=@ Software Engineering Institute

Making the Business Case for
Software Assurance

Nancy R. Mead
Julia H. Allen

W. Arthur Conklin
Antonio Drommi
John Harrison

Jeff Ingalsbe
James Rainey
Dan Shoemaker

April 2009

SPECIAL REPORT
CMU/SEI-2009-SR-001

CERT Program
Unlimited distribution subject to the copyright

hitp: /i el cmu edu

This report was prepared for the

SEI Administrative Agent
ESC/XPK

5 Eglin Street

Hanscom AFB, MA 01731-2100

The ideas and findings in this report should not be construed as an official DoD position. It is published in the
interest of scientific and technical information exchange.

This work is sponsored by the U.S. Department of Defense and the Department of Homeland Security National
Cyber Security Division. The Software Engineering Institute is a federally funded research and development
center sponsored by the U.S. Department of Defense.

Copyright 2009 Carnegie Mellon University.
NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF
ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED
TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS
OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE
ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR
COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for
internal use is granted, provided the copyright and "No Warranty" statements are included with all reproductions
and derivative works.

External use. This document may be reproduced in its entirety, without modification, and freely distributed in
written or electronic form without requesting formal permission. Permission is required for any other external
and/or commercial use. Requests for permission should be directed to the Software Engineering Institute at
permission{@sei.cmu.edu.

This work was created in the performance of Federal Government Contract Number FA8721-05-C-0003 with
Carmegic Mellon University for the operation of the Software Engineering Institute, a federally funded research
and development center. The Government of the United States has a royalty-free government-purpose license to
use, duplicate, or disclose the work, in whole or in part and in any manner, and to have or permit others to do so,
for government purposes pursuant to the copyright license under the clause at 252.227-7013.

For information about purchasing paper copies of SEI reports, please visit the publications section of our website
(http:/Awrww sei.cmu.edu/publications/).

Capability Maturity Model, CMM, and CMMI are registered in the U.S. Patent and Trademark Office by Carnegie
Mellon University.

Table of Contents

Acknowledgments

Executive Summary

Abstract

1 Introduction
1.1 Audience for This Guide
1.2 Motivators
1.3 Howto Use This Guide

2 Cost/iBenefit Models Overview

2.1
22

23

2.4

25

26

27
2.8

Traditional Cost/Benefit Models
Investment-Oriented Models

221 Total Value of Opportunity (TVO) — Gartner

2.2.2 Total Economic Impact (TEl) — Forrester

2.2.3 Rapid Economic Justification (REJ) — Microsoft
Cost-Oriented Models

2.3.1 Economic Value Added (EVA) — Stern Stewart & Co

2.3.2 Economic Value Sourced (EVS) — Cawly & the Meta Group
2.3.3 Total Cost of Ownership (TCO) — Gartner
Environmental/Contextual Models

241 Balanced Scorecard — Norton and Kaplan

2.4.2 Customer Index: Andersen Consulting

2.4.3 Information Economics (IE) — The Beta Group

2.4.4 IT Scorecard — Bitterman, IT Performance Management Group
Quantitative Estimation Models

251 Real Options Valuation (ROV)

2.5.2 Applied Information Economics (AIE) — Hubbard

253 COCOMO Il and Security Extensions — Center for Software Engineering
Some Common Features

28.1 General Factors

2.6.2 Common Factors Across Models

Limitations

Other Approaches

3 Measurement

3.1
3.2
33
3.4
35

4 Risk
4.1
4.2
43

Characteristics of Metrics
Types of Metrics

Specific Measurements
What to Measure

SDL Example

Intreduction

Risk Definitions

A Framework for Software Risk Management

43.1 Understand the Business Context

4.3.2 Identify the Business and Technical Risks

433 Synthesize and Rank (Analyze and Prioritize) Risks

i | CMU/SEI-2009-SR-001

vi

vil

=

W NN =

O o~~~ & b b;

S N T (T G Y
~N N AR WON N=2 = 0O

18
18
19
20
22
23

24
24
25
25
26
27
27

4.4
4.5

4.6

4.7
4.8

4.9

43.4 Define the Risk Mitigation Strategy
43.5 Fix the Problems and Validate the Fixes
436 Measurement and Reporting on Risk
Methods for Assessing Risk

Identifying Risks

451 Assets

452 Threats

453 Vulnerabilities

454 Impacts to Assets

Analyzing Risks

46.1 Business Impact

4.6.2 Likelihood

46.3 Risk Valuation

Categorizing and Prioritizing Risks
Mitigating Risks

481 Mitigations

48.2 Residual Risk

Summary

5 Prioritization

5.1
52

Foundation and Structure
Using the Dashboard

6 Process Improvement and Secure Software

6.1
6.2

6.3
6.4

6.5
6.6

Ensuring a Capable Process

Adapting the CMMI to Secure Software Assurance

6.21 Level 1 —Initial

622 Level 2-Managed

6.2.3 Level 3 —Defined

6.2.4 Level 4 — Quantitatively Managed

625 Level 5—Optimizing

6.2.6 Implementing the Process Areas

6.2.7 Differences Between the CMMI| and Software CMM Process Areas
The CMMI Appraisal Process

Adapting ISO 15504 to Secure Software Assurance

6.4.1 Assessment and the Secure Life Cycle

6.4.2 150 15504 Capability Levels

Adapting the ISO/IEC 21287 Standard Approach to Secure Software Assurance
The Business Case for Certifying Trust

6.6.1 Certification: Ensuring a Trusted Relationship with an Anonymous Partner

7 Globalization

7.1

7.2
7.3
7.4
7.5

Qutsourcing Models

7.1.1 Another View of Outsourcing Options
Costs and Benefits of Offshoring

Project Management Issues

Location

Possible Tradeoffs

8 Organizational Development

8.1
8.2
83

Introduction: Adding a New Challenge to an Existing Problem
Maintaining the Minimum Organizational Capability to Ensure Secure Software
Learning to Discipline Cats

ii | CMU/SEI-2008-SR-001

28
28
28
29
31
32
32
33
33
34
34
35
35
35
36
36
37
37

39
39
42

45
45
46
47
47
43
49
50
50
50
51

51
53

56
57

58
59

61
61
62
62
63
63
63

65
65
65
66

8.4

Ensuring That Everybody in the Operation |s Knowledgeable
841 Awareness Programs

8.4.2 Training Programs

8.4.3 Education Programs

8.5 Increasing Organizational Capability Through AT&E
851 Security Recognition
8.5.2 Informal Realization
8.5.3 Security Understanding
85.4 Deliberate Control
855 Continuous Adaptation
86 The Soft Side of Organizational Development
87 Some General Conclusions
9 Case Studies and Examples
91 Background
92 Case Studies and Examples
921 Case 1. Large Corporation
922 Case2: SAFECcde
923 Case 3: Microsoft
9.2.4 Case 4. Fortify Case Study Data
925 Case 5 COCOMO data
9.3 Conclusion
10 Conclusion and Recommendations
10.1 Getting Started
10.2 Conclusion
Appendix A: The “Security” in Software Assurance
Appendix B: Cost/Benefit Examples
Appendix C. SIDD Examples
Appendix D: Process Improvement Background
Appendix E: Improving Individual and Organizational Performance
Appendix F: Relevance of Social Science to the Business Case
Bibliography

iii | CMU/SEI-2009-SR-001

67
67
68
68
69
69
69
69
70
70
71
71

73
73
73

73
73
74
75
75
75

76
76
77

78

79

83

91

96

97

List of Figures

Figure 1. A Software Security Risk Management Framework
Figure 2. Effect of Microsoft Security "Push" on Windows and Vista
Figure 3: Fortify Case Study Data

iv | CMU/SEI-2008-SR-001

26
74
75

List of Tables

Table 1:
Table 2:
Table 3:
Table 4:
Table 5:
Table 6:

Comparison of Cost/Benefit Models

Risk-Level Matrix

Risk Scale and Necessary Actions

SIDD Categories and Indicators

Categories of Measures for Four Perspectives of the Balanced Scorecard

Sample Set of Measures for Assigning Value to Software Assurance

v | CMU/SEI-2009-SR-001

16
35
36
40
79
80

Acknowledgments

We would like to acknowledge John Bailey, our colleague on the informal Business Case Team,
the authors of articles on Business Case on the Build Security In website, and the speakers and
participants in our workshop “Making the Business Case for Software Assurance.” All have con-
tributed to our thinking on the subject. We further acknowledge the sponsor of the work, Joe
Jarzombek, at the National Cyber Security Division in the Department of Homeland Security;
John Goodenough, for his thoughtful review; and our editor, Pamela Curtis, for her constructive
editorial modifications and suggestions.

vi | CMU/SEI-2009-SR-001

Executive Summary

As software developers and software managers, we all know that when we want to introduce new
approaches in our development processes, we have to make a cost/benefit argument to our execu-
tive management to convince them that there is a business or strategic return on investment. Ex-
ecutives are not interested in investing in new technical approaches simply because they are inno-
vative or exciting. The intended audience for this guide is primarily software developers and
software managers with an interest in assurance and people from a security department who work
with developers. The definition of software assurance used in this guide is “a level of confidence
that software is free from vulnerabilities, either intentionally designed into the software or acci-
dentally inserted at any time during its life cycle, and that the software functions in the intended
manner” [CNSS 2006]. This definition clearly has a security focus, so when the term “software
assurance” appears in this guide, it will be in the context of this definition.

In the area of software assurance we have started to see some evidence of successful economic
arguments (including ROT) for security administrative operations. Initially there were only a few
studies that presented evidence to support the idea that investment during software development
in software security will result in commensurate benefits across the entire life cycle. This picture
has improved, however, and this report provides some case studies and examples to support the
cost/benefit argument.

In reading through this guide, however, it will become obvious that there is no single “best” me-
thod to make the business case for software assurance. This guide contains a variety of mecha-
nisms, and each organization using the guide must decide on the best strategies for their situation.
In Section 2 we present a number of different models for computing cost/benefit. In Section 3 we
discuss measurement and the need for measurement to support cost/benefit and ROI arguments.
Section 4 discusses risk. Section 5 discusses prioritization, once the risks are understood. Section
6 discusses process improvement and its relationship to software assurance and business case.
Section 7 discusses the topic of offshoring and its relationship to software assurance and business
case. Section 8 discusses organizational development in support of software assurance and busi-
ness case. Section 9 provides case studies in support of business case, and Section 10 provides our
conclusions and final recommendations.

In summary, the following steps are recommended in order to effectively make the business case

for software assurance.

1. Perform a risk assessment. If you are going to make the business case for software assur-
ance, you need to understand your current level of risk and prioritize the risks that you will
tackle.

2. Decide what you will measure. If you are going to have any evidence of cost/benefit, you
will need to have a way of measuring the results. This may involve use of some of the mod-
els discussed in this guide, development of your own measures of interest, or use of data that
you are already collecting.

3. Implement the approach on selected projects. Go ahead and collect the needed data to
assess whether there really 1s a valid cost/benefit argument to be made for software assur-
ance. The case studies that we present are the result of such implementations.

vii | CMU/SEI-2008-SR-001

4. Provide feedback for improvement. Development of a business case is never intended to
be a one-time effort. If your cost/benefit experiments are successful, see how thev can be-
come part of your standard practices. Assess whether you can collect and evaluate data more
efficiently. Assess whether you are collecting the right data. If your cost/benefit experiments
are not successful (cost outweighs benefit), ask yourself why. Is it because software assur-
ance 1s not a concern for your organization? Did you collect the wrong data? Were staff
members not exposed to the needed training? Are you trying to do too much?

In order to effect the changes needed to support the software assurance business case, we recom-
mend the following steps:

1. Obtain executive management support. It’s almost impossible to make the changes that
are needed to support the business case for software assurance without management support
at some level. At a minimum, support is needed to try to improve things on a few pilot pro-
jects.

2. Consider the environment in which you operate. Does globalization affect you? Are there
specific regulations or standards that must be considered? These questions can influence the
way you tackle this problem.

3. Provide the necessary training. One of the significant elements of the Microsoft security
“push” and other corporate programs, such as IBM’s software engineering education pro-
gram, is a commitment to provide the needed training. The appropriate people in the organi-
zation need to understand what it 1s you are trying to do, why, and how to do it.

4. Commit to and achieve an appropriate level of software process improvement. Regard-
less of the process you use, some sort of codified software development process is needed in
order to provide a framework for the changes you are trying to effect.

This guide and the associated references can help vou get started along this worthwhile path. This
culminates a multi-year investigation of ways to make the business case for software assurance.
This effort included informal and formal collaboration, a workshop on the topic, and development
of this report.

“Making the Business Case for Software Assurance” is an ongoing collaborative effort within the
Software Assurance Forum and Working Groups, a public-private metagroup, co-sponsored by
the National Cyber Security Division of the Department of Homeland Security and organizations
in the Department of Defense and the National Institute for Standards and Technology. The Soft-
ware Assurance Community Resources and Information Clearinghouse website at
https://buildsecurityin. us-cert. gov/swa/ provides relevant resources and information about related
events.

viii | CMU/SEI2009-SR-001

Abstract

This report provides guidance for those who want to make the business case for building software
assurance into software products during each software development life-cycle activity. The busi-
ness case defends the value of making additional efforts to ensure that software has minimal secu-
rity risks when it 1s released and shows that those efforts are most cost-effective when they are
made appropriately throughout the development life cycle. Although there is no single model that
can be recommended for making the cost/benefit argument, there are promising models and me-
thods that can be used individually and collectively for this purpose, as well as some convincing
case study data that supports the value of building software assurance into newly developed soft-
ware. These are described in this report.

The report includes a discussion of the following topics as they relate to the business case for
software assurance: cost/benefit models, measurement, risk, prioritization, process improvement,
globalization, organizational development, and case studies. These topics were selected based on
earlier studies and collaborative efforts, as well as the workshop “Making the Business Case for
Software Assurance,” which was held at Carnegie Mellon University in September Z008.

ix | CMU/SEI-2009-SR-001

1 Introduction

As software developers and software managers, we all know that when we want to introduce new
approaches in our development processes, we have to make a cost/benefit argument to our execu-
tive management to convince them that there is a business or strategic return on investment. Ex-
ecutives are not interested in investing in new technical approaches simply because they are inno-
vative or exciting. For profit-making organizations, we need to make a case that demonstrates we
will improve market share, profit, or other business elements. For other types of organizations, we
need to show that we will improve our software in a way that is important—that adds to the or-
ganization’s prestige, ensures the safety of troops in the battlefield, and so on.

In the area of software assurance, particularly security, we have started to see some evidence of
successful ROT or economic arguments for security administrative operations, such as maintaining
current levels of patches and establishing organization entities such as Computer Security Incident
Response Teams (CSIRTs) [Ruefle 2008] to support security investment [Blum 2006, Gordon
2006, Huang 2006, Nagaratnam 2005]. Initially there were only a few studies that presented evi-
dence to support the idea that investment during software development in software security will
result in commensurate savings later in the life cvcle, when the software becomes operational
[Soo Hoo 2001, Berinato 2002, Jaquith 2002]. This picture has improved, however. As we ex-
pected early on, Microsoft has published data reflecting the results of using their Security Devel-
opment Lifecycle [Howard 2006]. Microsofl is using the level of vulnerabilities and therefore the
level of patches needed as a measure of improved cost/benefit [Microsoft 2009]. The reduction in
vulnerabilities and related patches in recent Microsoft product releases is remarkable.

We would also refer readers to the Business Context discussion in Chapter 2 and the Business
Climate discussion in Chapter 10 of McGraw’s recent book [McGraw 2006] for ideas. There has
been some work on a security-oriented version of COCOMO called COSECMO [Colbert 2006];
however, the focus has been more on cost estimation than on return on investment. Reifer 1s also
working in this area on a model called CONIPMO, which is aimed at systems engineers [Reifer
2006]. Data presented by Fortify [Meftah 2008] indicates that the cost of correcting security flaws
at the requirements level is up to 100 times less than the cost of correcting security flaws in
fielded software. COCOMO data suggests that the cost of fixing errors of all types at require-
ments time is about 20 times less than the cost of fixing errors in fielded software. Regardless of
which statistic 1s used, there would seem to be a substantial cost savings for fixing security flaws
during requirements development rather than fixing them after software is fielded. For vendors,
the cost is magnified by the expense of developing and releasing patches. However, it seems clear
that cost savings exist even in the case of custom software when security flaws are corrected early
in the development process.

At this time there is little agreement on the right kinds of models to be used for creating a business
case, and although there is now some data that supports the ROI argument for investment in soft-
ware security early in software development, there is still very little published data.

1 | CMU/SEI-2009-SR-001

Our belief is that even though they may not constitute a traditional ROI argument, the methods
being used to calculate cost/benefit, whether they be reduced levels of patching in the field or re-
duced cost of fixing security flaws when they are found early in the life cycle, are convincing.

1.1 Audience for This Guide

The intended audience for this guide is primarily software developers and software managers with
an interest in security/assurance and people from a security department who work with developers.

These software developers/managers could reside in the software vendor/supplier community or
reside within an in-house development team within the consumer community. The cost/benefit
analysis could be quite different between these two types of communities, but it 1s hoped that the
information in this guide will provide useful insight for both perspectives.

Software developer/managers facing the safety-critical or national security application market will
almost certainly have already invested in software assurance, as their market has security expecta-
tions with an established set of requirements. Continuous improvement 1s the mantra of software
assurance as much as it is for quality, so their business case may be looking for efficiency savings
and process improvement using the latest tools and techniques. Experienced software assurance
readers will still benefit from this guide, as a wide range of cost/benefit models and supporting
topics are presented which could complement their existing approach.

The case 1s different for software vendors facing the shrink-wrap mass consumer market. This
market may expect software assurance but not expect to pay a premium for it. The business case
for vendors may only support an investment in raising awareness and training together with some
tool evaluation to help build up relevant skills. Or they may be looking at significant investment
to reduce increasing software support costs or to extend their market into communities that expect
higher levels of software assurance. There 1s sufficient breadth and depth in this guide to help
with these two ends of the investment spectrum.

Although this guide is aimed primarily at producers of software, consumers and enterprise users
of software will also find it useful to justify costs associated with meeting software assurance re-
quirements when they come to specify and procure software.

1.2 Motivators

The commonly accepted definition of software assurance is “a level of confidence that software is
free from vulnerabilities, either intentionally designed into the software or accidentally inserted at
any time during its life cycle, and that the software functions in the intended manner” [CNSS
2006]. If the reader is a software developer/manager in the safety-critical or national security ap-
plication market, they will understand exactly what this means and will understand many of the
problems and have experience in many of the solutions. Readers who are not from this back-
ground may find the discussion in Appendix A helpful.

Software assurance is a national security priority [PITAC 1999]. That i1s due to the common-sense
fact that a computer-enabled national infrastructure is only going to be as reliable as the code that
underlies it [Dynes 2006, PITAC 1999]. Thus, it is easy to assume that any set of activities that
increase the general level of confidence in the security and reliability of our software should be on
the top of everybody’s wish list.

2 | CMU/SEI-2009-SR-001

Unfortunately, if the software assurance process is working right, the main benefit is that abso-
lutely nothing happens [Anderson 2001, Kitchenham 1996]. And in a world of razor-thin margins,
a set of activities that drive up corporate cost without any directly identifiable retumn is a tough
sell, no matter how seemingly practicable the principle might be [Anderson 2001, Ozment 2006,
Park 2006].

The business case for software assurance is therefore contingent on finding a suitable method for
valuation—one that allows managers to understand the implications of an indirect benefit such as
assurance and then make intelligent decisions about the most feasible level of resources to commit
[Anderson 2001, McGibbon 1999].

When submitting any type of business case to your manager or to your organization’s investment
board, there must be a cost/benefit analysis. But it also helps to be able to answer the simple ques-
tion of “Why now?”

Why now?

The world is moving forward at an amazing pace with increasing dependence on information and
communication technology {ICT), yet it 1s still very much a nascent industry. Nations are taking
the security of their national infrastructures very seriously and along with industry are making
significant investments in cyber security, as well as incurring costs in responding to security
breaches. To many advocates of soflware assurance, this investment 1s justified by concerns about
the cost of failure.

This situation is not sustainable. As this cost of failure continues to rise, the expectation of the
market will change, demanding better software and better software assurance. The government
may intervene and demand higher levels of assurance in public sector procurement or increase
regulation.

Your business case for software assurance may be clear, simply from the results of a cost/benefit
analysis. Where it 1s not clear, it 1s important to understand the consequences of doing nothing,
Software assurance is not a quick fix problem, and the longer the inevitable is postponed, the
harder and more costly the solution 1s likely to be.

1.3 Howto Use This Guide

In reading through this guide, it will become obvious that there 1s no single best method to make
the business case for software assurance. This guide contains a variety of mechanisms, and each
organization using the guide must decide on the best mechanisms to use to support strategies that
are appropriate for their situation. In Section 2 we present a number of different models for com-
puting cost/benefit. In Section 3 we discuss measurement and the need for measurement to sup-
port cost/benefit and ROT arguments. Section 4 discusses risk. Section 5 discusses prioritization,
once the risks are understood. Section 6 discusses process improvement and its relationship to
software assurance and business case. Section 7 discusses the topic of offshoring and its relation-
ship to software assurance and business case. Section 8 discusses organizational development in
support of software assurance and business case. Section 9 provides case studies in support of
business case, and Section 10 provides our conclusions and final recommendations.

3 | CMU/SEI-2009-SR-001

2 Cost/Benefit Models Overview

In order to calculate the costs and benefits associated with improved secure software engineering
techniques, appropriate models are needed to support the computation. Here we describe a num-
ber of cost/benefit models. This discussion is largely derived from the article on cost/benefit mod-
els on the Build Security In website [Bailey 2008a]. In addition to the discussion of models here,
there is a discussion of cost/benefit calculations in Appendix B.

2.1 Traditional Cost/Benefit Models

Several general models for assessing the value of an 1T investment already exist [Cavusoglu 2006,
Mahmood 2004, Brynjolfsson 2003, Mayor 2002]. It is our belief that the factors underlying these
models can be used to build a business case for deciding how much investment can be justified for
any given assurance situation [Cavusoglu 2006].

In this section we summarize the concepts and principles promoted in these models and provide a
brief discussion of their common features. Below, we present the 13 most commonly cited models
for IT valuation. We gleaned this list through an exhaustive review of the published ideas con-
cerning IT valuation. Although this set is generally comprehensive, it does not encompass every
approach, since the details of several models are not publicly available. However, based on our
review, we believe that generic models for valuation can be factored into four categories:

. Investment-Oriented Models
. Cost-Oriented Models
. Environmental/Contextual-Oriented Models

. Quantitative Estimation Models

2.2 Investment-Oriented Models
221 Total Value of Opportunity (TVO) — Garther

TVO is a standard metrics-based approach invented by Gartner. Its aim is to judge the potential
performance of a given I'T investment over time. It centers on assessing risks and then quantifying
the flexability that a given option provides for dealing with each risk. {(Gartner defines flexibility
as the ability to create business value out of a particular option.) TVO is built around the four fac-
tors described below [Apfel 2003]:

e cost/benefit analysis
o future uncertainty
e organization diagnostics

e best practice in measurement

Cost/benefit analysis - Total cost of ownership (TCO) is always used to characterize the overall
cost of operation. Benefits are then judged using a broad range of organizational performance
measures. The recommended mechanism for benefits analysis is Gartner’s Business Performance
Framework [Apfel 2003]. The cost/benefit analysis must be comprehensive and appropriate to the

4 | CMU/SEI-2009-SR-001

situation, and it must describe the business case in terms that a non-IT executive can understand
[Apfel 2003].

Future uncertainty - Because I'T investment rarely produces immediate benefits, TVO also re-
quires the business to quantify any probable future impacts of a given investment [Apfel 2003].
This aspect 1s particularly attractive in the case of software assurance, because much of the in-
vestment in securing software is designed to ensure future advantage by preventing undesirable
events. These benefits should be quantified based on assumptions that can be validated retrospec-
tively or on data-based prospective estimates such as trend line analysis [Mahmood 2004].

Organization diagnostics - These are the heart of the TV O approach. Any alteration in practice
implies some form of substantive change, and organizational diagnostics essentially test an or-
ganization’s ability to adapt to that change. The three types of risks associated with change—
business, management, and technology—are assessed on five factors [Apfel 2003]: Strategic
Alignment, Risk, Direct Payback, Architecture and Business Process Impact. Those factors coin-
cidentally happen to be Gartner’s Five Pillars of Dynamic Benefits Realization.

Best practice in measurement - This factor simply requires the employment of a commonly ac-
cepted methodology to obtain the value estimates that underlie the Future Uncertainty factor
[Apfel 2003]. The aim of the measurement process is to enable a conventional business analysis
that is capable of communicating the value proposition to a general audience. The key to this part
of the approach is a small set of agreed-upon business metrics. The use of common metrics en-
sures understanding between major stakeholders. Consequently, the development of those metrics
1s critical to the process.

222 Total Economic Impact (TEI) — Forrester

Like TVO, TEI is meant to integrate risk and flexibility into a model that will support intelligent
decisions about IT investment. TEI is a proprietary methodology of the Giga Group that allows an
organization to factor intangible benefits into the equation by assessing three key areas of organ-
1zational functioning [Wang 2006]:

o flexability

. cost

. benefits

Flexibility - Flexibility is a function of the value of the options the investment might provide. It
can be described in terms of enhanced financial value or increased communication potential or on
the basis of potential future increases in business value [Wang 2006]. TEI quantifies these factors
using another more explicit methodology, such as Real Options Valuation (ROV) (described lat-
er). The supporting methodology can describe the actual value of the options that are available at
the decision point, or it can describe the value of an option to be exercised later (for instance, an
assumption that the future market share will increase as a result of an increase in assurance).

Cost - The cost analysis takes a TCO-like approach in that it considers ongoing operating costs
along with any initial capital outlay. It factors both IT budget expenditures and the allocated cost
of the overall organization control structure into the assessment. (The latter enforces IT account-

ability.)

5 | CMU/SEI-2009-SR-001

Benefits - Benefits are expressed strictly in terms of increased business value. That expression
includes any value that can be identified within the IT function as well as any value that is gener-
ated outside of IT. Thus, benefit assessments also look at the project’s business value and strategic
contribution and consider how appropriately the investment aligns with business unit goals.

Once these factors are quantified, the organization seeks to determine the risks associated with
each of them [Wang 2006]. The risk assessment is expressed as an uncertainty or likelihood esti-
mate that includes the potential economic impact of all major assumptions. In essence, the deci-
sion maker must be able to express both the consequences of all assumptions as well as their
probability of occurrence in quantitative terms. A statement of the level of confidence in the accu-
racy of the overall estimate should also be provided [Wang 2006].

TEI is one of the softer kinds of value estimation methodologies and seems to be most useful
when an organization’s aim is to align a technology investment with a business goal or to com-
municate the overall value proposition of an imitiative. TED’s primary purpose is to underwrite
sound business decisions, given a set of alternatives [Mayor 2002]. It does that by communicating
each alternative’s full value in business terms. Thus, TEI can be used to justify and relate a pro-
posed direction to any other possible directions. That creates a portfolio view of the entire I'T
function, which enables good strategic management practice. Since understanding the overall im-
pacts is obviously one of the primary goals of any software assurance valuation process, TEI is an
attractive approach.

223 Rapid Economic Justification {REJ) — Microsoft

In order for it to be acceptable, the cost of the software assurance process has to be justifiable in
hard economic terms. But more important, that estimated cost/benefit must be available when
needed. The problem is that most valuation techniques require long periods of data collection in
order to produce valid results [Microsoft 2005].

The aim of Microsoft’s REJ is to provide a quick and pragmatic look at the value of the invest-
ment, without taking the usual lengthy period of time to collect all the necessary operational
cost/benefit data [Microsoft 2005]. Like the Total Economic Impact approach, REJ seeks to flesh
out traditional TCO perspectives by aligning IT expenditures with business priorities [Microsoft
2005].

RET focuses on balancing the economic performance of an IT investment against the resources
and capital required to establish and operate it. The focus of that inquiry 1s on justifying business
improvement [Konary 2005]. Thus, REJ involves tailoring a business assessment roadmap that
identifies a project’s key stakeholders, critical success factors, and key performance indicators
[Konary 2005]. The latter category comprises only those indicators needed to characterize busi-
ness value. The REJ process follows these five steps [Microsoft 2005, Konary 2005]:

Step One: Understand the Business Value. The aim of this step is to create an explicit map of
the proposition so that both IT and business participants have a common perspective on the impli-
cations of each potential investment. That activity is proprietary to the RET process and involves
the use of a Business Assessment Roadmap that itemizes

o key stakeholders

e their cnitical success factors (CSFs)

6 | CMU/SEI-2009-SR-001

e the strategy to achieve business goals

o the key performance indicators (KPIs) that will be used to judge success

Step Two: Understand the Solution. In this step, the analyst works with the owners of key busi-
ness processes to define ways of applying the technology to ensure a precise alignment with the
organization’s CSFs. This analysis is always done in great detail, since the aim is to specify an
exact solution.

As with the other models, the benefit calculation goes well beyond TCO. The analyst uses the
business’s commonly accepted practices to characterize process flows [Konary 2003]. The cost of
each process is described from the initial planning outlay, to implementation and maintenance
costs, to long-term operating expenses. The aim 1s to describe the investment in terms of its over-
all life-cycle cost and then profile that cost against all the potential benefits that might be accrued
during that time [Konary 2005]. Then, REJ provides an exact quantification of the solution’s val-
ue in hard financial terms [Microsoft 2005].

Step Three: Understand the Improvements. The unique feature of REJ is that it allows the or-
ganization to look beyond the traditional areas that I'T might influence in order to ascertain that all
potential business tasks, functions, and processes that might be improved by the prospective in-
vestment have been identified and characterized. This analysis must cross over all the functional
areas and consider the potential benefits to both the IT function and those functions outside of 1T,
such as inventory, sales, and marketing [Microsoft 2005, Konary 2005].

Step Four: Understand the Risks. This step requires an accurate profile of all the potential risks,
including their likelihood and impact. The key for this step 1s to factor the risk mitigation solution
into the benefit and cost estimates [Konary 2005]. Doing so lets the organization optimize the
economic impact of the step they are planning to take. A variant on this 1s to factor cost into a
risk-based model and use the risk model to prioritize software assurance strategies [Feather 2001].

Step Five: Understand the Financial Metrics. Finally, all aspects of the proposed investment
are characterized on a conventional financial basis, such as Net Present Value. REJ aims at build-
ing a bridge between I'T and business executives [Microsoft 2005]. Thus, the terminology used to
communicate the business value must ensure that all stakeholders (business and IT) can be com-
mitted to both the process and the results [Konary 2003].

2.3 Cost-Oriented Models
2341 Economic Value Added (EVA) — Stern Stewart & Co

EVA approaches IT investment as a value proposition rather than as a cost. That is, EVA attempts
to describe all the ways a prospective investment might leverage organizational effectiveness
[McClure 2003]. EVA approaches this question by looking at a function in terms of the cost sav-
ings it might create when compared to the cost of obtaining the same function through external
providers at a market rate (e.g., the cost if the service were provided by an outside vendor)
[McClure 2003, Mayor 2002]. Once the comparative market value 1s determined, EVA quantifies
the difference between the market price and the actual cost of providing the prospective function.
That difference is the net operating benefit [Pettit 2001].

7 | CMU/SEI-2009-SR-001

Costs are characterized by such things as capital outlay and opportunity cost (i.e., the potential
cost of not doing something else). The aim of an EVA comparison 1s to determine whether the
market value of any investment, after the actual costs are deducted, is positive [Pettit 2001].
Therefore, EVA requires a careful accounting of all expenditures as well as an honest estimate of
any opportunity cost [MecClure 2003].

An EVA analysis demands that everything from initial cash outlays to maintenance and training—
including any expenditure that 1s legitimately part of the initiative—is charged against profit.
EVA is then calculated as the Net Operating Profit After Tax (NOPAT) minus the Weighted Av-
erage Cost of Capital (C) as adjusted by a range of proprietary adjustments (K) that are provided
as a service by Stern & Stewart [McClure 2003].

Those adjustments include such things as the “amortization of goodwill or capitalization of brand
advertising.” The advantage of EVA is that it produces a single financial index that can be used to
characterize a diverse set of potentially contradictory directions [McClure 2003, Pettit

2001]. Approached as a tradeoff between total investment cost and potential value, EVA is a good
way to gauge the impact of any process such as assurance on overall profitability. Bevond the
general cost/benefit view however, EVA is really only useful when it leads into the use of another
more precise valuation methodology [Mayor 2002].

232 Economic Value Sourced (EVS) — Cawly & the Meta Group

EVS sets out to quantify the value gained for every dollar invested [Meta Group 2000]. The in-
vestment in software assurance 1s always speculative because the risk and reward structure 1s hard
to quantify. For instance, how do you assign a quantitative value to the increased customer trust
that a secure software assurance function provides [Meta Group 2000]? In response to questions
like that, EVS extends the analysis beyond the EVA approach by factoring risk and time consid-
erations into the equation [Mayor 2002].

EVS assumes that [T investment decisions can be valued based on three strategic factors: reduc-
tion of risk, increase in productivity, and decrease in cycle time [Meta Group 2000]. Traditional
return on investment (ROI) measures such as risk reduction savings or marginal productivity in-
creases are the typical basis for quantifying value.

In addition, EVS adds standard timing factors such as flexibility. For instance, EVS asks such
questions as “If the investment represents continuing cost, how quickly can those costs be ad-
justed to decreases in profitability?” [Meta Group 2000]. Finally, risk-based considerations, such
as the overall impact of the proposed investment on performance, interoperability, resiliency, or
security of the operation, are also factored in [Meta Group 2000].

EVS 1is an attractive approach because it allows for considerations outside of the traditional eco-
nomic rate of return—considerations through which many of the indirect, abstract, or qualitative
economic benefits of investment in software assurance can be understood and justified.

233 Total Cost of Ownership (TCO) — Garther

Total Cost of Ownership (TCO) is one of the older, and more traditional, cost-based valuation
approaches. It assesses an investment based strictly on its total direct and indirect costs. TCO

8 | CMU/SEI-2009-SR-001

aligns those costs with ongoing business performance in order to evaluate total value but does not
assess risk or provide a means to ensure alignment with business goals [Mayor 2002].

When incorporated with a classic financial analysis such as ROIL, TCO can provide a true eco-
nomic value for any given investment. TCO takes a holistic view of total organizational cost over
time. Ideally, it will let the manager calculate a projected rate of retum on any nvestment based
on the initial capital outlay, as well as all the aspects of the continuing cost of operation and main-
tenance [West 2004]. That cost estimate typically includes such ancillary considerations as physi-
cal space, security and disaster preparedness, training, and ongoing support. That’s why TCO 1s
sometimes referred to as Total Cost of Operation [Bailey 2003].

Benefit is generally calculated using an estimate of the cost that would accrue if a function or ser-
vice were absent. For instance, TCO asks what the cost to the organization would be if a system
failed or experienced a security incident. It then treats that cost as a risk avoidance benefit [West
2004]. By treating incident cost that way, TCO provides a good running benchmark of the finan-
cial value of an overall risk mitigation program for software assurance.

TCO can be used to monitor the overall effectiveness of any assurance program by comparing the
running cost of maintaining a given level of security to existing financial data about the cost of the
incidents the program is designed to prevent [Mayor 2002]. For instance, if a given level of assur-
ance is established to prevent buffer-overflow attacks, the national average cost of those attacks
can be used as an index of the benefit that would be gained by preventing them.

Because 1t 1s strictly cost centered, TCO 1s best used for cost rather than value estimation. How-
ever, TCO also works well in conjunction with methodologies such as the Balanced Scorecard to
provide an easy to understand picture of the cost side of the proposition.

2.4 Environmental/Contextual Models

These methods, sometimes called heuristic models, add subjective and qualitative elements to the
mix. Their aim is to assign a quantitative value to such intangible qualities as environmental or
contextual influences, including factors such as human relations considerations and the affects of
other organizational processes.

241 Balanced Scorecard — Norton and Kaplan

The Balanced Scorecard, conceived by Robert Kaplan and David Norton [Kaplan 1993], 1s argua-
bly one of the easiest and most popular valuation approaches. Kaplan and Norton wanted to inte-
grate traditional financial indicators with operational metrics and then place the results within a
broader framework that could account for intangibles such as corporate innovation, emplovee sat-
isfaction, and the effectiveness of applications [Kaplan 1996].

Atits core, the Scorecard seeks to establish a direct link between business strategy and overall
business performance [Berkman 2002]. It does that by balancing the standard financial indicators
against essential, but more fluid, qualitative indicators such as customer relationship, operational
excellence, and the organization’s ability to learn and improve [Berkman 2002]. Thus, the Bal-
anced Scorecard allows for ongoing assessment of the value of intangibles [Berkman 2002]. Fur-
thermore, by requiring that every operational step be traceable to a stated strategic goal, it facili-
tates decisions about changes to that resource as conditions change [Kaplan 1992].

9 | CMU/SEI-2008-SR-001

In practice, the organization’s “scorecard” is customized for each operation by means of a plan-
ning process whose mission 1s to develop measures that capture primarily nonfinancial perspec-
tives. Since this customization depends on the situation, there is no fixed set of quantitative meas-
ures. However, in every case, there are three or four appropriate metrics for each of the four
scorecard perspectives, which are (1) financial, (2) customer, (3) internal business process, and (4)
learning and growth. These perspectives are described in more detail on the Management and Ac-
counting website [Martin ND)].

The important point about using the Balanced Scorecard 1s that its metrics do not come in a “one
size fits all” form. Generally, thev come in three types. The first type includes those used to de-
scribe internal technical functions. Such a description 1s needed to judge technical performance
against strategic goals. Examples of this type of metric include highly focused items such as reli-
ability, processing speed, and defect rate [Mayor 2002]. These measures are not particularly use-
ful to nontechnical managers, but they are objective and easy to aggregate into information that
can help technical managers assign value to the I'T function [Berkman 2002].

The second type of metric comprises those that normally come in the form of comparisons or “re-
port cards” and are intended for use by senior executives [Kaplan 1992]. For example, if software
assurance is considered a cost center, the goal is either to show how those costs have improved
over time or to describe how they compare with similar costs in similar companies [Kaplan 1992].
Examples of concrete measures in this area include personnel or service costs broken out on a per-
user or other kind of index basis [Berkman 2002].

The final type of metric includes those intended for use by the business side of the company
[Berkman 2002]—things such as demand and use statistics, utilization analyses, and cost and
budget projections. These measures almost invariably tend to be unique to each business unit
[Kaplan 1992].

The important point, however, is that the Balanced Scorecard allows an organization to value all
of its assets appropriately. This is essential if the organization wants to prioritize and assign secu-
rity protection to the full range of those assets, not just the tangible ones. With that goal in mind,
an organization can begin to collect data or analyze existing information formulated from discrete
measures to support the relative valuation of its information assets.

242 Customer Index: Andersen Consulting

Andersen Consulting’s Customer Index method is aimed at helping companies determine the true
economic value of any particular investment by referencing it to the customer base. It does that by
tracking revenue, cost, and profit on a per-customer basis. The Customer Index collects data about
those items and actively associates that data with changes on a per-customer basis [Eisenberg
2003].

The organization can use this index to estimate how a prospective decision might influence the
various elements of its customer base. That estimation helps the organization determine the over-
all value of any investment by indexing it to how it has affected, or will affect, its customer base
[Eisenberg 2003]. That requires the company to calculate the current cost and profitability of all
of its functions on a per-customer basis. The index allows the company to estimate what any pro-
spective investment might do to those numbers [Eisenberg 2003].

10 | CMU/SEI-2008-SR-001

This approach isn’t typically relevant to companies with just a few customers, but it is appropriate
for any company where customer satisfaction drives every aspect of the business. More impor-
tantly, it has the potential to rationalize software assurance in terms that are intuitively realistic to
business executives, whose primary goal is to increase market share [Mayor 2002].

Thus, the ability to differentiate the value of a certain set of assurance practices for a given prod-
uct in terms of the impact on the customer base is a very persuasive argument for any business
case. Nevertheless, the additional cost of maintaining a continuous and accurate accounting of
revenue and expense on a per-customer basis 1s a serious consideration in adopting this approach.

243 Information Economics (IE) — The Beta Group

IE has a strategic focus. Its goal is to force managers to agree on and rank their spending priorities
at the corporate level. IE does that by forcing managers to draw specific conclusions about the
strategic business value of individual initiatives [Benson 1992].

IE requires a discrete value estimate for every project [Parker 1989]. That estimate is then com-
pared across several projects based on standard economic descriptions like Net Present Val-

ue. The benefit of IE is that it provides a total relative value for each project in the portfolio. Tt
helps decision makers to objectively assess the value of their profile of systems side by side,
which should then let them allocate resources where they can do the most good [Benson 1992,
Parker 1989].

IE is based around the characterization of a hierarchy of places where benefit can be derived
[Benson 1992]. At the highest level, there are intangible things such as risk reduction and en-
hanced ROI. Further down the hierarchy, there are also hard measures such as cost and revenue.
Managers prepare a list of decision factors [Parker 1989] that clearly express the benefit as a val-
ue; for example, “reduces cycle time by ‘X percent [Benson 1992]. Vague statements such as
“will save time™ are not allowed.

These decision factors, which are often scenario driven, are evaluated individually based on their
relative value or risk to the business. Intangibles such as competitive responsiveness or the value
of management information are assessed against a range of contingencies [Benson 1992]. Risk 1s
typically expressed by means of a likelihood-versus-impact analysis. In effect, strategic decisions
can then be referenced to that quantitative ranking [Parker 1989].

244 IT Scorecard — Bitterman, IT Performance Management Group

This 1s a performance measurement system similar to the Balanced Scorecard. Its aim 1s to let the
organization track the IT operation’s financial contribution and alignment with corporate strate-
gies. Its overall goal 1s to understand the IT function’s organizational strengths and weaknesses
[Leahy 2002].

This approach 1s different from the Balanced Scorecard in that it focuses strictly on IT. Its aim 1s
to provide a strategic basis for evaluating the IT function that is independent of all other business
or organizational considerations [Leahy 2002]. The approach 1s therefore bottom up from the in-
ternal I'T view. The organization must clearly demonstrate how much value each IT function or
process contributes to the overall business value. But effective I'T financial metrics are hard to
find, since IT involves so many abstract and dynamic elements. That lack of measurement is one

11 | CMU/SEI-2008-SR-001

of the main reasons why IT has traditionally been viewed as a cost rather than as a resource
[Leahy 2002]. Thus, the [T Scorecard focuses its measurement activity on metrics that character-
ize what IT brings to the business.

The intent of this approach is to communicate the value of IT rather than its cost [Bitterman
2006]. The measures used concentrate on capturing all the leading indicators of value that support
the achievement of the company’s strategies; for example, how fast a help desk responds to a
problem and how often that problem 1is fixed [Bitterman 2006].

Like the Balanced Scorecard, the IT Scorecard also introduces the concept of external compara-

tive measures and benchmarks in order to create meaningful IT performance metrics [Bitterman

2006]. The aim of the I'T Scorecard is to determine how effectively current IT resources are sup-
porting the organization and, at the same time, to assess ways that I'T can better respond to future
needs.

The IT Scorecard revolves around five perspectives: mission, customers, internal processes, tech-
nology, and people/organization [Bitterman 2006]. The first step in the value assignment process
is to precisely characterize what the business wants out of the IT function as well as what IT can
feasibly bring to the business. That description 1s used to establish organization-wide consensus
on the metrics that will be required to capture that value.

The metrics themselves must accommodate the fact that a change in one area can have an effect
on the value of another area. Thus, most successtul scorecards developed through this approach
are the result of numerous iterations that work toward getting this tradeoff right [Leahy 2002]. An
initial set of metrics can be evolved out of this process into a group of more sophisticated meas-
ures that give greater insight into business value. However, effective measurement programs can
only be customized to the strategies they support. That is the one serious weakness in this ap-
proach. The IT Scorecard can never be used right out of the box, since it requires an organization
to develop and then maintain a custom set of metrics [Mavor 2002].

2.5 Quantitative Estimation Models

251 Real Options Valuation {(ROV)

Real Options Valuation (ROV) aims to put a quantitative value on operational flexibility. It allows
an organization to value any investment that will underwrite or create a more relevant and respon-
sive operation [Luehrman 1998a]. Thus, ROV can be used to value technological investment.

ROV centers on ensuring maximum flexibility in the deployment of technological assets. Using
this approach, an organization can determine the value of an investment by focusing on the likely
consequences of a particular action over time (assuming that these consequences can be described
in probabilistic terms) [Luehrman 1998a].

In most instances, those outcomes are characterized by assumptions about future performance.
However, no set of assumptions is going to provide a perfect forecast. The best approach to the
ROV process is to derive a value for every feasible option [Luehrman 1998a].

12 | CMU/SEI-2008-SR-001

As a consequence, much of ROV involves identifying every factor that might be involved in or
impacted by a given decision and then estimating the likelihood of occurrence. Thus, ROV 1s
based on

1. decision variables - assumptions that are under the specific control of the decision makers and
can be adjusted to increase project value as required

2. stochastic assumptions - assumptions that are random variables with known or estimated
probability distributions

3. deterministic assumptions - assumptions that are based on established benchmarks [Luehrman
1998b]

Real options have concrete outcomes. Thus the decision rules for a exercising a real option must
be referenced to observable behaviors that can be used to assess the performance of every variable
associated with it. These behaviors must be observable and documented for a given period prior to
the point at which the decision 1s made [[Luehrman 1998a]. For example, a decision to add an as-
surance practice might be based on the known occurrences and costs of the threats that practice
was meant to address over the past year of operation [Neely 2001].

The problem with ROV 1s that it 1s, by necessity, complex, so it works best in situations that are
well defined or where experience exists. Thus, ROV models are effective in estimating the likeli-
hood of stock options or pork bellies [Luehrman 1998b]. However, since the process of assurance
is not yet well understood, the construction of the finite model for it is, at best, an exploratory ef-
fort [Neely 2001].

252 Applied Information Economics (AIE) — Hubbard

AIE is perhaps the most rigorously quantitative methodology in this set [KKwon 2001]. It centers
on the use of probabilistic models to reduce uncertainty [Hubbard 1997]. 1t 1s assumed that if the
appropriate amount of data can be collected (or estimated), it is possible to calculate the fiscal
value of any option [Hubbard 1997].

Since all decisions involving deployment of the software assurance function involve the estima-
tion of probabilities of both benefit and failure, it is hypothetically possible to build a sufficiently
accurate picture of the financial risks and returns of any given decision option, or a related set of
options, using AIE. This will allow the decision maker to understand the exact probabilities of
success. This knowledge can then theoretically allow decision makers to balance their assets and
activities in such a way that they will exhibit the best risk-reward characteristics [Hubbard 1997].

The analysis process itself involves classic actuarial estimation. Actuarial statistics are used in
order to quantify the consequences of a given decision, which provides a proper understanding of
risk and return.

Applied Information Economics computes the value of additional information. The aim is to
model uncertainty quantitatively and then compute the value of marginal uncertainty reductions
[Hubbard 1999]. The AIE process is based on Hubbard’s Clarify, Measure, Optimize approach
[Hubbard 1997], which aims to isolate and clarify the precise set of variables that are involved in
and affect the decision. Such isolation and clarification allows AIE to provide specific informa-
tion for decision makers.

13 | CMU/SEI-2008-SR-001

For example, most decisions about software assurance are made based on the probability of harm.
Thus, a manager might estimate that a given program would have a likelihood of 20% of failing
or being exploited. AIE would restate that estimate in terms of the probabilities that a certain type
of virus would be able to exploit that code, versus the likelihood that it could be compromised by
a range of other attack types [Hubbard 1997]. This sort of detail makes it easier to estimate the
long-term value of the decision to increase or decrease the assurance activity.

AIE analysis 1s considered by its proponents to be the only truly scientific and theoretically based
methodology available. Its ideal outcome 1s an actuarial risk-versus-return statement about the
probabilities of the success of a given decision [Mayor 2002]. In order to do that, AIE integrates
classic principles of economics, actuarial science, and decision theory into a single approach that
theoretically supports proper decision making about how to conduct business operations.

253 COCOMO Il and Security Extensions — Center for Software Engineering

COCOMO TI, a cost estimation technique that dates back to 1991, is the flagship for software en-
gineering economics. It consists of a hierarchy of three increasingly detailed and accurate forms.
It was designed by Barry Boehm to give an estimate of the number of programmer-months it
would take to develop a software product.

COCOMO has been revised extensively over the past 25 years, and security extensions are still
being developed for it. Those changes and extensions, which are risk-characterizing factors, are
plugged into the model to obtain the estimates. The security components are delimited by the 13
security functions defined in ISO 15408, which is generally called the Common Criteria [Colbert
2002]. These security functions produce a standard Evaluated Assurance Level (EAL) that can be
compared across products. Nevertheless, the intent of the security extensions is to simply use
those criteria categories as the basis for defining the expected functionality, rather than produce an
EAL [Colbert 2002].

The estimation itself is driven by a set of stock adjustment factors in the same fashion as the clas-
sic COCOMO process. Essentially, software size and security size are factored into an estimate of
the total amount of LOC programmer hours (or cost) required to produce it. As with traditional
COCOMO, a properly calibrated process will provide an explicit estimate of the cost that will be
required to add a given amount of software functionality to the project [Madachy 2002].

There are several problems with the COCOMO approach. First, it has little recognition outside of
the software engineering community, so it has to be “popularized” with traditional managers.
Second, because the multiplier factors should be calibrated to the environment, COCOMO does
not work in unstructured operations. Thus, it 1s essential that the operations they are applied to
execute in a systematic and reliable way. Since the term “chaos” seems to best fit the situation in
most commercial software operations, the second problem is a showstopper.

Finally and most importantly, COCOMO is too explicit to be useful as a general process cost es-
timate. As it is now constituted, COCOMO provides an estimate of the effort cost of adding addi-
tional security functionality to a piece of software. It does not embody variables that factor in the
additional cost of the software assurance process per se. If those costs were to be added, they
would obviously be part of the multiplier factors themselves. However, since the proper set of
activities to secure software 1s presently not known or agreed on, the effectiveness of the

14 | CMU/SEI-2008-SR-001

COCOMO II security estimation process is still awaiting proof. There is some indication that the
risk factors themselves are useful in identifying areas of potential exploitation [Madachy 2002].
However, the ability to actually valuate those factors is not yet advanced enough to be reliable.

2.6 Some Common Features

Although these models represent a range of approaches, they share some common elements that
should be noted for the purpose of value estimation.

2.6.1 General Factors

Holistic representation - First and perhaps most important, almost all of these models incorpo-
rate qualitative, business-oriented considerations along with quantitative factors such as cost.
These considerations and factors are expressed primarily as risk versus return, but the considera-
tion of non-tangible items, such as business priorities, 1s also built into the process.

Quantitative risk assessment - Risk assessment in a probabilistic sense seems to be a critical
driver for almost all of these models. In that respect, the value of the investment is expressed in
terms of the degree of risk avoidance that a software assurance activity can demonstrate.

Continuous execution - Valuation and risk assessment is a continuous process in every one of
these models. That is because the threat environment is constantly changing, and thus, the assur-
ance requirement 1s dynamic. The risk assessment 1s meant to support the efficient deployment of
resources to mitigate priority threats to any asset of value. It should therefore be systematic and
rigorous and must be an institutional process within the organization’s business model.

Standard metrics - the importance of a standard set of metrics, mutually agreed on and com-
monly understood, 1s a common thread in all of these models. Therefore, any valuation process
has to begin with the development of a standard set of measures that are consistently applied
across time in the practical valuation process. These measures must be maintained appropriately
over time and updated immediately as conditions change.

2.6.2 Common Factors Across Models

Flexibility - Any process that enhances an organization’s ability to recognize and respond appro-
priately to events as they arise appears to be valuable. This flexibility 1s characterized by the de-
tailed understanding of all relevant decision options and the existence of enough information
about each one to support making the right choice.

Likelihood - The ability to accurately estimate the likelihood of occurrence is essential. That im-
plies the need for enough focused baseline operating data to support stochastic estimates. It also
implies the requirement to develop commonly agreed on metrics prior to the actual statistical fo-
recasting process and to collect sufficient standard data to support estimates of probability for any
valuation activity.

Granularity - When it comes to the level of focus, there are two opposing trends in these models.
First, there 1s a trend toward value estimation based on high-level alignment with business goals
and prioritization of requirements. Second, there is a trend toward decomposition of the decision
process into its constituent variables at the lowest practical level of understanding. The first trend

15 | CMU/SEI-2008-SR-001

supports quicker understanding but lacks precise valuation. The second trend supports more accu-
rate valuation but requires intensive data collection.

Decision criteria - All decision rules must be stated explicitly. Since valuation primarily involves
subjective assessment, the role of the decision criteria is to provide a common basis for under-
standing the implications of any given proposition. Criteria are soft in the sense that they have to
be developed, so it is essential that all criteria are documented prior to any operational valuation
activity.

Business value - Intangible value has to be quantified. This can be done through a number of sub-
jective methods including Delphi, business owner benchmarking, or anecdotal observation with
averaging. Regardless of the approach used, the subjective value estimate has to be systematically
executed and rigorously controlled. However, the principle benefit of software assurance is ex-
pected to be increased business value, which must be measured in some objective sense.

Table 1. compares the models according to these factors.

Table 1. Comparison of Cost/Benefit Models

Type of Business
Valuation Standard Risk Decision value
Approach metrics Flexibility Estimate Granularity | criteria concern
Total Value of cost risk decision high need high level explicit central
Opportunity (TVO) factor
Total Economic other decision uncertainty high level confidence very central
Impact (TEI) models factor based based
Rapid Economic cost/risk not an issue business high level cost based central
Justification (REJ) risk
Economic Value economic not an issue market moderate investment very central
Added (EVA) based level based
Economic Value investment affect on productivity | high level tradeoffs central
Sourced (EVS) production based
Total Cost of Own- costhenefit | not an issue cost/benefit | low level investment investment
ership (TCO) based centered
Balanced strategic important not explicit very high tradeoff strategic
Scorecard factors factor level factors decision
making
Customer Index customer not an issue customer very high ranking customer
data impact level impacts satisfaction
Information priorities factor not explicit very high ranking strategic
Economics (IE) level priorities consensus
IT Scorecard — strategic IT important not explicit very high tradeoff strategic
Bitterman factor level factors decision
making
Real Options variables/ not an issue not explicit very low gquantitative value
Valuation date level estimate
calculation
Applied Information | probabilistic | certainty/ quantitative | verylow gquantitative certainty
Economics (AIE) uncertainty level calculation
COCOMO Il and COCOMO not an issue not explicit moderate LOC programming
Security Exten- measures level estimate cost
sions

16 | CMU/SEI-2008-SR-001

2.7 Limitations

Note that many of these models assume that we can accurately predict the probability of an
event. As we all know, predicting the probability of a cyber attack can be difficult. Oftentimes,
the best we can do is to produce rough estimates on the basis of previous data. Since attackers do
not want to be detected, previous data on attacks is often incomplete, and hence the associated
predictions can be based on flawed data.

Calculating risk is not as straightforward as some of the models suggest. To do it, you must have
an understanding of the actual threats, vulnerabilities, and probability of exposure. Such data is
not easy to come by. Moreover, the nature of the risks will change as we shift from individual
hackers trying to get attention to criminals motivated by financial gain or terrorists with other mo-
tivations.

It 1s important to note that some experts, such as Bruce Schneier, believe that it 1s not feasible to
accurately calculate the benefit that is derived from improved security. He points out that there is
very little actual data on the cost of a break-in and that predicting the cost of a rare but damaging
event is fraught with peril [Schneier 2008b].

2.8 Other Approaches

Many software security efforts are not driven by traditional cost/ benefit calculations but by repu-
tation and customer expectation. A good example of this 1s the Microsoft Security Push, discussed
in our case studies in Section 9. Benefits are measured in terms of reduced levels of patches and
favorable customer feedback. Presumably, reduced patching saves money and favorable customer
feedback aids reputation as well as keeping the customers on board.

Other organizations use risk analysis to determine which software development projects will re-
ceive more attention to software security. These organizations tend to be concerned with competi-
tive advantage, financial loss, and reputation.

17 | CMU/SEI-2008-SR-001

3 Measurement

“To measure is to know”

and

“If vou can not measure it, you can not improve it"
Lord Kelvin

As so eloquently stated by Lord Kelvin, measurement 1s a foundational aspect of management,
and this holds true in software assurance activities as well. The role of measurement in making a
business case for software assurance comes at many levels. Measurement is key to success at the
technical, operational, and strategic levels. Measurement for measurement’s sake, however, 1s
wasteful. The key success factor is the connection of measures and metrics to the business process
at the correct level to make a decision. Appropriate sets of metrics for each of the levels—
technical (tactical), operational, and strategic—can be defined and used to improve management
of the processes leading to software assurance.

Software assurance is a subject that has different meanings to different organizations. There are
many sources of definitions of software assurance, including CNSS, DoD), DHS, NASA, and
NIST. Regardless of the specifics of any particular definition, they all have a common element:
software assurance provides some form of justifiable confidence that the software is correct as
built. To obtain justifiable confidence, all levels of an organization must be involved and execute
1n a properly managed manner. Following Lord Kelvin’s argument, this means that each level
must have appropriate measures to enable management of the software development process.

There are numerous levels through which one can view software assurance and associated met-
rics. Metrics can be applied at the technical level of the actual code, at an operational level associ-
ated with the code or the organization, and at the organizational level of the firm as a whole.
Software assurance can also be viewed from three perspectives: a development perspective, a cus-
tomer perspective, and a market perspective. Each of these perspectives has some unique charac-
teristics that influence the use of metrics and management of software assurance. Software devel-
opment is a process that is driven by management’s actions to deliver required capabilities on
time and within budget. The development perspective covers all of the activities associated with
the actual creation of software. One example would be counting bugs, or defects per thousand
lines of code. These metrics are directly connected to code quality as built. Whether a bug be-
comes a security defect is a larger issue, but in general a higher number of defects will result in a
higher number of vulnerabilities.

3.1 Characteristics of Metrics

Metrics are a representation of something that is measurable in a process. The basis for a metric is
some measurable construct that is used as a measurement. A metric is then some representation of
the measurable quantity, either by itself or in combination with some other measurable quantity.
For instance the metric ROT is a ratio of the gain or loss from an investment relative to the in-

18 | CMU/SEI-2008-SR-001

vestment. The measures are the gain or loss and the size of the investment. ROT is a specific com-
bination of these measures.

For a measurement and resulting metrics to be useful, some specific characteristics are necessary:

e quantifiable, repeatable, meaningful, robust (not subject to gaming or subversion)
e aligned with measurement objective

o useful over time periods for comparison and trending

Measurements need to be quantifiable and repeatable if they are to have any accuracy in use. Nat-
ural variation and measurement error are both normal and unavoidable. For a measurement to be
useful, these disruptive elements must be at a level low enough to permit detection of meaningful
change in the measurement.

For a measurement to be useful with respect to management of a process, the additional character-
1stics of meaningfulness and robustness are needed. Meaningfiil relates to the measurement’s abil-
ity to actually track some aspect in a causal manner, as opposed to coincidence. For the measure
to be safe to use, it must be robust against gaming or subversion on the part of the process users.

When a measure or a metric is to be used in the management of a process, there must be some
form of alignment between the measurement and the objective of the process. If I am interested in
error rates in programming, then counting the number of programmers may be measurable, but it
not necessarily associated with the desired objective. Additionally, metrics guide management
decisions over time, and hence they need stable time periods for reasons of comparison and trend-
ing. Changing how one measures a process over time results in a series of measurements that do
not allow comparisons of performance over time.

3.2 Types of Metrics

For metrics to be aligned with the business objectives, there must be different types of metrics
aligned with different levels of business management. Business can be broken into three basic
levels: the strategic decision level of senior management, the operational decision level associated
with mid-level management, and the tactical decision level associated with the actual work proc-
ess. To match these levels, metrics can be divided into three groups:

e Organizational metrics — metrics that are related directly to the attainment of business objec-

tives in a global strategic sense
e Operational metrics — metrics that directly support optimization of multiple work processes

e Technical metrics — metrics that directly relate to technical security details and support a
specific work process

Examining each of these from the bottom up, technical metrics are those closest to the actual de-
velopment environment. Software errors or bugs can be counted at numerous places in the devel-
opment process, and these counts over time provide direct feedback to the development team as to
their coding skill. As noted in the previous section, errors found after the software has been dis-
tributed to end users are significantly more expensive than those found during the development
process itself.

19 | CMU/SEI-2008-SR-001

3.3 Specific Measurements

Ask someone how to measure information security and vou will frequently get the response
“CIA”—confidentiality, integrity, and availability. The answer really does not match with the
definition of metrics and measurement, for there is no explanation of how to measure compliance
with respect to these concepts. The same problem exists with respect to software assurance—the
objective may be provable compliance with correctness of function, but this does not explain how
to measure it. Examining this from a quality perspective, we could use the concept of zero defects,
which translates as no vulnerabilities, and this leads to a measurable quantity.

Measurements and metrics can serve two specific purposes with respect to management of a proc-
ess. They can provide point in time data, and they can provide trend data. Point in time data refers
to the use of a single measurement or metric to determine current compliance with a specified
target objective. A measurement can be made and based on its value a specific decision can be
made; 1.e., pass or fail a test can determine whether a module moves to the next process step.
Trend data can provide information associated with the state of the process over time. Data con-
sistently collected over time allows management to make decisions associated with processes as
they exist with respect to other conditions. For instance, defect rates with respect to a specific type
of defect can be measured and trended, and then the efficacy of a specific training event to reduce
that defect can be determined by examination of trends before and after training.

Examining the cost/benefit models from the previous section yields some common business
measures found in many business processes and ones that might be reasonably expected in man-
aging software assurance. Two examples will be compared, one based on a quality measure and
the other on ROI For each of these examples, the specific measurements at each level will be ex-
amined to illustrate how they can be derived and supported.

A key element in any manufacturing process 1s the control of defects. Zero defects may be a
catchy mantra, but it is not typically practical in an economic sense. Defects with respect to cod-
ing of software can be counted in many ways; bugs discovered during testing, missing implemen-
tation of requirements, coding not to specified coding standards, and compiler errors and/or warn-
ings. Because not all “bugs” are equally important, it is common practice to also assign a severity
to each specific item according to some ordinal scale: critical, high, moderate, or low. This classi-
fication allows resources to be directed toward the more important issues and can lead to rules
such as “All critical and high-level bugs will be addressed before release to production.” To im-
plement a bug count, several tactical process elements are required. There needs to be some for-
malized mechanism for determining that a bug exists and another for determining the relative se-
verity of the bug. The first aspect, bug determination, can occur at several points in the
development process: at unit test, subsystem test, and full system testing. This determination can
also occur after production from field reports. For reasons of continuity and consistency, severity
determination should use the same criteria regardless of bug determination.

The determination of a specific level of defect, say a critical defect, can act as a point in time
measurement that changes the production process, 1.e., prevents the code from proceeding to the
next level of the development process until correction. The documentation and trending of the
same data over time allows management to see trends and determine longer term actions. Bugs
may be tracked by originator, as in specific developer or designer, and a series of repeated bugs
may result in a determination of a need for retraining of a specific worker or team. Bugs can also

20 | CMU/SEI-2009-SR-001

be tracked by type, using a form of enumeration such as the CWE [MITRE 2009], resulting in the
ability to determine whether specific types of bugs tend to be repeated.

The measurement of bugs as in bug counts can be converted to a metric such as bugs per thousand
lines of code (kloc) or bugs per time period since code release, to enable comparison across prod-
ucts and releases. At the tactical, developer level, the measurement of bugs makes workable
sense, as it provides direct feedback that can be used for management of the immediate develop-
ment process. Using the metric form of bugs/kloc allows higher levels of management to manage
resources across projects and teams to mimimize defect rates. To assist in this type of effort, trend
charts illustrating this data by project and team or time period allows management to examine the
effectiveness of specific decisions. Should management notice a rise in a specific type of defect
over time, or of defects in total by team over time, specific targeted actions can be taken to at-
tempt to remedy the problem. The effectiveness of the actions can also be determined by examin-
ing data trends before and after the action.

To determine a metric such as ROI, the measures needed are costs/savings and investments. These
are financial measurements that can be calculated based on the collection and attribution of activ-
ity based cost data to the software development process. To calculate the ROT of testing, one
could calculate the cost of fixing bugs without development testing and compare to the cost of
fixing bugs with development testing and determine the return on the investment in testing. This
case is fairly obvious, as data has consistently shown that defects that are corrected after shipping
are significantly more expensive than those corrected during production, in some cases by orders
of magnitude. This same concept can be applied to many events across the development process;
the ROT of a specific tool can be calculated based on the cost change associated with the deploy-
ment of the tool and resulting change in defect correction costs. Although common in many in-
dustries and well accepted in financial circles, RO1 suffers from one underlying weakness. Its ac-
curacy depends upon the precision and accuracy of attribution of specific cost data. To get
detailed information, very fine grained detail into activity based costing is required. Taking a de-
veloper’s time sheet and coding it into categories such as coding, testing, defect correction (by
defect type), etc. is not a simple and accurate process. Inaccuracies in the underlving data and the
ability to game the system through the allocation and assignment of cost data has resulted in ques-
tionable accuracy of ROI in certain types of environments, including software development. Add
in the complexity of not knowing a defect may exist until later discovery and the whole usefulness
of this measure frequently gets called into question.

Secure software development is a process with significant levels of documented success stories
[Howard 2006, Microsoft 2009]. As a process, there are many measures and metrics that can be
made associated with the process itself, and not just the outcome of the process. The measurement
of number of people trained and the associated metric percentage of people trained can be used to
manage desired states of personnel awareness or training. The number of modules and percentage
of modules passing or failing specific process points can be tracked and managed. The list of
measurable and hence manageable items can be large. Further examples can be found in docu-
ments such as the Practical Measurement Framework for Software Assurance and Information
Security report from the DHS Software Assurance Measurement Working Group [Bartol Z008].

Software assurance has wider ramifications than just those associated with the development proc-
ess. Firms may be concerned about software assurance associated with procured software. This

21 | CMU/SEI-2009-SR-001

shifts the concern and management from a manufacturing mode to an acquisition mode and brings
1n issues such as managing contracting with respect to cost and other factors. Deciding contract
issues based on terms such as cost, schedule, and performance to requirements is common. If one
of the performance requirements 1s the design to a specified level of software assurance, or based
on some software assurance process, acquisition personnel will require training in the topic to
enable them to ensure the aspect 1s used in the acquisition decision. This makes process-based
measurements and metrics such as number and percentage of contracting personnel trained with
respect to software assurance standards meaningful from a management perspective. Outcome-
based measurements such as number and percentage of programs procured that comply with man-
agement’s desired software assurance level can be used to track direct compliance with desired
objectives in this area.

3.4 What to Measure

The ability to count things and make measurements in a process is never the challenging element
in a metrics driven management process. The challenge comes from determining the correct items
to measure to support desired management objectives. This places the mantle of responsibility
upon upper management to determine the appropriate and desired level of security associated with
software assurance. This declaration then enables middle level management to determine appro-
priate measures and metrics to support their management of processes to achieve the desired ob-
jectives. The more mature an organization becomes with respect to understanding and communi-
cating desired software assurance objectives, the more effective metrics and measures can be in
assisting management in obtaining those goals.

A recent trend has been to reduce the attack surface area of a software product. This can be done
through the application of threat modeling techniques and then redesign and recoding to reduce
the number of entry and exit points of code. Once middle management embarks on this course, a
whole series of specific measurements and metrics can be deployed to assist in this effort. Count-
ing the number of entrv and exit points and charting versions of software can give an indication of
changes in this aspect. Tracking the use of threat modeling by project and/or module is another
metric that can aid in attaining a reduction in threat exposure.

A robust software assurance program will have multiple avenues of managing the complexities
associated with developing and using software in a secure manner. For each separate aspect of
management, there needs to be some measure or metric to assist in the determination of effective-
ness. This leads to a hierarchy of metrics associated with software assurance, with different vet
specific metrics at each level of management. At the bottom of the process, the individual worker,
there may be some specific measures associated with that person or team’s impact to the desired
level of software assurance. At each level of management, some form of aggregation is associated
with the metric to apply it to the next level if it is still associated with an objective at the new lev-
el. Training is a prime example. Each employee has training requirements and responsibilities
associated with their specific role in the organization. Each employee can calculate the percentage
of required training that thev have achieved with respect to software assurance. As you rise
through the organization by level, training level achievement may be aggregated not only by units
of employees, but also by topics of training. At the top of the organization there could be a meas-
ure percentage of training attainment. The objective 1s the alignment of measurement to manage-
ment objective at each level.

22 | CMU/SEI-2009-SR-001

3.5 SDL Example

One of the greatest values of metrics is the ability to compare results of processes before and after
changes to make a determination of the effectiveness of an improvement effort. To measure the
effectiveness of the development process, bug count is one potential measurement. To refine this
measure and make it useful, it can be refined as follows. Bugs come in many varieties: critical,
serious, major, minor, and inconsequential. This classification is useful, as resources may not
permit all bugs to be addressed, so it is important to focus on the more damaging. Bugs also take
time to discover, so the overall quality of the development process is more accurately determined
after a period of time, such as a vear. Microsoft used this specific measure to demonstrate the val-
ue of its SDL process, showing that critical and serious bugs discovered in the year after release
were dramatically reduced after the adoption of the SDL. Using Windows 2000 (pre-SDL) as a
baseline and Windows 2003 (post-SDL), critical and serious bugs reported in the year after re-
lease were 62 and 24, respectively, a > 60% decrease [Lipner 2005].

Using the same measures for SQL Server 2000, pre- and post-SDL, has values of 16 and 3. Ex-
change Server 2000 pre- and post-SDL had values of 8 and 2 respectively [Lipner 2005]. Again,
the measures show dramatic improvements, and the measures also illustrate another issue on
comparative measures: you must compare like-to-like to have meaningful comparisons. Because
of the complexity of the various code bases and the differences in requirements and design, it 1s
not meaningful to compare the actual values between products.

This example demonstrates the value of metrics and measurement in the software assurance arena.
Software development processes are complex, multistep events, with numerous teams involved
and many variables, some controllable, some not. Process improvement efforts are important to
improve the business, but their effectiveness can’t be proven without measurement. Gross before
and after measures do not necessarily invoke specific causality, vet as shown in the example, they
can provide useful data to the organization.

23 | CMU/SEI-2009-SR-001

4 Risk

4.1 Introduction

Business leaders, including those responsible for deciding where investment dollars are spent, use
risk management as a significant decision making structure for identifying and mitigating all cate-
gories of enterprise and organizational risk. In recent vears, risk management has been success-
fully applied in determining where to invest IT and information security dollars. Due to the in-
creasing marketplace demand to develop and field more secure software, risk management
processes, methods, and tools are being tailored and applied to software and application security.
Such use is intended as a mitigation to help reduce the costs associated with security incidents
caused by insecure software, including ongoing patching costs.

Risk management is particularly useful when the demand for investment resources substantially
outweighs the supply, calling for a structure that defines meaningful business thresholds and en-
sures that organizational exposure does not exceed them. Thus risk management and risk assess-
ment can be effectively used to drive the business case for building security in to newly developed
software and determining where and when to upgrade operational and legacy software.

Those with the authority to fund software assurance activities need to be able to answer the ques-
tion Why should [{my organization, my project) spend this money? and subsequently Where and
how should I spend this money? The cost of software assurance is the additional cost incurred to
guarantee that the software 1s free from exploitation and harm by any adversary [Bailey 2008b].
Decision makers must understand risk well enough to decide whether the benefit of additional
nvestments in software assurance practices sufficiently outweighs the cost when compared to
other risk mitigation actions that are already funded and in place. Once this risk cost/benefit deci-
sion has been made in favor of additional software assurance, managers must determine where
and how they should spend the money. Software assurance practices can be applied enterprise-
wide or to a specific development project; this tradeoff is also part of the investment decision
making process. Risk is the principal and most commonly used indicator to determine which
software assurance practices should be rolled out to which parts of the organization. In this sense,
risk informs the decision making process.

The increasing integration of business processes and I'T systems means that software risks can
often be linked to serious and specific impacts on the mission of an organization or business.
Since resources are rarely unlimited, mitigation of software risks can and should be priontized
according to the severity of the related business risks.

Central to the notion of risk management 1is the idea of clearly describing impact. Without a clear
and compelling tie to either business or mission consequences, technical risks, software defects,
and the like are not often compelling enough on their own to spur action. The risks we focus on in
this report are all tied directly to software and all have clear security ramifications. However, un-
less these risks are described in terms that business people and decision makers understand, they
will not likely be addressed.

24 | CMU/SEI-2009-SR-001

All businesses understand the principles and practices of risk management at some level. Execu-
tives make use of risk management concepts on a daily basis. Strategic decisions and tactical
moves are often informed with risk management data. Business dashboards include business risks
as critical measures. Yet software development has not traditionally leveraged this understanding
of risk management to gain a clear business mandate.

4.2 Risk Definitions

Many definitions of risk exist. NIST Special Publication 800-30 Risk Management Guide for In-
Jormation Technology Systems [Stonebumer 2002] defines risk as

a function of the likelihood of a given threat-source's exercising a particular potential vul-
nerability, and the resulting impact of that adverse event on the organization.

NASA-STD-8719.13B' defines risk as

the combination of (1) the probability (qualitative or quantitative) that e program or project
will experience an undesired event and (2) the consequences, impact, or severity of the unde-
sired event were it to occur

ISO/IEC 27005 Information technology — security techniques — Information security risk man-
agement [1SO 2008a] defines information security risk as

potential that a given threat will exploit vulnerabilities of an asset or group of assets and
thereby cauise harm to the organization

Alberts [2002] defines risk as “the possibility of suffering harm or loss.” Jones [Jones 2005b] de-

fines risk as “the probable frequency and probable magnitude of future loss.”

While all definitions emphasize likelihood or probability, NASA-STD-8719.13B calls out the fact
that there are qualitative and quantitative ways of determining probability. NIST SP 800-30 and
[SO 27005 emphasize the presence of a vulnerability as a source of risk. These sources attempt to
define what risk 1s. This is a necessary precursor to figuring out Aow to identify risk, analyze risk,
and mitigate risk as a significant basis for making the business case for software assurance.

4.3 A Framework for Software Risk Management

Management of risks, including the notion of risk aversion and technical tradeofT, is deeply im-
pacted by business motivation. As a result, software risk management can only be successfully
carried out in a business context. Software security risk includes risks found in the outputs and
results produced by each life-cycle phase during assurance activities, risks introduced by insuffi-
cient processes, and personnel-related risks.

A necessary part of any approach to ensuring adequate software security is the definition and use
of a continuous risk management process. An effective approach 1s using a well-defined risk man-
agement framework (RMTF) to assess and mitigate risk throughout the software development life
cycle. The RMEF described in this section can be used to implement a high-level, consistent, itera-
tive risk analysis that is deeply integrated throughout the SDIL.C [McGraw 2005].

! http:/fwww.hg.nasa.gov/office/codeg/doctree/871913B. pdf

25 | CMU/SEI-2009-SR-001

Figure 1 shows the RMF as a closed loop process with five activity stages:
« Understand the business context.

« Identify the business and technical risks.
« Synthesize and prioritize the risks, producing a ranked set.
« Define the risk mitigation strategy.

« Carry out required fixes and validate that they are correct.

Throughout the application of the RMF, measurement and reporting activities occur. These activi-
ties focus on tracking, displaying, and understanding progress regarding software risk.

Measurement and Reporting

1] 2] 4]

Understand Identify and Synthesize Define the Risk
the Business _ Link the — » and Rank — » Mitigation
Context Business and the Risks Strategy
Technical
Risks

Artifact
Analysis

Business Context IE‘

Carry Out
Fixes and

Validate

Figure 1: A Software Security Risk Management Framework

4.3.1 Understand the Business Context

The first stage of the RMF involves getting a handle on the business situation as described in Sec-
tion 4.1, Introduction. Commonly, business goals are neither obvious nor explicitly stated. In
some cases, a business may even have difficulty expressing these goals clearly and consistently.
When applying the RMF, the analyst must extract and describe business goals, priorities, and cir-
cumstances in order to understand what kinds of software risks to care about and which business
goals are paramount. Business goals include, but are not limited to, preserving and enhancing rep-
utation, increasing revenue, meeting service level agreements, reducing development costs, and
generating high return on investment.

A key part of understanding the business context is determining the criteria that the business has
established for accepting risks and acceptable levels of risk, often referred to as risk tolerances or
risk thresholds. “Risk thresholds are a management tool to determine when risk is in control or
has exceeded acceptable organizational limits. For example, a risk threshold for virus intrusions
may be whenever more than 200 users are affected—this would indicate that management needs

26 | CMUISEI-2008-5R-001

to act to prevent operational disruption” [REF 2008]. During this stage it is also critical to define
the scope of the risk assessment and ensure that there is a clear and direct tie to business and mis-
sion objectives.

4.3.2 Identify the Business and Technical Risks

Business risks directly threaten one or more of a customer’s business goals. The identification of
such risks helps to clarify and quantify the possibility that certain events will directly impact busi-
ness goals. Business risks have impacts that include direct financial loss, damage to brand or repu-
tation, violation of customer or regulatory constraints, exposure to liability, and increase in devel-
opment costs. The severity of a business risk should be expressed in terms of financial or project
management metrics. These may include, for example, market share (percentage), direct cost, lev-
el of productivity, and cost of rework.

Business risk identification helps to define and guide the use of particular technical methods for
identifying, analyzing, and mitigating software risk for various software artifacts such as require-
ments, architecture, and design specifications. The identification of business risks provides a nec-
essary foundation that allows software risk (especially impact) to be quantified and described in
business terms.

Central to this stage of the RMF is the ability to discover and describe technical risks and map
them {through business risks) to business goals. A technical risk is a situation that runs counter to
the planned design or implementation of the system under consideration. For example, a technical
risk may give rise to the system behaving in an unexpected way, violating its own design con-
straints, or failing to perform as required. Technical risks can also be related to the process used to
develop software. The process an organization follows may offer opportunities for mistakes in
design or implementation. Technical risks involve impacts such as unexpected system crashes,
absence or avoidance of controls (audit or otherwise), unauthorized data modification or disclo-
sure, and needless rework of artifacts during development.

Refer to Section 4.4 for further details on candidate risk assessment methods and Section 4.5 for
more detailed guidance on identifying risks.

433 Synthesize and Rank (Analyze and Prioritize) Risks

Large numbers of risks become apparent in almost any system. Identifying these risks is impor-
tant, but it is the prioritization of these risks that leads directly to creation of value. Through the
activities of analvzing and prioritizing risks, the critical Who cares? question can (and must) be
answered. Analysis and prioritization should answer questions such as What shall we do first,
given the current risk situation? and What is the best allocation of resources, especially in terms of
risk mitigation activities? The prioritization process must take into account which business goals
are the most important to the organization, which goals are immediately threatened, and how risks
that are likely to be realized may impact the business. This stage creates as its output a list of all
the risks and their relative priorities for resolution. Typical risk metrics include, for example, risk
likelihood, risk impact, risk severity, and number of risks emerging and mitigated over time.

Refer to Section 4.6 for more information on analyzing risks and Section 4.7 for detailed guidance
on categorizing and prioritizing risks.

27 | CMU/SEI-2009-SR-001

434 Define the Risk Mitigation Strategy

Given a set of prioritized risks from stage three, the next stage creates a coherent strategy for mi-
tigating the highest priority risks in a cost effective manner. Any suggested mitigation activities
must take into account cost, time to implement, likelihood of success, completeness, and impact
over the entire set of risks. A risk mitigation strategy must be constrained by the business context
and should consider what the organization can afford, integrate, and understand. The strategy
must also directly identify validation techniques that can be used to demonstrate that risks are
properly mitigated. Typical metrics to consider in this stage are financial in nature and include, for
example, estimated cost of mitigation actions, return on investment, method effectiveness in terms
of dollar impact, and percentage of risks covered by mitigating actions. Typically, it is not cost
effective to mitigate all risks, so some level of residual risk will remain once mitigation actions
are taken. Residual risks need to be regularly reviewed and consciously managed.

Refer to Section 4.8 for further guidance on mitigating risks.
4.3.5 Fix the Problems and Validate the Fixes

Once a mitigation strategy has been defined, 1t must be executed. Artifacts in which problems
have been identified (such as architectural flaws in a design, requirements collisions, or problems
in testing) should be fixed. Risk mitigation is carried out according to the strategy defined in stage
four. Progress at this stage should be measured in terms of completeness against the risk mitiga-
tion strategy. Good metrics include, for example, progress against risks, open risks remaining, and
any artifact quality metrics previously identified.

This stage also involves application of previously identified validation techniques. The validation
stage provides some confidence that risks have been properly mitigated through artifact improve-
ment and that the risk mitigation strategy 1s working. Testing can be used to demonstrate and
measure the effectiveness of risk mitigation activities. The central concern at this stage is to vali-
date that software artifacts and processes no longer bear unacceptable risks. This stage should
define and leave in place a repeatable, measurable, verifiable validation process that can be run
from time to time to continually verify artifact quality. Typical metrics employed during this stage
include artifact quality metrics, as well as levels of nisk mitigation effectiveness.

4.3.6 Measurement and Reporting on Risk

The importance of identifying, tracking, storing, measuring, and reporting software risk informa-
tion cannot be overemphasized. Successtul use of the RMFE depends on continuous and consistent
identification, review, and documentation of risk information as it changes over time. A master
list of risks should be maintained during all stages of RMF execution and continually revisited.
Measurements against this master list should be regularly reported. For example, the number of
risks identified in various software artifacts and/or software life-cycle phases can be used to iden-
tify problem areas in the software process. Likewise, the number of risks mitigated over time can
be used to show concrete progress as risk mitigation activities unfold.

Links to descriptions or measurements of the corresponding business risks mitigated can be used
to clearly demonstrate the business value of the software risk mitigation process and the risk man-
agement framework. Such measurements can aid managers to

e better manage business and technical risks, given particular quality goals

28 | CMU/SEI-2009-SR-001

o make more informed, objective business decisions regarding software (such as whether an
application is ready to release)

e improve internal software development processes and thereby better manage software risks
For a detailed example of applying the RMF to a software server product, refer to Software Secu-
rity: Building Security In, Chapter 2 [McGraw 2006]. For another comprehensive description of a
software-based risk management framework, refer to Microsoft’s Security Risk Management
Guide.”

The following sections provide details that elaborate the stages of a continuous software risk
management process as described by the RMF. These include (1) methods for assessing risk, (2)
identifying risk, (3) analyzing risk, {4) prioritizing risk, and (5) mitigating risk.

4.4 Methods for Assessing Risk

Methods for finding, analyzing, and mitigating risk abound. Some methods are considered quali-

tative; others are considered quantitative. Some methods focus on risks to specific assets (such as
software); others focus on groups of assets {such as IT infrastructures). Some methods rely on the
subjective judgment of domain experts; others rely on surveys or structured interviews involving

participants from across the organization.

Vorster and Les Labuschagne [Vorster 2005] developed a framework for evaluating different risk
methods. They evaluate two qualitative methods:

e OCTAVE (Operationally Critical Threat, Asset and Vulnerability Evaluation) [Alberts 2002]
e CORAS (Construct a platform for Risk Analysis of Security Critical Systems) [Stolen 2002]

And three quantitative methods:

e ISRAM (Information Security Risk Analysis Method) [Karabacak 2003]
e CORA (Cost-Of-Risk Analysis)®

e Information Systems (IS) analysis based on a business model [Suh 2003]

They present scales of criteria that can be used to decide which method best fits an organization.

Other relevant methods include

« CRAMM' (CCTA Risk Analysis and Management Method), which uses interviews, objec-
tive questionnaires, and guidelines and provides a range of assessment tools for modeling as-
set dependencies and performing business impact analysis (CCTA 1s the Central Computing

and Telecommunications Agency of the United Kingdom government.)

« ERAM’ (Enterprise Risk Assessment Methodology) (U.S. Department of Defense), which
uses a collaborative review process with sponsors, program office personnel, and acquisition
experts

http:/technet. microsoft.com/en-us/libraryfcc163143.aspx

The references cited for CORA in [Vorster 2005] are no longer available but the method description remains
useful.

http://en.wikipedia.org/wiki’/CRAMM

http:/fwww bta.mil/products/eram.html

29 | CMU/SEI-2009-SR-001

GRAM?® (Gartner Risk Assessment Methodology), which uses a Delphic technique to obtain
expert opinions, rather than interviews or workshop

NIST Risk Management Guide for Information Technology Systems [Stoneburner 2002]
STRIDE’ (Spoofing, Tampering, Repudiation, Information disclosure, Denial of service, and
Elevation of privilege), which 1s based on using a set of defined attack pattemns to elicit risks
that may be present in an existing software design

Threat Modeling [Howard 2006, Chapter 9; Goertzel 2007, Section 5.2.3.1], which uses

structured interviews, inspections, and expert analysis

Most organizations engaged in risk management use a combination or a customized version of

these methods. That said, it is difficult to assess the success of various approaches due to the ab-

sence of publicly available experience reports or case studies. In their 2007 Broad Area An-

nouncement for Cyber Security Research and Development,® the U.S. Department of Homeland

Security stated the following:

The lack of sound and practical security metrics is severely hampering progress both in re-
search and engineering of secure svstems. DHS seeks metrics that offer an understanding of
the costs and benefits of alternative approaches to securing systems. Ideally, DHS wants to
be able to choose research and engineering courses of action that have the highest risk re-
duction return on investment, i.e., that reduces risk most for the lowest cost.

DHS specifically does not seelk metrics which have no validatable connection to the ultimate
goal: the reduction of risk to mission.

Regardless of the method chosen, it should address the following categories of risk:

1.

Operational risks that arise from [REF 2008]

- poorly designed, poorly executed, and failed internal processes

- inadvertent or deliberate actions of people, including accidental disclosures, modifica-
tions of information and software, insider threat, and fraud

— failure of systems to perform as intended or risks imposed by the complexity and unpre-
dictability of interconnected systems

- failure of technology, including the unanticipated results of executing software or the
failure of hardware components

- external events include failures in mergers, acquisitions, and supply chain and other
third-party relationships, particularly with parties providing software. External events al-
so include forces such as natural disasters and failures of public infrastructure.

Legal, regulatory, and compliance risks that arise from failures to comply with the laws and

regulations of international, national, state, and local governments. One such example is the

U.S. Department of the Treasury Office of Comptroller of the Currency (OCC) Bulletin

2008-16" that directs specific action by financial institutions for ensuring application secu-

http:/fwww . gartner.com/it/page jsp?id=782612
http:/#msdn.microsoft.com/en-usiibraryM0y04t6(vs.71).aspx; (also see [Howard 2003])

https:/www . fho.govindex?s=opportunity&mode=form&tab=core&id=7 0da95bedbfOa 8b4 4ffac44 36d0daefa
&tab=documents&tabmode=list

http:/fwww.occ.treas.gov/tp/bulletin/2008-16.htmi

30 | CMU/SEI-2009-SR-001

rity. Compliance risks can also arise from failure to comply with mandated standards and
compliance frameworks such as the [SO 27000'° series, COBIT"' (Control Objectives for
Information Technology), and PA-DSS' (Payment Application Data Security Standard).
There are a growing number of regulations calling for stringent protection of personally
identifiable information (PII). Additional legal risks can arise from failure to comply with
valid contracts as well as civil and criminal investigations and e-discovery requests.

3. Reputational risks that arise from public disclosure or incidents that affect the public’s per-
ception of an organization’s soundness, credibility, and reliability. A PII exposure, the mis-
handling of a security incident, or an impaired ability to provide expected products and ser-
vices can all have a significant negative impact on an organization’s reputation. The
realization of reputational risks can result in loss of market share, declining stock prices, and
loss of customer confidence.

4. Financial risks arise from having to incur costs to address risk in all of the categories above.
Expending funds to recover from a realized risk is a lost opportunity, given that such funds
are not available to address more proactive mitigation actions.

The sections following provide a general overview of how risks can be identified, analyzed, and
mitigated. No particular method is preferred over another, but threat modeling is used to illustrate
these risk practices. This discussion will likely need to be translated or tailored when considering

each unique method, given the differences in the focus and emphasis of each.

4.5 ldentifying Risks

Risk identification is a foundational risk management activity. It requires the organization to iden-
tify and assess the types and extent of threats, vulnerabilities, and disruptive events that can pose
risk to the viability of high-value assets such as software. Identified risks form a baseline from
which a continuous risk management process such as RMF can be established and managed [REF
2008].

The identification of risks involves several steps:

e An organization starts by identifying what software assets are important. The intent is to fo-
cus the risk assessment on software assets judged to be most critical or of the highest value
for mission success. Software asset owners are also identified; these are typically software
project managers or software line of business/product managers. Software asset interrelation-
ships and interdependencies are identified so they can be considered during the risk assess-
ment.

e The organization next determines what might threaten high-value software assets. They then
determine candidate vulnerabilities (both organizational and technological) and how these

could be exploited by identified threats, causing risks to be realized.

e The organization finally determines the impacts due to losses resulting from realized risks.

" hitp/Awww is027001 security. com/html/iso27000. html

" hitp/Awww isaca.org/cobit

2 https:/Avww .pcisecuritystandards.org/security_standards/pci_pa_dss.shtml

31 | CMU/SEI-2009-SR-001

There are many techniques that can be used to identify risk. These include [REF 2008]

e use of questionnaires and surveys
e interviewing key management personnel and subject matter experts
e review of process controls

e conducting software security risk assessment using one or more of the methods described in
Section 4.4

e performing internal audits and performance reviews

e performing business impact analysis

e performing scenario planning and analysis

e using risk taxonomies for similar organizations and industries

e using lessons-learned databases such as the security incident knowledgebase

« reviewing vulnerability catalogs such as those maintained by CERT" and CVE'*

Questions designed to elicit risks “should address business risks (such as motivation, market, re-
sources, schedule, people, facilities, budget, contracts, program interfaces), project risks (such as
development process, development system, management methods, work environment) and prod-
uct risks (such as technical defects, design flaws, bugs, issues with languages and platforms). Par-
ticular effort should be made to address questions regarding risk indicators, the likelihood that

risks may occur, and business impact estimates in case risks are realized” [McGraw 2006].

4.51 Assets

An asset is anything that is important to the business. This could be money, customer information,
strategic and operational plans, process definitions, designs, formulas, etc. Assets can be both tan-
gible (facilities, IT infrastructure) and intangible (intellectual property, customer data, software).
The proliferation and use of software intensive systems for key business services means that se-
cure software 1s increasingly important when determining which assets are high-value and thus

require ongoing management and assessment of their risks.

The risk assessment methods introduced above identify assets in several ways. CORAS relies
heavily on workshops with I'T personnel and focuses on technical risk using UML class diagrams
for each asset. Therefore, assets are defined as systems or components of systems. One type of
threat modeling [Howard 2006"] identifies assets by looking at business objectives, roles, data,
and components. Another type of threat modeling [Ingalsbe 2008] identifies assets by looking at

specialized UML deployment diagrams which call out roles, data, and interconnected systems.
452 Threats

A threat is “an indication of a potential undesirable event” [INSTISSC 1998], “the actor or agent

who 1s the source of the danger” [McGraw 2006], or “anything that 1s capable of acting against an
asset in a manner that can result in harm” [Jones 2005b]. In other words, a threat is something that
could adversely affect a software asset. Threat classification serves as