

AFRL-RI-RS-TR-2009-154
Final Technical Report
June 2009

POLLUX: ENHANCING THE QUALITY OF
SERVICE OF THE GLOBAL INFORMATION GRID
(GIG)

The Vanderbilt University

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for
any purpose other than Government procurement does not in any way obligate the U.S.
Government. The fact that the Government formulated or supplied the drawings,
specifications, or other data does not license the holder or any other person or
corporation; or convey any rights or permission to manufacture, use, or sell any patented
invention that may relate to them.

This report was cleared for public release by the 88th ABW, Wright-Patterson AFB
Public Affairs Office and is available to the general public, including foreign nationals.
Copies may be obtained from the Defense Technical Information Center (DTIC)
(http://www.dtic.mil).

AFRL-RI-RS-TR-2009-154 HAS BEEN REVIEWED AND IS APPROVED FOR
PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION
STATEMENT.

FOR THE DIRECTOR:

 /s/ /s/
NORMAN AHMED JAMES W. CUSACK, Chief
Work Unit Manager Information Systems Division
 Information Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

http://www.dtic.mil

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden to Washington Headquarters Service, Directorate for Information Operations and Reports,
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,
Paperwork Reduction Project (0704-0188) Washington, DC 20503.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

JUN 2009
2. REPORT TYPE

Final
3. DATES COVERED (From - To)

Feb 2006 – Feb 2009
4. TITLE AND SUBTITLE

POLLUX: ENHANCING THE QUALITY OF SERVICE OF THE GLOBAL
INFORMATION GRID (GIG)

5a. CONTRACT NUMBER
FA8750-06-2-0054

5b. GRANT NUMBER
N/A

5c. PROGRAM ELEMENT NUMBER
62702F

6. AUTHOR(S)

Douglas C. Schmidt

5d. PROJECT NUMBER
ICED

5e. TASK NUMBER
06

5f. WORK UNIT NUMBER
05

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

The Vanderbilt University
2015 Terrace Place
Nashville, TN 37203

8. PERFORMING ORGANIZATION
REPORT NUMBER

 N/A

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

AFRL/RISE
525 Brooks Rd.
Rome NY 13441-4505

10. SPONSOR/MONITOR'S ACRONYM(S)
 N/A

11. SPONSORING/MONITORING
AGENCY REPORT NUMBER
AFRL-RI-RS-TR-2009-154

12. DISTRIBUTION AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. PA# 88ABW-2009-2417

13. SUPPLEMENTARY NOTES

14. ABSTRACT
The Pollux project focused on developing, analyzing, empirically evaluating, and optimizing technologies that can support the GIG’s
real-time QoS needs. This effort also focused on solutions that leveraged and enhanced commercial-off-the shelf (COTS) and
standards-based technologies. The final report describes the results of the Pollux project during the period of April 2006 to February
2009. Pollux focused on the following primary technical focus areas during this period of performance: DDS Benchmarking
Environment (DBE), DDS QoS Modeling Language (DQML), Resource Allocation and Control Engine (RACE), Model-driven
engineering tools for QoS configuration, Ricochet++ adaptive middleware/transport framework, CUTS System Execution Modeling
Tool.

15. SUBJECT TERMS
Publish and subscribe, Quality of Service (QoS), Information Management, distributed computing.

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

31

19a. NAME OF RESPONSIBLE PERSON
Norman Ahmend

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

19b. TELEPHONE NUMBER (Include area code)
N/A

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

Table of Contents

1.0 Summary……………………………………………………………….…..1
2.0 THE DDS BENCHMARKING ENVIRONMENT(DBE)……………….…...........….2

2.1 Challenge 1: Synchronizing Distributed Clocks ……………………….….……..7

2.2 Challenge 2: Automating Test Execution……………………………….….….…7

2.3 Challenge 3: Handling Packet Loss………………………………………......…..7

2.4 Challenge 4: Ensuring Steady Communication State………………………..…...8

2.5 Summary of Lessons Learned…………………………………………….……...8

3.0 THE DDS QOS MODELING LANGUAGE (DQML) ………………………....…...10
3.1 Challenge 1: Compatibility and Consistency of QoS Settings……………….….11

3.2 Challenge 2: QoS Settings Generation…………………………………………..11

3.3 Challenge 3: Handling Packet Loss……………………………………….……..11

4.0 THE RESOURCE ALLOCATION AND CONTROL ENGINE (RACE) ………....12
4.1 Challenge 1: Efficient Resource Allocation to Applications……………..….…..13

4.2 Challenge 2: Configuring Platform-specific QoS Parameters…………….……..13

4.3 Challenge 3: Monitoring End-to-end QoS and Ensuring QoS requirements are
met...……………………………………………………………………………..14

5.0 MODEL DRIVEN ENGINEERING TOOLS FOR QOS CONFIGURATION…....15
5.1 Challenge 1. Inherent Complexity in Translating QoS Policies to QoS…......…17

Configuration Options

5.2 Challenge 2. Ensuring Validity of QoS Configuration Options …..…………....18

5.3 Challenge 3. Resolving Dependencies Between QoS Configuration options.......18

5.4 Challenge 4. Ensuring Validity of QoS Configuration Options with changes in
QoS Policies …….……………………………………………………………….19

6.0 RICOCHET++ ADAPTIVE MIDDLEWARE/TRANSPORT FRAMEWORK…...20
7.0 CUTS SYSTEM EXECUTION MODELING TOOL ENHANCEMENTS…..….....23

i

Table of Figures

Figure 1: Unicast vs Multicast with 1 Publisher and 12 Subscribers ... 7
Figure 2: DDS1 vs DDS2 with 1 Publisher and 12 Subscribers (Multicast) 7
Figure 3: Scaling Up Subscribers Using Broadcast .. 8
Figure 4: DDS Architectures .. 8
Figure 5: DDS Portability Challenges .. 9
Figure 6: DQML with its DBE Interpreter ... 13
Figure 7: Resource Allocation and Control Engine (RACE) for DRE Systems15
Figure 8: QUality of service pICKER (QUICKER) Toolchain .. 19
Figure 9: Ricochet Running Forward Error Correction (FEC) Algorithm 23
Figure 10: Ricochet Using Forward Error Correction To Correct Packet Loss24
Figure 11: OpenDDS and Ricochet Integration .. 24
Figure 12: Analysis of a Single Unit Test for Multiple Test Runs ... 28

ii

LIST OF TABLES
1 Supported DDS Communication Models ……………………………………. 9

iii

1.0 SUMMARY
Future DoD missions will run on system of systems (SoS) characterized by thousands of plat-
forms, sensors, decision nodes, weapons, and warfighters connected through heterogeneous wire-
line and wireless networks to exploit information superiority and achieve strategic and tactical
objectives. The networks, operating systems, middleware, and applications in SoSs offer a com-
binatoric number of configuration points for adjusting their resource requirements and the quality
of service (QoS) they deliver. The Global Information Grid (GIG) is an emerging DoD SoS in-
tended to organize and coordinate this large application and technology space to manage infor-
mation effectively and provide DoD planners and warfighters with the right information to the
right place at the right time. To successfully support enterprise and tactical information manage-
ment needs, the emerging GIG SoS technologies must provide (1) universal–yet secure–access
to information from a wide variety of sources running over a wide variety of hardware/software
platforms and networks, (2) an orchestrated information environment that aggregates, filters, and
prioritizes the delivery of this information to work effectively in the face of transient and endur-
ing resource constraints, (3) continuous adaptation to changes in the operating environment, such
as dynamic network topologies, publisher/subscriber (pub/sub) membership changes, and inter-
mittent connectivity, and (4) tailorable, actionable information that can be distributed in a timely
manner in the appropriate form and level of detail to users at all echelons.

The Pollux project was a 36 month R&D project focused on developing, analyzing, empirically
evaluating, and optimizing technologies that can support the GIG’s real-time QoS needs. This
effort also focused on solutions that leveraged and enhanced commercial-off-the shelf (COTS)
and standards-based technologies. This final report describes the results of the Pollux project
during the period of April 2006 to February 2009. As described below, Pollux focused on the
following primary technical focus areas during this period of performance:
1. The DDS Benchmarking Environment (DBE), which enabled the precise analysis of the

latency, jitter, and throughput of standard-based and/or COTS-based QoS-enabled pub/sub
technologies, including DDS, JMS, Web Services, and CORBA.

2. The DDS QoS Modeling Language (DQML), which enables developers of QoS-enabled
pub/sub SoS to specify and enforce QoS policies that capture user intents and ensuring the
preservation of information priorities and differentiated flows of information securely and
predictably through the GIG

3. The Resource Allocation and Control Engine (RACE), which is a middleware framework
that supports predictable and scalable GIG application performance, even in the face of
changing operational conditions, workloads, and resource availability.

4. Model-driven engineering tools for QoS configuration that developers of GIG SoSs can
use to bind of application-level QoS policies onto the solution space comprising the QoS me-
chanisms for tuning the underlying middleware.

5. The Ricochet++ adaptive middleware/transport framework that integrates QoS-enabled
pub/sub middleware (such as DDS) with the Ricochet transport protocol developed by Cor-
nell as part of the Castor project.

6. Enhancements to the CUTS System Execution Modeling Tool that enables developers con-
duct “what if” experiments to discover, measure, and rectify performance problems early in
the lifecycle (e.g., in the architecture and design phases), as opposed to the integration phase,
when mistakes are much harder and more costly to fix.

The remainder of this final report summarizes our results in each of these technical focus areas.

1

2.0 THE DDS BENCHMARKING ENVIRONMENT (DBE)
Tactical information management systems increasingly run in net-centric environments characte-
rized by thousands of platforms, sensors, decision nodes, and computers connected together to
exchange information, support sense-making, enable collaborative decision making, and effect
changes in the physical environment. For example, the Global Information Grid (GIG) is an am-
bitious net-centric environment being designed to ensure that different services and coalition
partners, as well as individuals participating to specific missions, can collaborate effectively and
deliver appropriate firepower, information, or other essential assets to warfighters in a timely,
dependable, and secure manner. Achieving this vision requires the following capabilities from
the distributed middleware software:

• Shared operational picture. A key requirement for mission-critical net-centric systems is the
ability to share an operational picture with planners, warfighters, and operators in real-time.

• Ensure the right data gets to the right place at the right time by satisfying end-to-end
quality of service (QoS) requirements, such as latency, jitter, throughput, dependability, and
scalability.

• Interoperability and portability in heterogeneous environments since net-centric systems
are faced with unprecedented challenges in terms of platform and network heterogeneity.

• Support for dynamic coalitions. In many net-centric tactical information management sys-
tems, dynamically formed coalition of nodes will need to share a common operational picture
and exchange data seamlessly.

Prior middleware technologies, such as the Common Object Request Broker Architecture
(CORBA) Event Service and Notification Service, and the Java Message Service (JMS), and var-
ious other proprietary middleware product, have historically lacked key architectural and QoS
capabilities, such as dependability, survivability, scalability, determinism, security, and con-
fidentiality, needed by net-centric systems for tactical information management. To address these
limitations—and to better support tactical information management in net-centric systems like
the GIG—the OMG has adopted the Data Distribution Service (DDS) specification, which is a
standard for QoS-enabled data-centric publish/subscribe (pub/sub) communication aimed at net-
centric tactical information management systems. DDS is used in a wide range of military and
commercial systems.

We developed a DDS Benchmarking Environment (DBE) to facilitate testing of DDS products to
determine their suitability for tactical information management. In this part of our Pollux project
we collected results from many new benchmarks that compared the performance of DDS imple-
mentations in various configurations. We also evaluated the portability and configuration details
of each DDS implementation.

The DDS Benchmarking Environment (DBE) consists of

• A directory structure to organize scripts, config files, test ids, and test results

• A hierarchy of Perl scripts to automate test setup and execution

• A tool for automated graph generation

• A shared library for gathering results and calculating statistics

2

The DBE testbed directory structure is organized as follows:

• Settings

– Network: ~/DDS/settings/net/

– QoS: ~/DDS/settings/qos/

– Test Id: ~/DDS/settings/id.gen

• Start Script: ~/DDS/scripts/benchmark.pl

• Results:

– Individual Tests: ~/DDS/results/#id/

– Test List File: ~/DDS/results/tests.list

The DBE has the following three levels of execution:
• First level: This level provides the user interface and includes the following

files:
benchmark.pl →start_sub.pl
 →start_pub.pl
 →start_repo.pl

• Second level: This level manipulates the node itself and includes the fol-
lowing files:
 start_sub.pl →executable (i.e. subscriber.exe)
 start_pub.pl →executable (i.e publisher.exe)
 start_repo.pl →executable (i.e. repo.exe)

• Third level: This level comprises the actual executables, e.g., publishers
and subscribers written for NDDS from RTI (DDS1), OpenSPlice from
PrismTechnologies (DDS2), and Open DDS (DDS3) from OCI.

We ran experiments using a simple byte-sequence data type of varying lengths, measuring
throughput for various values of some other parameter such as number of subscribers, multicast
vs unicast, or subscriber notification via listener (asynchronous) vs wait-on-condition (synchron-
ous). Figure 1 is a typical example, where we compared average subscriber throughput (1 pub-
lisher and 12 subscribers) for a single DDS implementation using unicast vs multicast.

3

Figure 1: Unicast vs Multicast with 1 Publisher and 12 Subscribers

In Figure 2 we compare two DDS implementations, each one using multicast with 1 publisher
and 12 susbscribers. The third implementation of DDS we are testing does not support multicast,
so we could not get an apples-to-apples comparison with this implementation.

Figure 2: DDS1 vs DDS2 with 1 Publisher and 12 Subscribers (Multicast)

Unicast Multicast

DDS1 DDS2

4

In Figure 3 we compare average subscriber throughput as we scale up the number of subscribers,
on a single DDS implementation using broadcast.

Figure

Figure 3: Scaling Up Subscribers Using Broadcast

Evaluating the performance of the DDS implementations overall, we found that each has a very
distinct architecture, and that the design decisions that led to these architectures have a clear ef-
fect on the conditions under which each implementation performs best. Figure 4 shows the dif-
ferences in each architecture and the implementation it is associated with.

Participant

comm/
aux threads NetworkNetwork

User process

Node (computer)

Participant

comm/
aux threads

User process

Node (computer)

Participant

aux threads

NetworkNetwork

User process

Node (computer)

comm threads
Daemon process

Participant

aux threads
User process

Node (computer)

comm threads
Daemon process

Participant

comm threads
User process

Node (computer)

Aux + comm
threads

Daemon process

Participant

comm threads
User process

Node (computer)

NetworkNetwork

Node (computer)

data

controlcontrol

DDS1 - Decentralized Architecture DDS2 – Federated Architecture DDS3 – Centralized Architecture

Figure 4: DDS Architectures

4 Subscribers 8 Subscribers 12 Subscribers

5

In general, DDS1 is the best performer with smaller payload sizes, while DDS2 seems to scale
better, both to larger payloads and to larger numbers of subscribers (we intend to scale our tests
to both larger payloads and more subscribers per publisher to see if this trend continues). DDS3
is much newer and, while it lags behind the other two both in performance and in supported spe-
cification features, it is open-source and has a pluggable transport framework, giving it the po-
tential for rapid improvement. However, its centralized control architecture suggests scalability
problems, especially with the number of subscribers, and indeed we found this to be the case.

We also evaluated how easily a DDS application could be ported from one DDS implementation
to another. Since the DDS specification is a relatively young one, we found some issues here, as
expected. Figure 5 shows the most significant challenges encountered. In some cases, the feature
in question is simply underspecified, and the implementation has no choice but to put a proprie-
tary solution in place. In other cases, however, proprietary features and mechanisms have been
used to facilitate performance or discovery optimization.

 DDS1 DDS2 DDS3

DomainParticipantFactory compliant compliant proprietary function

Register Data Types static method member me-
thod member method

Spec Operations
extra argu-

ment (newer
spec)

compliant compliant

Key Declaration //@key
single

#pragma

pair of

#pragma

Required App. IDs publisher &
subscriber none publisher

Required App. Transport Config code-based none file-based or code-based

Figure 5: DDS Portability Challenges

The remainder of this section describes the challenges we encountered conducting the experi-
ments presented above and summarizes the lessons learned from our efforts.

6

2.1 Challenge 1: Synchronizing Distributed Clocks
Problem. It is hard to precisely synchronize clocks among applications running on blades

distributed throughout ISISlab. Even when using the Network Time Protocol (NTP), we still ex-
perienced differences in time that led to inconsistent results and forced us to constantly repeat the
synchronization routines to ensure the time on different nodes was in sync. We therefore needed
to avoid relying on synchronized clocks to measure latency, jitter, and throughput.

Solution. For our latency experiments, we have the subscriber send a minimal reply to the
publisher, and use on the clock on the publisher side to calculate the roundtrip time. For through-
put, we use the subscriber’s clock to measure the time required to receive a designated number of
samples. Both methods provide us with common reference points and minimize timing errors
through the usage of effective latency and throughput calculations based on a single clock.

2.2 Challenge 2: Automating Test Execution
Problem. Achieving good coverage of a test space where parameters can vary in several or-

thogonal dimensions leads to a combinatorial explosion of test types and configurations. Manu-
ally running tests for each configuration and each middleware implementation on each node is
tedious, error-prone, and time-consuming. The task of managing and organizing test results also
grows exponentially along with the number of distinct test configuration combinations.

Solution. The DBE stemmed from our efforts to manage the large number of tests and the
associated volume of result data. Our efforts to streamline test creation, execution and analysis
are ongoing, and include work on several fronts, including a hierarchy of scripts, several types of
configuration files, and test code refactoring.

2.3 Challenge 3: Handling Packet Loss
Problem. Since our DDS implementations use the UDP transport, packets can be dropped at

the publisher and/or subscriber side. We therefore needed to ensure that the subscribers get the
designated number of samples despite packet loss.

Solution. One way to solve this problem is to have the publisher send the number of messag-
es subscribers expect to receive and then to stop the timer when the publisher is done. The sub-
scriber could then use only the number of messages that were actually received to calculate the
throughput. However, this method has two drawbacks: (1) the publisher must send extra notifica-
tion messages to stop the subscribers, but since subscribers may not to receive this notification
message the measurement would never happen and (2) the publisher stops the timer, creating a
distributed clock synchronization problem discussed in Challenge 1 that could affect the accura-
cy of the evaluation. To address these drawbacks we therefore adopted an alternative that ensures
subscribers a deterministic number of messages by having the publishers “oversend” an appro-
priate amount of extra data.. With this method, we avoid extra “pingpong” communication be-
tween publishers and subscribers. More importantly, we can measure the time interval entirely at
the subscriber side without relying on the publisher’s clock. The downside of this method is that
we had to conduct experiments to determine the appropriate amount of data to oversend.

7

2.4 Challenge 4: Ensuring Steady Communication State
Problem. Our benchmark applications must be in a steady state when collecting statistical

data.

Solution. We send primer samples to “warm up” the applications before actually measuring
the data. This warmup period allows time for possible discovery activity related to other sub-
scribers to finish, and for any other first-time actions, on-demand actions, or lazy evaluations to
be completed, so that their extra overhead does not affect the statistics calculations.

2.5 Summary of Lessons Learned
Based on our test results, experience developing the DBE, and numerous DDS experiments,

we learned the following:

• DDS Performs significantly better than other pub/sub implementations. Our results that
even the slowest DDS was about twice as fast as non-DDS pub/sub services. We also showed
that DDS pub/sub middleware scales better to larger payloads compared to non-DDS pub/sub
middleware. This performance margin is due in part to the fact that DDS decouples the in-
formation intent from information exchange. In particular, XML-based pub/sub mechanisms,
such as SOAP, are optimized for transmitting strings, whereas the data types we used for test-
ing were sequences. GSOAP’s poor performance with large payloads is due to the fact that
GSOAP (de)marshals each element of a sequence, which may be as small as a single byte,
while DDS implementations send and receive these data types as blocks.

• Individual DDS architectures and implementations are optimized for different use cas-
es. Our results showed that NDDS’s decentralized architecture is optimized for smaller payl-
oad sizes compared to OpenSplice’s federated architecture. As payload size increases, espe-
cially for the complex date types, OpenSplice catches up and surpasses NDDS in perfor-
mance on the same blade. When the publisher and subscriber run on different blades, howev-
er, NDDS outperforms OpenSplice for all tested data sizes.

• Apples-to-apples comparisons of DDS implementations are hard. The reasons for this dif-
ficulty fall into the following categories: (1) no common transport protocol – the DDS imple-
mentations that we investigated share no common application protocol, e.g., RTTI uses a
RTPS-like protocol on top of UDP, OpenSplice will add RTPS support soon, and TAO DDS
simply implements raw TCP and UDP, (2) no universal support for uni-
cast/broadcast/multicast – Table 1 shows the different mechanisms supported by each DDS
implementations, from which we can see DDS3 does not support any group communication
transport, making it hard to maintain performance as the number of subscribers increases, (3)
DDS applications are not yet portable, which stem partially from the fact that the specifica-
tion is still evolving and vendors use proprietary techniques to fill the gaps (a portability
wrapper façade would be a great help to any DDS application developer, and a huge help to
our efforts in writing and running large numbers of benchmark tests), and (4) arbitrary de-
fault settings for DDS implementations, which includes network-specific parameters not cov-
ered by the DDS specifications that can significant impact performance.

8

Table 1: Supported DDS Communication Models

Impl Unicast Multi-
cast

Broadcast

DDS1 Yes (default) Yes No

DDS2 No Yes Yes (default)

DDS3 Yes (default) No No

More test results, as well as more information about the tests, DBE testbed, implementation ar-
chitectures, and portability issues can be found at

http://www.dre.vanderbilt.edu/DDS

We presented the results of our DBE experiments at the Object Management Group’s Real-time
and Embedded Systems Workshop in Ballston, VA on July 11th, 2006 and the Defense Trans-
formation and Net-Centric Systems conference, April 9-13, 2007, Orlando, Florida.

9

http://www.dre.vanderbilt.edu/DDS

3.0 THE DDS QOS MODELING LANGUAGE (DQML)
We developed the DDS Quality of Service (QoS) Modeling Language (DQML), which faci-

litates the design of QoS configurations for DDS applications and provides constraint checking
to support “correct by construction” QoS configurations. DQML checks for compatibility con-
straint errors where data will not flow between DDS DataReaders and DataWriters due to in-
compatible QoS settings on the entities. It also checks for consistency constraint errors where
multiple QoS settings for a particular entity will not be used because they conflict with each oth-
er.

DQML was developed using the Generic Modeling Environment (GME) tool. DQML mod-
els are also developed in GME using the DQML paradigm. GME provides a GUI for interacting
with DQML so that DDS entity and QoS policy icons can be dragged and dropped onto a design
space. Connections can then be made between DDS entities, as well as between DDS entities and
QoS policies. Additionally, a DQML interpreter was developed to create QoS settings files for
the DDS Benchmarking Environment (DBE). Once a DQML model has been developed, the
modeler can then invoke the DBE interpreter to generate QoS settings files for the DataReaders
and DataWriters that DBE will deploy. DBE can directly read and use these files with no manual
intervention needed with respect to the QoS settings. Figure 6 illustrates the various elements
and their relationships in DQML.

 Figure 6: DQML with its DBE Interpreter

This section describes the challenges encountered when developing applications using DDS and
describes how DQML addresses them.

Compicon.icoDBE
Interpreter

DBE

DataReader

DataWriter

QoS Settings

QoS Settings

10

3.1 Challenge 1: Compatibility and Consistency of QoS Settings
Problem. With the 22 QoS policies specified in DDS and the interactions between them,

there is a need to ensure that QoS configurations specified for an application are compatible be-
tween different DDS entities and consistent for any one particular DDS entity. Manually check-
ing these interactions is difficult since it is easy to miss interactions of settings that violate com-
patibility or consistency. Managing and changing QoS settings dynamically while the system is
running adds inherent complexity and lowers the confidence level of the system. For some types
of systems this lack of confidence is problematic (e.g., certain RT systems, systems with prova-
bility requirements). Iterating through the development cycle to modify source code, build, run,
and test adds time and accidental complexity.

Solution. DQML has been developed to allow correct by construction configurations. At de-
sign time the developer can create a QoS configuration and check if it is compatible and consis-
tent before the application is ever deployed.

3.2 Challenge 2: QoS Settings Generation
Problem. Generating QoS settings by hand can lead to accidental complexity. While the de-

veloper meant only to change one specific setting, other changes may inadvertently crop up (e.g.,
due to editing mistakes).

Solution. DQML provides a DBE interpreter that will automatically generate QoS settings
files that can be used by DBE.

3.3 Challenge 3: Handling Packet Loss
Problem. Typical DDS application development includes specifying the QoS settings in the

source code along with the business logic. This is a source of accidental complexity. Changes
made to the source code to modify QoS settings may inadvertently modify the business logic
(e.g., due to editing mistakes) since the business logic is tightly coupled with QoS configuration
in the source code.

Solution. DQML decouples the business logic from QoS configuration by generating QoS
settings files that can be used by the application but still remain decoupled from the source code.

Papers describing DQML and the problems it addresses appeared in the proceedings of the
Distributed Objects, Middleware, and Applications (DOA'08), Monterrey, Mexico, Nov 10 - 12,
2008 and the proceedings of International Conference on Distributed Event-Based Systems
(DEBS), June 20-22nd, 2007, Toronto, Canada

11

4.0 THE RESOURCE ALLOCATION AND CONTROL ENGINE (RACE)
We developed the Resource Allocation and Control Engine (RACE), which is an adaptive re-

source management framework built atop QoS-enabled distributed computing middleware, such
as Real-time CORBA or DDS. As shown in Figure 7, RACE provides (1) resource monitor
components that track utilization of various system resources, such as CPU, memory, and net-
work bandwidth, (2) QoS monitor components that track application QoS, such as end-to-end
delay, (3) resource allocator components that allocate resource to components based on their
resource requirements and current availability of system resources, (4) configurator components
that configure QoS parameters of application components, (5) controller components that com-
pute end-to-end adaptation decisions to ensure that QoS requirements of applications are met,
and (6) effector components that perform controller-recommended adaptations.

Figure 7: Resource Allocation and Control Engine (RACE) for DRE Systems

We have initially evaluated the effectiveness of RACE in the context of representative DRE
systems: NASA's Magnetospheric Multi-scale Mission system (MMS) and a convey escort ap-
plication. Our empirical results show that the capabilities provided by RACE yields a predictable
and high performance system, even in the face of changing operational conditions, workloads,
and resource availability. This section describes how RACE resolves various challenges encoun-
tered wile building a prototype implementation inspired by the MMS case study.

12

4.1 Challenge 1: Efficient Resource Allocation to Applications
Problem: Applications generated in the MMS system are resource sensitive, i.e., end-to-end

QoS is reduced significantly if the required type and quantity of resources are not provided to the
applications at the right time. System resources should therefore be allocated in a timely fashion
to components of applications such that their resource requirements are met. In open DRE sys-
tems like MMS, however, input workload affects utilization of system resources by, and QoS of,
applications. These parameters of the applications may therefore vary significantly from their
estimated values. Moreover, system resource availability, such as available network bandwidth,
may also be time variant.

Solution. RACE monitors the current utilization of system resources and employs resource
allocation algorithms, such as constraint based bin packing algorithm, to compute resource
(re)allocation to applications. However, since CPU and memory utilization overhead might be
associated with implementations of resource allocation algorithms themselves, RACE should,
therefore, support multiple resource allocation algorithms and select the appropriate one(s) de-
pending on properties of the application and the overheads associated with various implementa-
tions.

4.2 Challenge 2: Configuring Platform-specific QoS Parameters
Problem: QoS of applications depend on various platform-specific real-time QoS configura-

tions including (1) QoS configuration of the QoS-enabled component middleware such as priori-
ty model, threading model, and request processing policy, (2) operating system QoS configura-
tion such as real-time priorities of the process(es) and thread(s) that host and execute within the
components respectively, and (3) networks QoS configurations, such as diffserv code-points of
the component interconnections. Since these configurations are platform-specific, it is tedious
and error-prone for system developers to specify them in isolation.

Solution: RACE shields application developers from low-level platform-specific details and
defines a higher-level QoS specification model. Developers specify only QoS characteristics of
the application, such as QoS requirements and relative importance, and RACE automatically
configures platform-specific parameters accordingly.

13

4.3 Challenge 3: Monitoring End-to-end QoS and Ensuring QoS Requirements are Met
Problem: To meet the end-to-end QoS requirements of applications, system resource utiliza-

tion and application QoS must be monitored. The system should be able to adapt to dynamic
changes, such as variations in operational conditions, input workload, and/or resource availabili-
ty, and ensure that QoS requirements of applications are not violated.

Solution: To resolve the above described challenges, RACE's control architecture employs a
feedback loop to manage system resource and application QoS and ensures (1) QoS requirements
of applications are met at all times and (2) system stability by maintaining utilization of system
resources below their specified set-points. RACE's control architecture features a feedback loop
that consists of three main components: Monitors, Controllers, and Effectors. Monitors tracks
both system QoS and resource utilization. Controllers enable a DRE system to adapt to changing
operational context and variations in resource availability and/or demand. The RACE Controllers
implement various control algorithms that manage runtime system performance. Based on the
control algorithm they implement, Controllers modify configurable system parameters (such as
execution rates and mode of operation of the application), real-time configuration settings (such
as operating system priorities of processes that host the components), and network diffserv code-
points of the component interconnections.

We wrote a paper describing the structure and functionality of RACE along with our empiri-
cal evaluation that appeared in the proceedings of the 10th IEEE International Symposium on
Object/Component/Service-oriented Real-time Distributed Computing held at Santorini Island,
Greece May 7-9, 2007.

14

5.0 MODEL DRIVEN ENGINEERING TOOLS FOR QOS CONFIGURATION
Commercial-off-the-shelf (COTS) middleware, such as application servers, QoS-enabled infor-
mation grids, and object request brokers (ORBs), provide out-of-the-box support for traditional
concerns affecting QoS in DRE system development, including multithreading, assigning priori-
ties to tasks, publish/subscribe event-driven communication mechanisms, security, and multiple
scheduling algorithms. This support helps decouple application logic from QoS mechanisms
(such as portable priority mapping, end-to-end priority propagation, thread pools, distributable
threads and schedulers, request buffering, and managing event subscriptions and event delivery
necessary to support the traditional concerns listed above), shields the developers from low-level
OS specific details, and promotes more effective reuse of such mechanisms.

Although component middleware has helped move the configuration complexity away from the
application logic, the middleware itself has become more complex to develop and configure
properly. To achieve the desired QoS characteristics for DRE systems, therefore, system devel-
opers and integrators must perform QoS configuration of the middleware. This process involves
the binding of application level QoS policies—which are dictated by domain requirements—onto
the solution space comprising the QoS mechanisms for tuning the underlying middleware. Ex-
amples of domain-level QoS policies include (1) the number of threads necessary to provide a
service, (2) the priorities at which the different components should run, (3) the alternate proto-
cols that can be used to request a service, and (4) the granularity of sharing among the applica-
tion components of the underlying resources such as transport level connections.

QoS configuration bindings can be performed at several time scales, including statically, e.g., di-
rectly hard coded into the application or middleware, semi-statically, e.g., configured at deploy-
ment time using metadata descriptors, or dynamically, e.g., by modifying QoS configurations at
runtime. Regardless of the binding time, however, the following challenges must be addressed:

• The need to translate the domain-specific QoS policies of the application into QoS configura-
tion options of the underlying middleware.

• The need to choose valid values for the selected set of QoS configuration options.
• The need to understand the dependency relationships and impact between the different QoS

configuration options, both at individual component level (local) as well as at aggregate in-
termediate levels, such as component assemblies, through the entire application (global).

• The need to validate the local and global QoS configurations, which include the values, the
dependency relationships, and the semantics of QoS configuration options at all times
throughout the DRE system lifecycle.

Without effective tools to address these challenges, the result will be QoS mis-configurations
that are hard to analyze and debug. As a result, failures will stem from a new class of configura-
tion errors rather than (just) traditional design/implementation errors or resource failures.

To address the QoS configuration challenges described above, we developed the Quality of ser-
vice pICKER (QUICKER) model-driven engineering (MDE) toolchain shown in Figure 8.
QUICKER extends the Platform-Independent Component Modeling Language (PICML), which
is a domain-specific modeling language (DSML) built using the Generic Modeling Environment
(GME).

15

Figure 8: QUality of service pICKER (QUICKER) Toolchain

16

QUICKER enables developers of DRE systems to annotate applications with QoS policies.
These policies are specified at a higher-level of abstraction using platform-independent models,
rather than using low-level platform-specific configuration options typically found in middle-
ware configuration files. QUICKER thus allows flexibility in binding the same QoS policy to
other middleware technologies. Before the components in a DRE system can be deployed, how-
ever, their platform-independent QoS policies must be transformed into platform-specific confi-
guration options. QUICKER therefore uses model-transformation techniques to translate the
platform-independent specifications of QoS policies into a platform-specific model defined using
the Component QoS Modeling Language (CQML), which models the QoS configuration options
required to implement the QoS policies of the application specified in PICML. Unlike PICML
(whose models are platform-independent), CQML models are specific to the underlying middle-
ware infrastructure (which in our case is Real-time CCM).

QUICKER subsequently uses generative techniques on the CQML model to synthesize:

• The input to the Bogor model-checking framework, which validates the transformation-
generated application component-specific middleware QoS configuration and identifies all
permissible changes to these configuration options that can be performed at runtime, while
maintaining the validity of QoS configuration across the entire application, and

• The descriptors in a middleware-specific format (such as XML) required to configure the
functional and QoS properties of the application in preparation for deployment in a target en-
vironment.

This section describes the challenges in QoS configuration in middleware and how QUICKER
addresses these challenges.

5.1 Challenge 1. Inherent Complexity in Translating QoS Policies to QoS Configuration
Options
Problem: Translating QoS policies into QoS configuration options is hard because it must trans-
form semantics from the application domain to the semantics of the underlying component mid-
dleware. QoS-enabled component middleware provides mechanisms to configure (1) processor
resources, such as portable priorities, end-to-end priority propagation, thread pools, distributable
threads and schedulers, (2) communication resources, such as protocol properties and explicit
binding of connections, and (3) memory resources, such as buffering of requests. To translate the
QoS policies into QoS mechanisms by configuring the QoS options, application developers need
a thorough understanding of the underlying middleware platforms. While schedulability analysis
might determine the right priority values for each component in the path of each control flow, the
choice of QoS policies used to configure the middleware has a significant impact on the end re-
sult of satisfying QoS requirements. Without tool support, therefore, it is tedious and error-prone
for a domain expert to translate QoS policies or analysis results to a subset of the QoS configura-
tion options (e.g., priority models, priority-bands, and thread pools) supported by the middleware
that will ultimately impact the level of QoS achieved.

Solution: QUICKER gathers the application QoS policies at the domain-level abstraction
and uses model-transformation to automate the tedious and error-prone translation of QoS poli-
cies to the appropriate subset of QoS configuration options. The Graph Rewriting and Trans-
formation (GReAT) tool to transform platform-independent QoS policies captured in PICML
(the input) to platform-specific QoS configuration options captured in CQML (the output).

17

5.2 Challenge 2. Ensuring Validity of QoS Configuration Options
Problem: Assuming that a domain expert can translate the QoS policies into a subset of QoS

configuration options, it is also necessary to understand the pre-conditions, invariants, and post-
conditions of the different QoS configuration options since they affect middleware behavior.
This problem is exacerbated by the plethora of options and choices of valid values for each op-
tion, as well as by the fact that choosing one value for a particular option may have side effects
on other options. These side effects are sometimes manifested as overt failures, such as failure to
perform a mapping of CORBA priority to OS priority because of insufficient priorities in the OS
to support the choice of priority mapping scheme, e.g., direct mapping. They may also be mani-
fested, however, as hard-to-reproduce and/or debug runtime failures that only emerge during
field testing, or after deployment, which are much harder to detect and fix. In summary, validat-
ing the values of the different QoS configuration options in isolation and together with connected
components is critical to the successful deployment and ultimately the operation of DRE sys-
tems. Once again, it is hard to validate these values without automated tool support.

Solution: After the model-transformation portion of the QUICKER toolchain generates a
CQML model comprising the QoS configuration options, the correctness of these options must
be validated before the application assembly is deployed. We validate these options using the
Bogor model-checking framework, which is a customizable explicit-state model checker imple-
mented as an Eclipse plugin.

5.3 Challenge 3. Resolving Dependencies between QoS Configuration Options
Problem: Even with a thorough understanding of middleware QoS configuration options,

manual configuration of QoS policies does not scale as the number of entities to configure in-
creases. This lack of scalability stems from dependencies between the different QoS configura-
tion options of each component, such as the dependency between the CORBA or DDS priority of
a component, the chosen priority mapping scheme (to map CORBA or DDS priority to native OS
priority), and the priority-banded connections policy (which selects the appropriate connection to
route requests based on the request invocation priority). As the number of components increases,
the number of intra-component dependencies increases proportionally. If the components are
connected, the side effect of the connection between components may also induce an inter-
component option dependency. Since these dependencies can grow quadratically, it is infeasible
for developers to manage these dependencies manually.

Solution: We developed Bogor Input Language (BIR) extensions to capture the interconnec-
tions between the different components in the applications. These BIR extensions were then
augmented using BIR primitives that allowed validating the dependencies between options
among connected components of an application.

18

5.4 Challenge 4. Ensuring Validity of QoS Configuration Options with Changes in QoS Pol-
icies

Problem: QoS configuration options effect the non-functional behavior of a system, and thus
are affected by changes in the system environment. For a DRE system to operate effectively in
hostile environments, such as space missions, component middleware and their associated QoS
configuration options may need to adapt to their current conditions. While it is useful to change
QoS configuration options at runtime to effect changes in behavior (such as re-prioritizing or in-
creasing/decreasing resource usage), such dynamic reconfigurations may incur another set of
challenges. In particular, it is non-trivial to change a running system because the system might
crash during reconfiguration due to misconfiguration of QoS options. Exhaustive evaluation of
possible choices of QoS configuration options and validation of the reconfigured state is too time
consuming to perform at runtime and can delay the reconfiguration process itself, rendering it
useless.

Solution: Our QoS extensions explore the possible states of an application and generate a set
of valid application states. By exploring all the possible states of an application, QoS extensions
identify both the set of valid and invalid application states. The valid states of an application can
be used to select runtime QoS configurations by the RACE QoS adaptation framework at design-
time. We can also construct an automaton that can guide the behavior of the RACE controller to
adapt configuration options dynamically, to ensure that reconfiguration will not yield an invalid
application state.

We published a paper describing the structure and functionality of QUICKER along with our
empirical evaluation called that appeared at the 10th IEEE International Symposium on Ob-
ject/Component/Service-oriented Real-time Distributed Computing held at Santorini Island,
Greece May 7-9, 2007.

19

6.0 RICOCHET++ ADAPTIVE MIDDLEWARE/TRANSPORT FRAMEWORK
We collaborated with Cornell University on the Ricochet++ project, which integrates the

OpenDDS QoS-enabled middleware with the Ricochet transport protocol developed by Ken
Birman’s group as part of the Castor project. OpenDDS is an open-source implementation of the
Data Distribution Service (DDS) that supports a pluggable transport framework. This framework
allows transport protocols to be used by OpenDDS for data transport. OpenDDS is open-source
software supported by Object Computing, Inc. (www.ociweb.com). Ricochet provides low laten-
cy loss detection, low latency loss correction for single missed packets, and probabilistic reliabil-
ity. It is built on top of IP multicast and requires no modifications to routers or gateways. All the
functionality provided by Ricochet is managed in the end hosts. Figure 9 below illustrates the
behavior of Ricochet when there are no dropped packets. Error correction information is passed
between the receivers of the multicast data similar in concept to gossip-based protocols.

Figure 9: Ricochet Running Forward Error Correction (FEC) Algorithm

Figure 10 below shows the behavior of Ricochet when a data packet is dropped. This condi-

tion is detected quickly between receivers since they exchange information as to what packets
they have already received. Additionally, this information also allows receivers to reconstruct a
lost packet. We initially downloaded the Ricochet source code and started running the example
application supplied to gain familiarity with Ricochet. We then investigated OpenDDS’s plugga-
ble transport framework to understand how to implement the integration of OpenDDS and Rico-
chet. In addition, we determined how to interface Java and C++ since OpenDDS is written in
C++ and the Ricochet transport protocol is written in Java.

sender

receiver

receiver

receiver

Key: = error correction info = data message

20

http://www.ociweb.com

Figure 10: Ricochet Using Forward Error Correction To Correct Packet Loss

Figure 11: OpenDDS and Ricochet Integration

Pluggable Transport
Framework

XOR encoding
FEC-sender
ACK-based

Reed-Solomon
FEC-receiver
NAK-based

Custom protocol Custom protocol

Ricochet

Ricochet protocol

Key: = error correction info = data message

sender

receiver

receiver

receiver

x

21

We enhanced the OpenDDS and Ricochet++ integration shown in Figure 11 to support mul-
tiple topics where each topic will be mapped to a multicast group in Ricochet++. Previously only
a single Ricochet++ multicast group was supported for any one OpenDDS executable within the
distributed metrics application.Additionally, we developed software to collect latency metrics for
an OpenDDS application with one sender and multiple receivers. The publisher sends out data on
multiple topics which correlate to multiple multicast groups within Ricochet++. A subscriber
then receives the data for the topic to which it subscribed and calculates latency metrics for the
data.

We presented a poster entitled “Trustworthy Conferencing via Domain-specific Modeling
and Low Latency Reliable Protocols” at the NSF TRUST Spring 2008 Conference in April. We
also published papers on our Ricochet++ work at the 2nd workshop on Large-Scale Distributed
Systems and Middleware (LADIS 2008), IBM TJ Watson Research Center, Yorktown, New
York, September 2008.

22

7.0 CUTS SYSTEM EXECUTION MODELING TOOL ENHANCEMENTS
The Component Workload Emulator (Co-WorkEr) Utilization Test Suite (CUTS) is a system ex-
ecution modeling (SEM) tool that helps developers conduct “what if” experiments to discover,
measure, and rectify performance problems early in the lifecycle (e.g., in the architecture and
design phases), as opposed to the integration phase, when mistakes are much harder and more
costly to fix. In particular, CUTS provides the following capabilities:

1. It allows users (e.g., software architects, developers, and systems engineers) specify the struc-
ture of an enterprise DRE system (e.g., the component and their interconnections us-ing
CUTS DSMLs).

2. It allows users to associate the necessary QoS characteristics with individual compo-nents
(e.g., CPU utilization) or the system as a whole (e.g., deadline of a critical path through the
system).

3. It allows the information captured by the tools can be synthesized into executable code and
configuration metadata, which the middleware then uses to deploy the emu-lated/actual appli-
cation/system components onto the target platform.

4. It allows system developers and engineers to analyze the collected metrics and explore design
alternatives from multiple computational and valuation perspectives to quantify the costs of
certain design choiceson end-to-end system performance.

This process can be applied iteratively throughout the phases of development process.

In the Pollux project we developed a data collection and analysis framework used when integrat-
ing the CUTS system execution modeling tool with continuous integration environments, such as
CruiseControl (ccnet.throughworks.com), to create CiCUTS, and began the first phase of identi-
fying search algorithms for locating deployments and configuration of component-based system
that meet desired performance requirements.
 The motivation for generalizing the data collection and analysis framework for CiCUTS is to
improve its applicability across multiple project domains. Moreover, provide capabilities to
large-scale distributed system developers who collect large amounts of varying data for under-
standing system performance at multiple levels without having to deal with the complexity to
implementing an analysis and reporting framework. By using CiCUTS’s generic reporting and
analysis framework, developers are be able to identify metrics of interest at a high-level, such as
throughput of an event, or test and test configurations, and let CiCUTS monitor and analyze such
metrics continuously throughout the system’s development lifecycle.

23

…
 CiCUTS.instance ().log (LM_INFO, “received ” + events + “ events”);

 …
Listing 1. Example Log Message for Capturing Performance

 As illustrated in Listing 1, developers use simple log messages to identify their metrics of
interest and embed the messages in their source code. We use log messages because they (1) are
flexible enough to capture any arbitrary performance metric, (2) can be inserted/removed quickly
to modify collected performance metrics, (3) serve as good indicators for understanding behavior
and performance.

``received {INT x} events’’

Listing 2. Example High-level Regular Expression for Analyzing Performance

 From a testing standpoint, capturing the performance metrics will be handled seamlessly
by the CiCUTS’s testing environment. Developers, therefore, only have to identify what metrics
need to be analyzed by the analysis and reporting framework. Listing 2 shows an example regu-
lar expression that corresponds to the performance metric presented in Listing 1. For each test
identified in the database, the analysis framework will convert the high-level regular expressions
into usable regular expressions for data mining against collected log messages. From the ex-
tracted log messages, it will present a graph of the identified performance metric.

 …
 CiCUTS.instance ().log (LM_INFO, “received ” + events + “ events over a ” + duration + “

minute test”);
 …

``received {INT x} events over a {INT duration} minute test’’
analysis: x / duration

Listing 3. High-level Regular Expression with On-The-Fly Evaluation

For cases where a single identifier is insufficient to capture performance, we provide on-the-

fly evaluation. As highlighted in Listing 3, the log message captures the number of events pub-
lished and the duration of the test. If we want to capture how many events were published per
second, but failed to do the calculation when creating the log message, we can create an equation
that evaluates the identifiers in the log message.

24

Figure 12: Analysis of a Single Unit Test for Multiple Test Runs

 Once the high-level metrics have been data mined and analyzed, results for the test run are
displayed to the tester. In addition to showing metrics for single test run, the analysis framework
is able to show metrics for multiple tests runs, such as a night build of the system. As illustrated
in Figure 12, the analysis framework presents the results of a single unit test for multiple test
runs. This is similar to the initial effort; however, it extends that effort because all results are
generated from metrics that have been identified at a high-level.

25

