used to address a number of challenges in large-scale architec- 
ture development including modeling of heterogeneous systems that include different component models within 
the same system, using type-based coercions to model capabilities for integrating different platforms, and cap- 
turing complex system layering and subsystem abstractions in which elements from one domain are embedded 
inside of elements from a different one. 

• We provide a novel form of typing for networks of components that enables a rigorous approach to forming 
architectural abstractions in which whole systems form the implementation of higher-level architectural ele- 
ments. The type system can capture completeness or incompleteness of component networks according to their 
meta-model constraints and supports incremental refactoring of specifications towards complete models. 

CALM concepts are implemented in an IBM Eclipse-based framework called CADENA - a robust and extensible 
environment for modeling and development of component-based systems which is freely available for download [15]. 
While the generality and expressiveness of CALM has been demonstrated by using it to capture a number of realistic 
component models (sec. 6.7), in this work we illustrate the principles of CALM using a system phrased in terms of a 
hybrid component model which integrates three architectural styles, including a style for nesC - a component model 
and associated infrastructure that has been widely used for building wireless sensor networks [27]. 

The current version of CADENA/CALM has been partially funded and used by Lockheed Martin Advanced Tech- 
nology Laboratory (ATL) to evaluate the effectiveness of advanced architecture tools as part of their internally funded 
Software Technology Initiative that seeks to develop innovative technologies for tackling challenges in large-scale 
system design and integration. 

6.2   Principles of CALM 

Following previous work on ADLs [56], CALM's modeling primitives are based on the four fundamental categories of 
entities that define every component-based system: components - loci of computation, interfaces - loci of interaction, 
connectors - loci of communication, and configurations in which instances of components, interfaces, and connectors 
are allocated and connected together to form what has been termed a component assembly or system scenario. Existing 
ADLs tend to organize the definition and use of these elements using two modeling tiers: in the upper tier, developers 
define component, interface, and connector types, and in the lower tier instances of the declared types are allocated 
and connected to form component assemblies. Both the upper and lower tiers in existing frameworks (especially 
those designed for architectural exchange [25, 21]) tend to be very unconstrained since they seek to allow a variety of 
different component structures to be embedded in them. 



Taping Principle Benefits 

(a)    Instances conform to component types a component type serves as a template from which a set of component instances 
can be generated; changes in a component type propagate to all instances 

(b)    Typed interfaces on ports establishes basic notion of protocol/contract on component interaction points 
(c)    Type-correct port/interface/role connections guarantees type compatibility between components 
(d)    Types conform to kinds (styles) guarantees component types and instances conform to vocabulary specified by 

the style; enables precise specification of component models used in underlying 
component middleware frameworks and guarantees features of models match 
capabilities of underlying middleware; enables precise specification of domain- 
specific component modeling languages 

(e)    Architecture style inheritance enables incremental construction/refinement of architectural styles and platform 
descriptions 

(f)    Incremental typing of component networks captures if a network of components is completely connected, and if not. sum- 
marizes the potential for connection corresponding to all unconnected ports; 
enables a type-checked compositional approach to component assembly and 
assembly nesting 

(g)    Orthogonal nesting of component networks in com- 
ponents and connectors 

enables component assemblies to be abstracted either as components or connec- 
tors 

(h)    Typed-based multi-style nesting constraints guarantees proper layering of multiple architectural styles within the same sys- 
tem; prohibits developers from violating layering constraints 

(i)     Inter-style coercions captures as formal abstractions the necessary conversions between different 
platforms and component models in "system of systems" construction 

Figure I: Summary of Cadena type checking capabilities and benefits 

In order to more effectively specify and enforce structural constraints, CALM restructures the two-tiered approach 
to provide three modeling tiers named style, module, and scenario - where each tier constrains and guides activities in 
the tier below. The style tier is a meta-modeling tier that allows architects to define ADLs constrained to a particular 
component model or application domain. In particular, CALM styles specify a collection of type schemas that give rise 
to languages of types for building component, interface, and connector types in the module tier below. This approach 
allows architects to precisely capture the capabilities and type systems available in existing component middleware 
frameworks like CCM, EJB, etc., and to define domain-specific component modeling frameworks. Using the language 
defined by the style tier, the module and scenario tier provide the two stages of traditional ADLs, i.e., defining the ele- 
ments of the architecture (module) and instantiating and combining them into assemblies (scenario). Within these two 
lower levels, the distinction from previous work is that checking inherent in the CADENA implementation guarantees 
that types declared at the module level conform to an associated style and that instances at the scenario level conform 
to types. Moreover, the type framework simplifies development by providing palettes and modeling commands tai- 
lored to the associated style and module types. While related facilities have been provided in other meta-modeling 
tools such as GME [50], CADENA provides a variety of additional richer mechanisms for guaranteeing conformance 
to meta-model and type definitions. Finally, providing a separate style meta-modeling tier enables a collection of 
novel capabilities that go well beyond simply defining languages of types. Because CALM styles are manipulable 
artifacts, architects can operate on and define relationships between styles to capture structuring principles relevant for 
architectural modeling of large-scale systems as illustrated in Section 6.6. 

CALM's three-tiered modeling approach is inspired by type theory [65] in which type systems are organized into 
three levels - values/instances conform to types, and types conform to kinds - and CALM adopts the kinds/types/in- 
stances terminology for naming modeling elements in each of its three layers. Figure 1 summarizes the notions of type 
checking and structural constraint enforcement that are enabled by our approach. We will describe these capabilities 
in detail in the remainder of the paper, referred to as Capability (a) through (i) (cap. (a)-(i)). 

6.3   Related Work 

Industrial tools: In current industrial practice, initial design is hampered by the inadequacies of existing commer- 
cial tools that are almost exclusively UML-based. These tools focus on lower-level class architectures and provide few 
mechanisms for establishing higher-level architectural subsystem and layering constraints that can guide system archi- 
tects. Notions of components and interfaces introduced into UML 2.0 are an initial step in addressing these concerns, 
but tools like Rhapsody and Rational Modeler only provide limited aspects of even the most basic typing capabili- 
ties (cap. (a)-(c)). Moreover, the generality of UML does not easily allow the architecture vocabulary to be tailored 



to the concerns of expert designers from different domains working at different layers within the system {cap. (d)- 
(h)) nor are mechanisms provided for formalizing data and interface conversions that mitigate the the inconsistencies 
and ambiguities that arise as experts from different domains seek simultaneously to express their concerns within the 
architecture (cap. (i)). 

Architectural styles: Abowd, Allen, and Garlan [ 1 ] proposed the notion of architectural styles to capture the en- 
vironment vocabulary of a software configuration by providing component and connector types, structural constraints, 
and (optionally) a semantic model [75], Di Nitto and Rosenblum investigate ADL suitability for modeling component 
systems, noting the need for support of architectural styles and style refinement [22]. Of ADLs evaluated they found 
only Acme/Armani [25, 57] satisfactorily supporting style refinement for modeling middleware compliant software 
through Acme family extensions. Nevertheless, an Acme family is simply an enumeration of types (at the level of a 
CALM module) that form the "palette" from which instances can be drawn to represent a particular style of architec- 
ture. There is no higher-level typing mechanism such as cap. (d) in Acme to enforce that the types of an Acme family 
conform to particular constraints on structure or that new types added to the enumeration are aligned with capabilities 
of a particular execution environment. For example, the Acme user manual notes that "Typically, a family also em- 
bodies a set of rules that specify design rules that constrain how designs can be pieced together and declare certain 
'well-formedness' rules. However, the Acme type model is actually quite weak, which places a burden on someone 
defining the family to include either language descriptions about these assumptions, or to specify the constraints in 
some form that can be interpreted by a tool (e.g., Armani)." [43] Thus, when style constraints are to be enforced, they 
must be specified and checked by a mechanism external to the type system - with the suggested approach being to use 
Armani's first order logic (FOL) constraint language. While Acme does support Capability (a), even basic capabilities 
like (b) and (c) must be specified in first order logic. 

CALM goes beyond the notion of families by introducing a separate meta-modeling tier which captures the archi- 
tectural style in a mechanically leverageable way, thereby defining precisely what can appear within a style and what 
cannot. While this type-based CALM meta-modeling tier does not provide the same expressive power as first order 
logic, it is much easier to use, more scalable, and it directly captures most common component system capabilities 
and structural constraints. We argue that the complexity of first order constraint languages limits the accessibility to 
developers, making constraints more difficult to specify, maintain, and evolve, while typing on the other hand, being 
a familiar concept to engineers, seamlessly integrates into development processes and scales easily. We believe that 
first order constraint languages are necessary, but they should only be applied after simpler, more directly integrated, 
notions of typing are applied. Also, CALM emphasizes the distinction between the meta-modeling tier and the typing 
and instantiation levels to provide an environment for manipulation, combination, evolution, and cooperation of styles 
(cap. (e)-(i))- These capabilities are not supported in Acme and supporting them in any constraint framework based 
on FOL seems difficult. 

Like Acme, xADL2.0 has been designed as architecture exchange language, but seeks greater robustness and 
flexibility by using a flexible framework of XML schemas [21]. xADL provides basic notions of component and 
interface types (cap. (b)) but type checking is deferred to other tools. Using xADL XSD schemas [85], all type 
definitions must reside within element xArchTypes, and instances of these types model a run-time system under element 
xArchlnstance. However, xADL 2.0 provides no way to strictly separate a platform definition (style) from libraries of 
design-time types. Using xADL 2.0 it is possible to define a platform vocabulary through a set of types collected 
under element xArchTypes, then provide a schema extension, extending elements representing platform kinds to arrive 
at a library of types, but this only yields a two-tiered capability similar to that of Acme again, with any conformance 
checking deferred to other tools. While there is value in a tool engineering approach that enables separate tools to 
provide constraint enforcement, we wish to pursue a research agenda that enables exploitation of the benefits and 
synergy that result from directly integrating a variety of forms of typing into the modeling framework itself. 

Meta-modeling: The Generic Modeling Environment (GME) is a powerful framework supporting graphic def- 
inition of domain-specific modeling languages and the capability to generate domain-specific graphic modeling en- 
vironments [50, 41]. GME allows users to define a meta-model paradigm using an extended UML class diagram 
notation with constraints written in OCL. Based on a meta-model paradigm, GME generates a domain-specific mod- 
eling environment with entities defined in the paradigm available to graphically construct domain-specific models. 
GME paradigm definitions like CoSMIC [29] may be written to capture platform component, connector, and interface 
templates, but some basic notions of type-checking (cap. (c)) must be accomplished through OCL constraints. GME 
offers some support for composing paradigms from elements defined in existing paradigm definitions [51] (cap. (e)) 
but provides no direct support for Capabilities (f)-(i). 

Other frameworks: In summary, previous work has provided significant insights and innovations that have in- 
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spired our work, and space constraints do not allow a detailed comparison to each of these (for a good survey of 
ADLs, see [56]). For example, [55] emphasized notions from object-oriented (00) type systems to describe inter- 
esting concepts of component type refinement in the C2 ADL. While C2 supports a particular class of architectures 
(layered message passing systems) and confines type descriptions to a modeling tier analogous to CALMS module 
tier, CALM emphasizes use of typing including 00 concepts such as inheritance in meta-modeling facilities (at the 
CALM style tier) that allow one to describe any number of component model styles, style refinement, combinations 
of styles, nesting relationships between styles. 

We seek to complement and add value to previous work by emphasizing a variety of forms of typing to enforce 
structural constraints. There are other important notions that are orthogonal and can be combined with our approach. 
Behavioral descriptions [3] and dynamic reconfiguration mechanisms [53] can be added to support specifications of 
interaction protocols between components. Notations for specifying variability points and variations for software 
product lines (e.g., as in xADL) can easily be incorporated. In fact, we believe that the strong typing capabilities 
of CALM are very important for supporting a product-line approach in which variants are plugged into a reference 
architecture at component and subsystem variability points: CALM's typing at these points serve as a contract on the 
variation point that potential variants must satisfy to accurately conform to product line architecture. 

Previous work on CADENA: The previous version of CADENA [33] was directly tied to CCM and did not include 
the meta-modeling and architecture structuring capabilities presented in here. A recent article [17] gives a high- 
level business-oriented summary of the capabilities of the CADENA tool and its use in product-line development. In 
contrast, the present paper provides technical details for CALM's type system (cap. (a)-(e)) and introduces a number 
of additional capabilities ((fHi))- 

6.4    Example of a Multi-layer Architecture 

Figure 2 presents an example that we use to illustrate various concepts of CALM. A sensor bank consisting of some 
number of sensors is connected through a local acquisition network to a controller which in turn is linked to a monitor 
base-station (fig. 2(a)). On a lower level of abstraction, the link between the sensor bank and the monitor is established 
through a radio network link (fig. 2(b)). The radio link contains a timer component which is implemented in terms 
of a nested component assembly (fig. 2(c)). Both the Radio Network Link and Timer are built using the nesC sensor 
network infrastructure and the standard nesC iconography is used in the diagrams of nesC components. Finally, the 
transmission of the data over a wireless hardware radio link (HWRadioLink) is implemented using a collection of 
power-controlled, dynamic frequency, phase-key or FM- modulated, hardware components (fig. 2(d)). 

Although simple, this example includes several characteristics which we believe are intrinsic to architectures of 
realistic, large-scale systems. We summarize these characteristics and explain how modeling and development of such 
systems is constrained and guided using the primary typing capabilities of CADENA listed in Figure 1. 

The system includes subsystems built using one or more existing component frameworks (nesC in this case). 
Therefore, modeling for these subsystems need to be constrained to ensure that capabilities of component framework 
middleware infrastructure are accurately reflected in architecture specifications (cap. (d)). For example, proper capture 
of nesC capabilities guides developers in building types and component instances that conform to nesC (cap. (a) 
and (c)). Proper capture also ensures accurate mappings between model/specs to code, e.g., it helps ensure that tool 
infrastructure teams can implement plug-ins that auto-generate code skeletons and deployment "glue code", and import 
existing nesC libraries into the modeling framework. 

The system includes multiple architecture styles within the same system (e.g., the high-level planning style (fig. 2(a)), 
the nesC style (fig. 2(b) and 2(c)), and the physical layer style (fig. 2(d))) as often required in constructing "systems 
of systems" that incorporate new, legacy, and off-the-shelf systems built using multiple component frameworks. Ar- 
chitecture specifications need to capture coercions that represent data conversions and marshalling/unmarshalling that 
often must be implemented to communicate between different component frameworks (cap. (i)). 

The architecture is layered, and developers must adhere to these layering constraints (e.g., the implementation of 
each planning layer component must be expressed in nesC and each nesC component associated with the hardware 
category must be described using the physical layer style) to avoid the architecture degrading over time (cap. (h)). 

Encapsulation is used as an abstraction mechanism for both components and connectors that may involve a change 
in architecture styles to represent an abstraction boundary. For example, the HWCIock timeout-generator is encapsu- 
lated inside of the Timer component of the RadioNetworkLink, and the RadioNetworkLink is encapsulated (with a style 
change) inside of the Controller/Monitor link of the planning assembly (cap. (g)). 

While nesC components initially all have the same shape, in the example it is reasonable to distinguish them 
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Figure 2: Multi-style architecture 

according to their possible contents. For example the LinkControl or the SendQueue components are software imple- 
mentations, while the Timer represents a sub-scenario, and the HWRadioLink abstracts an assembly on the physical 
network layer. We use refinement to enhance the existing nesC style to reflect these differences (cap. (e)). 
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Figure 3: The CADENA style editor 

6.5   Typed Modeling in CALM/CADENA 

We now illustrate how CALM's three tiers are employed to define a modeling language for the nesC component 
framework used in the example of Section 6.4 and how that modeling language is subsequently applied to define type 
and instances of nesC components. 

The style tier. Figure 4 shows a possible CALM style specifying the nesC component model in a syntax 
specifically designed for easy presentation in this paper (the CADENA tool-suite relies completely on graphic and 
form-based input instead, e.g., fig. 3). To capture the types that are to be available to developers programming in nesC, 
Lines 2-19 define a few of the nesC platform-types (since for example purposes only, the list is not comprehensive). 
Lines 21-38 define kinds that represent languages (schemas) of types that can be used to build the nesC interfaces, 
component, and connectors model entities. An architect first uses CALM meta-kinds to construct the basic building 
blocks for modeling entities. Meta-kinds can be extended through inheritance to facilitate reuse. Once the construction 
for a particular class of entities is finished, the architect declares an associated kind from a meta-kind, which exposes 
the type language for use by developers at the module level. 

This (simplified) nesC style features one kind of interface, which in turn consists of an arbitrary number of events 
(i.e., asynchronous messages from the provider of an interface to the user), and commands (i.e., messages from the 
user of an interface to the provider).' Lines 21-22 define the interface meta-kind mNesClnterface containing a list 
of nesC-operations. Line 22 illustrates CALM's attribute. In general, attributes can be associated with each of the 
CALM architectural entities to capture both the platform types of the targeted middleware or execution environment 
as well as meta-data types such as organizational data, deployment information, or physical units (e.g.. Si-units) not 

1 The original, non-simplified. nesC style has two more kinds of interfaces besides the "bundle": bare command- and bare event-interfaces. They 
can be omitted without loss of expressiveness. 
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style nesC 1 
typedef result_t 
typedef uint8_t 
typedef uintl6_t 
typedef uint32_t 
typedef int8_t 
typedef intl6_t 
typedef int32_t 
typedef nesc_type 
uintK _t, uint32 

= ENUM { success, fail }; 
= INT[0..255]; 
= INT[0..65536]; 
- INT[0..4294967296]; 
= INTI-128..121]; 
= INTI-132768..32767]; 
= INT[-2147483648..2147483647] ; 
- ONION i result_t, uint8_t, 
int8_t, lntl6_t, int32_t I 

typedef nesc_operation_type = ENUM { event, command ]; 
typedef nesc_parameter - struct ( 

name : STRING, type : nesc_type ]; 
typedef nesc_operation = struct { 

async 
name 
operation_type 
parameters 
return_type 

BOOLEAN, 
STRING, 
nesc_operation_type, 
nesc_parameter list, 
nesc_type 1; 

metainterface mNesCInterface { 
attribute operations : MODULE nesc_operation list \; 

interfacekind nesCInterface : mNesCInterface (1; 

metacomponent mNesCModule { 
provides [0..*] provides : mNesCInterface [0..*]; 
uses     [0..*] uses     : mNesCInterface [0..*] }; 

componentkind nesCModule : mNesCModule { 
provides -> nesCInterface; 
uses -> nesCInterface 1; 

metaconnector mNesCWire { 
uses     [1] provider_side : mNesCInterface [1]; 
provides [1] user_side     : mNesCInterface [1] } ; 

connectorkind nesCWire : mNesCWire { 
typevar a : nesCInterface; 
provider_side -> a; 
user_side -> a ] 

Figure 4: nesC-ADL style 

covered by the platform types. In this case, the attribute operations captures the ability to define a list of operation 
signatures built using the nesC platform types declared earlier. CALM attributes can be labeled with binding times 
indicating that the attribute should be bound to a value either at the style level, module level, or the scenario level. In 
this case, the attribute operations is defined to be module-level (/. 22), i.e., it describes a property of a type within 
this kind, in contrast to style-level attributes which define properties of the whole kind, or scenario-level attributes 
which define specifics of an instance. Finally, line 23 defines an interface kind named nesCInterface. This kind 
allows developers at the module level to build interface types that must conform to the structure of meta-interface 
specification mNesCInterface. 

NesC provides one kind of component, called module (not to be confused with the CALM module tier). A nesC 
module can provide or use an arbitrary number of interfaces as its ports. In CALM a language for building component 
types with certain categories of ports is modeled through defining port-options in the component (meta) kind (/. 26- 
27). A port-option starts with a parity, either provides or uses, to indicate whether or not the interface represents a 
service that the component provides or a service that the component needs to connect to (i.e., a context dependency). 
Then, an integer-interval, the multiplicity, constrains how many ports within the respective option any component of 
that kind must/can have. The first port-option of the mNesCModule (/. 26) defines a minimum of zero ports and no 
maximum ([ 0. . * ]). The third position in the port-option is the module-level keyword, which - in accord with the 
notion of creating a language - is used by developers at the module tier to indicate the particular category of ports being 
declared. The standard nesC keywords defined in the port-options in lines 26 and 27 (provides and uses) coincide 
with the CALM parities, but are conceptually unrelated. Position four specifies the meta-kind from which interfaces 
associated with this port can be drawn, in this case mNesCInterface. Finally, the port-option defines the multiplexity 
that constrains the number of connections that can be made to ports within this option, i.e., the range of minimum and 
maximum fan-out. When exporting the nesCModule component kind from the mNesCModule meta-kind (/. 28-30), 
the architect must specify a particular interface kind for each interface meta-kind declared in the port options of the 
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module sensornet of nesC   { 
nesc_operation  init = struct {   async = false, 

name - "init",   operation_type - command, 
parameters = [], return_type = result_t } ; 

nesc operation  send = struct { async = false, 
name = "send",   operation_type = command, 
parameters = [struct { name = "payload", 

type = u±nt32_t   }], return_type = result_t   } ; 
nesc_operation  sendDone = struct { async = false. 

nesCInterface  StdControl {operations = [init] }; 
nesCInterface  Send ( operations = [send, sendDone] ]; 
nesCInterface  RSend extends Send { } ; 
nesCInterface  Timer { operations = [start, stop, fire] 

nesCModule  LinkControl { 
provides  init : StdControl; 
provides  input : Send; 
uses  reset   : StdControl; 
uses clock   : Timer; 
uses queue   : Queue; 
uses dequeue : Dequeue; 
uses output  : Send } 

nesCModule  Timer { 
provides  init : StdControl; 
provides  timer : Timer } 

nesCModule  Timer Control extends Timer 
uses clock : Clock 1 

i 

Figure 5: nesC-types module 

associated component meta-kind. In this case, the nesCInterface kind is specified for both port options. 
The one service featured in nesC is a one-to-one communication service called wire which connects interfaces of 

identical type. Analogous to the port options on component (meta) kinds, connector (meta) kinds have role options 
which specify the ability to define connection points associated with particular kinds of interfaces. Lines 33-34 declare 
role options for the mNesCWire connector meta-kind. In contrast to the port options seen earlier, the multiplicity 
and multiplexity of both role options are set to [ l ], shorthand for the interval [ l.. l ], meaning that connectors 
conforming to this meta-kind can only have one connection point for each of its two roles (i.e., the connector is binary) 
and that the fan-out value for each connection point is constrained to be one. CALM allows different compatibility 
requirements to be stated for component interfaces that communicate through a connector. In addition, type variables 
can be introduced to achieve a notion of polymorphism. For example, to export the nesCWire from the meta-kind 
mNesCWire, a type variable a for types within the kind nesCInterface is declared (/. 36). Type variables such as 
a enable CALM to express constraints about relations between types such as equality (=), and sub- or super-typing 
(>=, <=). In this simple case, in which the wire can only connect interfaces of what would be equal type in the CALM 
model, the variable a is used twice, denoting equality of the types. Therefore, the role provider_side and the role 
user_side can both associate with the same type of nesCInterface. 

The module tier. Having defined type schemas (via CALM (meta) kinds) for nesC types, developers work at the 
module tier to build up libraries of types, and CADENA tool support guarantees that these types conform to schemas 
declared at the style tier. 

Figure 5 shows excerpts from a CALM module, declaring types in the nesC style from Figure 4. A CALM module 
declares types for interface kinds (e.g., I. 40-43) and for component kinds (e.g., I. 48-70). Connector types are not 
declared on the module tier, the style-level typing constraints enable connector types to be created on-the-fly when 
instantiated on the scenario tier. Again, this strategy emphasizes the interpretation of connectors as service entities 
and as part of the infrastructure. 

Note for example the nesCModule-type LinkControl (/. 48-55). The type is declared with the kind name 
nesCModule from the style, ports on the type are declared with the names of the port-options they comply to, i.e., 
provides and uses, featuring nesClnterface-types previously declared (I. 40-46). The module-level attribute 
operations of the nesCJnterf ace-kind is valuated to declare nesCInterface-types (/. 2-37, 40-46). 
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scenario timer_assembly includes sensornet   I 
TimerControl  control t ); 
Clock hwClock {   }; 

neaCWire  {   user_side = control.clock; 
provider_side = hwClock.clock ) 

Figure 6: Timer assembly in CALM 
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Figure 7: nesC kind-type-value entity-relations in CALM 

Declaring the types of an architecture means declaring the building blocks or the functional units. While nesC 
itself does not distinguish clearly between type and instance, CALM models always contain the type layer and each 
type can be instantiated multiple times. 

The scenario tier. Figure 6 shows the assembly of the nesC hardware clock wrapper outlined in Figure 2(c) 
(Section 6.4). In Line 2 the nesCModuIe-type TimerControl is instantiated to obtain the value control. Naturally, 
the provided interfaces of that type, i.e., StdControl and Timer are instantiated with the component. A nescwire 
with unnamed type is instantiated in lines 5-6 and connects the two nesCModule instances with the appropriate ports. 

As a summary, Figure 7 visualizes the genesis of model elements through the three tiers of CALM, starting with 
the meta-kinds and kinds on the style tier, through the types on the module tier down to concrete values on the scenario 
tier. 

6.6   Style Manipulation and Combination 
With the architectural style being a separate, manipulable, part of the modeling framework, CALM allows various 
operations on styles which go beyond architectural exchange and directly address problems of architecture refinement 
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Figure 8: Style interrelations 

and combination of domain-specific layers in multiple dimensions. Figure 8 gives a conceptual visualization of three 
different ways to modify and interrelate styles, related to Capability (e) and (f) (fig. 8(a), 8(b)) and Capability (g) 
through (i) (fig. 8(c)). This section overviews how emphasizing type-based meta-modeling enables architects to easily 
combine and refine styles using multiple inheritance. Working at the style tier, architects also (a) define relation- 
ships between styles, e.g., defining precisely where coercions are available to connect interfaces from different styles 
and (b) specify layering/abstraction constraints. Larger examples and associated formalization can be found in an 
accompanying technical report [40]. 

6.6.1 Building hybrid styles 

Figure 8(a) illustrates how hybrid styles (e.g., representing different platforms cooperating on the same abstraction 
level) can be formed through CALM style manipulations: a union of two styles is formed (via multiple inheritance), 
and then "bridging elements" (i.e., component or connector kinds whose ports/roles associate interface kinds drawn 
from both styles) are introduced. This capability enables system architects to formally capture the practice of integrat- 
ing components from different sources with related yet dissimilar context requirements (e.g., Bonobo and CORBA 
components within the Linux Desktop), and allows for a smooth transition of existing scenarios into hybrid environ- 
ments. 

6.6.2 Refining styles 

CALM style manipulations allow architects to create modeling environments which control the evolution or refine- 
ment of an architecture from a general purpose platform-independent description (as might be used in earlier stages 
of development) to a style which contains more specifics about the underlying platform. For example, Figure 8(b) 
illustrates a situation where the architect specifies a style A in which developers initially work. The style is con- 
strained to be platform independent by the absence of any kinds that describe the capabilities of the specific platform. 
This prevents rogue developers from "running ahead" of the development plan by adding additional details that might 
threaten the genericity or portability of the system description. Once further details of a target platform are identified, 
the architect (a) creates a sub-style A' which adds new, more specific kinds that capture e.g., particular communica- 
tion services available on the target platform as new connector kinds, and (b) directs developers to change generic 
capabilities of style A to specific implementation options exposed in style A'. Developers carry out these tasks in style 
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style nesC_refined extends nesC { 
elide nesCModule; 

componentkind nesCSoftModule : mNesCModule { 
provides -> neaCInterface; 
uses -> neaCInterface ); 

componentkind nesCHWModule : mNesCModule I 
provides -> neaCInterface; 
uses -> neaCInterface } ; 

componentkind nesCNWModule : mNesCModule I 
provides -> neaCInterface; 
uses -> neaCInterface  ); 

Figure 9: nesC-ADL style (refined) 

A' which contains modules and scenarios which are not yet completely migrated (the style supports both the original 
generic elements as well as newly added platform specific elements). As the migration phase nears completion, it can 
often be quite difficult to tell via manual inspection if all generic modeling elements from style A have been replaced 
by the more specific elements added to obtain style A' (this is especially true in large-scale development). However, 
using CALMs automatic type checking, confirmation of a completed migration is obtained simply and efficiently - 
the completeness of the migration can be validated by type checking the migrated modules against a style A" which 
is formed from A' by using CALM's kind elision operator to remove the original platform independent kinds from 
A. This same process can be repeated multiple times, forming a succession of validated development "check points" 
moving from platform independent to increasingly platform specific architectures in a controlled sequence of style 
refinements. 

Figure 9 refines the original nesC style by introducing three new kinds, and at the same time eliding the nesCModule 
kind. This new style will be used to connect nesC to other styles by distinguishing the components with respect to their 
possible implementation contents. The new component kinds nesCSoftModule (for software-implemented compo- 
nents), nesCHWModule (for hardware wrappers), and nesCNWModule (for network-infrastructure wrappers) are not 
distinguished by the nesC definition, yet the architect can further tailor a component model like nesC to a particular 
development context, for example to establish layering and nesting constraints such that only modules and scenar- 
ios from the hardware style can be nested in components that are built from the nesCHWModule kind (sec. 6.6.3). 
In [17] the possibilities for model abstraction, specialization, migration, and hybrid construction given through style 
manipulation are discussed in more detail. 

6.63   Implementation-abstraction relations on styles 

Typing assemblies While various notions of typing for components, interfaces, and connectors at modeling layers 
analogous to CALM's module and scenario tiers have been considered in earlier works, we are not aware existing 
approaches for typing assemblies of allocated components as units where the assembly type serves as a summary 
of how the assembly can interact with its context. CALM includes a notion of typed assembly that captures the 
overall connection potential in terms of may/must modalities (cap. (f))- In CALM, a port/role is called open, if its 
multiplexity allows further connections (may connect), otherwise it is called closed. A port/role is called complete, if 
its multiplexity does not require any further connection, otherwise it is called incomplete (must connect). Intuitively, 
completeness requirements of ports/roles constrain the minimum of further necessary connections in a scenario, while 
openness indicates the maximum of further possible connections. CALM calls the set of possible types which fall 
into these minimum/maximum constraints the type-spectrum of the scenario. In other words, type checking of the 
assembly not only tells the developer about the compatibility of component/connector connections, it also indicates 
whether additional connections are possible/required. Those pending connections can be presented in a tool task list 
along with their corresponding interface types, so that developers can easily identify remaining development steps. 
For each such type, CADENA presents a summary of type-correct connection opportunities (automatically filtering out 
incompatible types), and this serves to rapidly focus the developer's attention on appropriate connections. 

As an example, consider the scenario timer_assembly in Figure 6, Section 6.5. It features two component 
instances control of type rimer-Control, and hwClock of type Clock. Associated with these components, the 
scenario contains three provided interfaces, control. init of type StdControl, control .timer of type rimer, 
and hwClock. clock of type Clock, and one used interface, control .clock of type Clock, i.e., the assembly has 
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Figure 10: Wrapping the timer-assembly 

four ports. Also, it contains one unnamed instance of a nesCWire-kind connector, through which it features two roles 
(fig. 10(a), note that nesC displays single connectors sometimes as "bundles" of lines). 

By their multiplexity, all roles in the scenario are closed and complete, because their minimum and maximum fan- 
out of one connection is used. The ports on the other hand are complete but open {i.e., their multiplexity invariantly 
is [ 0 . . * ], they can connect with an arbitrary number of further connectors). Thus, as a maximum, this assembly can 
be typed as a component with all four aforementioned ports exposed, while as a minimum, no ports or roles have to 
be exposed. If within this spectrum, the two ports control. init and control .timer (fig. 10(b)) are chosen to be 
exposed, the resulting type of the assembly is equal to the declared nesCModule type Timer (fig. 5, sec. 6.5). 

Alternatively, the type spectrum can be changed by adding two nesCWire-kind connectors attached to the previ- 
ously exposed ports control. init and control .timer with the respective user_side role left open (fig. 10(c)). 
As a result, the two unconnected roles become minimum members of the type spectrum, the assembly can now be 
typed as a connector by exposing only the two open roles, and hiding the complete ports. Unary connectors such as 
this one have turned out to be an elegant means to abstract services provided by library functions in nesC such as the 
timer. 

In summary, this notion of typing provides a sound approach to specifying when an assembly can be abstracted as 
a component or a connector (cap. (g)). If all the roles in an assembly are complete (i.e., all connection responsibilities 
of connectors are fulfilled), then it can be typed as a component with an interface corresponding to the open ports 
of the assembly. If the ports are complete, the assembly can be typed as a connector, featuring only the open roles. 
Further, not all ports of a component-typed assembly (or roles of a connector typed assembly) have to be visible in the 
abstraction, only incomplete ones have to be mentioned. 

Abstracting an assembly into a component or connector is accomplished using CALM's wrapping facility. For 
example, the wrapping into a component as described above (fig. 10(b)) is accomplished through 

implementation HWTimer : 
wrap timer_asseably  into sensornet. Timer I 

expose init  - control.init; 
expose timer = control.timer }; 

CADENA records such wraps in implementation tables, so that when instantiating a component the architect can 
choose a fitting implementation, which might include simulation stubs if a component is to be placed in a testing 
environment. Figure 11 shows a screenshot of CADENA with the Timer-assembly associated with the Timer-component 
in RadioNetworkLink. While other frameworks also include the notion of nesting (almost always limited to just nesting 
in components), the novelties here are that (a) built-in typing guarantees the well-formedness of the nesting, and 
that (b) our distinction of open/closed roles and ports enables the principle to be applied orthogonally to nesting in 
components and connectors. In addition, our assembly types provide a foundation for typing component architectural 
patterns in which assemblies are parameterized via assembly-typed placeholders/variables into which other assemblies 
of compatible type can be substituted. 

Style coercions and nested styles A key feature of CALM is its ability to specify when different styles can be used 
in the same system model at different levels of abstraction to allow capturing such relations of Figure 8(c) (cap. (h)- 
(i)). Figure 12 shows two revisions of a conceptual style as used for the highest level assembly of this paper's example 
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Figure 11: The Timer assembly modeled as component of Radio-Link in C ADENA 

(a) Global style 

style global_a { 
metainterface mPlug 
interfacekind Plug : 

{ ); 
mPlug 

metacomponent mBox { 
attribute name : SCENARIO STRING; 
provides [0..*] in  : mPlug [0..* 
uses     [0..*] out : mPlug [0..* 

componentkind Box : mBox { 
in -> Plug; 
out -> Plug ); 

metaconnector mLink { 
uses     [1] source : mPlug 
provides [1] sink   : mPlug 

connectorkind Link : mLink { 
typevar a : Plug; 
source  ->  a; 
sink  ->  a   } 

] «}; 

<b) Global style refined 

style global_b extends global_a   { 
elide Link; 
metaconnector LocalLink : mLink   | 

typevar a : Plug; 
source -> a; 
sink  -> a f 

metaconnector RemoteLink : mLink   { 
typevar a : Plug; 
source -> a; 
sink  -> a ( 

Figure 12: Global style (base & refined) 

(fig. 2(a), sec. 6.4). As stated, many elements of this architecture are implemented in nesC at deeper levels of nesting, 
i.e., the global style abstracts nesC, and in turn nesC implements global. Specifically, the connector representing 
the communication link between the Controller and the Main Monitor is realized by an non-trivial nesC assembly 
{fig. 13) in which an instance of the RadioNetworkLink {fig. 2(b)) is used at each end of the connector. 

CALM enables the architect to capture implementation/abstraction relationships such as the one described here 
with specifications on each modeling tier: First, the style level defines a coercion between the global_b style and 
nesC: 
coercion nesC_to_global : 

from nesC  build global  b.Plug   { 
provides [1..*] available : nesCInterface 
uses     [ 1. . * | required  : nesCInterface   \ ; 
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Figure 14: Constraining inter-style nesting 

A coercion specifies that interfaces from an abstract overview-style (global_b) can be expressed in terms of a set 
of interfaces from the implementing style, in this case an arbitrary number of elements from nesClnterface are 
specified as valid implementation of an element of the Plug interface kind. A coercion always describes provided 
interfaces, i.e., a provided interface of the kind Plug can internally provide interfaces of kind nesClnterface de- 
clared with the available keyword introduced in line 3, and use nesCinterface-kind interfaces introduced with 
required. For a Plug port or role with parity uses the internal parities are reversed. 

On the type level (module tier), type conversions can be declared with the vocabulary defined by the coercion: 
neaC_to_global  sensornet_to_bank : 

abstract aenaornet  into aenaorbank.Send   ( 
available  send : Send, 
available  control : StdControl }; 

This conversion packs one sensomet. Send interface type and one sensornet. StdControl interface type into 
the interface type sensorbank. Send. This enables the architect to wrap the network assembly into a connector of 
the global style analogous to the single-style wraps explained in Section 6.6.3 (cap. (g) and (i)). 

Multi-dimensional layering Figure 14 interprets the implementation/abstraction relation between CALM styles as 
positive layering constraints, in the sense that a style A can access functionality of a style B iff A's architectural 
elements can provide a shell for assemblies of B through wrapping, which is enabled through respective coercions/- 
conversions of interface kinds/types. In this specific case, architectural elements of the global_b style (fig. 14(a)) 
are implemented in the nesC style which represents the layer below the global assembly.  The nesC style in turn 
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has elements implemented by the radioComm style {fig. 14(b) and (c)), and other elements implemented in a nested 
assembly in nesC (fig. 14(d)). 

These conceptual layers, given through specific styles, correspond to the suggested lower (media-) layers of the 
ISO/OSI stack [38]. The absence of coercions between the styles of the network layer and the physical layer prevents 
direct access in circumvention of the data-link layer. This use of component encapsulation provides a correct-by- 
construction approach to layered architectures, as well as the ability to intorduce layers in multiple directions (i.e., 
specific to individual components). 

6.7    Evaluation 

We have evaluated the generality of our CALM typed modeling concepts by using the CALM style mechanism to de- 
fine CADENA modeling environments for multiple "industrial strength" component models including Enterprise Java 
Beans (EJB) [54], the CORBA Component Model (CCM) [62], Boeing's PRiSM component model, and nesC [26, 27] 
- demonstrating the ability to handle component frameworks ranging from enterprise-level to real-time (avionics) and 
embedded systems. Using CADENA'S plug-in facility to enhance the basic functionality of the resulting CADENA 

CCM modeling framework, we have created an end-to-end model-based development environment for the Java-based 
OpenCCM implementation (included with the CADENA distribution) that includes code generation facilities for com- 
ponent implementation skeletons and CCM's configuration and deployment infrastructure. 

In a similar fashion, we are building an end-to-end development environment for sensor network product lines 
with nesC as the underlying infrastructure using the collection of styles presented in the preceding sections. The 
current implementation includes nesC code import/export facilities that are able to process the entire component library 
provided with the nesC distribution. As an indicator of the number of artifacts, processing the primary system section 
of the library that is used in almost every application build yields 129 interface types, 97 component types, and 49 
scenarios. Overall the library contains approximately 275 interface types and 456 component types. The models for 
these libraries will be included in the next CADENA release (expected May 2007). 

Researchers at KSU's Sensor Network Center of Excellence are using this framework to develop product lines 
for multiple application domains including large livestock herd health monitoring, ground water run-off sensing, and 
radiation detection and response systems - these efforts are providing significant opportunities for us to evaluate mod- 
eling facilities presented here. CALM's ability to support multiple linked styles within a single modeling framework 
is playing a significant role in the design of the framework. For example, we are able to provide several higher-level 
modeling languages above the nesC style that aid scientists who are experts in the application domains (but not in the 
area of sensor networks) in carrying out the initial design of a sensor system. 

7    Assessment 

In this work, we have argued for an increased use of typing to specify and enforce structural constraints in modeling 
of component-based systems. A type-based approach provides a number of benefits and useful capabilities, it reduces 
the need to rely on more complicated forms of constraint checking, and it complements other forms of structural and 
behavioral constraint specification. 

Space constraints make it impossible to present the details of complete framework, and we refer the reader to the 
CADENA website [15] for details. Website materials illustrate how we have validated the concepts presented here by 
giving a complete formalization of the typing system and by building a robust tool framework that has been used (a) 
to specify several widely used component models, and (b) to implement a complete development environment for a 
Java-based version of CCM. CADENA is being used by Lockheed Martin engineers to specify representative aspects 
of architectures for satellite mission control systems.2 

2
 While non-disclosure agreements prevent us from reporting on the details of this work, the CADENA web-site contains PowerPoint slides from 

a two-hour demo given at Lockheed Martin STL in August 2006. 
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8   Logical Foundations for Conditional Information Flow Contracts 

8.1    Background 

National and international infrastructures as well as commercial services are increasingly relying on complex dis- 
tributed systems that share information with Multiple Levels of Security (MLS). These systems often seek to coalesce 
information with mixed security levels into information streams that are targeted to particular clients. For example, in 
a national emergency response system, some data will be privileged (e.g., information regarding availability of military 
assets, and deployment orders for those assets) and some data will be public (e.g., weather and mapping information). 

The Multiple Independent Levels of Security (MILS) architecture [81] proposes to make development, accredi- 
tation, and deployment of MLS-capable systems more practical, achievable, and affordable by providing a certified 
infrastructure foundation for systems that require assured information sharing. In the MILS architecture, systems 
are developed on top of: (a) a "separation kernel", a concept introduced by Rushby [74] which guarantees isolation 
and controlled communication between application components deployed in different virtual "partitions" supported 
by the kernel, and (b) MLS middleware services such as "high assurance guards" that allow information to flow be- 
tween various partitions, and between trusted and untrusted segments of a network, only when certain conditions are 
satisfied. 

Researchers at the Rockwell Collins Advanced Technology Center are industry leaders in certifying MILS com- 
ponents according to standards such as the Common Criteria (EAL 6/7) that mandate the use of formal methods. For 
example, Rockwell Collins engineers carried out the certification of the hardware-based separation kernel in Rock- 
well Collins' AAMP7 processor (this was the first such certification of a MILS separation kernel and it formed the 
initial draft of the Common Criteria Protection Profile for Separation Kernels). Product groups at Rockwell Collins 
are building several different information assurance products on top of the AAMP7 that leverage the underlying MILS 
architecture. These products are often programmed using the SPARK subset of Ada [11]. A motivating factor for the 
use of SPARK is that it includes annotations (formal contracts for procedure interfaces) for specifying and checking 
information flow [13]. These annotations often play a key role in the certification of such products. The SPARK 
language and associated tool-set is the only commercial product that we know of which can support checking of 
code-level information flow contracts, and SPARK provides a number of well-designed and effective capabilities for 
specifying and verifying properties of highly critical implementations. 

Even with SPARK, however, developers are sometimes unable to provide complete, machine-checkable arguments 
for the correctness of information assurance products. This is due to certain limitations in the SPARK information flow 
framework, in particular: SPARK information flow annotations are unconditional (e.g., they capture such statements 
as "executing procedure P may cause information to flow from input variable X to output variable V"), but MLS 
security policies are often conditional (e.g., "data from input variable X is only allowed to flow to output variable Y 
when state variables G\ and G2 satisfy certain conditions"). Thus, SPARK currently can neither capture nor support 
verification of certain critical aspects of MLS security policies (treating such conditional flows as unconditional flows 
in SPARK is an over-approximation that leads to many false alarms). 

In previous work, Amtoft and Banerjee have developed Hoare logics that enable compositional reasoning about 
information flow [5, 4]. Inspired by challenge problems from Rockwell Collins, these logics were extended to sup- 
port conditional information flow [7]. While the logic as presented in [7] exposed some foundational issues, it only 
supported intraprocedural analysis, it required developers to specify information flow loop invariants, the verification 
algorithm was not yet fully implemented (and thus no experience was reported), and the core logic was not mapped to 
a practical method contract language capable of supporting compositional reasoning in industrial settings. 

In this paper, we address these limitations by describing how the logic can provide a foundation for a practical in- 
formation flow contract language capable of supporting compositional reasoning about conditional information flows. 
The specific contributions of our work are as follows: 

• we propose an extension to SPARK's information flow contract language that supports conditional information 
flow, and we describe how the logic of [7] can be used to provide a semantics for the resulting framework, 

• we extend the algorithm of [7] to support procedure calls and thus modularity, 
• we present a strategy for automatically inferring conditional information flow invariants for while loops, thus 

significantly reducing developers' annotation burden, 
• we provide an implementation that can automatically generate conditional information flow contracts from 

unannotated source code, and 
• we report on experiments applying the implementation to a collection of examples. 
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Separation 

Mailbox 

procedure  MACHINE_STEP 
— INFORMATION FLOW CONTRACT (Figure   2) 
is   D_0,   D_l   :   CHARACTER; 
begin 

if IN_0_RDY and   not OUT  1  RDY then 
D_0  :=  IN_0_DAT;     IN_0_RDY   :=   FALSE 
OUT_l_DAT :=  D_0;  0UT_1_RDY 

end   if: 
if  IN   1   RDY and   no 

D_l   :=  DMJ^DAT; 
OUT_0_DAT  :=  D_l 

end   if; 
end  MACHINE STEP; 

TRUE; 

OUTJLRDY then 
IN_IJ*DY   :=  FALSE; 
OUT 0 RDY  :» TRUE; 

Figure 15: Simple MLS Guard - mailbox mediates communication between partitions. 

Recent efforts for certifying MILS separation kernels [30, 35] applied ACL2 [42] or PVS [64] theorem provers to 
formal models; extensive inspections were then required by certification authorities to establish the correspondence 
between model and source code. Because our approach is directly integrated with code, it complements these ear- 
lier efforts by: (a) removing the "trust gaps" associated with inspecting behavioral models (built manually), and (b) 
allowing many verification obligations to be discharged earlier in the life cycle by developers while leaving only the 
most complicated obligations to certification teams. Moreover, our logic-based approach provides a foundation for 
producing independently auditable and machine-checkable evidence of correctness and MILS policy compliance as 
recommended [39] by the National Research Council's Committee on Certifiably Dependable Software Systems. 

8.2    Example 

Figure 15 illustrates the conceptual information flows in a fragment of a simplistic MLS component. Rockwell Collins 
engineers constructed this example to illustrate, to NSA and industry representatives, the specification and verification 
challenges facing the developers of MLS software. The "Mailbox" component in the center of the diagram mediates 
communication between two client processes - each running on its own partition in the separation kernel. Client 0 
writes data to communicate in the memory segment Input 0 that is shared between Client 0 and the mailbox, then it 
sets the Input 0 Ready flag. The mailbox process polls its ready flags; when it finds that, e.g.. Input 0 Ready is set 
and Output I Ready is cleared (indicating that Client I has already consumed data deposited in the Output I slot in a 
previous communication), then it copies the data from Input 0 to Output I and clears Input 0 Ready and sets Output I 
Ready. The communication from Client I to Client 0 follows a symmetric set of steps. The actions to be taken in each 
execution frame are encoded in SPARK by the MACHINE_STEP procedure of Fig. 15. 

Figure 16(a) shows SPARK annotations for the MACHINESTEP procedure, whose information flow properties 
are captured by derives annotations. It requires that each parameter and each global variable referenced by the 
procedure be classified as in (read only), out (written, and initial values [values at call point] are unread), or in out 
(written, and initial values read). For a procedure P, variables annotated as in or in out are called input variables 
and denoted INp; variables annotated as out or in out are output variables and denoted as OUTp. Each output 
variable x0 must have a derives annotation indicating the input variables whose initial values are used to directly or 
indirectly calculate the final value of x0. One can also think of each derives clause as expressing a dependence relation 
(or program slice) between an output variable and the input variables that it transitively depends on (via both data and 
control dependence). For example, the second derives clause specifies that on each MACHINE_STEP execution the 
output value of OUT_l_DAT is possibly determined by the input values of several variables: from IN_0_DAT when the 
Mailbox forwards data supplied by Client 0, from OUT1DAT when the conditions on the ready flags are not satisfied 
(OUT_1_DAT'S output value then is its input value), and from OUTIRDY and INORDY because these variables 
control whether or not data flows from Client 0 on a particular machine step (i.e., they guard the flow). 

While upper levels of the MILS architecture require reasoning about lattices of security levels (e.g., unclassified, 
secret, top secret), the policies of infrastructure components such as separation kernels and guard applications usu- 
ally focus on data separation policies (reasoning about flows between components of program state), and we restrict 
ourselves to such reasoning in this paper. 

No other commercial language framework provides automatically checkable information flow specifications, so 
the use of the information flow checking framework in SPARK is a significant step forward. As illustrated above, 
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-# global   in   out  IN_0_RDY.   IN_1_RDY, 
-tt OUT_0_RDY.   OUT 1RDY. 
-# OUT_0_DAT.   OUT_l_DAT: 
-tt in IN_0_DAT,   1NJJ0AT; 
-tt derives 
-tt OUT_0_DAT from   INJ  DAT,   OUT_0_DAT. 
-tt OUT_0_RDY,   1NJ_RDY & 
-tt OUT_l_DAT from   1N_0_DAT.   OUT_l_DAT. 
-tt IN_0_RDY,   OUTJ_RDY & 
-tt IN_0_RDY    from  IN 0 RDY,   OUT_l_RDY & 
-tt IN_I_RDY    from   IN_1_RDY,   OUT_0_RDY & 
-tt OUT_0_RDY from  OUT_0_RDY.   IN_I_RDY & 
-tt OUT_l_RDY from  OUT_l_RDY,   IN_0_RDY: 

(a) 

-tt derives 
-tt OUT_0_DAT from 
-tt INIDAT when 
-tt (IN_1_RDY and   not  OUT_0_RDY). 
-tt OUT_0_DAT when 
-It {not  INIRDY or OUT_0_RDY). 
-tt OUT_0_RDY,   IN_I_RDY & 
-It OUT_l_DAT from 
-It IN_0_DAT when 
-tt IIN_0_RDY and  not  OUT_l_RDY). 
-tt OUT/DAT when 
-tt (not  IN_0_RDY or OUT_l_RDY). 
-tt OUTJ_RDY,   IN_0_RDY 

(hi 

Figure 16: (a) SPARK information flow contract for Mailbox example, (b) Fragment of same example with proposed 
conditional information flow extensions (Section 8.4). 

SPARK derives clauses can be used to specify flows of information from input variables to output variables, but 
they do not have enough expressive power to state that information only flows under specific conditions. For example, 
in the Mailbox code, information from IN_0_DAT only flows to OUT_1_DAT when the flag IN 0_RDY is set and the 
flag 0UT_1_READY is cleared. Unfortunately, the SPARK derives cannot distinguish the flag variables as guards 
nor phrase the conditions under which the guards allow information to pass or be blocked. This means that guarding 
logic, which is central to many MLS applications including those developed at Rockwell Collins, is completely absent 
from the checkable specifications in SPARK. In general, the lack of ability to express conditional information flow 
not only inhibits automatic verification of guarding logic specifications, but also results in imprecision which cascades 
and builds throughout the specifications in the application. 

8.3   Foundations of SPARK Conditional Information Flow 

The SPARK subset of Ada is designed for programming and verifying high assurance applications such as avionics 
applications certified to DO-178B Level A. It deliberately omits constructs that are difficult to reason about such as 
dynamically created data, pointers, and exceptions. Below, we present the syntax of a simple imperative language with 
assertions that one can consider to be an idealized version of SPARK. 

Assertions 
4>    ::=     B|0A( 

I     4>v<t>\- 

Expressions 
A    ::=    x | c | A op A 
B    ::=    AbopA 

Commands 
S    ::=    skip  |  x := A  |  assert(0) 

|      S;S I if B then S else S 
|      callp | whileB do 5 

Features of SPARK that we do not consider here include the package and inheritance structure, records, and arrays. 
From these, only arrays present conceptual challenges. Our current implementation treats arrays as atomic entities, 
just as SPARK does. The extended version of this paper [8] describes how our logical approach can reason about 
individual elements of arrays (giving more precision than SPARK), a feature which is currently being included in 
our implementation. We consider both arithmetic (A) and boolean (B) expressions where we use x,y,... to range 
over variables, c to range over integer constants, p to range over named (parameterless) procedures, op to range 
over arithmetic operators in {+, x,   mod ,...}, and bop to range over comparison operators in {=, <,...}. Using 
parameterless procedures simplifies our exposition; our implementation supports procedures with parameters (there 
are no conceptual challenges in this extended functionality). For an expression E (arithmetic or boolean), we write 
iv(E) for the variables occurring free in E, and E[A/x] for the result of substituting in E all occurrences of x by A. 

The semantics of an arithmetic expression \A\ is a function from stores into values, where a value (v £ Val) is 
an integer n and where a store s € Store maps variables to values; we write dom(s) for the domain of s and write 
[s\x i—> v] for the store that is like s except that it maps x into v. Similarly, [B]s denotes a boolean. A command 
transforms the store into another store; hence its semantics is given in relational style, in the form s[S]s'. For some S 
and 5, there may not exist any s' such that s[5]s'; this can happen if a while loop does not terminate, or an assert 
fails. The details of the semantics are standard and thus omitted; implicitly we assume a global procedure environment 
P that for each p returns a relation between input and output stores. 

Assertions 0 are also called 1 -assertions since they represent predicates on a single program state; we write s \= <f> 
to denote that 0 holds in s following the standard semantics. We write 0 >i 0' if whenever s (= 0 also s (= 0'. As 
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{IN_1_RDY A -OUT_0_RDY => IN_1_DATX, Summary information for p with OUTp = {*} 
-.IN_1_RDY V OUT_0_RDY =S- OUT_0_DATK, derivesx fromy, 
IN_1_RDYK, OUT_0_RDYK} 2 when y > 0, 

1. if IN_1_RDY and not OUT_0_RDY then w wnen y < 0 
{IN_1_DATK} 

2. D_l :=IN_1_DAT; IN_1_RDY := false; Procedure call 

{D_1K} {2 > 7 => UK, 2 > 5 => UK, 2 > 5 => j/K, 
3. OUT_0_DAT := D_l; OUT_0_RDY := true; 2 > 5AS >0 => JK, J > 5Ay < 0=>«IK} 

{OUT_0_DATK} callp 
4  fl {x>5A2>7=> VK, 

{OUT_0_DATK} X > 7A2 > 5=> (X + U)*} 

Figure 17: (a) A derivation for the mailbox example, illustrating the handling of conditionals, (b) An example illus- 
trating the handling of procedure calls (Section 8.5). 

usual we define 0i —> 02 as -<<pi V 02', we also define true as 0 = 0, and false as 0 = 1. 
Reasoning about information flow in terms of non-interference: MILS seeks to prevent security breaches that 
can occur via unauthorized/unintended information flow from one partition to another; thus previous certification 
efforts for MILS components have among the core requirements included the classical property of non-interference 
[28] which (in this setting) states: for every pair of runs of a program, if the runs agree on the initial values of one 
partition's data (but may disagree on the data of other partitions) then the runs also agree on the final values of that 
partition's data. 
Capturing non-interference and secure information flow in a compositional logic: The logic developed in [5] 
was designed to verify specifications of the following form: given two runs of P that initially agree on variables 
x\ ... xn, the runs agree on variables y\.. .ym at the end of the runs. This includes non-interference as a spe- 
cial case (let X\ ... xn, and y\... ym, be the variables of one partition). We may express such a specification, 
which makes the "end-to-end" (input to output) aspect of verifying confidentiality explicit, in Hoare-logic style as 
{x\ x,..., xn x } P {2/i ix, • • •, ym x }, where the agreement assertion x x is satisfied by a pair of states, Si and S2, if 
s\(x) = S2{x). With P the example program from Sect. 8.2, we would have, e.g., 

{lN_l_DATX, OUT_0_DATX, IN_1_RDYX, OUT_0_RDYIx} P {OUT_0_DATX }. 

To capture conditional information flow, recent work [7] by Banerjee and Amtoft introduced conditional agreement 
assertions, also called 2-assertions. They are of the form 0 => Ex which is satisfied by a pair of stores if either at 
least one of them does not satisfy 0, or they agree on the value of E: 

s&z si \= 4> => E\x iff whenever s \= 0 and Si \= 0 then [£]s = {E]Si. 

We use 6 € 2Assert to range over 2-assertions. For 9 = (0 => ZJtx), we call 0 the antecedent of 8 and write 
0 = ant(9), and we call E the consequent of 8 and write E = con(6). We often write Ex for true => Ex. We 
use 6 £ 7'(2Assert) to range over sets of 2-assertions (where we often write 8 for the singleton set {9}), with 
conjunction implicit. Thus, s&csi \= 0 iff V# £ 6 : s&Si (= 9. 

Fig. 17(a) illustrates a simple derivation using conditional information flow assertions that answers the question: 
what is the source of information flowing into variable OUTODAT? The natural way to read the derivation is from 
the bottom up (since our algorithm works "backwards"). Thus, for OUT_O_DATK to hold after execution of P, we 
must have D_1K before line 3 (since data flows from D_l to OUT_0_DAT), INIDATK before line 2 (since data 
flows from IN 1 DAT to D_l), and before line 1 IN_1_RDYK and OUT_0_RDYK (since they control which branch 
of the condition is taken), along with conditional assertions. The pre-condition shows that the value of OUT_0_DAT 

depends unconditionally on IN_1_RDY and OUT_0_RDY, and conditionally on IN_1_DAT and OUT_0_DAT, just as 
we would expect. 

Relations between agreement assertions: We define 6 >2 6' to hold iff for all s, si: whenever s&si |= 0 then 
also s&si |= 0'. In development terms, when 0 t>2 0' holds we can think of 0 as a refinement of of 0', and 
0' an abstraction of 0. For example, {ix , J/K} refines XK by adding an (unconditional) agreement assertion, and 
z < 10 => xix refines z < 7 => xx by weakening the antecedent of a 2-assertion. 

We define a function decomp that converts arbitrary 2-assertions into assertions with only variables as consequents: 
decomp(Q) = {0 => xx | 0 => Ex £ 0,x £ fv(E)}. For example, decomp(<p => (x 4- y)x) = {0 => xx,cf> => yx}. 

Fact 1 For all 0, decomp(Q) is a refinement o/0. 
The converse does not hold, with a counterexample being s&csi (= (x + y)x but not sksi \= xx or s&si (= yx, as 
when s(x) = si(y) = 3, s(y) = Si(x) = 7. 
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8.4   Conditional Information Flow Contracts 

8.4.1 Foundations of flow contracts 
The syntax of a SPARK derives annotation for a procedure P (as illustrated in Figure 16(a)) can be represented 
formally as a relation Vp between OUTp and "P(INp). A particular clause derives(x, y) e Vp declares that the final 
value of output variable x depends on the input values of variables j/ = J/i,..., J/fc. The correctness of such a clause as 
a contract for P can be expressed in terms of the logic of the preceding section, as requiring the triple {y« } S {IK} 

where S is the body of procedure P and where j/tx is a shorthand for {yi x ,..., yk x }. 
Because Vp contains multiple clauses (one for each output variable of P), it captures multiple "channels" of 

information flow through P. Therefore, we cannot simply describe the semantics of a multi-clause derives contract 
{derives(;r,y),derives(z,«;)} as {{yw)ix} S {XK,ZK} because this would confuse the dependencies associated 
with x and z, i.e., it would allow z to depend on y. Accordingly, the full semantics of SPARK derives contracts is sup- 
ported by what we term a multi-channel version of the logic which is extended to include indexed agreement assertions 
x«c indexed by a channel identifier c - which one can associate with a particular output variable. In the multi-channel 
logic, the confused triple above can now be correctly stated as {yKx, WKZ} S {XXX, ZKJ.}. (Alternatively, we could 
have two single-channel triples: {j/x} S {xx} and {w} S {ZK}.) The algorithm to be given in Sect. 8.5 extends to 
the multi-channel version of the logic in a straightforward manner, and our implementation supports the multi-channel 
version of the logic. For simplicity, we present the semantics of contracts using the single-channel version of the logic. 

We now give a more convenient notation for triples of the form {0}P{0'}. A flow judgement K is of the form 
0-^0', with 0 the precondition and with 0' the postcondition. We say that 0-^0' is valid for command S, written 
S \= 0-%^0', if whenever «i&s2 (= 0 and Si [S]si and s2 [SJ s2 then also Si&s'2 |= 0' (if the 2-assertions in the 
precondition hold for input states Si and s2, the postcondition must also hold for associated output states s[ and s2). 

8.4.2 Language design for conditional SPARK contracts 
The logic of the preceding section is potentially much more powerful than what we actually want to expose to de- 
velopers - instead, we view it as a "core calculus" in which information flow reasoning is expressed. To determine 
how much of the power of the logic we wish to expose to developers in enhanced SPARK conditional information 
flow contracts, our design goals are: (1) writing the contracts should be as simple as possible, (2) the contracts should 
be able to capture common idioms of MILS information guarding, (3) the contract checking framework should be 
compositional so as to support MILS goals, and (4) there should be a natural progression (e.g., via formal refinements) 
from unconditional derives statements to conditional statements. 

Simplifying assertions: The agreement assertions from the logic of Sect. 8.3 have the form 0 => £V. Here E is 
an arbitrary expression (not necessarily a variable), whereas SPARK derives statements are phrased in terms of 
IN/OUT variables only. We believe that including arbitrary expressions in SPARK conditional derives statements 
would add significant complexity for developers, and our experimental studies have shown that little increase in pre- 
cision would be gained by such an approach. Instead, we retain the use of expression-based assertions 0 => Ex. 
only during intermediate (automated) steps of the analysis. Appealing to Fact 1, we have a canonical way of strength- 
ening, at procedure boundaries, 0 => EK to 0 => WIK,...,0 =>• Wfctx where (v(E) = {w\,... ,Wk}- A sec- 
ond simplification relates to the fact that the core logic allows both pre- and post-conditions to be conditional (e.g., 
{0i => Ei«} P {</>2 => Z?2t<} where 0i and 02 rnay differ). Based on discussions with developers at Rockwell 
Collins and initial experiments, we believe that this would expose too much power/complexity to developers lead- 
ing to unwieldy contracts and confusion about the underlying semantics. Accordingly, we are currently pursuing an 
approach in which only preconditions can be conditional. Combining these two simplifications, SPARK derives 
clauses are extended to allow conditions on input variables as follows: 

derives a; from y\ when 0i,  ..., y^ when 0fc 

Here 0i... 0* are boolean expressions on the pre-state of the associated procedure P. Thus, the above specifica- 
tion can be read as "The value of variable x at the conclusion of executing P (for any final state s') is derived from 
those y-j where 4>j holds in the pre-state s from which s' is computed." Figure 16(b) shows how this can be used to 
specify conditional flows for procedure MACHINE_STEP in Fig. 15. 
Design methodology separating guard logic from flow logic: The lack of conditional assertions in post-conditions 
has the potential to introduce imprecision. Yet, we believe the above approach to conditional expressions can be 
effective for the following reason: we have observed that information assurance application design tends to factor out 
the guarding logic (i.e., the pieces of state and associated state changes that determine when information can flow) 

27 



{6} (fi)<=skip{©'} iffR = {(0,u,0) | 0 6 ©'}and© =6 ' 

{0} (fi)<=assert(0o) {©'} iff fl = {((<* A 0„) => Ex, u, 0 => Ex) | 0 => Ex €6'} and © = dom(fl) 

{0} (R)<= x:=^{6'} iffR = {(0[A/x] =s> E[A/x]x,7,0=> Ex) | 0 => Ex e ©'}, 
where 7 = m iff x 6 fv(£), and © = dom(R) 

{©} (H)<= Si ;S2 {6'} iff {6"} (fi2)<=S2{©'} and {0} (fii)<=S, {0"} 
and fl = {(0,7,0') I 30", 7i, 72 : (0, 7i, 0")€ fli, (0",72, 0')€ fi2}, where7 = m iff 71 =mor72 =m 

{0} (R)<= if B then Si else S2 {0'} 
iff{©i} (i?!)<=Si {e'},{©2} (fl2)<= S2 {©'},fi= fi'i Ufl2Ufl„UR„,and© = dom(fl), 
where R[ = {((0i A B) => EiX,m,0') | 0' € 0'm, (0i =* EiX,_,0') € fli} 
andfl2 = {((02 A-B) => E2x,m,0') | 0' 6 G'm, (02 => E2x,_,0') € fl2} 
andflj = {(((0iAB)V(02A^B))=s-Bx,m,0')|0'e©'m,(0i=>EiX,_,0')efli,(02=>E2x,_,0')eR2} 
andflo = {(((0iAB)V(02A^B))=>Ex,u,0') | 0' €©(,,(01 =>Ex,u, 0')G fli ,(02 =*Ex, u, 0')€R2} 
and©'m = {0' G ©' | 3(_,m,0') € Hi Ufi2}and©;i = ©'\ ©'m 

{©}(«)<= call p{©'} 
iff R = B„ U flo U Rm and © = dom(ft), 
where H„ = {(rm+u,.   (0) => Ex, u, 0 => Ex ) | (0 => Ex ) e ©' Afv(E)nOUT> = 0} 

andRo = ((rmj,   (0) =>xx, m, 0=>Ex) | (0=> Ex) G©'Afv(E)nOUTP # 0Ax6fv(E)AxgOUTP} 

and B,„ = {(rm,^   (0) A 0jj =>• yx, m, 0 => Ex) 
I (0=> Ex)€©'Ax€fv(E)n OUTp A 0^ => yx among preconditions forxx in p's summary } 

{©} (R) <= while B do So {©'} 
ifTB = Ru U fim and© = dom(fi), where for each x (in X) we inductively in i define 0^..©', R'.i'z by 

0« = \y{0| 3E: (0=> Ex)6©' Axefv(E)},      ©' = {0^ =>xx \xeX}.      {_} (R') <= So {©'} 
t/>j. = V{0 I 3(0 => Ex,_,_) € fl\ x € fv(E)orx € fv(B), 3(0,m,0') € R', <t> € {ant(0),ant(0')}} 
0i+ * = if t/>i > 1 0^ then 0^. else 4>'x V V"i. 

and j is the least i such that ©' = ©,+ I. and Rm = {(0,m, 0') | 0' e ©„ A 0 € ©J U {fnif => Ox}} 

andfiu = {(0 => Ex,u,0')|0'G©^,E = con(0'),(fv(E) = 0,0 = r•e)V(fv(E)5i0,0 = Vl€tv(£)(*i))}. 
and©'m={0' 6 ©' I 3x G fv(con(0')) : 3(_,m,_ => xx) G fiJ}and©;, = ©'\ ©',„ 

Figure 18: The Precondition Generator 

from the code which propagates information. This follows a common pattern in embedded systems in which the 
control logic is often factored out from data computation logic. 

Contract abstraction and refinement: For a practical design and development methodology, it is important to con- 
sider notions of contract abstraction (generalization) and refinement - ideally, conditional contracts should be a re- 
finement of unconditional contracts. For example, we believe it will be easier to introduce conditional contracts into 
workflows if developers can: (1) make a rough cut at specifying information flows without conditions, and (2) sys- 
tematically refine to produce conditional contracts, perhaps assisted by expert verification engineers. Conversely, if 
developers decide not to pursue a verification approach based on our conditional contracts, we want them to be able to 
safely abstract all conditional contracts back to unconditional SPARK contracts. 

We now establish the desired notion of contract refinement (in terms of the general underlying calculus instead of 
its limited exposure in SPARK), by defining a relation between flow judgements: Ki >K K2, pronounced "/ti refines 
K2", to hold iff for all commands S, whenever S \= K\ then also S [= K2. TO gain the proper intuition about contract 
refinement, it is important to note that the refinement relation is contra-variant in the pre-condition and co-variant in 
the post-condition: given «t ^01^0'j and K2 = 02-N-*02, if ®2 >2 ©i and 9', [>2 02then«i t>K K2. For example, 
xx ->-» ytx [>K £K,ytx ~» ytx holds because xK,J/K t>2 xtx (Section 8.3). Intuitively, this captures the fact that 
a contract can always be abstracted to a weaker one by stating that the output variables may depend on additional 
input variables. This illustrates that our contracts capture "may" dependence modalities: output y may depend on both 
inputs x and y, but a refinement i« «-» ytx shows that output y need not depend on input y (the contract before 
refinement is an over-approximation of dependence information). Also, we have (z<7 => xtx~~> y\x.)>K(xx-^+yt<) 
which realizes our design goals of achieving: (a) a formal refinement by adding conditions to a contract, and (b) a 
formal (safe) abstraction by removing conditions. 

8.5    A Precondition Generation Algorithm 

We define in Fig. 18 an algorithm Pre for inferring preconditions from postconditions. We write {0} (R) •$= S {©'} 
when, given command S and postcondition 0', Pre returns a precondition 0 for S that is designed so as to be sufficient 
to establish 0', and a relation R that associates each 2-assertion 6 e 0' with the 2-assertions in 0 needed to establish 
6. R captures dependences between variables before and after the execution of 5, and it also supports reasoning about 
multiple channels of information flow as discussed in Sect. 8.4.1, e.g., if {y\y2^x,yiV^z] S {xxx,zxz} then R 
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will relate yx to x and to z, yi to x, and j/3 to 2. More precisely, we have R CQ x {m, u} x 9' where tags m,u are 
mnemonics for "modified" and "unmodified"; if (9, u, 9') € i? then additionally it holds that S modifies no "relevant" 
variable, where a "relevant" variable is one occurring in the consequent of 9'. We use 7 to range over {m, u}, and 
write dom(R) = {9 \ 3(9, _, J e R} and ran(R) = {9' | 3(_, _, 6') e fl}. 

Correctness results: If {0} (_) <= S {©'} then 0 is indeed a precondition (but not necessarily the weakest such) 
that is strong enough to establish 0', as stated by: 

Theorem 8.1 (Correctness) Assume {6} (_) <= S {&'}. Then S \= 6-^6'. That is, ifsks1 \= 0, and s', s[ are 
such that s [S] s' and sj [S] s'j, f/ien s'&s'i (= 6'. 

Note that Theorem 8.1 is termination-insensitive; this is not surprising given our choice of a relational semantics (but 
see [6] for a logic-based approach that is termination-sensitive). Also note that correctness is phrased directly wrt. 
the underlying semantics, unlike [5, 4] which first establish the semantic soundness of a logic and next provide a 
sound implementation of that logic. Theorem 8.1 is proved [8] much as the corresponding result [7] (that handled a 
language with heap manipulation but without procedure calls and without automatic computation of loop invariants), 
by establishing some auxiliary properties (e.g., the R component) that have largely determined the design of Pre. 

Intraprocedural analysis: We now explain the various clauses of Pre in Fig. 18, where the clause for skip is trivial. 
For an assignment x := A, each 2-assertion 0 =>• Ex in 0' produces exactly one 2-assertion in 0, given by substituting 
A for x (as in standard Hoare logic) in 0 as well as in E; the connection is tagged m when x occurs in E. For example, 
if Sis z := w then R might contain the triplets (q > 4 => wx,m, q > 4 => xx) and (w > 3 => zx,u,x > 3 => zx). 
The rule for Si ;S2 works backwards, first computing S2's precondition which is then used to compute Si's; the 
tags express that a consequent is modified iff it has been modified in either Si or S2. The rule for assert allows us 
to weaken 2-assertions, by strengthening their antecedents; this is sound since execution will abort from stores not 
satisfying the new antecedents. 

To illustrate and motivate the rule for conditionals, we shall use Fig. 17(a) where, given postcondition OUT_0_DAT K , 
the then branch generates (as the domain of #1) precondition IN_1_DATK which by R[ contributes the first condi- 
tional assertion of the overall precondition. The skip command in the implicit else branch generates (as the domain of 
R2) precondition OUT_0_DATIX which by R'2 contributes the second conditional assertion of the overall precondition. 
We must also capture that two runs, in order to agree on OUT_0_DAT after the conditional, must agree on the value of 
the test B\ this is done by R'0 which generates the precondition (true A B) V (true A -TB) =>• BK ; optimizations (not 
shown) in our algorithm simplify this to B x and then use Fact. 1 to split out the variables in the conjuncts of B into 
the two unconditional assertions of the overall precondition. Finally, assume the postcondition contained an assertion 
0 =>• Ex where E is not modified by either branch: if also 0 is not modified then 0 => Ex belongs to both Ri and 
R2, and hence by Ro also to the overall precondition; if 0 is modified by one or both branches, RQ generates a more 
complex antecedent for Ex. 

Interprocedural analysis: Recall from Sect. 8.4.2 that for a procedure summary, we allow only variables as con- 
sequents, and allow conditional assertions only in the preconditions. At a call site call p, antecedents in the call's 
postcondition will carry over to the precondition, provided that they do not involve variables in OUTp. Otherwise, 
since our summaries express variable dependencies but not functional relationships, we cannot state an exact formula 
for modifying antecedents (unlike what is the case for assignments). Instead, we must conservatively strengthen the 
preconditions, by weakening their antecedents; this is done by an operator rm+ such that if 0' = rm^ (0) (where 
X = OUTp) then 0 logically implies 0' where 0' does not contain any variables from X. A trivial definition of rm+ 

is to let it always return true (which drops all conditions associated with X), but we can often get something more 
precise; for instance, we can choose rmtAx > 7 A 2 > 5) = (2 > 5). 

Equipped with rm+, we can now define the analysis of procedure call, as done in Fig. 18 and illustrated in 
Fig. 17(b). In Fig. 18, Ru deals with assertions (such as x > 5 A z > 7 => vx in the example) whose consequent has 
not been modified by the procedure call (its "frame conditions" determined by the OUT declaration). For an assertion 
whose consequent E has been modified (such as x > 7 A 2 > 5 => (x + u) x), we must ensure that the variables of 
E agree after the procedure call (when the antecedent holds). For those not in OUTp (such as u), this is done by R0 

(which expresses some "semi frame conditions"); for those in OUTp (such as x), this is done by Rm which utilizes 
the procedure summary (contract) of the called procedure. 

Synthesizing loop invariants: For while loops (the only iterative construct), the idea is to consider assertions of the 
form 0T => x x and then repeatedly analyze the loop body so as to iteratively weaken the antecedents until a fixed 
point is reached. Illustratively: 
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BSQ                                Hi HHK  19 19 
Autopilot. AP Altitude.Pitch.Rate.HistoryAverage 10 0 1 0 1 2 5 3 0 0 0 0 0.047 0.063 
Autopilot. AP.AItitude.Pitch.Rate.Calc_Pitchrate 13 2 0 2 2 7 17 8 0 0 15 15 0.000 0.015 
Autopilot.AP. Altitude.Pi tch.TargetRate 17 4 1) 1 1 3 53 4 42 0 142 46 0.015 0.015 
Autopilot.AP.Heading.Roll.Target   ROR 15 i 0 1 1 2 4 i 0 0 26 26 

14 
0.000 
0.000 

0.000 
0.000 Autopilot.AP.Heading.Roll.Targel  Rate 11 2 0 1 1 3 9 4 0 0 14 

Autopilot.AP.Control 19 1 0 13 8 46 58 54 0 0 63 51 0.016 0.032 
Autopilot Scale.ScaleMovement 22 4 0 2 1 4 47 10 46 9 0 0 0.016 O.OtXI 
Minepump.Logbuffer ProtectedWrite 8 1 0 0 5 9 9 9 4 4 0 0 0.031 0.047 
Mailbox. MACHINE_STEP 17 2 0 0 6 16 18 18 12 12 0 0 0.047 0.062 
Mailbox.Main 6 0 1 1 6 16 54 22 0 0 2 2 0.031 0.016 
BoilerWater-Monitor.Faultlntegrator.Test 11 3 0 0 4 II 46 22 42 18 0 0 0.047 0.047 
BoilerWater-Monitor.Faultlntegrator.Main 11 0 1 6 2 2 14 4 0 0 0 0 0.016 0.016 
Lift-Controller.Poll 22 2 1 3 2 9 77 12 43 0 (1 0 0.031 0.031 
Lift-Controller.Traverse 18 0 1 11 3 10 210 13 66 0 0 0 0.281 0.063 
Missile_Guidance.Clock_Read 12 2 0 0 3 5 13 11 10 8 0 0 0.(147 0.047 
Missile  Guidance.Extrapolate  Speed 13 L u 2 2 7 14 10 6 4 36 16 0.000 0.000 

O.(XX) Missile_Guidance.Code_To_Stale 12 3 0 0 1 7 15 9 14 8 0 0 0.000 
Missile  Guidance.Transition 20 4 0 2 1 9 3527 63 3524 62 4 4 0.156 0.125 
Missile_Guidance.Drag_cfg.Calc_Drag 21 4 0 1 1 3 37 3 34 0 0 0 0.000 0.000 
Missile  Guidance.Nav.Handle_Airspeed 18 4 0 4 i 13 117 28 110 25 18 18 0.000 0.000 

0.000 Missile_Guidance.Nav.Estimate  Height 21 5 (1 2 2 II 60 18 57 16 4 4 0.000 

Table 1: Experiment Data (excerpts) 

while  i   <  7 do 
if  odd(i) 
then  r   : =  r 
else  v   : =    X 

i   :=  i  + 1 
{rx} 

Iteration 0 1 2 3 
false false false false => /lK 
false true true true => IK 
true true true true => PK 

false odd(i) odd(i) odd(i) => UK 
false false -odd(t) true -=> xtx 

Here we are given rxas postcondition; hence the initial value of r's antecedent is true whereas all other antecedents are 
initialized to false. The first iteration updates v's antecedent to odd(i) (we use odd(i) as a shorthand for i mod 2 = 
1), since v is used to compute r when i is odd, and also updates i's antecedent to true, since (the parity of) i is used 
to decide whether r is updated or not. The second iteration updates x's antecedent to —iodd(z), since in order for two 
runs to agree on v when i is odd, they must have agreed on x in the previous iteration when i was even. The third 
iteration updates x's antecedent to true, since in order for two runs to agree on x when i is even, then must agree on x 
always (as x doesn't change). We have now reached a fixed point. It is noteworthy that even though the postcondition 
mentions rx, and r is updated using v which in turn is updated using h, the generated precondition does not mention 
h, since the parity of i was exploited. This shows [7] that even if we should only aim at producing contracts where all 
assertions are unconditional, precision may still be improved if the analysis engine makes internal use of conditional 
assertions. 

In the general case, however, fixed point iteration may not terminate. To ensure termination, we need a "widening 
operator" y on 1-assertions, with the following properties: (a) for all 0 and ip, ip logically implies ip y 0, and also 
<j> logically implies ip y <p; (b) if for all i we have that cj>t+1 is of the form (p% y ip, then the chain {<// | i > 0} 
eventually stabilizes. A trivial widening operator is the one that always returns true, in effect converting conditional 
agreement assertions into unconditional. A less trivial option will utilize a number of assertions, say ip\... ipk, and 
allow ip y (p = ipji if ipj is logically implied by ip as well as by 0; such assertions may be given by the user if he has a 
hint that a suitable invariant may have one of ipi... ipk as antecedent. 

8.6   Evaluation 

The algorithm of Section 8.5 provides a foundation for automatically inferring contracts from implementations, but 
can also be used for checking derives contracts supplied by a developer: the verification condition will be that the 
contract pre-condition implies the inferred pre-condition. In principle, this approach may reject a sound contract since 
the inference algorithm does not always generate the weakest pre-condition. 

There is much merit in a methodology that encourages writing of the contract before writing/checking the im- 
plementation. However, one of our strategies for injecting our techniques into industrial development groups is to 
pitch the tools as being able to discover more precise conditional specifications to supplement conventional SPARK 
derives contracts already in the code; thus we focus the experimental studies of this section on the more challenging 
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problem of automatically inferring conditional contracts starting from code with no existing derives annotations. 
For each procedure P with OUTp = {wi,... , Wfc}, the algorithm analyzes the body wrt. a post-condition 

w\ «i,..., WfcKfc. Since SPARK disallows recursion, we simply move in a bottom-up fashion through the call-graph 
- guaranteeing that a contract exists for each called procedure. When deployed in actual development, one would 
probably allow developers to tweak the generated contracts (e.g., by removing unnecessary conditions for establishing 
end-to-end policies) before proceeding with contract inference for methods in the next level of the call hierarchy. How- 
ever, in our experiments, we used autogenerated contracts for called methods without modification. All experiments 
were run under JDK 1.6 on a 2.2 GHz Intel Core2 Duo. 
Code bases: Embedded security devices are the initial target domain for our work, and the security-critical sections 
to be certified from these code bases are often relatively small, e.g., roughly 1000 LOC for one Rockwell Collins 
high assurance product and 3000 LOC for a device recently certified by Naval Research Labs researchers [35]. For 
our evaluation, we consider a collection of five small to moderate size applications from the SPARK distribution, in 
addition to an expanded version of the mailbox example of Section 8.2. Of these, the Autopilot and Missile Control 
applications are the most realistic. There are well over 250 procedures in the code bases, but due to space constraints, in 
Table 1 we list metrics for only the most complex procedures from each application (see [86] for the source code of all 
the examples). Columns LOC, C, L, and P report the number of non-comment lines of code, conditional expressions, 
loops, and procedure calls in each method. Our tool can run in two modes. The first mode (identified as version 
1 in Table 1) implements the rules of Figure 18 directly, with just one small optimization: a collection of boolean 
simplifications are introduced, e.g., simplifying assertions of the form true A0 => Ex to 0 => Ex. The second 
mode (version 2 in Table 1) enables a collection of simplifications aimed at compacting and eliminating redundant 
flows from the generated set of assertions. One simplification performed is elimination of assertions with false in 
the antecedent (these are trivially true), and elimination of duplicate assertions. Also, it eliminates simple entailed 
assertions, such as <t> => Ex when true => Ex also appears in the assertion set. 
Typical refinement power of the algorithm: Column O gives the number of OUT variables of a procedure (this 
is equal to the number of derives clauses in the original SPARK contract), and Column SF gives the number of 
flows (total number of IN/OUT pairs) appearing in the original contract. Column Flows gives the number of flows 
generated by different versions of our algorithm. This number increases over SF as SPARK flows are refined into 
conditional flows (often creating two or more conditioned flows for a particular IN/OUT variable pair). The data 
shows that the compacting optimizations often substantially reduce the number of flows; the practical impact of this 
is to substantially increase the readability/tractability of the contracts. Column Cond. Flows indicates the number 
of flows from Flows that are conditional. We expect to see the refining power of our approach in procedures with 
conditionals (column C) primarily, but we also see increases in precision that is due to conditional contracts of called 
procedures (column P). In a few cases we see a blow-up in the number of conditional flows. The worse case is 
MissileGuidance. Transition, which contains a case statement with each branch containing nested conditionals 
and procedure calls with conditional contracts - leading to an exponential explosion in path conditions. Only a few 
variables in these conditions lie in what we consider to be the "control logic" of the system. The tractability of this 
example would improve significantly with the methodology suggested earlier in which developers declare explicitly 
the guarding variables (such as INIRDY of Fig. 15), thus allowing the algorithm to omit tracking of conditional 
flows not associated with declared guard variables. A manual inspection of each inferred contract showed that the 
algorithm usually produces conditions that an expert would expect. 
Efficiency of inference algorithm: As can be see in the Time columns, the algorithm is quite fast for all the examples, 
usually taking a little longer in version 2 (all optimizations on). However, for some examples, version 2 is actually 
faster; these are the cases of procedures with calls to other procedures. Due to the optimizations, the callees now have 
simpler contracts, simplifying the processing of the caller procedures. 
Sources of loss of precision: We would like to determine situations where our treatment of loops or procedure calls 
leads to abstraction steps that discard conditional information. While this is difficult to determine for loops (one would 
have to compare to the most precise loop invariant - which would need to be written by hand), Column Gens, indicates 
the number of conditions dropped across processing of procedure calls. The data shows, and our experience confirms, 
that the loss of precision is not drastic (in some cases, one wants conditions to be discarded), but more experience is 
needed to determine the practical impact on verification of end-to-end properties. 
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8.7 Related Work 

The theoretical framework for the SPARK information flow framework is provided by Bergeretti and CarrS [ 13] who 
presents a compositional method for inferring and checking dependences among variables. That approach is flow- 
sensitive, whereas most security type systems [82, 10] are flow-f'nsensitive as they rely on assigning a security level 
("high" or "low") to each variable. Chapman and Hilton [16] describe how SPARK information flow contracts could 
be extended with lattices of security levels and how the SPARK Examiner could be enhanced to check conformance 
of flows to particular security levels. Those ideas could be applied directly to provide security levels of flows in 
our framework. Rossebo et al. [72] show how the existing SPARK framework can be applied to verify various un- 
conditional properties of a MILS Message Router. Apart from Spark Ada, there exists several tools for analyzing 
information flow properties, notably Jif (Java + information flow) which is based on [58]), and Flow Caml [76]. 

The seminal work on agreement assertions is [5], whose logic is flow-sensitive, and comes with an algorithm for 
computing (weakest) preconditions, but the approach does not integrate with programmer assertions. To address that, 
and to analyze heap-manipulating languages, the logic of [4] employs three kinds of primitive assertions: agreement, 
programmer, and region (for a simple alias analysis). But, since those can be combined only through conjunction, 
programmer assertions are not smoothly integrated, and it is not possible to capture conditional information flows. That 
was what motivated Amtoft & Banerjee [7] to introduce conditional agreement assertions, for a heap-manipulating 
language. This paper integrates that approach into the SPARK setting (whose lack of heap objects allows us to omit the 
"object flow invariants" of [7]) for practical industrial development, adds interprocedural contract-based compositional 
checking, adds an algorithm for computing loop invariants (rather than assuming the user provides them), and provides 
an implementation as well as reports on experiments. 

A recently popular approach to information flow analysis is self-composition, first proposed by Barthe et al. [ 12] 
and later extended by, e.g., Terauchi and Aiken [78] and (for heap-manipulating programs) Naumann [61]. Self- 
composition works as follows: for a given program S, a copy S' is created with all variables renamed (primed); with 
the observable variables say x, y, then non-interference holds provided the sequential composition S; S" when given 
precondition x = x' A y = y' also ensures postcondition x = x' A y = y'. This is a property that can be checked using 
existing static verifiers. 

Darvas et al. [20] use the KeY tool for interactive verification of non-interference; information flow is modeled by 
a dynamic logic formula, rather than by assertions. 

When it comes to conditional information flow, the most noteworthy existing tool is the sheer by Snelting et al 
[77] which generates path conditions in program dependence graphs for reasoning about end-to-end flows between 
specified program points/variables. In contrast, we provide a contract-based approach for compositional reasoning 
about conditions on flows with an underlying logic representation that can provide external evidence for conformance 
to conditional flow properties. We have recently received the implementation of the approach in [77], and we are 
currently investigating the deeper technical connections between the two approaches. 

Finally, we have already noted how our work has been inspired by and aims to complement previous ground- 
breaking efforts in certification of MILS infrastructure [30, 35]. While the direct theorem-proving approach followed 
in these efforts enables proofs of very strong properties beyond what our framework can currently handle, our aim 
is to dramatically reduce the labor required, and the potential for error, by integrating automated techniques directly 
on code, models, and developer workflows to allow many information flow verification obligations to be discharged 
earlier in the life cycle. 

8.8 Assessment 

We have presented what we believe to be an effective and developer-friendly framework for specification and automatic 
checking of conditional information flow properties, which are central to verification and certification of information 
applications hoping to provide MLS solutions. The directions that we are pursuing are inspired directly by challenge 
problems presented to us by industry teams using SPARK to develop MLS components. The initial prototyping and 
evaluation of our framework has produced promising results, and we are pressing ahead with evaluating our techniques 
against actual product codebases developed at Rockwell Colins. A crucial concern in this effort will be to develop 
design and implementation methodologies for (a) exposing and checking conditional information flows, (b) specifying 
and checking security levels of data along conditional flows, and (c) investigating a more precise treatment of arrays 
as presented in our technical report [8]. 
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9    Browsing Java Dependences and Information Flow with Indus 

9.1    Background 

9.1.1 Slicing - Concepts and Applications 

Program slicing is a well-known program analysis and transformation technique that uses program statement depen- 
dence information to identify parts of a program that influence or are influenced by an initial set of program points of 
interest (called the slice criteria). For instance, given a slicing criteria C consisting of a set of program statements, a 
program slicer computes a backward slice Sb containing all program statements that influence the statements in C by 
starting from C and successively adding to Sb statements upon which the C statements are (transitively) data or control 
dependent. A forward slice Sf containing all program statements that C influences is calculated in an analogous man- 
ner: the slicer successively adds to Sf all statements that are (transitively) data or control dependent on the statements 
in C. Upon conclusion of the slice calculation, the slicer may have the capability to (a) generate an executable slice — 
a residual program containing only the statements in the slice (perhaps with a few additional statements to guarantee 
well-formedness), or (b) to display the original program with nodes in the slice visually high-lighted in some way. 

Slicing has been widely applied in the context of debugging, program comprehension, and testing. 

• Debugging: When debugging software, it is often the case that a bug is detected at a state associated with single 
program point pb (e.g., an assertion violation). If the software is large and complex, then it is likely that the 
software fault occurs at a program point p/ that is statically distant (i.e., in the source code) from the program 
point pb- In such cases, the developer will need to methodically sift through the source code of the software to 
identify the faulting program point pf. To expedite this process, the developer will attempt to limit the search 
to the parts of the software that may either directly or indirectly affect the behavior (state) of the program at 
the program point pb- This process can be automated using backwards program slicing starting with p(, as the 
slicing criteria. 

• Program comprehension: Software developers are frequently assigned to debug, further develop, or reverse 
engineer code bases that they did not author. In such cases, it is often difficult for the developer to grasp the 
basic architecture and relationships between code units, and this is made more difficult by the fact that the code 
may be poorly documented and poorly written. Both backward and forward slicing can be applied to browse the 
code, looking for dependences between code units, flows of data between program statements, etc. 

• Testing: There are a number of applications of slicing in the context of testing. One particular example is impact 
analysis [71], which aims to determine the set of program statements or test cases that are impacted by a change 
in the program, requirements, or tests. For example, in verification and validation efforts on large code bases 
with huge test suites, it is often very expensive to run all the tests associated with the program. If a program 
statement pb is modified (e.g., due to a bug fix), rather than re-running all tests, backwards slicing using pb as 
the criteria can be used to determine the subset of the tests that actually influence the behavior of the program 
at the point of the bug fix, and only those relevant tests need to be re-run. In addition, a developer may want 
to understand the potential impact that the change at pb can have on other statements of the program. Forward 
slicing with pb as the criteria can be used to locate other statements within the program that will be impacted by 
the change at pb- 

9.1.2 Tool Support 

There have been a large number of publications on slicing, but only a small number of implementations for languages 
such as FORTRAN, ANSI C, and Oberon.3 Most of the implementations have been targeted to particular applications 
of program slicing such as program comprehension, testing, program verification, etc. Moreover, although slicing 
tools have been developed for programming languages like C, only a few slicing tools exist for languages like Java 
and C++ [60, 45]. 

Dealing with widely-used languages like Java, C++, C# involves a number of challenges. 

• Dealing with references and aliasing: Calculation of data dependences (determining which definitions of 
a variable v reach a particular use of v) is made much more difficult by pointers/references and aliasing.  It 

Please refer to Jens Krinke's Dissertation [45] for a brief informative overview of available implementations. 
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is difficult to determine statically which memory cells a variable of reference type may be pointing to, and 
sophisticated static analyses must be used to collect information about the memory cells that could possibly be 
referred to by a particular variable. For soundness, such analyses must be conservative (i.e., they must over- 
estimate the set of cells that could be pointed to), and this approximating effect leads to imprecision in slicing 
(slices are larger than actually required for correctness). 

• Dealing with exceptions: Modern languages like Java and C# support exception processing. The use of excep- 
tions and associated exception handlers introduces implicit less-structured control flow into the program which 
makes it more difficult to calculate the control dependence information needed in slicing. 

• Dealing with concurrency: The increasing use of multi-threading further hampers analysis since languages 
that emphasize a shared memory model (like Java and C#) allow accesses of a memory cell in one thread to 
be potentially interfering with accesses in another thread (thus, creating additional and often spurious program 
dependences). Reducing spurious dependences by determining that accesses do not actually interfere (e.g., as 
guaranteed through the use of proper locking or use of heap data that is actually not shared between threads) 
requires sophisticated static analyses that can detect lock states, situations where objects do not escape a par- 
ticular thread context, and partial order information (e.g., detecting that actions of two different threads cannot 
interfere because one must definitely happen before the other). 

• Dealing with libraries: Realistic programs make extensive use of libraries to the extent that a large majority 
of executable code comes from libraries as opposed to actual application code written by the developer. Slicing 
must be able to include program representations of relevant library code while excluding library code not actually 
invoked by the application code. 

In summary, while the basic theory of slicing for a simple imperative language can be explained rather succinctly, 
building a robust tool environment for slicing realistic programs written in a language like Java requires both founda- 
tional work along a number of fronts as well as a large-scale tool engineering effort. 

9.13   Motivation 

Our work focuses on slicing realistic Java programs. We were originally motivated to build a sheer for Java because we 
were seeking ways to reduce the cost of model checking concurrent Java programs in the Bandera project [ 19]4. Model 
checking is a verification and bug-finding technique that aims to perform an exhaustive exploration of a program's state 
space. In simple terms, model checking a concurrent Java program involves simulating all possible executions of the 
program (e.g., including all possible thread schedules) and checking the paths and states encountered in that simulation 
against correctness specifications phrased as assertions, automata, or temporal logic formulae. While model checking 
can be very effective for detecting intricate flaws that are hard to detect using conventional non-exhaustive techniques 
like testing, it is very expensive to apply. Thus, effective use of model checking must rely on applying different 
abstraction techniques, imposing bounds on the state space explored, and employing heuristics for state-space search. 

The effectiveness of slicing for model reduction is based on the observation that, when trying to verify a particular 
specification 0 against a program P, many parts of P do not impact whether <fi ultimately holds for P or not. For 
example, it is often the case that d> is a simple assertion or a temporal property that only mentions a few of P's features 
(e.g., a few variable names or program points). Thus, one can use the features mentioned in 0 to create a slice of P 
that omits program statements and variables that are irrelevant to <£'s satisfaction against P. We have shown that using 
slicing in this manner forms a sound and complete reduction technique for model checking [34]. Our experimental 
studies on small to moderate size concurrent Java programs shows that slicing almost always provides some reduction 
(in best cases, up to a factor of four reduction in time), and incurs very little overhead compared to the end-to-end 
costs of model checking [24]. 

As we started our work, no slicing infrastructure for Java was available, and little technical work had been done 
to address challenges associated with slicing realistic programs mentioned above. Thus, following the maxim "Every 
good work of software starts by scratching a developer's personal itch."5, the lack of a robust, flexible, and publicly 
available program sheer for concurrent Java motivated us to implement one ourselves. 

4This software is available at http://bandera.projecls.cis.ksu.edu. 
5Cited from the paper titled "The Cathedral and the Bazaar" by Eric S. Raymond and available at http://www.catb.org/~esr/writings/cathedral- 

bazaar/cathedral-bazaar/. 
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i   int barfint k) {                                                                  i int foofint k) { 
2      int v;                                                                                    2 Pointer v, u; 
,      if (k==0)                                                                       3 v = new Pointer (); 
4         v = 1;                                                                                  4 u = v; 
s      else                                                                                     5 if (k == 0) 
6         v = 2;                                                                                  f. v.o = 1; 
T      return v;                                                                            7 else 
»   }                                                                                                  » v.o = 2; 

9 u.o = 4; 
in return v.o; 

"   ) 

Figure 19: Java examples to illustrate data and control dependence. Pointer is a class with an public integer field 
named o. 

9.2    Program Slicing 

Given a program P and a slice criteria C, one can perform two forms of slicing: static and dynamic. Static slices [84] 
are generated by leveraging only the static information about the program, i.e., program structure, possible number 
of threads, possible number of objects, possible sharing of objects, etc. Dynamic slices [2] are generated by lever- 
aging both dynamic and static information about the program, i.e., execution histories, execution traces. Based on 
this distinction, static slices are ideal for program maintenance tasks that involve determining the impact of changes 
and understanding an existing program while dynamic slices are ideal for debugging tasks that involve determining 
software fault based on some field data or execution trace information. 

Independent of whether or not a slice is calculated using static or dynamic information, we noted in Section 9.1 
that slicing can be carried out working backward from the criteria or forward from the criteria. A backward slice 
contains parts of the program that affect the slice criteria, while a forward slice contains parts of the program that are 
affected by the slice criteria. In other words, backward slice is calculated by traversing the control/data flow paths in 
the program in reverse, while the forward slice is calculated by following the control/data flow paths in the program 
as they naturally occur. 

9.2.1    Program Dependences 

Despite the variations, all forms and types of slicing rely on a common set of definitions of program dependences that 
are based on the static structure of the program. Basically, a program slice can be viewed as the transitive closure of 
the dependence relation starting from the given slice criteria. 

There are two basic forms of program dependences. 

• A program point pt (dependent) is control dependent on a program point pe (dependee) if pe can decide if the 
control can reach pt during execution. 

• A program point pt (dependent) is data dependent on a program point pe (dependee) if pe assigns to a variable v 
that is used at pt and there exists a control flow path from pe to pt along which v is not assigned at intermediate 
program points. 

In function bar () in Figure 19, Line 4 will be executed if k==0 at Line 3 evaluates to true. Similarly, Line 6 
will be executed if k==0 at Line 3 evaluates to false. Hence, the Line 3 decides if either Line 4 or Line 6 will be 
executed, and thus lines 4 and 6 are control dependent on Line 3. 

In the same function, the value of the expression v at Line 7 is determined by the definition of v at lines Line 4 
and 6. Hence, the expression v at Line 7 is data dependent on the lines 4 and Line 6. 

The initial forms of data and control dependences were introduced by Weiser [84]. Subsequently, Podgurski et.al. 
[66] extended the definition of control dependence to account for delayed execution due to looping and not mere non- 
execution. These definitions assumed that the programs have only one end node, i.e., node with zero outgoing edges. 
Contrary to the latter requirement, most programs (particularly the programs using exception) have multiple or zero 
(reactive programs) end nodes. In our recent effort [69], we identified these shortcomings and proposed alternative 
definitions along with algorithms to address these shortcomings. 
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9.2.2   Aliasing 

In the context of languages (such as C, C++, Java) that support pointer/reference variables and heap allocated data, it 
is common for two variables to point to the same data/memory location, hence, lead to aliasing. In such cases, data 
dependence needs to account for the effect of aliasing. This is illustrated in the function f oo () in Figure 19. Based 
merely on the identifiers of the variable v. o, we could naively conclude that Line 10 is data dependent on lines 8 and 
6. However, as u is an alias to v, only the definition of v. o at Line 9 via u.o is used at Line 10. Hence, Line 10 is data 
dependent only on Line 9 and not on lines 8 and 6. This issue was first identified and addressed by Horwitz et.al. [36]. 

9.23    Slicing Concurrent Java Programs 

Most modern applications are concurrent, and it is relatively harder to comprehend concurrent applications. The 
main issue in comprehension is to statically determine the data flow (interference dependence) (due to interleavings) 
and control flow (ready dependence) (due to synchronization) between program points arising due to the scheduling 
choices during program execution. This issue was initially identified in the context of program dependence/slicing by 
Krinke [44] and Hatcliff et. al. [32]. These efforts identified the dependences required to enable sound concurrent 
program slicing. Subsequent efforts [47,60] proposed approaches based on these new dependences to slice concurrent 
programs. 

In the program in Figure 20, the savings Account object created at Line 43 is shared between two threads started 
at lines 46 and 47. In the context of this Account object and threads, depending on the runtime schedule, 

• the definition of Account .amount at Line 8 (Line 12) may affect the use of Account .amount at Line 12 
(Line 8, Line 5), hence, Line 8 (Line 12) is interference dependent on Line 12 (Line 8, Line 5). 

• the completion of the monitor acquisition at Line 4 is dependent on the release of the monitor at Line 15 and at 
Line 10, hence, Line 4 is ready dependent on Line 15 and Line 10. Similarly, Line 11 is ready dependent on 
Line 15 and Line 10. 

• the completion of the wait on the monitor at Line 6 is controlled by the notification on the same monitor at 
Line 13, hence, the wait at Line 6 ready dependent on the notification at Line 13. 

However, the same interference and ready dependences do not apply to the Account object created at Line 37 as this 
object does not escape its thread context, i.e., this object is not shared between threads. Details about this observation 
and how it can be used to optimize the calculation of interference and ready dependence is presented in our earlier 
work [70]. 

9.3    Indus Java Program Slicing Framework 

From our experience, we have found that the properties required of a slice vary across different applications of slicing. 
For example, the program slice required in model checking based program verification applications such as Bandera 
[19] needs to be executable. On the other hand, executability is not required in applications such as program compre- 
hension via visualization. Even transformations such as slice residualization (i.e., the generation of a new program 
that contains only the slice) may need to be handled differently for different applications, i.e., destructively updating 
the original program as opposed to generating a new program. Hence, program slicers need to be modular and flexible 
(customizable) as opposed to being monolithic and rigid. 

Driven by these reasons pertaining to genericity, flexibility, and public consumption, our goal was to implement 
a general program slicing framework for concurrent Java that could be used to create a customized slicer for diverse 
applications such as model extraction and program comprehension. 

9.3.1    Salient Features 

Figure 21 presents the architecture of the Indus slicer. In the sections below, we describe the primary features of the 
architecture. Due to space constraints of this article, there are many interesting aspects that we do not discuss, but we 
focus on those features that are most relevant and/or novel. 
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class Account { 
private int amount; 

public synchronized int withdraw(int a) { 
while (amount — a  < 0) { 

wait (): 

} 
amount = amount — a; 
return amount; 

} 
public synchronized int deposit (int a) { 

amount = amount + a; 
notifyAll (); 
return amount; 

} 
} 

class Husband implements Runnable { 
private Account save; 

public Husband! Account account) { 
save = account; 

} 
public void run() { 

save. deposit (90); 
} 

} 

class Wife implements Runnable { 
private Account save; 

public Wife(Account account) { 
save = account; 

} 
public void run()  { 

save, withdraw (10); 
(new AccountO). deposit (10); 

} 
»   } 
4(1 

ji   class Home { 
42 public static  void main( String ['] s) { 
43 Account savings = new AccountO; 
44 Runnable husband = new Husband(savings); 
45 Runnable wife = new Wife(savings); 
« new Thread(husband). start (); 
47 new Thread!wife), start (); 
«      } 
49     } 

Figure 20: Example to illustrate concurrent Java program slicing. We have omitted the exception around wait for 
brevity. 

Intermediate Representation    In Indus, Java programs are represented in Jimple [80], a typed three-address repre- 
sentation provided by the SOOT.6 As as result, every module in Indus operates on the Jimple representation of Java 

6Soot, a Java OptimizationFramework. is available at http://www.sable.mcgill.ca/soot/ library. 
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I I Classes 

LJ Artifacts 
-*• Association 
—> Inheritance 
^> Input/Output 

Figure 21: Bird's eye view of classes in Indus Libraries along with the relationships between classes and artifacts. 

programs. Hence, any program analyses that is based on Soot can leverage features from Indus with very little effort. 
Also, provided there is a translator from source to Jimple and/or bytecode to Jimple (as built into SOOT), each module 
from Indus can be applied to Java source as well as Java bytecodes. Indus leverages the bytecodes to Jimple translation 
built into SOOT. 

Batteries Included In general, program slicing depends, either directly or indirectly, on various forms of depen- 
dence analysis that capture the relation between various program points of the program with respect to certain aspects 
such as data flow, control flow, etc. Thus, when we provide Indus to developers interested in building slicing, analysis, 
or transformations on top of Indus, we aim to provide a framework where "batteries are included", i.e., all capabilities 
required to bring the framework to bear on interesting and realistic code bases are already included in the frame- 
work. The most common forms of dependences are intra-procedural aliasing-free data dependence, aliasing-based 
data dependence [68], control dependence [69], (inter-thread data) interference dependence [44], and (inter-thread 
synchronization) ready dependence [32]. These analyses along with the slicing framework depend on more basic 
analyses such as escape analysis [70], monitor analysis, and safe-lock analysis [32]. These analyses in turn depend on 
low-level analyses such as object-flow analysis [67], call graph analysis [9], and thread graph construction [70]. 

Instead of requiring end-users to develop these analyses from scratch or procuring their implementation from other 
libraries/projects, Indus provides an implementation (more than one in many cases) of every analysis mentioned above 
along with other analyses (Figure 21). As Indus libraries are self-contained with respect to analysis, it makes it easier to 
experiment with program slicing as well as other individual analyses and transformations provided by these libraries. 

Loose Coupling, Modularity, and Customizability Every analysis in Indus has two parts — an interface and an 
implementation. If analysis X requires analysis Y then every implementation of analysis X is only coupled with the 
interface to analysis Y and not to any specific implementation of analysis Y. Hence, each analysis is modular, i.e., 
an implementation of analysis X can be used independently without relying on the implementations of the analysis Y 
provided by Indus or a third party. As a consequence, it is easy to combine various implementations of analyses to 
evaluate their combined benefits — a common situation in the application of program analysis. In Indus, this feature 
is extensively used within the slicing framework and by other analyses to vary the level of accuracy of the result. For 
example, the slicing algorithm embedded in the SlicingEngine class requires a collection of implementations of 
IDependencyAnalysis interface. The sort of dependences provided by these implementations is identified by 
the associated enumeration value of type DependenceSort7. 

7This enumeration is available in the upcoming version, and it is currently represented as class constants. 
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Based on loose coupling and modularity, it is easy to assemble a program analysis pipeline or generate a customized 
slicer using the components provided by Indus. This is illustrated by the sample command-line applications provided 
in the Indus distribution, the customized version of the Indus stock slicer used in Bandera, and the use of the analyses 
provided by Indus in Kaveri. 

9.3.2    Advanced Features 

Non-SDG based Dependence/Slicing Based on Ottenstein and Ottenstein's result [63], most program dependence 
and program slicing related efforts are based on program/system dependence graphs 
(PDG/SDG) — program points are represented as nodes and the dependences between program points are represented 
as directed edges between nodes. Although a PDG accurately captures the dependence relations in an intra-procedural 
setting, they are altered in an inter-procedural setting [37] to capture dependences arising due to data flow across 
procedural boundaries, e.g., between formal parameters and arguments and various instances of global variables. Re- 
cent efforts pertaining to unconditional jumps [49] and interference dependence further extend SDG. These extensions 
enable the formulation of slicing as a simple graph reachability problem. However, the downside of these exten- 
sions is that non-slicing application will need to extract the required dependences from the dependence graph, hence, 
contributing to their complexity and cost. 

In Indus, instead of maintaining SDGs along with the extension, the logic to handle non-dependence aspects (e.g., 
argument to parameter binding at call sites) is embedded in the slicing algorithm while the dependences are maintained 
in their native form (e.g., mappings from variable definition line to variable use line). This approach has following 
advantages: 

• the slicing algorithm can be fine tuned independent of the representation of the dependence information, 

• the dependence information can be easily accessed by non-slicing applications without any increase in complex- 
ity or cost, 

• the cost of constructing and maintaining the dependence graph is eliminated, and 

• the maintenance of the slicing algorithm and the dependence analyses is easier due to decreased coupling and 
increased cohesion. 

Program Slicing is Program Analysis Pragmatically, program slicing is often viewed as a transformation that 
deletes parts of the program P to yield a slice S. However, we have observed that the end goal for which slicing is 
being applied has a strong influence on whether or not one holds to this view. For example, when program slicing is 
used for program understanding, testing, and/or debugging, the slice is a mere projection of P that can be captured by 
annotating P. On the other hand, when program slicing is used to generate executable slices as in Bandera [23], the 
slice is another program S that is a syntactically correct projection of P. 

Based on the above observation, in Indus we consider program slicing as a program analysis — program slicing 
only calculates the program points that belong to a slice (as in the case of program comprehension). Operations such 
as residualization of the slice as another program (via destructively updating the program or via cloning the slice) and 
transforming the slice to be executable are considered as post-slicing transformations. This approach simplifies the 
slicing algorithm and enables it to be used in various application by merely varying the post-slicing transformations. 

Calling Context Sensitive Slicing Consider the example in in Figure 22, suppose the expression v in Line 5 is 
provided as the slice criteria to calculate the backward slice of the program. For sake of simplicity, all of Line 5 will 
be included in the slice. As the value of v depends on the definition in Line 3, all of Line 3 needs to be included 
in the slice. At this point the slicing algorithm needs to decide which parts of f oo () needs to be included in the 
slice. Hence, it descends into f oo () and decides to include the invocation of bar () at Line 10. Similarly, upon 
descending into bar () and including Line 15, the slicing algorithm has two options to exit bar (): 

• process every calling context leading up to bar (), i.e., resume processing at the call sites at Line 4 and at 
Line 10. 

• process only realizable calling contexts, i.e., resume processing at the call site at Line 10. 
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class CCSS { 
public  static  void main( String [] s) { 

int v = foo (); 
int u = bar (); 
System.out. println ( Integer . toString (v)); 
int k = foo (); 

} 

static  int foo() { 
return bar (); 

} 

static   int bar() { 
Long 1 = new Long(System.currentTimeMillis ()); 
return 1. intValue (); 

} 
> 

Figure 22: Example to illustrate calling context sensitive. 

The former option is cheap but inaccurate as it calculates the slice based on a semantically unrealizable control 
flow path (main () ->f oo () ->bar () ->main ()). The latter option requires the slicing algorithm to record the 
call chain to track realizable paths in order to calculate an accurate slice. 

Slicing algorithms that support the first option are said to be calling context insensitive. The algorithms that support 
the second option by keeping track of calling contexts while descending into call sites and tracing back the recorded 
calling contexts are said to be calling context sensitive. Horwitz et.al. [37] proposed the first SDG based calling 
context sensitive algorithm for sequential programs. 

Indus supports calling context insensitive and calling context sensitive slicing of sequential programs. Further, 
despite calling context sensitive slicing of concurrent programs being exponential, Indus provides a restrictive form of 
calling context sensitive slicing of concurrent programs that is both efficient and relatively accurate. For more details, 
please refer to Ranganath's dissertation [68]. 

Context-restricted Slicing In the program in Figure 22, suppose an user is interested in determining the parts of the 
program that are affected by the invocation at Line 14 as a result of its execution due to the invocation at Line 3. In 
such a case, specifying Line 15 as a criteria would result in an inaccurate slice containing lines 3, 4 and 6. The reason 
being that the slicing algorithm will consider every calling context leading out from (into) the method containing the 
slice criteria (Line 14) and include every method occurring in these calling contexts in the slice. 

We addressed this shortcoming in Indus by enriching the slice criteria with a calling context that can be specified 
by the user. For example, in the scenario described above, the sequence [main () : *, foo () : 3, bar () : 10 ] 
will be supplied as the calling context with the criteria. This restricts the slicing algorithm ascent into invocation 
sites (e.g., bar () : 10) to only those mentioned in the sequence from right to left. By adopting this approach, the 
inter-procedural slicing algorithm can trivially leverage auxiliary contextual information to provide accurate call chain 
specific slices. 

This form of slicing is referred to as context-restricted slicing and it was introduced by Krinke [48]. Unlike 
tailoring the slicing algorithm as in Krinke's approach, our approach leverages calling context sensitive and non-graph 
based slicing along with support for calling context enriched slice criterion to realize context-restriction. 

This form of slicing is useful for debugging an application based on an exception stack trace, i.e., an user would 
like to calculate the slice that affects only the parts of the program occurring on an exception stack trace. In security- 
related applications, this feature is useful to accurately identify the parts of the programs that affect the data/control 
flow path between two modules, hence, easily identify any insecure parts of the program. 

Scoped Slicing In some applications/situations, it is known that some parts of the program may not contribute 
interestingly to the slice, e.g., the classes corresponding to the AST nodes of a compiler infrastructure, or the user may 
want to perform incremental slices to expedite slicing of large programs. In such cases, analyses and slicing can be 
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made more efficient by not considering such parts of the program. For this purpose, the user can limit the analyses 
and slicing in Indus. This scoping feature of Indus can be used to specify a scope of the analysis, i.e., only parts of the 
system that are within the scope are analyzed. The scope is usually defined in terms of classes, methods, and fields, 
e.g., appl. * \Appl will limit the analysis to consider only parts of the program belonging to the class Appl or the 
classes with fully qualified name beginning with appl., i.e., belonging to package appl). 

The slicing framework in Indus supports scoping, and we refer to this form of slicing as scoped analysis.8 Similarly, 
we refer to any analysis that is scope-sensitive as a scoped analysis. Currently9, every analysis implementation in Indus 
can be executed in a scope sensitive manner by leveraging the general scoping framework. 

Scoping Class Method Fields Size 
(KB) 

Time 
(sec) 

Mem 
(MB) 

none 1198 6136 1973 972 117/539 64/607 
auto-slicing 688 2881 879 485 67/462 31/568 
auto-analysis 478 1902 597 334 33/142 21/164 
manual 436 1856 590 318 30/129 20/150 

Table 2: Data from generating sequential executable slices of JReversePro. The data was collected on a Linux box 
(2GHz/2GB) running Java 1.5.0 with maximum heap space of 1700MB. In the data of the form X/Y, X represents the 
data for slicing only and Y represents the (overall) data for slicing and the dependent analyses (not transformations). 
The classes, methods, fields, and bytecode count is inclusive of code pertaining to the application and the required 
libraries. 

Scoping is particularly useful for removing parts of the runtime library that are used during boot strapping and/or 
for user interface, hence, contribute unnecessarily to slices pertaining to core functionality of the applications. Such 
a situation occurs in JReversePro10, a Java Decompiler/ Disassembler consisting of 90 Java classes that amount to 
264KB of bytecodes. JReversePro can be used in two modes: command line mode and GUI mode, and the usage 
mode does not affect its core functionality. However, this separation of functionalities (interface v/s core) cannot be 
identified in the web of program dependences as they occur in the program. Hence, to illustrate the benefits of scoping, 
we performed an experiment of sequential slicing on JReversePro in four different settings: 1) none, 2) manual by 
eliminating code that connects the GUI part to the core functionality, 3) auto-slicing by leveraging the scoping support 
in Indus only during slicing, and 4) auto analysis by leveraging the scoping support in all analyses. In each of these 
settings, we selected an arbitrary statement that contributes to the core functionality as the slice criterion. 

The data from the experiment (as given in Table 2) indicates that both automatic scoped analysis and automatic 
scoped slicing provide interesting improvements in terms of execution time and memory footprint. Hence, scoping 
can be used as to scale slicing and other analysis to be applicable to large real-world software. 

Interestingly, automatic scoped slicing performs 30% worse than automatic scoped analysis both in terms of time, 
memory, and slice size. As scoped slicing does not depend on the information pertaining to program points outside 
the scope, this data indicates that it would be efficient to perform scoped analysis instead of merely performing scoped 
slicing. 

Further, automatic scoped analysis provides slices that are comparable in terms of time, memory, and slice size 
to those generated via manual scoping. Hence, in situations requiring scoping, automatic scoping can be used for all 
analysis without much loss of accuracy. 

Scoped slicing is also useful in checking for data confinement in the realm of security. For example, one could 
define a secure scope and calculate a forward slice w.r.t. this scope; if the slice contains any part of the boundary of 
the scope then it indicates a breach of security. 

Although scoped slicing is usually fast and cheap but it may be unsound. In particular, when two program points 
within the scope may be related by a chain of dependences that involves program points outside the scope. However, 
such cases are trivially exposed by the inclusion of program points belonging to scope boundary, hence, the user can 
amend the scope appropriately and incrementally obtain accurate and sound slices. 

"This notion of restrictive slicing (not analysis! was introduced as Barrier Slicing by Krinke [46]. 
''in the latest development version of the libraries. 
"'http://jrevpro.sourceforge.net 
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Concurrent Java Program Slicing Indus provides various implementations of all dependences mentioned in Sec- 
tion 9.2 to perform both sequential and concurrent slicing of Java programs. 

The implementations of interference and ready dependence analysis in Indus rely on a novel, aggressive, and 
relatively accurate approach [70] to calculate interference and ready dependence based on object flow analysis, and 
an equivalence class based escape analysis [52, 73]. The approach leverages the escape analysis to rule out cases 
where the receiver object involved in the dependence relation is not visible outside the creator thread and the object 
flow analysis to rule out cases where the receiver variables participating in the dependence can never be aliases. 
Hence, based on this optimization, a slice of the program (in Figure 20) that contains every monitor related operations 
will contain every invocation to Account .withdraw () and Account .deposit () except the invocation to 
Account .deposit () at Line 37 — the receiver object in this invocation is does not escape the scope of the 
creating thread. 

Complete Slicing, Chopping, and Control Slicing Besides the support to generate forward and backward slices, the 
Indus slicing framework, also supports the generation of complete slices — a slice that contains parts of the program 
that affect and are affected by the slice criteria and every program point in the slice. The latter aspect distinguishes a 
complete slice from the mere union of the backward and forward slices w.r.t. the slice criteria. Hence, a complete slice 
can be perceived as a software carving technique that extracts a coherent and syntactically and semantically complete 
projection of the software w.r.t. the slice criteria. 

A common application of slicing/dependences is to determine the programs points that propagate the effect from 
one given program point to another program point. This set of program points is referred to as the chop of the program 
w.r.t.to the two given program points. As the slicing the algorithm in Indus merely identifies the slice by annotating 
the program, a chop can be trivially calculated by union-ing the forward slice w.r.t. the first program point with the 
backward slice w.r.t. the second program point and identifying the parts of the program that contain both the forward 
and backward annotations. 

In many applications of program verification, properties are expressed as "if/when the control reaches this program 
point, then property <p holds". For such applications, the slice should contain parts of the program that are required 
to ensure that control flow will reach the program point but not to reproduce the behavior of the program when the 
program point is executed. Such slices are referred to as control slices. The Indus program slicing framework supports 
the generation of control slices by merely enriching the slice criteria with the information that indicates if the slice 
should preserve the behavior of the program before or after the execution of the slice criteria. 

9.33   Applying the Framework in Program Verification 

As mentioned earlier, program slicing is used in Bandera as a model reduction technique to optimize program verifi- 
cation via model checking. The approach is to identify the program points at which the property will be checked or 
the program points that are required to preserve a property. These program points are provided as the slice criteria to 
the sheer to generate an executable backward slice. The slice is residualized by deleting parts of the original program 
that are not in the slice and by adding necessary parts required to ensure executability. The model generated from 
the residual sliced program is verified to ensure the program satisfies the property. The details of this approach is 
documented in earlier efforts [34, 69]. 

Due to our interests in using Indus for model checking reductions and the observation that deadlock and assertion 
violations are commonly checked faults, the Indus slicing tool contains pre-packaged features to generate slice criteria 
required to preserve the deadlocking behavior of the program and/or the assertions in the program with varying levels 
of precision. The tool also supports a rich configuration that could be used to vary the dependence analyses that need 
to be used to construct the slice, to control the accuracy of the used dependence analyses, and to select the type of slice. 
A pre-packaged graphical user interface (shown in Figure 23 can be used to configure the tool as described above. 

This tool has been adapted to fit into the tool framework used in Bandera. Similarly, other analyses from Indus have 
been exposed as tools in the Bandera tool framework. We have successfully applied these tools to various programs 
consisting of ~ 144 KB (~ 10 KLOC) of application bytecodes (~1197 KB of application + library bytecodes). 

Recently, we conducted experiments to empirically evaluate the benefits of slicing as a model reduction technique 
in the context of program verification [24]. Most of the programs (alarm clock, bounded buffer, disk scheduler, pipeline, 
sleeping barbers) considered in the experiments were common examples used to illustrate concurrency in academia. 
Of the uncommon programs, RAX was the distillation of a bug in the NASA remote experiment platform [14], Mol- 
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Figure 23: The pre-packaged graphical user interface to configure the Indus slicer tool. 

dyn and Ray Tracer were examples from JavaGrande benchmarks", and Siena-Server and Siena-Client-Server were 
programs built on top of Siena, an Internet-scale publish-subscribe infrastructure.12 

For this publication, we generated calling-context sensitive concurrent backward slices of the above mentioned 
programs. The deadlocking behavior of the programs were preserved by selecting the synchronization commands in 
the programs as the slicing criteria. The data from these experiments are summarized in Table 3. 

Application Classes Fields Methods Statements Time 
(seconds) 

Memory 
(MB) 

App Size 
(bytecodes) 

Alarm clock 349/24 1292/11 3434/42 40426/252 7 8 5922 
Bounded Buffer 351/25 1297/14 3432/39 40348/191 6 1 5914 
Disk Scheduler 348/23 1298/12 3428/38 40500/282 7 8 5697 
Pipeline 347/25 1283/5 3421/29 40225/94 0 44 2586 
Readers & Writers 348/22 1290/12 3438/43 40476/267 15 39 5919 
Sleeping Barbers 347/21 1290/11 3421/29 40322/184 9 41 3139 

RAX 347/21 1286/8 3421/29 40229/98 5 44 2501 

Moldyn 355/51 1388/99 3478/139 42266/3169 40 52 30598 
Ray Tracer 363/70 1359/100 3529/194 42128/3035 34 39 44418 

Siena-Server 489/160 1689/259 4929/783 57701/10664 139 111 215366 
Siena-Client-Server 489/197 1691/310 4929/927 57722/13677 149 143 210266 

Table 3: Summary of data pertaining to slicing concurrent programs in the context of program verification. The 
data was collected on a 1.4GHz Linux Box running Java 1.5.0_06 with maximum heap space of 512MB. The data 
in the form X/Y represents the count of the corresponding entity (classes, methods, fields, (Jimple) statements, and 
bytecodes) before slicing (X) and after slicing (Y). The memory data does include the storage (which was at most 
30MB) required by Jimple. The data is inclusive of code pertaining to the application and required libraries. 

The data in Table 3 suggests that the Indus slicing tool (framework) yields a reduction of at least 60%, 82%, 82%, 

Java Grande Benchmarking Project is available at http://www.epcc.ed.ac.uk/javagrande/. 
12 For more details about these programs, please refer to [24]. 
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and 77% in terms of number of classes, fields, methods, and statements, respectively, in the program (application + 
libraries) used in our recent experiments; hence, it indicates a high level of accuracy of the embedded slicing algorithm. 
Similarly, the data also suggests the slicing tool (framework) is efficient both in terms of time and memory as, in the 
experiments, it could analyze an infrastructure-based application such as Siena-Client-Server within three minutes 
while requiring less than 256MB of memory on a desktop Linux box. 

9.4    Kaveri: A Program Slicing plugin for Eclipse 

To the best of our knowledge, to this date there has been only one feature rich slicing tool with a sophisticated UI 
— the commercial tool named CodeSurfer13 that is targeted towards C programs. Hence, as part of developing the 
program slicing framework, we also decided to develop an user interface to an instance of our framework. Given that 
Eclipse14 was a open platform that is well accepted by the Java community as a development platform, we choose to 
develop the slicing UI as a plugin to Eclipse to leverage the extensive Java development support available in Eclipse 
and to appeal to the Java community. 

Kaveri is a plugin that contributes program slicing via an intuitive user interface as a feature to Eclipse platform. 
The plugin was implemented as a graduate project by Ganeshan Jayaraman from Kansas State University under our 
supervision. 

9.4.1 Architectural Overview 

Every aspect of presenting the information via the UI is handled by Kaveri. Trying to be a true source level analysis 
plugin, Kaveri handles the mapping of between Java and Jimple representations of the programs. This is done by 
compiling the Java source via the Eclipse Java compiler, generating the Jimple representation from the generated 
bytecodes, and then constructing a mapping between the Java source and the Jimple representation. This Jimple 
representation is fed to the Indus program slicing tool (described in Section 9.3.3) to perform slicing. 

During slicing, Kaveri leverages the "program slicing is an analysis" feature of Indus to represent the generated 
slice by annotating/tagging parts of the Jimple representation that belongs to the slice. By combining these annotations 
with the mapping between Java and Jimple, Kaveri displays the slice in the Eclipse Java Editor view (as shown in the 
top part of Figure 24). Beyond this, it provides five views that present various dependences existing in the program, 
hence, aiding the understanding of the generated slice or the program. 

9.4.2 Features 

The various features and views15 provided by Kaveri are illustratively described in the following subsections along 
with a brief outline of how they can be leveraged within Eclipse. 

Slice Java Programs As advertised, Kaveri enables the user to perform slicing and view the results at the Java source 
level. The user can select an arbitrary line in the Java Editor and click on either the backward slice or the forward 
slice button on the toolbar to perform slicing. The result of slicing is displayed by highlighting the lines of source file 
included in the slice in green within the Eclipse Java Editor (as illustrated in the top part of Figure 24). Also, the name 
of any file that contains some part of the slice is decorated in the package explorer16. 

Usually, there will be a few Java statements such that not all parts of these statements are in the slice, e.g., some 
subexpressions of a statement are omitted from the slice. Such instances are distinguished by highlighting the line 
in yellow (indicating that only parts of the statement are in the slice) as opposed to green (indicating that all parts of 
the statement are in the slice). Further, more information about such instances can be retrieved via the Jimple View 
described next. 

Java to Jimple Mapping The mapping between Java to Jimple generated by Kaveri can be viewed in the Jimple 
View. As shown in Figure 24, this view displays the Jimple statements that collectively represent the Java statement 
that occurs on the current line in the Java Editor. This view primarily serves four purposes. 

l:,CodeSurfer, an analysis and inspection tool for C, is available at http://www.grammatech.com/products/codesurfer/. 
l4Eclipse, an open extensible IDE and tool platform written in Java, is available at http://www.eclipse.org. 
l5The term used in Eclipse to refer to a non-context sensitive display. 
16 A Java specific view in Eclipse that presents project artifacts in hierarchical terms of packages, source files, classes, fields, and methods. 
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Figure 24: A program slice is displayed in the Eclipse Java Editor and the mapping between Java and Jimple repre- 
sentation is displayed the Jimple View. 

1. It provides a simple approach to understand how a Java statement is represented as a set of Jimple statements, 
hence, serving as a Jimple learning aid. 

2. It displays the slice at the level of Jimple statements; this information is indicated by displaying true or false 
in the "Part of Slice" column against each Jimple statement occurring in the "Jimple Statement" column. This 
feature is useful in situations when not all parts of a Java statement are included in the slice. In such cases, by 
clicking on the line highlighted in yellow in the Java editor, the user can view the parts of the statement that are 
(not) part of the slice. 

3. It enables the user to selectAmselect slice criteria at the granularity of Java statements. The user can position 
the cursor at a particular line in Java editor and use the buttons marked as "Java Level Criteria" to select and 
unselect slice criteria in terms of Java statements (lines). Further, it also provides the fine grained control to 
select slice criteria to generated control slices (described in Section 9.3.2). 

4. An advanced user can select and unselect slice criteria at the granularity of Jimple statements (bytecodes) by 
selecting the appropriate Jimple statement in view and clicking the buttons marked as "Jimple Level Criteria". 
This feature is suitable for users who are interested in slicing Java bytecodes. 

Kaveri generates the mapping on demand when either slicing is performed or when the user turns on the Jimple 
View (by clicking on the "power-on" button in the toolbar). As the mapping generation can be a costly operation, the 
feature to control mapping generation enables the user to use Kaveri in a performance non-intrusive manner. 

Dependence Tracking    Beyond slicing, users may use Kaveri to view the dependences between various program 
points in a Java program. This is possible via the Dependence Tracking View. The program dependences for the 
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public int deposit(int a) { 
synchronized(this) { 

amount = amount + a; 
notifyAllQ; 
return amount; 

} 

} 
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Figure 25: The dependence information for the highlighted statement in the editor is displayed in the Dependence 
Tracking View by Kaveri. 

Java statement occurring on the current line in the Java Editor is displayed in this view as show in Figure 25. The 
dependence information is hierarchically displayed at the granularity of both Java and Jimple statements and in both 
directions (forward and backward). The user can traverse the dependences by clicking on the dependents/dependees 
displayed in the "Dependence" column of this view. 

For example, in Figure 25, the dependence tracking view indicates that the statement amount = amount + a; 
in Account .deposit () is data dependent on the statement amount = amount - a; in 
Account .withdraw () as        well        on        the        assignments        to        this        and        a        in 
Account. deposit (). The latter is a mere identifier based intra-procedural data dependence whereas the former 
is a reference-based inter-procedural data dependence. Similarly, the view indicates that the same statement is interfer- 
ence dependent on the assignment 
amount = amount - a; in 
Account .withdraw (). Although the interference dependence is valid, the reference-based data dependence is 
invalid; this is due to the current accuracy limitation of data dependence analysis. 

During debugging, it is a common task to traverse through the source code based on the structure of the code. It 
is also common to backtrack during such traversal and continue forward towards new (or old) program points. For 
this purpose, tools such as ctags" and etagsis generate tagging information to expedite such traversal and editors such 

"Exuberant Ctags: A multilanguage implementation of Ctags. is available at http://ctags.sourceforge.net/. 
l8This is a tagging software available with Emacs. 
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Statement                         Filename Line number Relation with previous item 

while (amount - a  <0)| Home.java 6 ontrol Dependee 

amount = amount - a;     Home.java 13 

amount = amount + a;     Home.java 19 

Data Dependee 

Starting Program Point 

Dependence History View x'-A Dependence Tracking View 

Figure 26: The history of the dependences "chased" by the user is displayed in the Dependence History View by 
Kaveri. 

as Vim19 and Emacs20 support such traversals by leveraging tagging information. Even Eclipse has built-in non-Java 
specific support for annotation traversal. 

Using the dependence tracking view, the user can perform a traversal based on a chain of program dependences. 
Inspired by the above mentioned support for various forms of code traversal, we provided a similar support to traverse 
dependences. As part of this support, Kaveri maintains a stack of dependences traversed by the user and this stack can 
be accessed via the Dependence History View as shown in Figure 26. At any point during the traversal, the user can 
jump to a point in the chain and continue traversing. 

In Figure 26, the user has started at line 19 in Home.java and traversed a data dependence to line 13 followed by a 
control dependence to line 6 in the same file. 

Beyond Basics Apart from the basic (select-the-line-and-click-button) mode of slicing, Kaveri provides the follow- 
ing features. These features can be leveraged via the dialog (shown in Figure 27) dedicated to perform slicing in the 
advanced mode. 

• Perform fine grained slicing: The user can select Jimple level slice criteria via the Jimple View and then use 
advanced slicing dialog to perform Jimple statement (bytecodes) level slicing. 

• Perform scoped slicing: The user can defines various scopes via regular expressions on the fully qualified names 
of packages, classes, and methods of the software. The regular expressions can be combined with inheritance 
relation as well. These scopes are managed in a workspace specific manner by Kaveri. As for their usage, 
the user may choose to enable any of these scopes while performing advanced slicing via the dialog shown in 
Figure 27. 

• Control the classes used for slicing: In many situations, it may be required to understand a Java program in the 
context of a particular version of a library. In such situations, the user can switch to advanced mode of slicing 
and plug in the required library into the "Slice Class Path" before performing slicing. 

• Perform calling context driven slicing: Kaveri provides support to choose calling contexts via the Eclipse call 
hierarchy view21. In the advanced mode of slicing, the user can select the required calling contexts. Before 
slicing, Kaveri will combine the calling contexts appropriately with the slicing criteria to achieve the effect of 
calling context driven slicing. 

" Vim. an extensible editor, is available at http://www.vim.org/. 
20Emacs, an extensible editor, is available at http://www.gnu.org/software/emacs/. 
21 An view that hierarchically describes the call hierarchy for the selected method. 

47 



• Slice the program                                                                                                                          X 

Configuration \concurrent                                                                                         • 

• Additive slice display 

[Criteria! Scope Contexts Root Methods Slice Class Path 

V^lllcild 

1                                      III 
!     Function          Line number Jimple index Consider Execution 

- 
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• Wife.runO        45                0                 true 

Delete 

Run Cancel 

Figure 27: The Kaveri dialog that enables users to select criteria, scoping, and starting calling contexts before slicing. 

9.5 Related Work 

There have been numerous efforts pertaining to static slicing of sequential programs over the last two decades, and we 
refer the reader to Frank Tip's survey [79] to learn more about these efforts. In our effort, we have realized various 
contributions from these efforts along with numerous new advances in Indus, the first publicly available Java program 
slicing framework. 

Our earlier work provides a more formal perspective on several aspects of Indus including novel forms of control 
dependence using for languages like Java [69], foundations of dependences for concurrent Java [32], and using escape 
analysis to reduce spurious inter-thread dependences [70]. 

Recently, Krinke proposed context-restrictive slicing [48] and barrier slicing [46]. We have realized both these 
forms of slicing in Indus. Further, we have extended the concept of barrier/scope to various program analyses to 
further improve the scalability of scoped slicing without loss of accuracy. 

In the context of static slicing of concurrent programs, almost all previous efforts [47, 59] have been based on 
PDGs. In contrast, we have proposed the first non-SDG based concurrent slicing algorithm [68]. 

Bandera [ 19] was the first effort to apply slicing to Java programs in the context of program verification. Our effort 
supplements this effort with a robust and accurate Java slicing implementation that can be readily used for the purpose 
of model reduction in model checking Java programs [24]. 

To the best of our knowledge, the Java sheer from Univeristy of Passau [31] is the only other program sheer that 
can handle almost all features of Java. As this sheer is not publicly available, we are unable to compare the catered 
features of the sheers. Currently, Kaveri is the first and the only publicly available Java program slicing graphical 
environment. 

9.6 Assessment 

En route to addressing a very local and specific problem in the realm of program verification, we have developed 
the Indus Java program slicing framework. This framework is the first and only publicly available general purpose 
Java slicing implementation. The framework is robust, flexible, and capable of handling almost all features of Java 
programming language. During this effort, we have found that a non-graph based approach to slicing is feasible and 
correct, contributed optimizations for interference and ready dependence analysis, proposed alternative definitions for 
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control dependences, and developed new and useful forms of slicing — complete slicing, context-restricted slicing, 
and scoped slicing. As a result of this effort, we have successfully applied program slicing as a model reduction 
technique in the context of program verification. 

In addition, we have also developed Kaveri - a GUI front-end to Indus with a set of features that are targeted to 
enable program comprehension via program slicing and program dependences. This tool can serve as a good starting 
point to introduce program slicing as a program comprehension technique in academia. 

Please refer to http://indus.projects.cis.ksu.edu for various publications, software artifacts, and documentation per- 
taining to Indus and Kaveri. 
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