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ABSTRACT 

The use of Airborne LiDAR Systems (ALS) to obtain topographical information 

of the earth’s surface and generate Digital Elevation Models (DEMs) has grown 

extensively in the field of Remote Sensing.  Selected areas of point cloud LiDAR data 

collected from Honduras in 2008 was used to produce DEMs with varying densities to 

show the effects of lower resolution LiDAR data.  An IDL code was utilized to reduce 

the selected LiDAR point cloud data to 90%, 66%, 50%, 30%, 10%, 5%, 3%, 1%, 0.5%, 

0.3%, 0.1%, 0.05%, 0.03%, and 0.01% of its original density to obtain lower resolution 

data sets.  The software Quick Terrain Modeler (QTM) and its ILAP Bare Earth Extractor 

Plug-in was used to generate DEMs from the varying point cloud density data sets and 

the software ENVI was used to perform DEM analysis.  It was found that LiDAR point 

cloud density data set of at least 0.6 points per square meter is necessary to generate an 

accurate Digital Elevation Model for the test environment. 



 vi

THIS PAGE INTENTIONALLY LEFT BLANK 



 vii

TABLE OF CONTENTS 

I. INTRODUCTION........................................................................................................1 

II. BACKGROUND ..........................................................................................................3 
A. LIGHT DETECTION AND RANGING (LiDAR) .......................................3 
B. AIRBORNE LIDAR SYSTEM (ALS) ...........................................................4 

1. Components of an Airborne LiDAR System.....................................5 
a. Laser Ranging Unit...................................................................5 
b. Position and Orientation System (POS)...................................6 
c. Synchronization ........................................................................8 

2. Registration ..........................................................................................8 
3. Point Density.......................................................................................12 
4. LAS LiDAR Data Standard ..............................................................13 

C. DIGITAL ELEVATION MODEL (DEM) GENERATION PROCESS ..14 
1. Filtering...............................................................................................14 
2. Model Selection ..................................................................................15 
3. DEM Interpolation.............................................................................15 

D. PREVIOUS DATA ANALYSIS RESULTS ................................................15 

III. OBSERVATIONS......................................................................................................19 
A. LOCATION....................................................................................................19 
B. POST-PROCESSING AND DATA ANALYSIS SOFTWARE.................20 

1. Quick Terrain Modeler (QTM) Version 6.0.6.................................20 
2. ILAP Bare Earth Extractor Version 1.0..........................................21 
3. Environment for Visualizing Images (ENVI) Version 4.5 .............21 

C. METHODS .....................................................................................................21 
1. Generation of the Base Model...........................................................21 
2. Generation of Digital Elevation Models of Varying Densities .......22 

IV. ANALYSIS .................................................................................................................27 
A. PREPARATION OF DIGITAL ELEVATION MODELS FOR 

ANALYSIS .....................................................................................................27 
1. Warping ..............................................................................................27 
2. Masking...............................................................................................29 

B. CORRELATION ANALYSIS IN ENVI......................................................29 
1. Reference Model of Size 1625 Meters by 875 Meters (Smaller 

Reference Model) ...............................................................................30 
2. Reference Model of Size 3005 Meters by 844 Meters (Larger 

Reference Model) ...............................................................................36 
C. VALIDATION OF DECIMATION APPROACH .....................................45 

V. CONCLUSION ..........................................................................................................51 

LIST OF REFERENCES......................................................................................................53 

APPENDIX: RANDOM_PTS_FROMXYZ_V2.PRO........................................................55 

INITIAL DISTRIBUTION LIST .........................................................................................57 



 viii

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK



 ix

LIST OF FIGURES 

Figure 1. LiDAR Pulse-Echo Range Finder (From Petrie & Toth, 2009) ........................3 
Figure 2. LiDAR Continuous Wave Range Finder (From Petrie & Toth, 2009)..............4 
Figure 3. Airborne LiDAR System (From Burtch, 2002) .................................................5 
Figure 4. Sample Layout of a Laser Ranging Unit (From Petrie & Toth, 2009) ..............6 
Figure 5. Multiple returns from a forested area (From Harding, 2009) ............................6 
Figure 6. Position and Orientation System Components (From Wehr, 2009) ..................7 
Figure 7. IMU mounted on top of Laser Ranging Unit (From Wehr, 2009).....................7 
Figure 8. Sample PCU and LCU of an ALS (From Wehr, 2009) .....................................8 
Figure 9. Registration of LiDAR data points (From Wehr, 2009) ....................................9 
Figure 10. IMU, GPS and LiDAR Configuration (From Wehr, 2009) .............................10 
Figure 11. Roll, pitch, and heading of an aircraft carrying an ALS (From Wehr, 2009)..11 
Figure 12. Scanning lines over a flat (a) and sloping (b) terrain (From Wehr, 2009).......13 
Figure 13. Accuracy Measurement of Data Reduction using Root Mean Square and 

Standard Deviation (From Liu, et al., 2007)....................................................17 
Figure 14. Google earth image of 1625 meters by 875 meters (a) and 3005 meters by 

844 meters b) taken from Mocoron, Honduras................................................19 
Figure 15. Sequoia National Park LiDAR data coverage .................................................20 
Figure 16. QTC format of the reference model (1625 meters by 875 meters)..................22 
Figure 17. DEM generated from the reference model.......................................................23 
Figure 18. Digital Elevation Models in QTT format visualized using QTM software.  

DEMs from each of the reduced LiDAR data set of 1625 meters by 875 
meters reference model. ...................................................................................25 

Figure 19. Warp parameters ..............................................................................................28 
Figure 20. Warped DEM from 0.01% of the smaller reference model (right image) .......28 
Figure 21. 100% (left) and 0.01% (right) data DEMs after mask has been applied .........29 
Figure 22. Correlation of each DEM to the DEM generated from the smaller 

reference model.  These are the DEMs depicted in Figures 17 and 18. ..........30 
Figure 23. Different correlation factors obtained from two similar studies.  (a) Results 

of previous study (Anderson, 2008).  (b) Results from this study...................32 
Figure 24. Correlation factors of the first set of DEMs (1625 meters by 875 meters) 

labeled “First Run” and the additional DEMs generated from 3%, 0.3%, 
and 0.1% of the smaller reference model.........................................................33 

Figure 25. Calculated Mean Correlation Factor of DEM generated from 0.1% of 1625 
meters by 875 meters reference model. ...........................................................34 

Figure 26. Percentage of Total Point Cloud classified as Surface Points .........................35 
Figure 27. DEM generated from the larger (3005 meters by 844 meters) reference 

model of Mocoron, Honduras. .........................................................................37 
Figure 28. Digital Elevation Models in QTT format visualized using QTM software.  

DEMs from each of the reduced LiDAR data set of 3005 meters by 844 
meters reference model. ...................................................................................41 



 x

Figure 29. Correlation analysis of DEMs generated from the larger reference model 
plotted on the same plot with the first set of DEMs generated from the 
smaller reference model. ..................................................................................43 

Figure 30. Percentage of Classified Surface Points with Diminishing Point Could 
Density.  First set of DEMs (Red diamonds) and new set of DEMs (blue 
circle) ...............................................................................................................44 

Figure 31. High (a) and standard (b) resolution LiDAR data of Sequoia National Park 
visualized in QTC format using QTM.............................................................47 

Figure 32. Selected (white box) LiDAR Point Cloud (QTC) of Standard and High 
Resolution data viewed in QTM......................................................................48 

Figure 33. High (a) and Standard (b) Resolution DEMs generated from the selected 
LiDAR Point Cloud data sets (Figure 33) .......................................................49 



 xi

LIST OF TABLES 

Table 1. Samples of LiDAR data attributes contained in a standard LAS file (From 
Graham, 2009) .................................................................................................14 

Table 2. Number of Points and Densities of each DEM................................................26 
Table 3. Percentage of Total Point Cloud of the reference model classified as 

Surface Points ..................................................................................................36 
Table 4. Number of Points and Densities of each DEM generated from a larger 

reference model................................................................................................42 
Table 5. Percentage of Total Point Cloud of the larger reference model classified as 

Surface Points ..................................................................................................45 
 



 xii

THIS PAGE INTENTIONALLY LEFT BLANK 



 xiii

ACKNOWLEDGMENTS 

Special Thanks to: 
 

Dr. R. C. Olsen, Naval Postgraduate School 
 

COL (Ret) David M. Trask, Naval Postgraduate School 
 

Angela Puetz, Naval Postgraduate School 
 

Nancy Ann Budden, Naval Postgraduate School 
 

Office of the Secretary of Defense Rapid Technology Transition Office (OSD/RTTO) 
 

Eric Adint, Naval Postgraduate School 
 

My fellow Combat Systems Classmates 
 

 



 xiv

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK



 1

I. INTRODUCTION 

Strategic planning of a military operation is critical to mission success and 

knowledge of the terrain is a key contributor to the development of proper strategic 

planning.  Military leaders use the lay of the land to determine where to initiate an attack 

and where to establish a perimeter for a defensive stance that would provide the strategic 

advantage.   

An increasingly popular method is the Airborne LiDAR Systems (ALS), which 

has the ability to detect objects under tree canopies, provide data to generate digital 

elevation models, and provide three-dimensional models of non-surface or manmade 

structures.  ALS has high-density data and is able to provide accurate, detailed digital 

representations of terrain and of targets of interest.  However, to ensure the high accuracy 

of digital models most efforts in LiDAR data collection lead to oversampling, which 

result in excessive LiDAR data density for the intended purpose.  The present software 

and hardware equipments used for LiDAR data processing are limited in terms of their 

capabilities to generate large area of digital models from high-density LiDAR data, and 

excessive data compounds computational demands.   

The purpose of this study is to determine the impact of point density on the 

accuracy of DEMs, with the goal of defining the minimum necessary point density for a 

given environment.  The LiDAR data used in this study was collected over the jungle of 

Honduras in 2008.  To represent lower resolution LiDAR data sets, this study conducted 

subsequent reductions of a reference model.  These lower density LiDAR data sets were 

used to generate digital elevation models which were compared against the digital 

elevation model generated from the reference model. 

Chapter II presents a broad technical background of LiDAR technology and the 

support systems necessary in order to conduct Airborne LiDAR System surveys.  It also 

briefly discusses the steps taken, and the various algorithms involved in each step, to  
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generate digital elevation models.  A similar study of identifying the lowest data density 

necessary to generate an accurate digital elevation model using standard deviation and 

root mean square is also presented.  

Chapter III provides a description of the locations used in this study, the post-

processing software Quick Time Modeler and ILAP Bare Earth Extractor utilized in 

generating DEMs, and the software (ENVI) used in analysis.  It also describes in detail 

the process of generating the digital elevation models with varying densities. 

Chapter IV describes the process used in ENVI to analyze each of the digital 

elevation models and the evaluation processes to obtain the lowest point-cloud density 

that would generate an accurate digital elevation model for this environment.  
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II. BACKGROUND 

A. LIGHT DETECTION AND RANGING (LiDAR) 

Light Detection and Ranging is a remote sensing technology used in finding 

information of a target by measuring the properties of returned or scattered light 

transmitted by a laser system.  It uses much shorter wavelengths, usually in the near 

infrared section of the electromagnetic spectrum, providing better spatial resolution than 

RADAR technology.   

LiDAR is implemented in two ways.  The more common approach utilizes 

discrete pulses to determine the range of a target. LiDAR measures the time of fight 

(TOF) of a pulse from the transmitter to the target and its reflected signal received from 

the target to the detector.  LiDAR calculates range using the TOF and the pulse’s speed, 

the speed of light (Petrie & Toth, 2009).  As expressed in equation 2.1, c is the speed of 

light, tΔ  is the TOF and R is the range of the object.  Equation 2.1 has a factor of one-

half to account only for the pulse's travel from the LiDAR transmitter to the target.   

 

Figure 1.   LiDAR Pulse-Echo Range Finder (From Petrie & Toth, 2009) 

*
2
tR c Δ

=  (2.1) 

Another method (more commonly used at distances less than 100 meters) utilizes 

continuous wave (CW) or beam of laser to determine a target's range.  Here, LiDAR 

determines range by measuring the integer number of wavelengths (Mλ ) and the phase 

difference ( λΔ ) between the transmitted and received waveforms of the emitted beam.  
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The M number of wavelengths is measured by varying the modulation frequencies of the 

emitted beam (Petrie & Toth, 2009).  Figure 2 shows the phase difference between the 

transmitted and received signals measured at point A.  Point B is the location of the target 

requiring two full wavelengths.  The range of the target is calculated using equation 2.2.  

The factor one-half is included for the same reason as in equation 2.1.     

  ( )
2

MR λ λ+ Δ
=  (2.2)   

 
Figure 2.   LiDAR Continuous Wave Range Finder (From Petrie & Toth, 2009) 

B. AIRBORNE LIDAR SYSTEM (ALS) 

The advancements in Global Positioning Systems (GPS) and its integration with 

Inertial Navigation Units (INS) have provided the means to use LiDAR systems onboard 

an aircraft, later named Airborne LiDAR Systems or ALS.  Over the past decades, more 

reliable and accurate ALS have been developed.  This led to a significant increase in the 

use of LiDAR data in generating Digital Elevation Models (DEMs) (Liu, 2008).  Figure 3 

depicts an aircraft mapping the shape of the terrain and showing the three major 

components of an ALS: a laser ranging unit; GPS; and INS.  
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Figure 3.   Airborne LiDAR System (From Burtch, 2002) 

1. Components of an Airborne LiDAR System 

a. Laser Ranging Unit 

The laser ranging unit consists of a diode-pumped solid-state laser 

commonly made of neodymium-doped yttrium aluminum garnet (Nd:YAG).  It transmits 

pulses with wavelengths between 0.8 mμ  and 1.6 mμ  (typical wavelengths used are 1.064 

mμ  or 1.500 mμ ).  Laser pulses usually have pulse widths of 4 to 15 ns with peak 

energies of several millijoules and are emitted at a rate of up to 250 kHz (Liu, 2008).  A 

photodiode detector made of silicon (for wavelengths up to 1100 nm) or germanium (for 

wavelengths 1000 to 1650 nm) is used to detect scattered and reflected pulses from 

targets and converts them to electrical signals (Wehr, 2009).  Figure 4 shows a principle 

layout of a Laser Ranging Unit.  Pulses are emitted from the high-powered solid-state 

laser through the collimator.  Reflected signals are collected by the primary and 

secondary mirrors and are directed to the photodiode for detection. 
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Figure 4.   Sample Layout of a Laser Ranging Unit (From Petrie & Toth, 2009) 

Advanced laser ranging units are able to detect up to five returns from a 

single transmitted pulse as illustrated in Figure 5.  The return signals are detected when 

their energies exceed the detection threshold.  In forested areas, the first returns 

correspond to the first leading edge of the detected signal, and may be from the canopy 

top, from a layer within the canopy or from the ground.  The last returns correspond to 

the leading edge of the latest detected peak, and may be from the ground or from a layer 

within the vegetation canopy (Harding, 2009). 

 

Figure 5.   Multiple returns from a forested area (From Harding, 2009)  

b. Position and Orientation System (POS) 

The position and orientation system (Figure 6) is comprised of a closely 

integrated Differential Global Positioning System (DGPS) and an Inertial Measurement 
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Unit (IMU) that provides the ALS’s trajectory and attitude (pitch, roll, and yaw).  The 

DGPS requires reference ground stations that must be within 25 km of the ALS to 

guarantee centimeter level accuracy.  The IMU is typically mounted directly on top of the 

laser ranger scanner (Figure 7) in order to record orientation and aircraft vibrations at the 

location of the LiDAR.  A memory unit or disk is used to store GPS position and IMU 

data with GPS-time (Wehr, 2009). 

 

 

Figure 6.   Position and Orientation System Components (From Wehr, 2009) 

 

 
Figure 7.   IMU mounted on top of Laser Ranging Unit (From Wehr, 2009) 



 8

c. Synchronization 

The Laser Ranging Unit and the POS are independent units, which require 

data or measurement synchronization.  The LiDAR Control Unit (LCU) controls and 

store measurements made by the Laser Ranger Unit while the POS Control Unit (PCU) 

controls and store measurements made by the GPS and IMU (Figure 8).  The LCU timing 

is defined by its internal computer clock and the PCU timing is related by GPS time.  Due 

to a much higher sampling rate of the Laser Scanner Unit than the POS, a LiDAR file 

comprises more data lines per time interval than the POS file (Wehr, 2009).  Once all 

data have been synchronized, they are used as inputs for registration.   

 

Figure 8.   Sample PCU and LCU of an ALS (From Wehr, 2009) 

2. Registration 

Registration is the process of assigning the location on earth or geocoding of a 

LiDAR data point acquired in 3D space.  It can be described using the simple vector 

approach illustrated in Figure 9 and expressed in equation 2.3.  G  is the vector from the 

earth’s center to the ground point, Lr  is the vector from the earth’s center to the LiDAR’s 
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point of origin, and s  is the slant ranging vector.  The LiDAR’s point of origin defines 

the origin of the coordinate system L and is the point at which the laser  

beam originates.  The Lx -axis points into the flight direction, the Ly -axis points to the 

right of the airplane, and the Lz -axis points downwards perpendicular to the plane 

defined by Lx and Ly axes (Wehr, 2009).   

. 

 

Figure 9.   Registration of LiDAR data points (From Wehr, 2009) 

 LG r s= +  (2.3) 
 

The IMU, GPS, and LiDAR’s point of origin are all in different locations inside 

an aircraft so a few transformations are necessary to determine the exact Lr .  A sample 

configuration is shown in Figure 10.  The POS data from IMU and GPS need to be 

transformed to the LiDAR’s point of origin using two three-dimensional vectors (called 

lever arms) to determine the actual location and orientation of the LiDAR:  one is from 

the LiDAR’s point of origin to the center of IMU and the other is from the LiDAR’s 

point of origin to the phase center of the GPS antenna.  Since GPS systems are in 

WGS84, the vector Lr  would be in WGS84 (Wehr, 2009). 
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Figure 10.   IMU, GPS and LiDAR Configuration (From Wehr, 2009) 

The vector s , measured in the coordinate system L, would require some 

transformations into WGS84 to determine G  in WGS84.  Thus equation 2.3 has to be 

modified into equation 2.4: 

 
 

84

84
84 (_) *(_) *(_) *

WGS

WGS H IMU
LWGS LH IMU LG r s= +  (2.4) 

 

The product (_) *(_)H IMU
IMU L  describes the orientation of the coordinate system L 

with respect to the horizontal coordinate system H.  The (_)H
IMU  matrix describes the 

orientation of the IMU in relation to the horizontal system H by the roll (ω , rotation 

about the Lx -axis), pitch (ϕ , rotation about the Ly -axis), and heading (κ , rotation about 

the Lz -axis) as shown in Figure 11.  If the rotations are carried in the roll, pitch, and 

heading sequence, the matrix (_)H
IMU  can be set up using equation 2.5 where the 

components are defined in equations 2.6, 2.7, and 2.8 (Wehr, 2009). 
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Figure 11.   Roll, pitch, and heading of an aircraft carrying an ALS (From Wehr, 2009) 
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31

32
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cos( )*sin( )*cos( ) sin( )*sin( )
sin( )*sin( )*cos( ) cos( )*sin( )

cos( )*cos( )

a
a
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κ ϕ ω κ ω
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⎜ ⎟ ⎜ ⎟= +⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
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The matrix (_)IMU
L  takes into account a misalignment between the POS and 

LiDAR.  It is similar to the matrix (_)H
IMU  except the misalignment angles 

, , and δω δϕ δκ  are used instead of the angles , , and ω ϕ κ , respectively.  If the LiDAR is 

perfectly aligned with the IMU (the coordinate system L and the coordinate system of the 

IMU have the same orientation), the matrix (_)IMU
L becomes unity (Wehr, 2009). 

The matrix 84(_)WGS
H  regards the orientation between the horizontal system H and 

WGS84.  It is defined by the geographical latitude 0Φ  and longitude 0Λ  as shown in 

equation 2.9 (Wehr, 2009).   
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0 0 0 0 0

84
0 0 0 0 0

0 0

cos( )*sin( ) sin( ) cos( )*cos( )
(_) sin( )*sin( ) cos( ) sin( )*cos( )

cos( ) 0 sin( )

WGS
H

− Λ Φ − Λ − Λ Φ⎛ ⎞
⎜ ⎟= − Λ Φ Λ − Λ Φ⎜ ⎟
⎜ ⎟Φ Φ⎝ ⎠

  (2.9) 

 

3. Point Density 

The point density or laser spots per square meter ( ρ ) is determined using 

equation 2.10 where alongxΔ  is the point density in the flight direction and acrossxΔ  is the 

point density across the flight direction.  alongxΔ  is dependent upon the speed of the 

aircraft, v , and the scan rate, scf , as expressed in equation 2.11 (Wehr, 2009). 

    1
*along acrossx x

ρ =
Δ Δ

     (2.10) 

    along
sc

vx
f

Δ =       (2.11) 

acrossxΔ  is calculated using equation 2.12.  θ  is the swath width expressed in 

either meters or angular degrees, H  is the flying altitude above ground, N  is the number 

of points per scan line, and i  is the slope along the scanning line.  N  is derived from the 

scan rate and pulse rate pulsef  (equation 2.13).  Figure 12b illustrates scanning lines over 

a terrain with slope i  (Wehr, 2009). 

( ) ( )

( ) ( )

2
2

2
2

* ,  if 0
cos *cos * 1 tan * tan

2 2

* ,  if 0
cos *cos * tan * tan 1

2 2

across

H i
N

i i
x

H i
N

i i

θ

θ θ

θ

θ θ

⎧ ⎫≥⎪ ⎪⎡ ⎤⎛ ⎞ ⎛ ⎞⎪ ⎪−⎜ ⎟ ⎜ ⎟⎢ ⎥⎪ ⎪⎝ ⎠ ⎝ ⎠⎪ ⎣ ⎦ ⎪Δ = ⎨ ⎬
⎪ ⎪<
⎪ ⎪⎡ ⎤⎛ ⎞ ⎛ ⎞ −⎪ ⎪⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭

  (2.12) 

    pulse

sc

f
N

f
=      (2.13) 
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If a terrain along the scanning line has a flat surface ( 0i ≈ ), equation 2.12 reduces 

down to equation 2.14.  Figure 12a shows an aircraft scanning over a flat terrain. 

    
( )2

*
cos 2

across
Hx

N
θ

θ

⎧ ⎫
⎪ ⎪Δ = ⎨ ⎬
⎪ ⎪⎩ ⎭

    (2.14) 

 

(a) (b) 

Figure 12.   Scanning lines over a flat (a) and sloping (b) terrain (From Wehr, 2009) 

4. LAS LiDAR Data Standard 

Once the Aircraft has surveyed the area and collected the required data, a post-

processing software is used to determine the accurate position, altitude, and attitude of 

the laser ranger unit and create the LiDAR data in the standard LAS format (Petrie & 

Toth, 2009b).  LAS format is a binary format developed by EnerQuest.  It is the format 

adopted, slightly modified, and approved by the American Society for Photogrammetry 

and Remote Sensing (ASPRS) as the standard format for LiDAR data exchange.   LAS 

file format does not specify an order to the points in the data file; however, it does require 

multiple returns be sequentially encoded.  For example, a pulse that had three returns will 

be in sequential order of pulse 1 of three, followed by pulse 2 of three, and then 3 of 
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three.  LAS files contain very rich information of every point acquired during the survey.  

Table 1 shows some of the LiDAR data attributes contained in LAS file format (Graham, 

2009).  

 
Table 1.   Samples of LiDAR data attributes contained in a standard LAS file (From 

Graham, 2009) 

C. DIGITAL ELEVATION MODEL (DEM) GENERATION PROCESS 

The LAS files containing the LiDAR data points require further manipulation to 

generate a DEM. 

1. Filtering 

The first process in generating a digital elevation model is filtering.  It is one of 

the critical and difficult steps in DEM generation process involving the separation of 

LiDAR data into ground (surface) and non-ground (non-terrain) points.  Among all the 

various filtering algorithms developed so far, interpolation-based, slope-based, surface-

based, and morphological are the most popular (Liu, 2008).  In a study conducted by 

Sithole and Vosselman, it had been found that most filtering algorithms do well on non-

complex landscapes but surface based filters tended to do better on complex landscapes 

(Sithole & Vosselman, 2003). 
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2. Model Selection 

The remaining points (ground points) are used to generate terrain surfaces.  

Different model selections have been developed to represent terrain surfaces:  regular 

grid (usually square grid); triangular irregular network (TIN); and contour line model.  

The regular grid is widely used due to its simplicity and efficient approach in terms of 

storage and manipulation.  However, it introduces discontinuity in representation of the 

terrain surfaces due to each grid having one elevation value.  This effect is minimized by 

the high density characteristic of LiDAR data (Liu, 2008). 

3. DEM Interpolation 

Interpolation is the process of predicting the values of certain variable using their 

neighboring values.  It is assumed that a terrain surface is continuous and that a high 

correlation exists between the neighboring data points.  Interpolation methods are 

classified into deterministic such as Inverse Distance Weighted (IDW) and spline-based 

and geostatistic such as Kriging.  Inverse Distance Weighted (IDW) assumes that each 

point has a local influence that diminishes with distance and the spline-based fits a 

minimum-curvature through the sample points.  Kriging takes into account both the 

distance and degree of auto-correlation.  A study found there is no single interpolation 

method that is the most accurate.  However, it was pointed out that the IDW method 

performs well if sampling data density is high, even for complex terrain (Liu, 2008).  

D. PREVIOUS DATA ANALYSIS RESULTS 

LiDAR data was collected over Corangamite Catchment Management Authority 

region (south western Victoria, Australia) for an area of 113 square km between 19 July 

2003 and 10 August 2003.  Using the Geostatistical Analyst extension of ArcGIS 9.1, 

LiDAR data set was separated into training data set and check point data set by randomly 

selecting 90% and 10% of the total LiDAR data.  The training data set was used for 

subsequent reduction to produce data sets with varying densities representing 100%, 

75%, 50%, 25%, 10%, 5%, 1% of the original training data set (Liu, Zhang, Peterson, 

Chandra, 2007).   
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To evaluate the accuracies of each DEM, independent elevation checking of each 

DEM was conducted against the elevation values of test data using root mean square 

error (equation 2.15) and standard deviation (equation 2.16) calculations.  DEME  is the 

elevation value from the DEM and REFE is the correspondent reference elevation value 

from check points.  n  is the number of check points and E  is the calculated mean error 

(equation 2.17).  As shown in Figure 13, there is no significant decrease in accuracy for 

the DEM generated from the 50% (0.018 points per square meter) data set (Liu, et al., 

2007). 
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(a) (b) 

Figure 13.   Accuracy Measurement of Data Reduction using Root Mean Square and 
Standard Deviation (From Liu, et al., 2007) 
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III. OBSERVATIONS 

A. LOCATION 

This thesis effort used two data sets.  One was collected from jungle habitat in 

Mocoron, Honduras between 11 and 20 February 2008 using a modified Optech 3100 

LiDAR system (Anderson, 2008).  OSD/RRTO funded and supplied this FOPEN LiDAR 

collection mission, which they referred to as PENLIGHT.  The flight headings were 135 

degrees and 315 degrees and the area mapped by the ALS system contained slight 

overlaps in between flight paths.  An area of 1625 meters by 875 meters (Figure 14a) was 

used covering various terrain types including man-made structures, river waterway, road, 

jungle foliage, and flat surfaces.  A second area of 3005 meters by 844 meters (Figure 

14b) was used encompassing the smaller area of 1625 meters by 875 meters previously 

mentioned to determine the effects of having a larger land area or a larger LiDAR data 

set. 

(a) (b) 

Figure 14.   Google earth image of 1625 meters by 875 meters (a) and 3005 meters by 844 
meters b) taken from Mocoron, Honduras. 

Another set of LiDAR data was collected from Sequoia National Park in 

California (Figure 15) using Optech 3100 LiDAR system by Airborne1 during the 
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summer of 2008 (Karatolios & Krougios, 2008).  The blue lines show the perimeter of 

the area covered during data acquisition at a standard resolution and the two inner blue 

lines show an approximate coverage of a one pass flight of the aircraft at a higher 

resolution from top right to bottom left. 

 

Figure 15.   Sequoia National Park LiDAR data coverage 

B. POST-PROCESSING AND DATA ANALYSIS SOFTWARE 

Post-processing software is required to generate digital elevation models from 

LAS LiDAR data.  Quick Terrain Modeler and its ILAP Bare Earth Extractor plug-in 

were used to generate the digital elevation models in this study.  The Environment for 

Visualizing Images (ENVI) was used to analyze and compare these digital elevation 

models. 

1. Quick Terrain Modeler (QTM) Version 6.0.6 

Johns Hopkins University’s Applied Physics Lab developed QTM to visualize 

large amounts of complex 3-D data.  It can view models in various formats, such as QTC 

and QTT, and can import to and export from files such as GeoTiff DEMs and LAS.  QTC 

or point-cloud files provide a good visualization of the extent of a survey by placing the 

points exactly where they belong without interpolation or approximation.  QTT or surface 
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model files are used for visualizing terrain by laying out a regular grid across the survey 

area and placing a height value on all vertices.  It builds a solid surface across this grid 

and the process involves approximation of data values (JHU/APL, 2007).   

2. ILAP Bare Earth Extractor Version 1.0 

The ILAP Bare Earth Extractor uses ASCII XYZ points representing foliaged 

areas and separates them into surface, cloud, and object files.  Surface file represents the 

estimated bare earth surface, cloud file represents the foliage, and object file represents 

the points that are non-surface, but whose heights above the estimated ground level fall 

below a user-specified limit (JHU/APL, 2006). 

3. Environment for Visualizing Images (ENVI) Version 4.5 

The Environment for Visualizing Images (ENVI), developed by ITT Visual 

Information Solutions (ITT VIS), is used for visualization, analysis, and presentation of 

digital imagery.  It is utilized in this study to conduct image comparison and analysis of 

DEMs (in GeoTIFF) with varying density using its warp and mask tools, as well as its 

statistical computation algorithm. 

C. METHODS 

1. Generation of the Base Model 

In order to visualize and choose the region of study, tiles or files in LAS format 

had to be converted to QTC and merged together using QTM.  Here, the region of choice 

was selected and other LiDAR data was removed to obtain the reference model.  The 

smaller reference model (1625 meters by 875 meters) in QTC format containing all the 

LiDAR data of the selected area is depicted in Figure 16. 
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Figure 16.   QTC format of the reference model (1625 meters by 875 meters) 

2. Generation of Digital Elevation Models of Varying Densities 

Once the smaller reference model (1625 meters by 875 meters) had been selected, 

it was ran through an IDL program written by Angie Puetz to produce a series of data sets 

containing 90%, 66%, 50%, 30%, 10%, 5%, 3%, 1%, 0.5%, 0.3%, 0.1%, 0.05%, 0.03%, 

and 0.01% of the smaller reference model.  The IDL program randomly selects a number 

of LiDAR data points corresponding to the density desired and outputs them to a file in 

ASCII XYZ format.  Since the IDL random program was written for ASCII XYZ file 

format with location x, y, z, and intensity values arranged in columns, the reference 

model in QTC format was first converted to ASCII XYZ with intensity values of each 

point using QTM.  Each of the points in the QTC point-cloud format were converted into 

x, y, and z values in the 3-dimensional UTM coordinate.  The IDL program is attached in 

the Appendix under the name random_pts_fromXYZ_v2.pro. 

Each of the reduced data sets in ASCII XYZ format was used one at a time in 

QTM’s ILAP Bare Earth Extractor plug-in to generate the DEMs..  All default 

parameters in the parameters box of the ILAP Bare Earth Extractor were used.  However, 

in the Import Options menu, the “Import Surface File as Surface Model” was selected, 

the “Surface Model Sampling” was set to 1 meter, and the “Above Ground Level (AGL) 

Upper Limit” was set to “0” for each of the reduced data sets.  These options removed all 

non-surface points and automatically imported the surface points as triangulated surface 
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or QTT model with a grid spacing of 1 meter (JHU/APL, 2007).  Figure 16 shows the 

DEMs generated from the smaller reference model and from each of the reduced data sets 

using ILAP Bare Earth Extractor in QTT format.  The DEMs below provided visual 

evidence that the DEMs generated from 0.3% and lower of the reference model distinctly 

lost most of the features of the DEM generated from the reference model and could be 

regarded as not useful. 

 

Figure 17.   DEM generated from the reference model 

 

 

(a) DEM from 90% of the reference model 

 

(b) DEM from 66% of the reference model 
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(c) DEM from 50% of the reference model 

 
(d) DEM from 30% of the reference model 

 
(e) DEM from 10% of the reference model 

 
(f) DEM from 5% of the reference model 

 

(g) DEM from 3% of the reference model 
 

(h) DEM from 1% of the reference model 

 
(i) DEM from 0.5% of the reference model 

 
(j) DEM from 0.3% of the reference model 
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(k) DEM from 0.1% of the reference model 
 

(l) DEM from 0.05% of the reference model 

 
(m) DEM from 0.03% of the reference model

 
(n) DEM from 0.01% of the reference model 

Figure 18.   Digital Elevation Models in QTT format visualized using QTM software.  
DEMs from each of the reduced LiDAR data set of 1625 meters by 875 meters 

reference model. 

The total number of points and densities of the reference model and the reduced 

data sets are tabulated in Table 2.  The “Point Cloud Total Points” are obtained from each 

of the reduced data files generated using the IDL random_pts_fromXYZ_v2.pro program 

after converting them to QTC format from ASCII XYZ in QTM.  The “Point Cloud 

density” is calculated by dividing the “Point Cloud Total Points” to the size of the 

reference model.  The “Surface Points” are the points generated by the ILAP Bare Earth 

Extractor, which were divided by the size of the reference model to obtain the “Surface 

Point Density.”  
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Percent 
Reduction 

Point Cloud 
Total Points Surface Points 

Point Cloud  
Density 
 [pts/m2] 

Surface Point 
Density [pts/m2] 

100 8,622,343 4,282,495 6.0641 3.01186 
90 7,760,109 3,964,226 5.4577 2.78803 
66 5,690,746 2,937,141 4.0023 2.06568 
50 4,311,171 2,245,747 3.0320 1.57943 
30 2,586,703 1,368,997 1.8192 0.96281 
10 862,234 421,183 0.6064 0.29622 
5 431,117 158,899 0.3032 0.11175 
3 258,670 72,203 0.1819 0.05078 
1 86,223 15,123 0.0606 0.01064 

0.5 43,111 6,936 0.0303 0.00488 
0.3 25,867 3,674 0.0182 0.00258 
0.1 8,622 1,002 0.0061 0.00070 

0.05 4,311 364 0.0030 0.00026 
0.03 2,586 127 0.0018 0.00009 
0.01 862 9 0.0006 0.00001 

Table 2.   Number of Points and Densities of each DEM 
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IV. ANALYSIS 

The data collected over Mocoron, Honduras were used to generate digital 

elevation models and were analyzed in two segments below, followed by analysis of the 

data collected over Sequoia National Park. 

A. PREPARATION OF DIGITAL ELEVATION MODELS FOR ANALYSIS 

1. Warping 

Prior to conducting DEM analysis in ENVI, each DEM must match 

geographically.  ENVI's “Rubber Sheet Warp” tool was used to geographically map each 

DEM to the DEM generated from the reference model.  A set of 10 Ground Control 

Points (GCP’s) were selected on the DEM generated from the reference model to be used 

in the process of warping DEMs generated from 90% to 0.03% of the reference model.  

Since the DEM generated from 0.01% of the smaller reference model contain a 

significantly small amount of data and, therefore, did not encompass the GCP’s 

previously selected, a different set of 6 GCP’s were used.   

The parameters used in creating the warped files are listed in Figure 19.  For a 

polynomial method of warping, the required number of GCP’s must be greater than the 

squared quantity of the degree of polynomial plus one ( 2# of GCPs > (deg + 1) ) 

(ENVI help).  The background or the areas that did not contain any data was set to            

-9999.0 to differentiate them from the areas that contain data.  All the DEMs generated 

from 90% to 0.01% of the smaller reference model were warped in the same dimension 

as the DEM generated from the reference model, which is specified in the “Output Image 

Extent Option.”  Figure 20 shows the outcome of using the Warp Tool with the stated 

parameters.  The image on the left is the DEM generated from the smaller reference 

model and the image on the right is the DEM generated from 0.01% of the reference 

model.  The red circles show the set of 6 GCPs used to warp the image mentioned above. 
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Figure 19.   Warp parameters 

 

Figure 20.   Warped DEM from 0.01% of the smaller reference model (right image) 
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2. Masking 

As Figure 20 shows, the warped DEM generated from the 0.01% of the reference 

model covers an enormous amount of area (black), which does not contain any data.  

These areas would skew the DEM accuracy analysis results of the lower resolution DEM, 

and therefore must not be included in the analysis.  The “Mask” tool in ENVI was used to 

analyze just the data contained in all the warped, lower resolution DEMs.  A mask was 

built based on the warped DEM containing the least amount of data (0.01%) and was 

applied to the rest of the DEMs including the one generated from the smaller reference 

model.  Figure 21 shows the results after the mask was applied to the DEM generated 

from the smaller reference model (left) and the warped DEM generated from the 0.01% 

of the smaller reference model (right). 

 

Figure 21.   100% (left) and 0.01% (right) data DEMs after mask has been applied 

B. CORRELATION ANALYSIS IN ENVI 

The first analysis effort was designed to replicate a previous study conducted by 

Anderson [2008]. 
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1. Reference Model of Size 1625 Meters by 875 Meters (Smaller 
Reference Model) 

The statistics function in ENVI was used to determine the correlation factors of 

each of the DEMs generated from 90% to 0.01% of the smaller reference model against 

the DEM generated from the smaller reference model.  A semi log plot of correlation 

factor versus point density is displayed in Figure 22.  It shows that the correlation is non-

linear between the DEM generated from the reference model and the rest of the DEMs.  

The plot shows a slight decrease in correlation until a certain point cloud density, from 

which the correlation starts to decrease drastically. 

 

Figure 22.   Correlation of each DEM to the DEM generated from the smaller reference 
model.  These are the DEMs depicted in Figures 17 and 18. 

Differences were found between the results obtained from this study and the ones 

obtained from the study conducted by Anderson [2008].  The region or area selected 

between this study and the previous study by Anderson [2008] as well as percentage 
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reductions, are the same.  The IDL random selection program to reduce the reference 

model from 90% to 0.01% has the same algorithm written by the same person, Angie 

Puetz.  The post processing software (QTM and ILAP Bare Earth Extractor) and the 

software (ENVI) used to determine the correlation factors are the same.   

The previous study conducted by Anderson [2008] showed a similar nonlinear 

decreasing trend in correlation of the DEMs from 90% to 0.01%; however, the lowest 

correlation factor is 0.99 for the 0.01% as opposed to 0.65 for the 0.01% of this study.  

The correlation factors of the previous study were very high between the DEM generated 

from the reference model and the DEMs generated from 90% to 0.01% of the reference 

model.  A plot comparison is illustrated in Figure 23.  Figure 23a shows the correlation 

results of the previous study by Anderson plotted against percent reduction in semi log 

plot, and Figure 23b shows the plot of the results obtained from this study.  The 

correlation factors obtained from this study were plotted against the corresponding 

percent reductions of the point densities used in Figure 22 and the x-axis values are now 

increasing for the purpose of comparing the previous study and this study. 

 

 

(a) 
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(b) 

Figure 23.   Different correlation factors obtained from two similar studies.  (a) Results of 
previous study (Anderson, 2008).  (b) Results from this study. 

The dissimilarities in the correlation results of the two plots in Figure 23 

motivated further investigation.  DEMs were generated from additional random subset of 

the same reference model (1625 meters by 875 meters).  The process was identical.  More 

DEMs were generated from the 0.1% data due to the wide distribution of correlation 

factors compared to the distribution of the correlation factors obtained from the DEMs 

generated from 3% and 0.3% of the smaller reference model.  Figure 24 shows the 

additional DEMs produced an interesting result and provides a visual representation of 

the “uncertainties” or variations in DEM generation process.  These “uncertainties” 

become larger as the reference model is reduced from 3% to 0.1% of its original point-

cloud density.  Looking at the trend of “uncertainties” or range of errors in Figure 24, 
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these data can be extended and assessed to become smaller as the percentage of the 

original data increased, and become even larger as the percentage of the original data 

decreased to 0.01%.  A reasonable conclusion is that the differences in Figures 23a and 

23b are due to the effect of random subset generation. 

 

Figure 24.   Correlation factors of the first set of DEMs (1625 meters by 875 meters) 
labeled “First Run” and the additional DEMs generated from 3%, 0.3%, and 0.1% 

of the smaller reference model 

An additional plot (Figure 25) shows the distribution of the correlation factors 

obtained from the DEMs generated from 0.1% of the smaller reference model.  The y-

axis shows the sequence of the generated DEMs and the x-axis contains the 

corresponding correlation factors.  The distribution has a mean of 0.84862 with a 

minimum at 0.75 and a maximum at 0.92 correlation factors.  
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Figure 25.   Calculated Mean Correlation Factor of DEM generated from 0.1% of 1625 
meters by 875 meters reference model. 

Figure 25 also suggests that a DEM generated from at least 0.3% of the reference 

model (0.0182 pts per square meter point cloud density) may be used as the lowest 

density of points required for DEM generation using LiDAR data.  The 0.3% data has a 

mean of 0.89213 and a maximum uncertainty of 2.56%.  The same result (0.0182 pts per 

square meter point cloud density) was obtained by Liu as shown in Figure 13.  But when 

the percentage of surface points were plotted against the point-cloud density of each of 

the reduced data set as illustrated in Figure 26, a DEM generated from at least 0.6064 

points per square meter (10% of the reference model) must be used as the lowest density 

for DEM generation using LiDAR data.  Further decrease in density causes the Bare 

Earth Extractor Plug-in to classify a smaller percentage of points as surface points.  Using 

the Bare Earth Extractor Plug-in, 49.67% of the points of the reference model were 

classified as surface points.  This was fairly consistent (increasing slightly as the density 



 35

of the smaller reference model drops from 100% to 30%) as the reference model was 

reduced to 0.6064 points per square meter or 10% of its original data.  The calculated 

surface point percentages are tabulated in Table 3.  

 

Figure 26.   Percentage of Total Point Cloud classified as Surface Points 

Percentage of 
Original Point Cloud 

Data 

Density of Point 
Cloud Data 

Percentage of Point 
Cloud Data Classified 

as Surface Points 
100  6.0641  49.67 
90  5.4577  51.08 
66  4.0023  51.61 
50  3.0320  52.09 
30  1.8192  52.92 
10  0.6064  48.85 
5  0.3032  36.86 
3  0.1819  27.91 
1  0.0606  17.54 
0.5  0.0303  16.09 
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0.3  0.0182  14.20 
0.1  0.0061  11.62 
0.05  0.0030  8.44 
0.03  0.0018  4.91 
0.01  0.0006  1.04 

Table 3.   Percentage of Total Point Cloud of the reference model classified as Surface 
Points 

2. Reference Model of Size 3005 Meters by 844 Meters (Larger 
Reference Model) 

Moving beyond the previous study, a larger area of the LiDAR data collected over 

Honduras was selected using the same method used in the smaller reference model.  The 

larger area contained within it the smaller reference model.  Again, using the IDL 

program random_pts_fromXYZ_v2.pro, QTM, and ILAP Bare Earth Extractor, another 

set of DEMs were generated from 90% to 0.01% of a larger reference model.  Figure 27 

shows the DEMs generated in QTT format from the larger reference model and Figure 28 

shows the ones generated from each of the reduced data sets.  Due to a higher number of 

points compared to the first set of DEMs generated from the smaller reference model, a 

DEM generated from the 0.01% of the larger reference model produced a larger 

dimension.   

The new set of DEMs below provided visual evidence that the DEMs generated 

from 0.05% (0.0066 points per square meters) and lower of the larger reference model 

distinctly lost most of the features of the DEM generated from the 100% of the larger 

reference model.  The number of points and densities of these set of DEMs are 

summarized in Table 4.  The larger reference model contains many more points than the 

previous reference model (a ratio of about 4 to 1). 
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Figure 27.   DEM generated from the larger (3005 meters by 844 meters) reference model 
of Mocoron, Honduras. 

(a) DEM from 90% of the larger reference model 

(b) DEM from 66% of the larger reference model 
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(c) DEM from 50% of the larger reference model 

(d) DEM from 30% of the larger reference model  

(e) DEM from 10% of the larger reference model  
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(f) DEM from 5% of the larger reference model  

 

(g) DEM from 3% of the larger reference model  

 

(h) DEM from 1% of the larger reference model  
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(i) DEM from 0.5% of the larger reference model  

(j) DEM from 0.3% of the larger reference model  

(k) DEM from 0.1% of the larger reference model 

 



 41

(l) DEM from 0.05% of the larger reference model 

(m) DEM from 0.03% of the larger reference model  

(n) DEM from 0.01% of the larger reference model 

Figure 28.   Digital Elevation Models in QTT format visualized using QTM software.  
DEMs from each of the reduced LiDAR data set of 3005 meters by 844 meters 

reference model. 
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Percent 
Reduction 

Point Cloud  
Total Points Surface Points 

Point Cloud 
Density 
[pts/m2] 

Surface Point 
Density 
[pts/m2] 

100 33,485,312 11,687,678 13.2028 4.6083 
90 30,136,780 11,040,747 11.8826 4.3532 
66 22,100,306 8,191,138 8.7139 3.2297 
50 16,742,656 6,281,736 6.6014 2.4768 
30 10,045,594 3,863,111 3.9609 1.5232 
10 3,348,531 1,332,758 1.3203 0.5255 
5 1,674,265 625,334 0.6601 0.2466 
3 1,004,559 319,503 0.3961 0.1260 
1 334,853 71,702 0.1320 0.0283 

0.5 167,426 29,911 0.0660 0.0118 
0.3 100,455 17,851 0.0396 0.0070 
0.1 33,485 5,069 0.0132 0.0020 

0.05 16,742 2,532 0.0066 0.0010 
0.03 10,045 1,216 0.0040 0.0005 
0.01 3,348 132 0.0013 0.0001 

Table 4.   Number of Points and Densities of each DEM generated from a larger reference 
model. 

The same statistical analysis in ENVI as the smaller reference model was applied 

to these new set of DEMs.  The correlation results of these new set of DEMs were plotted 

with the first set of DEMs (Figure 29).  The results were consistent except for the DEM 

generated from the 0.01% data.  The larger reference model shows the familiar 

decreasing trend of correlation results from DEMs generated from 90% to 0.01% of the 

smaller reference model.  Each of the correlation results from the new set of DEMs are 

higher compared to the first set of DEMs due to the higher density of points contained in 

each of the DEMs with the exception of the one generated from 0.01% of the reference 

models.  This can be explained by the uncertainties obtained from the first set of DEMs 

as shown in Figure 24.   
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Figure 29.   Correlation analysis of DEMs generated from the larger reference model 
plotted on the same plot with the first set of DEMs generated from the smaller 

reference model. 

The percentage of points classified as surface points for these new set of DEMs 

were also plotted with the first set of DEMs (Figure 30).  The curves of the first set of 

DEMs and the new set of DEMs are very similar; however, ILAP Bare Earth Extractor 

only classified 34.90% of the points of the reference model as surface points (vice 

49.67% of the smaller reference model).  This 34.90% surface point was fairly consistent 

(increasing slightly as the density of the larger reference model drops from 100% to 10%) 

as the density of the larger reference model was reduced to 0.6601 points per square 

meter.  The result is similar to the one obtained from the smaller reference model, which 

was 0.6064 points per square meter.  The calculated surface point percentages for these 

new set of DEMs are tabulated in Table 5. 
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Figure 30.   Percentage of Classified Surface Points with Diminishing Point Could 

Density.  First set of DEMs (Red diamonds) and new set of DEMs (blue circle)   
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Percentage of 
Original Point Cloud 

Data 

Density of Point 
Cloud Data 

Percentage of Point 
Cloud Data Classified 

as Surface Points 
100  13.2028  34.90 
90  11.8826  36.64 
66  8.7139  37.06 
50  6.6014  37.52 
30  3.9609  38.46 
10  1.3203  39.80 
5  0.6601  37.35 
3  0.3961  31.81 
1  0.1320  21.41 
0.5  0.0660  17.87 
0.3  0.0396  17.77 
0.1  0.0132  15.14 
0.05  0.0066  15.12 
0.03  0.0040  12.11 
0.01  0.0013  3.94 

 

Table 5.   Percentage of Total Point Cloud of the larger reference model classified as 
Surface Points 

C. VALIDATION OF DECIMATION APPROACH 

The Sequoia data collection effort included a special flight line, with a restricted 

mirror sweep, low altitude flight line.  This resulted in a higher density flight line.  

Figures 30a and 30b show the high resolution and the standard resolution data acquired in 

QTC format, respectively. 
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(b) 

 

Figure 31.   High (a) and standard (b) resolution LiDAR data of Sequoia National Park 
visualized in QTC format using QTM 

An area which overlapped both the high and standard resolution data were 

selected and used for analysis (Figure 32).  The densities of the high and standard 

resolution data were 1.3984 points per square meter and 1.1516 points per square meter, 

respectively.  The high resolution data contains 13.2% more points than the standard 
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resolution data.  The selected high resolution data set was reduced to 86.8% of its original 

density to match the density of the standard resolution data set.   

 

Figure 32.   Selected (white box) LiDAR Point Cloud (QTC) of Standard and High 
Resolution data viewed in QTM 

Using the same process stated above to generate the first two sets of DEMs, the 

reduced high resolution and the standard resolution DEMs were generated and are shown 

in Figure 34.  The two DEMs were analyzed using ENVI and was found that there is a 

0.999547 correlation between them, validating the artificial reduction of resolution of 

DEMs by random selection of points from a higher density data set using a programming 

code written in IDL. 
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(a) 

 
(b) 

 

Figure 33.   High (a) and Standard (b) Resolution DEMs generated from the selected 
LiDAR Point Cloud data sets (Figure 33) 
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V. CONCLUSION 

Digital Elevation Models generated from lower density LiDAR data deviated 

from the Digital Elevation Model of high-density LiDAR data in a non-linear fashion.  

As the density of the original LiDAR data covering an area of 1625 meters by 875 meters 

(8.6 million points) was reduced to 90%, 66%, 50%, 30%, 10%, 5%, 3%, 1%, 0.5%, 

0.3%, 0.1%, 0.05%, 0.03%, and 0.01%, the correlation results decreased more 

significantly at densities less than 0.0182 points per square meter (Figure 22 and Table 

2).  The same process applied to a larger LiDAR data covering an area of 3005 meters by 

844 meters (33.5 million points) produced similar results (Figure 29 and Table 4); 

however, significant decrease in correlation did not occur until density reached 0.0132 

points per square meter. 

The first set of Digital Elevation Models having the same LiDAR data density 

also produced different correlation results (Figure 24).  The lower the LiDAR data 

density the wider the distributions of correlation results become.  Three percent (0.182 

points per square meter) produced a mean correlation of 0.9535 with uncertainty of 

0.56%, 0.3% (0.0182 points per square meter) has a mean correlation of 0.8928 with 

uncertainty of 2.64%, and 0.1% (0.006 points per square meter) has a mean correlation of 

0.8486 with uncertainty of 88.4%.  Thus, the Digital Elevation Models created from less 

than 0.0182 points per square meter LiDAR data density are inadequate. 

Further analysis of DEMs indicated that the percentage of surface points 

contained in the Digital Elevation Models varied as LiDAR data density decreased.  The 

LiDAR data covering an area of 1625 meters by 875 meters identified around 50% of 

total point cloud data as surface points and the LiDAR data covering an area of 3005 

meters by 844 meter identified around 35% as surface points until the LiDAR data 

density was reduced to less than 0.6064 points per square meter and 0.6601 points per 

square meter, respectively (Figure 30).  Therefore, a minimum of 0.6 points per square 

meter (or rounding off to 1 point per square meter) is necessary to generate an adequate 

Digital Elevation Model. 
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APPENDIX: RANDOM_PTS_FROMXYZ_V2.PRO 

;This code uses an input in ASCII XYZ format and reduces the input file 
;to the desired percentage of the input file.  The reduced or output 
;file is generated in ASCII XYZ file.  The ASCII XYZ file has 3 lines 
;of header and 4 columns (x, y, z, ;intensity).   
 
;******************* 
;UPDATE THIS SECTION 
;******************* 
;Input file directory 
file_dir = 'C:\Documents and Settings\rlduldul\Desktop\' 
;Input file 
file = 'name.xyz' 
;Output file directory 
output_dir = 'C:\Documents and Settings\rlduldul\Desktop\' 
 
;Percentage to reduce file size to 
pct = [90.0,66.0,50.0,30.0,10.0,5.0,3.0,1.0,0.5,0.3,0.1,0.05,0.03,0.01] 
 
run_number = 'run1' 
;******************* 
;******************* 
 
pos = strpos(file, '.') 
tf = strmid(file, 0, pos) 
outfile = output_dir + tf 
 
hdr = strarr(3) 
 
data = double([0, 0, 0, 0]) 
temp = double([0, 0, 0]) 
temp2 = 7 
 
print, 'input file: ', file_dir+file 
print, 'output file:', outfile 
 
;Open and Count the number of points 
openr, 1, file_dir+file 
readf, 1, hdr 
npts = 0l 
hdr1 = ' ' 
WHILE ~ EOF(1) DO BEGIN 
  readf, 1, hdr1 
  npts = npts+1 
ENDWHILE 
 
print, 'number of points:', npts 
close, 1 
 
;Open and read in the file 
openr, 1, file_dir+file 
readf, 1, hdr 
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data = dblarr(4,npts) 
for index = 0L, npts-1 DO BEGIN 
  readf, 1, temp, temp2 
  data(0:2, index) = temp 
  data(3, index) = temp2 
  IF index mod 10000 eq 0 then print, 'number of points read:', index 
ENDFOR 
close, 1 
;stop 
 
data = data(*,1:npts-1) 
 
print, 'Starting to extract random subsets' 
 
FOR i=0l, n_elements(pct)-1 DO BEGIN 
  nreduced = long(npts*pct(i)/100.) 
  if (nreduced lt 2) then  nreduced = 2 
  print, 'original number of pts:', npts 
  print, 'number of reduced pts:', nreduced 
 
  ;Reduce dataset to percentage of original 
  reduced_pts = RANDOMU(seed,nreduced) 
  index = sort(reduced_pts) 
  reduced_pts = reduced_pts(index) * npts 
  reduced_pts = long(reduced_pts) 
  print, 'Seed for Random number generator:',seed(0) 
 
  data_2 = data(*,reduced_pts) 
 
  ;Output reduced data set is ASCII format 
  dir = output_dir 
 
  pcti = fix(pct(i)*100) 
  outfile_temp = outfile+'_'+string(pcti, "(I5.5)")+'_pct.xyz' 
  print, 'output file:', outfile_temp 
 
 
  openw, 2, outfile_temp 
  printf, 2, 'Points taken from: ', file 
  aa = string(pct(i), "(f8.2)") 
  bb = string(npts, "(I8)") 
  cc = string(nreduced, "(I8)") 
  lable = 'Reduced to: '+ aa +'%   Original # of pts: '+bb+ ' Reduced # 
of pts: '+cc+' Seed: '+strtrim(seed(0)) 
  print, lable 
  printf, 2, lable 
  printf, 2, 'x, y, z, intensity' 
  for j=0L, nreduced-1 do begin 
    printf, 2, data_2(0:2,j), fix(data_2(3,j)), format = "( f19.12, 2x, 
f20.12, 2x, f18.12, i4   )" 
  endfor 
  close, 2 
ENDFOR 
print, 'Finished' 

END 
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