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ABSTRACT

Electron transport properties of terahertz (THz) longitudinal optical (LO)-phonon
quantum cascade (QC) structures were modeled, in order to investigate high gain
quantum cascade laser (QCL) structures. A new structure, a step well QC structure, was
proposed. Under such an arrangement, there are three main energy levels within the step
well, where the transition from the upper state to the middle state is at the THz radiative
spacing and the transition from the middle state to the lower state is at or near the LO-
phonon energy (~ 36 meV in GaAs). Because of the inherent difficulties in using rate
equations for this type of transport analysis, a Monte Carlo simulation was developed.
Step well injectors were modeled and shown to be capable of high injection efficiencies
(~ 90%), higher than previously obtained. Comparisons to conventional square well LO-
phonon structures are made, including a Monte Carlo analysis of a high power THz QCL.
Interface roughness scattering was shown to be significant only for roughness greater
than approximately one monolayer. It was found that step well structures are capable of
high gains and injection efficiencies, with comparable characteristics to other square well
designs, but do have increased scattering from the upper state to the lower states.
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EXECUTIVE SUMMARY

Electron transport properties of terahertz (THz) longitudinal optical (LO)-phonon
guantum cascade (QC) structures were modeled, in order to investigate and better
understand the underlying physics of high gain quantum cascade laser (QCL) structures.
A new structure, a step well QC structure, was proposed after rate equation analysis
showed favorable scattering rate lifetimes for maintaining a population inversion. Under
such an arrangement, there are three main energy levels within the step well, where the
transition from the upper state to the middle state is at the THz radiative spacing and the
transition from the middle state to the lower state is at or near the LO-phonon energy
(~ 36 meV in GaAs) for fast depopulation. The middle state (upper phonon or lower
lasing state) is a single energy state, contrasting to previous LO-phonon based QCL
designs that have doublet states. For long wavelength lasers, this may be important
because it eliminates the possibility for unwanted THz absorption that could otherwise
occur between those doublet states. Since the radiative and LO-phonon transitions are
intrawell in nature, high oscillator strengths and sub-picosecond middle state lifetimes are
possible, which can lead to increased gain in the active region provided the upper state
lifetime and injection efficiency are maintained. Because of the inherent difficulties in
using rate equations for this type of transport analysis, a Monte Carlo simulation was
developed. Step well injectors were modeled and shown to be capable of high injection
efficiencies (~ 90%), which is higher than previously obtained in other LO-phonon
structures with similar wavelengths of operation and oscillator strengths. It is likely that
step injectors could be useful in approaches that do not arrange all three energy levels
within the same well. Comparisons to conventional square well LO-phonon structures are
made, including a Monte Carlo analysis of a high power THz QCL. Interface roughness
scattering was shown to be significant only for roughness greater than approximately one
monolayer. It was found that step well structures are capable of high gains and oscillator
strengths, high injection efficiencies, with comparable characteristics to other square well

designs, but do have increased scattering from the upper state to the lower states.

XV



Throughout the course of this research, scientific results and findings were
presented and published. This research was profiled in an article appearing in the Winter
2005/2006 issue of STARLINK. The author presented portions of this work in 2007 at
The Ninth International Conference on Intersubband Transitions in Quantum Wells, and
at the 2009 SPIE Defense, Security, and Sensing Conference. Scientific papers were
published in the proceedings of these symposia (Proc. Ninth Int. Conf. on Intersubband
Transitions in Quantum Wells, and Proc. SPIE 7311), as well as in a 2008 Naval Air
Warfare Center report, NAWCWD TM 8577. This research also led to the filing of a U.S.
patent in 2008.

XVi



ACKNOWLEDGMENTS

I would like to thank Gamani Karunasiri for the opportunity to be a part of his
semiconductor group at NPS, for being an outstanding advisor and teacher, and for the
many fun and interesting times | had working with him. Though there were numerous
long hour days, those were overshadowed by the excitement of the research. I look
forward to our continuing working relationship. Additional thanks are extended to the
following:

To the NPS professors, Robert Armstead, Scott Davis, Nancy Haegel, Andres
Larraza, Jim Luscombe, and Kai Woehler, | thank for their commitment to teaching and
for giving me the necessary skills for investigating physical phenomena. | would also like
to thank all of the professors on my committee, for their time.

To fellow students Kevin Buchanan for collaboration in the laboratory, and Kevin
Lantz for earlier work on quantum wells that provided a starting point for this effort.

To H.C. Liu and his semiconductor group at NRC, for processing our QC
samples.

This work was supported by China Lake’s Fellowship Program, NAVAIR’s ILIR
Program sponsored by ONR, AFOSR, and NAVSEA. | would like to thank Pam
Overfelt, Denton Marrs, and Robin Nissan, at NAWC, China Lake, CA, for their support.

XVii



THIS PAGE INTENTIONALLY LEFT BLANK

xviii



l. INTRODUCTION

Terahertz (THz) sources capable of operating in roughly the 1 to 5 THz region
(300 to 60 wm) or far-infrared region are of considerable interest and are currently an
active field of study. The THz frequency range has remained one of the least developed
spectral regions, in part due to the lack of compact coherent sources. Though, in the last
seven years or so, there has been a significant increase in efforts to produce compact THz
sources. One approach to providing a compact source within the THz region, is to use a
quantum cascade laser (QCL).> QCLs are solid state unipolar devices that differ from
conventional semiconductor lasers in that transitions occur all within the conduction
band, rather than between the bandgap of the conduction and valence bands. This class of
semiconductor lasers allows for customization of the wavelength, by utilizing a multiple
quantum well active region. A key feature of a QCL is that it consists of N repeated
sections that form a cascade. Thus, one injected electron can emit many photons, which
allows for differential quantum efficiencies greater than unity and hence higher power
output.

QCLs have been successfully designed for operating in the infrared (IR) region
(for wavelengths from ~ 3 to 24 xm, with room temperature operation, and CW operation
of hundreds of mW of power).>” More recently, QCLs have been designed in the THz
region (~ 0.84 to 5 THz, up to ~ 185 K, 250 mW pulsed, and 130 mW CW operation).®*?
Though, for THz QCLs these figures are not from the same device. Temperature as a
function of frequency for the best devices has approximately followed the trend T ~
Eradiative/Ks = kg, and several of the low frequency designs operate with the assistance
of a magnetic field."® Alternative compact solid state sources, such as lead-salt
semiconductor diode lasers, are limited by the bandgap to ~ 30 xm for the longest
wavelengths."* Other solid state devices such as transistors, Gunn oscillators, and
Schottky diodes multipliers, have at best achieved low @W power levels in the THz
region.”>® Gas lasers generally have limited lasing frequencies and are usually fairly
bulky. For these reasons, and because of the lack of intersubband materials, QCLs

provide a good means for solid state THz sources.



Some applications for the terahertz spectrum include astrophysical science,
medical science, THz spectroscopy, various security applications such as THz imaging
systems, chemical gas sensing, and agent detection.’>'**! Because THz radiation is
nonionizing, it is attractive for security imaging applications. Many materials have
absorption bands in the THz region of the electromagnetic spectrum, therefore this may
be used for the characterization of explosive materials. Imaging in this region can allow
for characterization of materials as they are brought through a security screen, as well as
detect and identify materials. THz waves penetrate dielectrics, such as clothes and plastic,
but are blocked by metallic objects, which affect their screening and detection

capabilities.

A. PREVIOUS THz QC STRUCTURES
THz QCL designs have used two main quantum cascade (QC) structure
architectures, broadly categorized as miniband™**%*® and longitudinal optical (LO)-

phonon 37-39,10,12

using coupled square quantum wells (square when unbiased). Although
sometimes hybrid structures have been used with some overlap of these two approaches,
usually designs can be classified as belonging to one of these two classes.

In miniband designs, very closely spaced energy levels are formed which create
minibands. Radiative transitions take place between these minibands or between a
relatively isolated state and a miniband. The first THz QCL which used a chirped
superlattice," is an example of a miniband structure. Other miniband designs have
included a bound to continuum® (Figure 1.A.1(a)) and a hybrid bound to continuum with
optical-phonon scattering approaches.® Both featured minibands and somewhat isolated
radiative states with more sideways radiative transitions.

In THz LO-phonon designs, the approach is similar to the first QCL developed?
(which was a mid-IR laser) in that the lower lasing state is depopulated by electron-
phonon scattering. Though, no terahertz LO-phonon QCL was fabricated that used all
diagonal transitions like the first mid-IR QCL. Also, the use of digitally graded alloy
injectors has been replaced with easier to grow so called funnel or resonant tunneling

injectors.**%" THz designs differ in that the radiative energy spacing is smaller than the



LO-phonon energy levels spacing. The first THz QCL that used the LO-phonon approach
for depopulation, achieved the small radiative energy spacing by coupling the first two
quantum wells with a thin barrier.*” This design approach still principally used three
quantum wells, but the third well differed in that it was used to resonantly tunnel the
lower lasing state (or equivalently the upper phonon state) and also arrange a lower
ground state spaced near the LO-phonon energy (a fourth well was also included at the
injector). Although some variations to these structures have been made, all of the THz
LO-phonon based structures have essentially been within the same framework and have

included this type of three well arrangement, differing only in the design of the injector.
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Figure I.A.1. Conduction band diagrams illustrating the two main broadly categorized
QC structure architectures, with one section outlined, (a) miniband structure (showing a
bound to continuum structure), and (b) LO-phonon structure (showing a three well
structure).



This three well arrangement (Figure 1.A.1(b)) is exemplified in the given reference.*
Although at some THz frequencies, reported miniband designs have achieved the highest
output power levels, this is attributable likely only to differences in the waveguide
structure or the number of sections, and not the design approach of the active region. In
fact, the highest output power QCL used a LO-phonon structure.™

LO-phonon based structures are of interest because of the large separation of the
LO-phonon energy spacing, and also because the highest output power THz QCL used a
LO-phonon approach. This approach seemingly is more likely tolerant to thermal
backfilling, which could be important for increased operating temperatures. The LO-
phonon structures typically have oscillator strengths (~ 0.5 to 0.96), while miniband
structures such as the bound to continuum designs have higher listed oscillator strengths
(~ 1.9). However, this may be somewhat offset since the LO-phonon sections are
typically about half the length of their miniband counterparts, and thus typically have
about twice the number of (LO-phonon based) sections within the same overall active
region thickness. Our multiple section analysis of some miniband structures, has
indicated lower oscillator strengths than reported. All of these miniband and LO-phonon
designs have used square quantum wells that are symmetric when not under bias of an
applied electric field. Next, a new theoretical approach that was investigated as part of
this work, to the design of the active region for THz QCLs, will be discussed.

B. STEP WELL QC STRUCTURES

In addition to the use of miniband and square well LO-phonon approaches, the
use of step well (asymmetric when unbiased) QC structures was first proposed by
Freeman (author) and Karunasiri.*® These types of structures can allow for the radiative
and LO-phonon transitions to be placed within the same well. Since the bound state
energy in high barrier square quantum wells increases ~ n® (with n being the quantum
number of the state), it is not possible to have an upper radiative THz energy spacing and
LO-phonon energy spacing (below) within a single square quantum well. Under a step
well arrangement, there are three main energy levels, where the transition from the upper

state to the middle state is at the THz radiative spacing and the transition from the middle



state to the lower state is at or near the LO-phonon energy (~ 36 meV in GaAs). The
middle state (upper phonon or lower lasing state) is a single energy state, contrasting to
previous LO-phonon based QCL designs that have doublet states. Allowing for a single
middle energy state could be important for longer wavelength (lower THz frequency)
devices to reduce unwanted absorption. By having vertical radiative and LO-phonon
transitions within the same well, it is possible for these types of structures to yield high
oscillator strengths, which can lead to increased gain in the active region provided the
upper state lifetime and injection efficiency are maintained. The step in the well allows
for high injection efficiency due to the spatial separation of the wavefunctions.

A step quantum well, in which at least two different conduction band heights
within a well are used, allows for additional freedom and breaks the restriction single
square wells have. Thus, a THz and LO-phonon energy spacing can be arranged within a
single step quantum well. Others have analyzed step wells for proposed CO, pumped
THz laser applications.***? Those step wells differ from the step wells considered in this
research, where the radiative state is positioned above the LO-phonon transition states,
and are intended for electrically pumped QCL structures. It was these unique
characteristics of a step well, that prompted investigation of using a step well approach
for a QC structure.

C. OVERVIEW

The ongoing imaging research using THz QCLs at NPS and by other groups, has
shown there is a need for high power QCL sources.*™° The research documented in this
dissertation focused on investigating high gain THz QC structures of a particular type,
LO-phonon QC structures. This was because our step well structures, which are LO-
phonon designs, showed characteristics favorable for a high gain active region, and
because the previously referenced highest power THz QCL was a LO-phonon design as
well.

In the sections that follow, technigques developed for analyzing QC structures will
be discussed. Methods for modeling quantum well structures, which are an absolute
necessity for analyzing or designing QC band structures, will be covered. Various



scattering mechanisms and the calculation of pertinent scattering rates for determining
state lifetimes, will then be discussed. Fundamental rate equations will be also reviewed
along the way. As will be shown, the scattering rates of the electronic states are not
constant, but are density and temperature dependent. Because of this, rate equations are
not well suited for analyzing complete structures, as they would be nonlinear. One
approach that is suitable for modeling entire structures is one based on Monte Carlo
simulations. The Monte Carlo method that was developed for modeling the electron
transport in QC structures is then discussed. The last sections cover the design and
analysis of step well QC structures, and the first sample that was grown and processed.
Comparisons are made to conventional square well LO-phonon designs. The final section
will show our Monte Carlo analysis of a square well high power THz LO-phonon QC
structure, including the effects of interface roughness scattering, and comparisons are
made to experimental data.

The List of Symbols page shows some of the constants and notations used. Many
of the derivations work in units with # = ¢ = 1. However, all sections dealing with

equations of final computable values will have % and ¢ inserted back into the equations.



1.  QUANTUM WELLS

The energy states in the active region of a QCL are formed by quantum wells in
the conduction band. In the sections that follow, methods for calculating the electronic
states in quantum well structures are discussed. The transfer matrix method is developed
for solving the energy levels and wavefunctions in such structures, both for arbitrary
shaped potentials and for a linearly changing potential. The former is useful for analyzing
doped structures, where bending of the band structure occurs due to the separation of the
charges from the host ions. This requires a self consistent solution to Schrddinger’s and
Poisson’s equations. These techniques are used to solve step quantum well structures, to

illustrate their potential use for THz QC structures.

A. TRANSFER MATRIX METHOD

There are a number of ways to solve Schrddinger’s equation for bound states in
quantum well structures. One commonly used approach, the transfer matrix method, can
be used to solve arbitrary shaped conduction band potentials, which is useful when the
self consistent solution is needed. Also to be discussed, is the case where the potential
can be modeled as perfectly linear (classically a charge moving under constant
acceleration).

The most general solution can be formulated by considering the solution for the
case where the potential is regionally constant. With this approach, any linear or
nonlinear potential can be modeled by a succession of small steps. The solution to the
Schrodinger equation H|y ) = E|w ) for a region with constant potential can be written as
a sum of forward and reverse waves (Figure 11.A.1).

w(X) = Ae™ + BAe ™ (1L.A.1)
Since the wavefuncion must be continuous, at an interface (x,) the first boundary

condition can be written as

Win(Xn) =¥ni(Xp) (11.A.2)
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Figure 11LA.1. lllustration representing the conduction band as a number of constant steps,
showing the coefficients for use in the transfer matrix method.

A second boundary condition, is that the first derivative must be continuous. Choosing to
take into account the change in effective masses across the boundaries, it is noted that the

conserved probability density flux is j = 1/m Im{ 'V y}. Setting j, = jn+1 the following is

found
idl//n(xn): 1 dyna(x,) (I1.A.3)
mg dx My dx h

The transfer matrix can be found from these boundary conditions by seeking relations for
the coefficients A, and B, in terms of A,+; and By.;. Substituting equation (11.A.1) into
equations (I1.A.2) and (11.A.3), the relationships for A, and B, can be found. The resulting

equations can be cast into matrix form

An 1[1+ kn+1mn jei(k"*l_k")x” E(l— I(n+1mn Je_i(k”*lJrk")x” An+1
_ 2 knmn+1 2 knmn+1 (” A4)
10 KoM Vit 1 KnaMa | ciceakox,
By 2 knmn+l 2 I(nmn-f-l Brt

where inserting / back into the equations k, = [2ma(E-V,)/#°]Y2. Because of the way the
transfer matrix is developed, correct boundary conditions at the interfaces are always
insured. In a structure with N regions, the matrix equation in terms of the first and last

regions may be found as

A A m mg, || A
|:A0j|:MO...MN2|: N—l:|:M|: N—1:|:|: 00 01}|: N—lj| (ILA5)
BO BN—l BN—1 mlO mll BN—l
For bound state solutions, the wavefunctions must be square integrable and therefore

vanish as x — 0. From equation (11.A.5) we see the bound eigenstates can be found by
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setting moo(E) = 0. The transmission coefficient can also be found for the case where an
electron is tunneling through one or more barriers. Assuming an electron incident from
the left means that By_1 = 0. The transmission coefficient is then found from T(E) = jn-1/jo
= kn-1Mo/(komn-1)|1/mool*.

If the structure can be modeled as having a perfectly linear potential (as is the
case for some QC structures where minimal bending of the band structure occurs from
the doping), the transfer matrix can be formulated for the case of a linear potential.
Writing the potential as V(x) = V,—e|E|x, Schrédinger’s equation becomes Airy’s equation
d2y, (%)
dp, (%)
where pn(X) = ([EX=m)/ 8, 1m0 = (E-Vo)le, B=[R*|E[*/(2mqe)]*", and the solutions are a
linear combination of Airy functions.

v, (X) = A, Ai(p, (X)) + B, Bi(o, (X)) (ILA.7)

The transfer matrix can be obtained in a similar manner as with the constant potential
51,52

= Pn (x) Yn (x) (”A6)

case, and can be simplified to

A | A, )Bi (@)~ AT (e, )Bi(a)  Bi(ay.)Bi(a,) ~ Mo Bi(a,)Bi (e |

n+l n+1

=7

m2/3 ) . . ) m2/3 . . . .
B mg/g Al(an)AI l(an+1) —Ai I(an)AI(O[ml) mg/g Al(an)Bl '(an+1) —Ai '(an)Bl(aml) B
n n+1 n+1 n+1
(I.A.8)

where an = (2mne|E|/A%)Y3(—x—n/|E]) and the prime denotes a derivative. In a structure
with N regions, we can again write the matrix equation in terms of the first and last region
the same as in equation (I1.A.5). For bound state solutions, the wavefunctions must again
vanish as x — oo, or strictly speaking prior to the classical turning point as x tends
toward o. Since Bi(a,) — o as X — —oo, we set By = 0, noting that m;o ~ 0 and myg <<
my1. The bound eigenstates are found by setting m;;(E) = 0.

1. Self Consistent Solution of Schrédinger’s and Poisson’s Equations

The self consistent solution of Schrédinger’s and Poisson’s equations is necessary
to take into account doping in quantum well nanostructures. Formulating the transfer

matrix method for a linear bias is computationally efficient, but is technically only valid



for undoped structures. In order to take into account bending of the band structure that
occurs due to the separation of the dopant charges from the host ions, Schrodinger’s
equation is solved by approximating the conduction band as a number of small steps
using the transfer matrix method. This approach allows for solution of any arbitrarily
shaped potential. Another popular alternative technique used is the shooting method,
which deals with the effective mass at intermediate points by taking the mean at the
neighboring points.>

The solution to Poisson’s equation can be formulated for numerical computation
as follows. Starting from Gauss’s law V-E = p/¢ and the electrostatic form of Faraday’s
law VxE = 0, noting that the curl of the gradient always vanishes, the electric field can be
written in the usual way as E = —VV,. This leads to Poisson’s equation V?V, = —p/s. Now
consider in general the following infinite sheet shown in Figure 11.A.2, which is a plane

surface of thickness Axz with charge density nsp(x), illustrating the electric field.

Figure 11.A.2. Infinite plane surface of thickness Axs and charge density nsp(x), showing
the electric field.

Applying Gauss’s law we find
jdsz-n =1jd3x,a(x) =1jd2m(x) (ILA.9)
& &

where o is the 2D charge density. For this case, the electric field is then found from

10



2e|="- (IL.A.10)

The charge density as a function of the growth direction may be written as

(%) = ~eln,ou (%) (%) Moo (%) A%y (ILA11)
Using equations (I1.A.10) and (11.A.11), the electric field is found, and the potential can

then be determined by integration
V, = —J.de-n (11.A.12)

If the dopants are concentrated in other states than just the ground state, the following

modification is needed
N-1 .

o (X;) = _ez [nzD,i‘//i (X)wi (X3) — Ngp; (X3)]AX3 (11.A.13)
i=0

where the sum of all the sheet densities for all of the states equals the total sheet density.
The self consistent solution iteratively computes the perturbing potential and adds it to
the conduction band profile until after a given number of iterations, a self consistent
solution is reached. Equation (11.A.13) assumes the charge distributions in the states are
known. In practice, this is not known unless the electron transport of the full QC structure
is analyzed and solved. One method for solving the state populations can be
accomplished using Monte Carlo simulations, and this will be discussed later.

For QC structures, doping is needed to introduce charge carriers within the active
region, and also to help reduce the possibility of the formation of high field domains.>* A
typical LO-phonon QC structure may have on the order of ~ 200 cascaded sections, and
an undoped active region would essentially represent a large intrinsic region. Minimal
doping levels can result in lower threshold currents, and moderate doping levels have
been shown to result in the highest operating temperatures.>>*° In practice, only one well

or a portion of a well or barrier is doped, in each section of the cascade.

B. STEP QUANTUM WELLS
As previously discussed, a step quantum well is not limited to have the bound
state energy increase ~ n” as is the case for a conventional square quantum well. As such,

the THz and LO-phonon energy spacing can be arranged within the same step well. This
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approach is illustrated using the step quantum well structures shown in Figure 11.B.1.
These wells are comprised of AlGa;_xAs layers with compositions of
0.143/0.035/0/0.143. The step well thicknesses in nm are 29.9/12.3 for Figure 11.B.1(a)
and 20.9/13.5 for Figure 11.B.1(b). The energy difference between states 2 and 1 for
Figures 11.B.1(a) and (b) are E»; = 13.7 meV (3.3 THz) and E»; = 17.9 meV (4.3 THz)
respectively. Both step wells have Ejq near the LO-phonon energy. The energy levels and
wavefunctions were calculated assuming an applied field of 10.1 kV/cm (typical for LO-
phonon QCLs) using the material parameters given in the references.””® This illustrates
that it is possible to arrange different radiative transition energies and keep near resonant
phonon transitions, within a single step well. This approach can be used to design

radiative frequencies lower and higher than these as well.

(b)

Figure 11.B.1. Conduction band profiles of step quantum wells. (a) Conduction band
profile of a step quantum well comprised of AliGa;_xAs layers with compositions of
0.143/0.035/0/0.143 and well thicknesses in nm of 29.9/12.3, with E;; = 13.7 meV (3.3
THZz) and E;o = 37.9 meV. (b) Conduction band profile of a step quantum well comprised
of AlyGa; xAs layers with compositions of 0.143/0.035/0/0.143 and well thicknesses in
nm of 20.9/13.5, with E»; = 17.9 meV (4.3 THz) and E;o = 36.5 meV. For both (a) and
(b), the 1 to O transitions are near the LO-phonon energy and the applied bias is 10.1
kV/cm.

This approach has a number of attractive features. Since the radiative and LO-
phonon transitions are both vertical, this approach can yield large oscillator strengths and
fast LO-phonon scattering rates for depopulation. Oscillator strengths for step well QC
structures are typically around unity or greater. Conventional square well LO-phonon
structures typically have oscillator strengths only about half of this and up to 0.96.%" It is

also noted that the step represents an additional barrier that can reduce parasitic injection

12



into the middle state. This could help the injection efficiency in QC structures, especially
for longer wavelength devices where the radiative energy transition spacing is small. It is
also seen that the middle state is a single state, contrasting to other conventional square
well THz LO-phonon designs that always have doublet middle states. Having a single
state could help reduce unwanted THz absorption, which could be important for longer
wavelength devices. In the following sections, the calculation of various scattering rates

of the electronic states in quantum well structures will be discussed.
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I11. SCATTERING AND OPTICAL TRANSITION

In order to determine the state lifetimes within QC structures, various scattering
rates of those states must be computed. In the sections that follow, the calculation of
scattering rates for the pertinent scattering mechanisms will be covered. As will be
shown, the scattering rates and hence the corresponding lifetimes of the electronic states
are not constant, but rather are density and temperature dependent. We will also discuss
the optical transition, and the important calculation of the gain. Some approximate rate

equations will also be used to illustrate fundamental device parameters of interest.

A. ELECTRON-PHONON SCATTERING

Phonons are quantized vibrations within a lattice. Many electrical and thermal
properties of materials are governed by phonon interactions. In semiconductor
heterostructures, electron-phonon scattering can often be the dominant scattering
mechanism. If the spacing between two states is at or near the resonant LO-phonon
energy, the scattering rate to the lower state can be very fast. This is why resonant
phonon scattering has been used in LO-phonon QCL devices as the primary mechanism
for keeping a population inversion. Intraband LO-phonon scattering along with electron-
electron scattering, are the mechanisms that cool the electron gas within subbands and
thermally distribute the electrons into Fermi-Dirac distributions. Since our focus is on
LO-phonon QC structures, this is the most important scattering mechanism, and it will be
discussed first.

Beginning by considering a simple classical diatomic system, which is a good
model for GaAs, the model consists of masses attached via springs in a chain (Figure
111.A.1).%® The Hamiltonian for the system is

H=>) KE+V
P2 RS 1 1 , (I1.A2)
:Z ZTT; +2rr;2 +Ek(xj—xj)2+zk(xj+l—xj)2
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Figure I11.A.1. Linear chain of diatomic atoms of masses m; and m.

From Hamilton’s equations we can write

p__oH
OX
m&, = —f-k(x, =%, )+ k(x, =x . )] (I.A.2)
ms ==k =, )= klxp.o =)
or
mX; = k(x; +Xj 2xj)
m, X :k(xj+l+x —2x;) (A3)
We seek solutions of the form
X; = Re{X ei(qja—wt)} A

" ’ i(qja—wt)
X = Re{X e }
where a is the lattice spacing between like atoms. Using equations (I11.A.4), equations

(111.A.3) can be written in matrix notation after some manipulation as follows (Re{} is
assumed)

X =0 (I1.A.5)

(111.A.6)
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and q = gj—gj-1. The solution is found by setting the determinant to zero. Solving the

quadratic in terms of & leads to the following.

2 | o2 2 L o2 2
0)2 — (a)ml a)mz)i a)ml 260”12 _a)rflla)riz Sinz(q_zaj (“lA?)

2

Equation (I111.A.7) can be used to graph the dispersion curve of @ versus g. Shown in
Figure I111.A.2 is the dispersion curve with m; = 0.93 m; (Mg, = 69.72 g/mol, mas = 74.92
g/mol). As can be seen, there are two main branches of phonons, known as acoustic and
optical phonons (the notation @ — wac for the acoustic branch and @ — wop for the

optical branch, will be used).

Acoustic Branch

15¢ Optical Branch

e
My

-1 -0.5 0 05 1
qalr

Figure I11.A.2. Phonon dispersion graph, showing the acoustic and optical branches.

For the acoustic branch, which corresponds to the “negative sign” root in equation

(11.A.7), as g — 0, @ — 0 and we see using sin(qa/2) ~ ga/2 and (1 + stuff)*? ~ 1/2(stuff)

©On O, __ 42 (I1.A.8)
[0} = . .
ol ek, 2
Substituting equation (111.A.8) into equation (I1I.A.5) gives the relative displacement

between the two atoms.
Re{[n%jx}: X' (I11.A.9)
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For the optical branch, which corresponds to the “positive sign” root in equation

(IM.A.7), as q — 0, ® — @max, and when q = 0 the following is found

Wop = O, + ) = /m2k (111.A.10)
reduced

where 1/Mrequcded = 1/mMp+1/my. Substituting equation (111.A.10) into equation (I111.A.5)

gives the relative displacement between the two atoms.

Re{—ﬂ(um—ajx}: X’ (11.A.11)
m, 2

As expected because of the high frequency nature at q = 0, the optical branch is

characterized by opposing motion of the opposite atoms.

From equation (I11.A.7) it is seen that there are a range of solutions specified by q
= *qfa. For periodic boundary conditions (xj+n = X;j and Xj+n = Xj) of a finite chain of
length L = Na, i.e., the ends of the chain are tied together in a ring, gL = 2znn, or g, =
2/m/L. There are N number of m; atoms = N number of m; atoms = N number of two-
body pairs or 2N number of atoms total (which is the number of degrees of freedom for
the system). For the 3D case, in addition to longitudinal phonons, there can also be
transverse phonons. In mixed composition crystals, the main branches can split into sub-
branches. This has been experimentally measured and theoretically derived using the
Lyddane-Sachs-Teller (LST) splitting.®”®°

In polar semiconductors, the phonons create polarizations and thus electrostatic
fields that follow the phonon. The interaction that describes this is referred to as the
Frohlich interaction.”® An expression for this interaction can be found by first considering
in general the dipole moment p; = gcx, where g is the charge and |x| is the displacement.
The dipole moment per unit volume V, referred to as the electric polarization P, is then

written as
P Z%@J (I11L.A.12)

The induced polarization due to the deformation by a phonon can be written as (noting e”

is the deformation charge, i.e., the charge that is transferred, not the electron charge)
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Poe(Xx-x )N (I1.A.13)
\%
The continuity equation 8,J" = 0, where J" = (p, J), can be integrated with respect to time

to give
op
dtv.-J =—|dt— 11.A.14
| Ja ( )

Since P = [dtJ, the charge density (charge per unit volume) is p = —V-P. For an optical

phonon with wavevector q, this becomes
* ' N ig-X—law,t *- ' N ig-X—law,t
p(x,1) =Re —ev-(x—x)ve " 1= Re{- elq-(X—X)ve " (111.A.15)

The dot product g:(X—X") projects only in the longitudinal direction, i.e., the g direction,
thus only longitudinal optical (LO)-phonons can induce a charge. The induced
electrostatic  potential (d;) can now be found from Poisson’s equation
V2®q = —pleg, where & = &, and noting from the divergence theorem

[axvio, =—[d*x-L (111.A.16)
&

0

thus

e N s
} Re{—v(x X') jedu} (I11.A.17)

® —Re{ (X = X"
&y, &y

V(|

where u = ig-x —iwgt, du = ig-dx, and d?u = |ig|’d®. Performing the integral and taking

the real part,”* the following is found

O = _ie N1 X — X ')(eiqx _e“q‘x)= IEe_%%(X - X ’)(—eiq'X + e‘iq'x) (111.A.18)
&

o0 0

and the perturbing potential is now found from

Ve’—phonon = Z a eq)q

z Le_ﬂi X — X )( iq-x +e_|q x) (|||A19)

An expression for the deformation charge e due to a LO-phonon can be determined from

classical arguments, and is found to be®®
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2 2
e’ =\/M[i_iJ (111.A.20)

N & &

© st

To solve for the amplitude X-X', the system must be quantized. Second
quantization could be used to promote everything directly in our Hamiltonian to operators
using the canonical commutation relations, but there is an easier way. This standard
procedure is to write the Hamiltonian in terms of generalized coordinates.®® Using
canonical coordinates and momenta (Qi and P; ), a set of normal coordinates (qq) is found
such that the potential is in diagonal form. The canonical commutation relations can then
be used to quantize the system in a straight forward fashion. The Hamiltonian expressed

in canonical coordinates is

Hio = Z

where for the restricted harmonic oscillator case
2

Aij = a/V '

0Q;0Q’

noting that Aj; is real and symmetric (A;; = A;) and [Qi,Pj] = 145, [Qi,Q;] = [Pi, Pj] = 0.

p? 1
i +Z—Ai'Q;Q’- (1MLA.21)
2m, 2 "

QQ! (11.A.22)

Following Feynman’® by scaling our canonical coordinates and momenta (to make the
notation simpler), we look to find the normal coordinates. The scaling chosen is Q; =
(mi)2Q;, Pi= PJ/(m;)? and U;; = 2A;; /(m; m;)*2. The Hamiltonian then becomes
1 1
HHO =Ez Piz—i'EZUijQin (|||A23)
I [

noting that Uj is real and symmetric (U; = U;). A transform between the normal
coordinates and the canonical coordinates can be written as

6 =>.C4Q (I1.A.24)

where the transformation matrix Cq is orthogonal, ),C4C s =3,4. >.C4Cq =5, and the
i g

inverse transform is

Q =3Cyd, (I11.A.25)

The canonical momenta is likewise written as (where [0q,p4] = 194p)
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p, =Y C,P (111.A.26)

The eigenvalues @i can now be found from

> CuCluU; =6, (IN.A.27)
i]

and thus

2U;Q Q=Y i (I11.A.28)
ij q

Using equations (111.A.26) and (I11.A.28), the Hamiltonian can now be written as a sum

of independent harmonic oscillators.
1 1
Hio = EZ pq2 + 52%2%2
q q
1 2 2.2
- EZ(pq + 0, G )
q

These decoupled oscillators represent noninteracting phonons. The solution is of course

(I11.A.29)

well know for the harmonic oscillator, and it is now straight forward to quantize. Treating
each classical harmonic oscillator as a quantum harmonic oscillator, py and qq are
promoted to operators, and the canonical commutation relations are imposed.
o p; =18,

[qi,qj]:[pi,pj]zO

The operators p and q can be written in terms of ladder operators, noting that the

(111.A.30)

canonical commutation relation [q;,p;] = i5; is the same as [aq,aa] =1

qzi(a +aT)
m a T2

=iy %,

The Hamiltonian for the sum of the independent oscillators can now be written as
o1 1
Hyo =D o, 88 =Y o, 88~ (1.A.32)
q q

and the Hamiltonian can be explicitly written for the 3D case as follows, keeping in mind

(11.A.31)

that for the 3D case both longitudinal and transverse modes can exist
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3
Hio = Zqu[a;,saq,s +%j (I1.A.33)

q s=1
where for each independent oscillator |i = 0) is an eigenstate of Hyo with a zero-point
eigenvalue of Y24 When the zero-point energy is set to zero, aqs/i = 0) = 0 and the
vacuum state |0) has an energy eigenvalue of E = 0. Using the commutators below

Hioal =mal, . [Huo ag]=-mga,, (111.A.34)

q-q,s
itis seen |n) = (aa,s)”|0> and the Hamiltonian for each oscillator is diagonalized, which has
a complete set of eigenvalues of (n+%2) = (n+%)E.o (forn=0, 1, ...).

The background energy of the phonon modes is X% aq. For systems with many
degrees of freedom, this c-number becomes large and infinite in extent for fields. Since
only energy differences can physically be measured, this zero-point value is not
important for our purposes here. However, it is noted though for fields that have infinite
degrees of freedom, this shift in the zero-point could potentially be a problem.”

The statistics of phonon particles can be determined by considering the following
two particle state aja|0). Noting that a} and aj commute, the state is identical if the two
particles are interchanged. Analogous to a classical oscillator that can be excited to an
arbitrary number of high levels, mode q can have an arbitrary number of particles. Thus,
phonons are Bosons and the average number of phonons in a mode can be found from
Bose-Einstein statistics (N) = 1/Z Tr Ne ",

The mode displacement is now found by using the correspondence principle
where the classical energy in the mode is the same as the quantum energy in the mode,
which is NgELo (where Nq is the average number of phonons in the mode and Eo is the

quantized eigenstate energy).

%ma)L02|X —-X’

2N, E
X -X|= ——5 (111.A.36)
Nmao,,

Substituting the expressions for e” from equation (I11.A.20) and the modal

"N =N,Ey (111.A.35)

amplitude X—X' from equation (111.A.36) into equation (111.A.19), the perturbing potential

for the LO-phonon interaction can be written as
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(I1.A.37)
where g = |q|, which is the magnitude of the 3D momentum vector (includes the parallel
in-plane and xs components). Separating this into emission and absorption terms, with N
— Ng+1 for the emission case, to include spontaneous and stimulated phonon emission

i e°Eo( 1 1 i :
— |—=| ——-—1,/N, e absorption
Zq:q\/ 2V [800 gstj a ( ption)

- (111.A.38)

—Z \/e Ewo ( ! ij,/Nq +1e™  (emission)

& &

© st

e~ —phonon

This can also be written in terms of ladder operators (aj|Ng) = (Ng+1)*2[Ng+1), ag|Ng) =
(Ng)"“INg-1))

i |e’E 1 1 . .
V _ = _ | T — a GIQ'X _ aTe—lq»x
e~ —phonon Zq: Q\/ 2V (8 8t]( q q )

00 S|

_Z \/e ELO[ 1 _i](aq_aTq)eiq.x

& &

0 st

(11.A.39)

Sometimes this is expressed in terms of the nondimensional constant of =
/(8 w)2malh) *(1/e,+1/ &).

The following diagram (Figure 111.A.3) shows the indexing and notation used for
electron-phonon scattering, where i is the initial electron state, f is the final electron state,

and n is the subband index.
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+0) (emission/absorption)

Figure 111.A.3. Feynman diagram for electron-phonon scattering.

In this section some vectors have three components (q) whereas others have two parallel
in-plane components. Parallel subscripts will be used for parallel in-plane vectors (k; and
q) and the prime notation will indicate the final state. Now with the Frohlich interaction
potential, the scattering rate can be computed. The 2D wavefunctions are Bloch
functions.

liy=|u ) (111.A.40)
Since the interest is in the matrix element for intersubband transitions, the following

approximation can be used”

(o M) ={u s Muia) = (u e Mo (@ fa) + (u i), (@ Ve
z<0‘f M“i>

where for intersubband transitions (agai) = 0 and {Uquideen = 1. Working in the (X

(11.A.41)

representation, where (X1, X2, X3) = (X, Y, z) with x;, X, parallel to the growth direction X,

the wavefunctions can be written as
(x[i)= iui e
JA

This will be used in subsequent sections and the periodic u; part of the Bloch function

ik v, (%) ~ %eier" v, (%) (11.A.42)

will be dropped.
1. LO-Phonon Emission
Considering the emission case first, where V.=V___ . The matrix element can

be written as
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<~v~>=<w—;5¢%{g—gmm«m

0 st

€ ELO l 1 [ 3 —|k Xy —i x ik -x
:__ - N +1 d X I He q- [ X X
i eZELO 1 1 3 1 i —i(qy+q )x ik -x
—_— - N +1 d X e Il He [I7H3 20 X X
A\/ oo N1 Z : Ve ()5 (%)
_ eEo( 1 1 o k1K= g, |+
‘_K\/W P LR K LR WL R O

(11.A.43)
For mode q, there is only one value of g that makes the d2x|| integral nonvanishing, and is
such when the exponent is zero (otherwise the other values lead to the addition of random
phase terms which add to zero). This gives a Kronecker delta function, which is the

conservation of momentum as expected for the emission case.

. i |e’E 1 1 1 g, '
(f IV ||>=—K\/2—VL°(——8—]1/N¢4 +1Idxsae 0w (%)W, (%) Ad (K, — K| —q)
st

SUD
B (1 1 Idxs ™"y (%), (%)
——i o — = | /N_+1 5k, -
\/ 2V (gw gstj at q (ky =k =)

(1L.A.44)
To find the electron-phonon scattering rate, the matrix element is substituted into Fermi’s
golden rule, summing over the final states.”® Inserting 7 and ¢ back into the equations

(noting ELo = fian0)

hzk'z n°k
e _ phoron = Z‘ f[\/| ‘5!{ om ]-I—ha)Lo [E + om \ﬂ

. 2
27 e%h 1 1 dx; €7 (%), (%) ,
:%%(:‘QJ(M +1)Zf:“ : . : : } o(ky—k;—-qy)

x 5(E, +E, +hw, —E, —E,)
(111.A.45)
Converting the final states summation to an integral in k-space’ and dropping the

momentum delta function
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. . 2
o1 1 (N, +1)- &% U dx; e wnr(Xg)wn(Xz)‘
e~ —phonon V c c (272_)3 q”2 +q§

0 st

x 5(E, +E +ha, —E, ~ E,) (I11.A.46)

. . 2
11 o v
= #[Q - E—J(Nq +1)jd6q||dq||dq3 o +03

x 5(E, +E, +ho, —E, —E,)

This can be rewritten as

w1 1
e~ - phonon = 872'20 (z_g_stj(Nq +1)J-dwq||q|||2D (ql\)5(En' + Ek’ + ha)LO - En - Ek)
(I11.A.47)
where
ks &7y (x ) ()|
I (q||) = qus (111.A.48)

q|| +q3
The limits of integration for the g3 integral are from *oo, which is unfavorable for
numerical computation. It can be written in an alternative form by pulling the gz integral

inside and rewriting as

. <, , , ” e—i‘h(xrxé)
0 (ay) = IdX3dX3l//n, (X)W (% )y (%), (%) J.dqs W (11.A.49)
o I+ Us

The g3 integral can now be evaluated by contour integration. For positive x3—x3, the lower

pole is pick up by closing the contour in the lower half plane (Figure 111.A.4)

® g

Figure 111.A.4. Contour illustrated for closing around the lower pole, for evaluating the
contour integral in equation (I111.A.49).
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—i(x3—x3)(-iqy) T oy (x5 =3) ,
=—e for (x;—x3) =0 (111.A.50)

2 e—i%(xs—xs) . .
J‘dqsﬁ =27 res =21 ——
S —1g, G, q
and similarly for negative x3—x3, the contour is closed in the upper half plane
L gl ) ,
j dg, ————=—e " for (x, - x;) <0 (I11.A.51)
—0 q|| + qs q||
and it’s seen that
© e—i%(xs—xé) T ,
j dg; ~————=—e " forall (x, - x}) (111.A.52)
—o q|| +0; q||
The lp(qy) integral can now be written as
~ibal (111.A.53)

1o (@) = qﬁ [ g (¢ D, (s (X8 D (X3 )e
I

If we wish to include a screening term, equation (111.A.49) with screening becomes’®
2 2 ) q—id3 (X3 —x3)
(q" % )e q (111.A.54)

I2D (q||1 qsc) = J-dXSdXéV/:’(X:%)l/In (XS)W;'(Xé)l//n (Xé) J.dq3 (qz + q2 + q2 )2
I 3 sC

—00

and the contour integral becomes

]gd (q||2 n qg)e—iqma—xé)

Us ( 2 2 4+ 02 )2

S g radval A
1 | X3~ XC’% | qszc _ qszc }ew af +% [x3=x3

_”[(qz v f? aqread) 2qrear)”

Finally, upon substitution the 1,0(qy,0sc) integral becomes

IZD (q||1 qsc) = 7['[ dX3dXéW:’(X3)V/n (X3)W;’(Xé)l){/n (Xé)
1 D%l @ | e (111 AS6)
x 2 2 {2 2 2 2 2 /2 €
(qn qusc)1 2(q“ +qsc) 2(q|| +qsc)3

Now consider the energy delta function in equation (I11.A.47), which conserves

energy. The inner function of the delta function can be simplified as follows
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E,+E +ho,—-E, -E =0
ho,, —(E,-E,)+E,—E, =0
ho,+E, . —E, =0 whereho! =hao,, —(E, -E,) (I11.LA57)

!

e

hz 2 2
ho +%(k|| —2k,q, cos & +q; )— E. =0

where a similar notation to the given reference has been used.”” Note that @is the angle

between k; and ;. The expression may be rearranged in terms of the quadratic.

2

2
ha! _n k,g, C0s 6+ h—qnz =0
m 2m

(111.A.58)

2ma’
q“2 — 2k, cos &, + — e=0

The roots to the quadratic are

2ma (111.A.59)

Qe = k; COSO+ \/ ki cos” 60—

and the following is noted”’

2mo!
Oje = O e =2\/|<|2 cos’ 6= %= (111.A.60)

Using 5(f(x)):Z§(x—xi)/| f'(x)|, where x; are the roots of f(x), the delta function

becomes

/ h? ;] m 1
4 (2_ qf “om k, cos &t + h")eJ Y [5 (qn ~ e )+ o (qn e )]
m m \/kz cos? H—m
Il A

2m 1

= ?m 5 (q” —Oje J+o (qn ~Oje )]

(11.A.61)

The final expression for the emission case is
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o1 1 2m 1
We’—phonon = 872'50 (?_FQJ(NQ +1) hZ J.de e = Oje quIqIIIZD (q\l)

0

X [§(q” - q||+e)+ o (qn - qll—e)

- e;:;;’z’“ (i —iJ(Nq +1)[do

gcx: gst

dayayl20(9)) [5 (qn - q||+e)+ 5(q” O )]

ll+e ~ Hl-e

(111.A.62)

Now consider the different emission cases that are possible. There are three
different emission cases that can arise, and are referred to as cases 1a, 1b, and 2.

LO-phonon emission case 1a: Ex < hak = hiano—(En— En) and 7ie: > 0, i.e., En—

En < hw o and the electron does not have sufficient in-plane kinetic energy, the transition

is forbidden. The subbands are spaced such that the energy difference is smaller than the

LO-phonon energy and the electron does not have enough in-plane kinetic energy, so the
transition is forbidden (Figure 111.A.5).

E
K
o
A
En
haLo
En'
v

Figure I11.A.5. LO-phonon emission case la, E.—E, < Ziexo and the electron does not
have sufficient in-plane kinetic energy, forbidden transition.
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LO-phonon emission case 1b: Ex > Aax = hwo—(En—En) and b > 0, i.e., En—Ex
< haro and the electron has sufficient in-plane kinetic energy, the transition is allowed.
The subbands are spaced such that the energy difference is smaller than the LO-phonon
energy and the electron has enough in-plane kinetic energy, the transition is allowed
assuming no state blocking (Figure 111.A.6). The red and blue circles on the E-k diagram
are equal energy planes and show the possible range for the in-plane momentum vectors.
The final state represented by the blue circle must be vacant, otherwise state blocking
will prevent such a transition. There are two possible solutions for this case, qje. Limits
on @ are necessary to keep the momentum vectors real valued (to keep from getting a

negative sign under the square root). Also note that at resonance the transition is allowed.

O, = cOS | |22 (I1.A.63)
hk”

A

hao qi
)

ki

v

ko
Ky

Figure Il11LA.6. LO-phonon emission case 1lb, E.—E, < Zmo and the electron has
sufficient in-plane Kinetic energy, allowed transition.

Equation (111.A.62) becomes
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2 Omge | +1
_e wLom[i_LJ(Nq +1> jd@ 20 (A )Aye + oo (O )0

e~ —phonon 472'2h2 E, &g O q||+e - q||7e
2 , (111.A.64)
_¢ a)ZLOZn 1 1 (Nq +1) Tae oo (Gje ) Oe + 1op (G )0y
2r°h” &, &y 0 Qe = e

LO-phonon emission case 2: Any Ei is valid and @ <0, i.e., E;—En > Zi o, the
transition is allowed. The subbands are spaced such that the energy difference is larger
than the LO-phonon energy, and the transition is always allowed assuming no state
blocking (Figure 111.LA.7). This “sideways” transition has one solution ... When @ is

zero (Figure I11.A.8) it is seen g = gy is the correct root, as g must be greater than k.

horo

ko
ks

Figure I11LA.7. LO-phonon emission case 2, E,—En > fia o, “sideways” transition always
allowed.
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2mw,

Uy..| = k; cOS(0) + \/ k,” cos®(0) -

»
»

Ki Ky

A

Figure 111.A.8. LO-phonon emission case 2, g and k; vectors when 6= 0.

Equation (111.A.62) becomes

_ ezwLom(i_iJ(N +1)2fd6’ I (q|\+e)q||+e
q -

e~ —phonon 472.2h2 g, Eq 0 q||+e — q”_e
| ” (111.A.65)
_¢ wLom(i_LJ(N +1)jd0M
2% h? €, &y ! 0 Qe = j-e

2. LO-Phonon Absorption
The absorption case where V =V _

e~ —phonon

, proceeds in a similar manner as for the
emission case. The main differences are Ng+1 — Ng and the delta function changes for
the conservation of energy for the absorption process. With these changes, similar to

equation (111.A.47), the equation for the electron-phonon scattering rate becomes

2
s svorn = 2 (é—g—lﬁ]Nq [doda, a,1,5(@)) S(E, +E, ~hw, ~E, ~E,)
(111.A.66)
Now the inner function of the delta function can be simplified as follows.
E,+E. -fo,-E, —E =0
—hw,,—(E,-E,)+E.—E, =0
~ho, +E, ., —~E, =0 wherehw, =ho,, —(E, -E,) (I11LA.67)

1+
2

—ha, + Zh—m(k”2 — 2k 0, cos @ + qnz)— E =0

Again, @ is the angle between kj and q;. The expression may be rearranged in terms of
the quadratic.

o — 2k, cos &, —% -0 (11.A.68)

The roots to the quadratic are
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!

Opa =k, cos@i\/ k? cos® 9+% (111.A.69)

noting that

Ojea =G| = 2\/ k2 cos? 6 — 2";% (11.A.70)

The delta function can be simplified using the same identity as used for the emission

case, and the delta function becomes

n* n? ] 2m 1
5[% q“2 - % k|| cos 6(‘,]” - hwa} = ?ﬁ [5((1” ~Oja )+ 5(q“ —0a )] (IM.A.71)
I+a — Hj-a

The final expression for the absorption case can be written as

e 1 1 2m 1
= wLO(___jN jd@—_ dq||q|||20(q|\)

e~ —phonon 87[2 e, &g a ? a B
x [5(q|| - q||+a)+ 5(q|\ - q||_a )] (| Ti .A.72)
? 1 1 1
- 6470;;;271 (g B g_sthqj do G da,a o0 (@) [s (q“ - q||+a)+ g (q” - q”_a)]

Now consider the different absorption cases that are possible. There are four
different cases that can arise, and are referred to as cases 1a, 1b, 2, and 3.

LO-phonon absorption case 1a: Ex < —7wh = —[ha o—(Ex—En)] and 7w} <0, 1.e.,
Er—E, > hiawo and the electron does not have sufficient in-plane Kkinetic energy, the
transition is forbidden (for single phonon absorption). The subbands are spaced such that
the energy difference is larger than the LO-phonon energy, and the electron does not have

enough in-plane kinetic energy, so the transition is forbidden (Figure I11.A.9).
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haovro
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ke

Figure 111.A.9. LO-phonon absorption case la, Ex—E, > im0 and the electron does not
have sufficient in-plane kinetic energy, forbidden transition.

LO-phonon absorption case 1b: Ex > —/@h = —[iovo—(En—En)] and w: <0, i.e.,
Er—En > oo and the electron has sufficient in-plane Kinetic energy, the transition is
allowed. The subbands are spaced such that the energy difference is larger than the LO-
phonon energy and the electron has enough in-plane kinetic energy, so the transition is
allowed assuming no state blocking (Figure 111.A.10). There are two possible solutions
for this case, qya. Limits on & are necessary to keep the momentum vectors real valued
(from getting a negative sign under the square root). Also note that at resonance the

transition is allowed.

0 cosl( _Zm“’a} (ILA.73)
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Figure I11.A.10. LO-phonon absorption case 1b, Ey—E, > Ziam o and the electron has
sufficient in-plane kinetic energy, allowed transition.

Equation (111.A.72) becomes

elw, m( 1 1 Orca oo (0ea)Ayea + 1oo (0129, 0
R [ qu [do

e~ —phonon - 232 -
4r"h O Qva = Oj-a

s, €
_ eza);_ozn 1 1 NqHTa@ oo (Gja)pea + 1o (G)-2)0)a
2n"h 0 Qa = Oj-a

st

(I1.A.74)

goo 8St

LO-phonon absorption case 2: Any Ey is valid and @; > 0, i.e., Ex—E, < haro,
the transition is allowed. The subbands are spaced such that the energy difference is
smaller than the phonon energy so the transition is always allowed assuming no state
blocking (Figure I11.A.11). This “sideways” transition has one solution qy+a Which again
can be seen when @is zero.
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Figure 111.A.11. LO-phonon absorption case 2, Ey—E, < i@ o, “sideways” transition

always allowed.

Equation (111.A.72) becomes

e~ —phonon - 472,2;.12

elw . -m( 1 1 4 I2D(q|\+a)q||+a
ouns 1) u,

E, &

q||+a - q||—a

:eza)zLoT 1 1 qudelm(qua)q”m
27°h £, € 0 Oia —Uj-a

st 0

st

(11.A.75)

LO-phonon absorption case 3: Any Ey is valid and @} > 0, and E—E, < 0, the

transition is allowed. Absorption from an upper band edge to a lower band edge is always

allowed assuming no state blocking (Figure I11.A.12). This “upwards” transition has one

solution qy+a. Phonon absorption scattering rates (all cases) are much slower than phonon

emission scattering rates at low temperatures. This is because a phonon must be present

to be absorbed. Further for case 3, absorption via a large momentum transfer also reduces

the scattering rate.
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Figure I11.A.12. LO-phonon absorption case 3, “upwards” transition always allowed.

Equation (I11.A.72) again takes the same form as equation (I11.A.75).

3. Mean Scattering Rate

Because there is a distribution of carrier energies in the initial state, the mean
scattering rate is calculated by averaging over the Fermi-Dirac distribution of carriers in

the initial state

IdEkiW oo fFD,i (ki)[l_ fFD,f (kf )]
We’—phonon,mean - — (”IA76)
J.dEki fFD,i (kl)

where state blocking has also been included, and the electron-phonon scattering rate for
both emission and absorption can be written succinctly as
(emission)
B eza)LOm 1 1 (Nq +1) emission de 1 d I
e”—phonon A7%h? g__g_t N (absorption) J. ‘ q||q|| 2|:)(qll)
0 S| q

x[s (qn - q”+)+ o (qn - qn—)]

The populations and electron temperatures can vary greatly between the subbands, and

I+ -

(I.A.77)

these can only be determined by analyzing the entire QC structure. Modeling the entire

structure using Monte Carlo simulations will be discussed later.
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B. ELECTRON-ELECTRON SCATTERING

Carrier-carrier scattering is a mechanism that can be significant, particularly for
closely spaced energy states. When the energy spacing between states is smaller than the
LO-phonon energy, LO-phonon scattering is forbidden except for electrons that have
sufficiently high in-plane kinetic energy. Because of this, the mean electron-phonon
scattering rate will be reduced. Electron-electron scattering, as well as other single
electron scattering mechanisms (such as impurity and interface roughness scattering),
may then be the dominant scattering mechanisms. Intraband electron-electron scattering
along with LO-phonon scattering, must be modeled in order to determine the thermal
electron distributions within subbands. For these reasons, modeling electron-electron
scattering is important.

The following diagram (Figure 111.B.1) shows the indexing used for electron-
electron scattering, where the electrons can be right or left handed, and i and j are the

initial states and f and g are the final states.

Figure 111.B.1. Feynman diagram for electron-electron scattering.

Spin independent interactions combined with the Pauli exclusion principle lead to a term
in the form of S1-S,, because S? = (S1+S,)* = S1+25:-S,+S,% The spatial part of the

wavefunction can be either symmetric or antisymmetric.
1 ! " 14 !

vs) =5 (ki) +[k7)K)

k')

The total wavefunction is the product of the spinor that describe the possible spin states

(11.B.1)

k”>_|kﬂ>

=5 ()

of the two electrons and the spatial part. Since the electrons are fermions, the total
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wavefunction must be antisymmetric under simultaneous exchange of both the spin and

spatial parts. Using Pauli spin matrices

) (0 1) ) (0 —ij s (1 Oj
o = , o° =] . , 0= (1n.B.2)
10 i 0 0-1

the spin can be written in the usual way as
S:%o (I11.B.3)

The permutation operator Py, = P1,PMP,,(P%®) hag eigenvalue of 1 for the symmetric
case and —1 for the antisymmetric case. For a two electron system, the eigenvalue for the

S1+S; triplet symmetric states is ¥ and for the singlet antisymmetric state —% . This allows

the permutation operator for the spin to be written as’>"
Plz(spin) _ %(1_'_ 48, 'Sz) (1.B.4)
which can be rearranged to get
2P12(Spin) -1=4S, S, (111.B.5)
Since

1
81-822261-62 (111.B.6)

the Pauli matrices are related to the exchange operator by (subscripts are the particle

numbers)
6,-6,=2P,""" —1 (111.B.7)
The total spin and square of the total spin is
1 1
S :Ecl +Ecs2 (111.B.8)
3 1
S'S=§+§61'02 (l”Bg)

From (111.B.9) and (I11.B.7) the following is found

S-S:1+%+%cl-cz=P12‘Sp‘“)+1 (111.B.10)
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The total spin for the symmetric case is 1 and for the antisymmetric case O (the
eigenvalues of ¢,-o, are 1 for the symmetric case and —3 for the anitsymmetric case). The

total wavefunction may be written as

) =|€%s) and Jy,)=|E,) (111.B.11)
Electrons are indistinguishable particles. Denoting the matrix element as M, the

following subscript notation is used.

M, =M

M, =M

it (111.B.12)
ij—>gf

Antiparallel spin electrons do not interfere while parallel spin electrons do interfere. This
is because Pauli’s exclusion principle states that no two electrons with the same quantum
numbers (including spin), can occupy the same space. Since antiparallel spin electrons do
not change sign upon exchange, the square of matrix element for the antiparallel spin

case can be written as
MZ = My,[* +[M,,[ (11.B.13)

Parallel spin electrons interfere and the wavefunction changes sign upon exchange. Thus,

the square of the matrix element for the parallel spin case may be written as’

M2=|My, —M,| =M2-2M,M,, (111.B.14)

p
where the minus sign comes about from the exchange. The matrix element is the same as
that for the antiparallel case, except for the additional exchange term (negative signed
quantity). This exchange effect results in a lowering of the scattering rate for parallel spin
electrons as compared to the antiparallel case.
If we assume equal distributions of antiparallel and parallel spins, the matrix
element may first be written by including the ¥ probability factors as

o 1 1
M2=§M§+§M§=M§—MHM21 (111.B.15)

Now since Mij_ig = Mij_gr, an additional %2 factor must be included to keep from double

counting.
o 1o L 1
M ZEM :E(Ma_M12M21):E(M12M12+M21M21_M12M21) (IH-B-16)
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1. Antiparallel Spins

The first case considered is where the electrons are assumed to have antiparallel
spins, so no interference occurs and the form of equation (I111.B.13) applies. All of the
vectors (k vectors) in this section represent parallel component vectors (kj) and the
parallel subscript has been dropped to simplify the notation. The perturbing potential for
the electron-electron scattering interaction is the Coulombic potential V = Vcouiomb.
Working in the Born approximation and in the (x| representation, the following matrix
element is computed where (X1, X2, X3) = (X, Yy, z) with x;, X, parallel to the growth

direction xs.

(f. oMl g) = glﬁlm

(11.B.17)

i[(k; X +kj -x|'|)—(kf -x"+kg -x|'|)]

a '
= WJ. d’ Xnd X dxst3‘//f (Xs)W. (Xs)Wg (Xz)‘//, (Xg) |X ~ X'|

This can be rewritten as follows, showing explicitly the x3 and in-plane parts of the
integral separately.

el[(kI X +k i 'x\’\)_(kf 'X||+k9 'Xh]

\/‘x” - xl"‘2 +(x, =X, )

In order to simplify this expression, the in-plane part which is essentially a 2D Fourier

= % [ a0y )y (%) [ dPxd ] (111.B.18)

transform can be evaluated first. This can be done as follows. The in-plane part can be

written as
|[(k xH+k XH) (k¢ x"+k XH)] lAk xH+|Ak x”
[ERCRE - [d?xd?x; (111.B.19)
\/‘X XI,\‘ X - ') \/‘Xn ||‘
where Ak = ki-ks and Ak’ = ki—k4. Using the following Bessel function identity®®"
1 X3 =X}
= j dae ™" 3, (g x, = i) (111.B.20)

\/‘Xn X[ +( Xn)z

the expression becomes
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ei[(ku'X\\+ki'xf\)_(kf X +kg X))l

' y iAK-X JriAk’-x’00 =0y | X3 —x3 ’
J'dzx”d%gl ~ ~ jdz’ﬂ|d2’9| e "jdq||e l ‘Jo(q”‘x“ = X))
\/‘x”—x”‘ + (% = X}) 0
_ ° ' TAK- (X —X0 ) +HIAK-X) +IAKX) _—a|X3—X5] '
= j.[dzxﬂdzxﬂdq”e H e ‘]o(qn‘xn = X))
0
(11.B.21)
Now define p = x—x{, and note that d*; = |dx;| = |d(x;—x])| = |dp]| since x] is constant
with respect to the |dx| integration, thus d2x|| = |dp| = dgpdp
_ J'J'd2X|;|dq”ei(Ak+Ak’)-x|’|e—q”\x3—x’3\J‘d¢pdp eiAk-pJo(q”p)
’ (111.B.22)
_ J‘J‘d2X|]dq“ei(Ak+Ak’)~x|’|e—q”\xrxé\Id@dpeiAkpcowJo(q“p)
0
Using the following equations®
2n
[dgeeeessime = 27im3 (Akp) (111.B.23)
0
with m =0 this becomes
2n
j dge’™ ¢ — 27 (Akp) (111.B.24)
0
and
K 1
J Pdpo(@kp)3o(Gy0) = 516 - Ak) (111.B.25)
0 Il
the equation now becomes
ei[(ki XK ex) = (kg x kg )l
[d*xd? _
’ 1\2
\/‘x” - x”‘ +(x, = X)
= [ [dxdge e 2z [ pdp €473, (Akp), (Gp)
0 0 (111.B.26)

N “d X dQ||ei(Ak+Ak’)‘X’e_q"XHéZ”qi5(Q|| —4k)
0 I

= 2_”e‘qu\x3—xé\jd ZXﬁei(Ak’fAk')‘Xh
Y
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with q; = Ak = |ki—ki| from evaluating the integral with the delta function. Now from the
d2x|| integral which has finite limits of integration, Ak = Ak" is the only value such that the
integral will be nonvanishing, which yields a delta function representing the conservation

of momentum.

ik xg kX)) = (K ¢ oxg+k g )]

e
J'dzx”dzx” 2
Y+ -
I 3778 (11.B.27)
=2q_ﬂe‘q"xz SIAS(AK + AK') = R gl “lok, +k -k, —k))
I I

This agrees with the given reference.”® This expression can now be substituted back into

the original matrix element to arrive at

i 2 A * (! 1\ a0 %3 = X3
(fovlii)="5 jdx A Ok, (k) () ()11

(111.B.28)
xo(K; +K, —ki —kj)
which can be rewritten in the usual notation as (noting o = e°/4 )
(f, gV[i, j> Ajfg(q“)é(k +k, —k;—k;) (111.B.29)
where
Ao (a) = [ Ay Ol (6)w (06) w 0g) e (111.B.30)

and again ap = Ak = |ki—kf|.
The scattering rate can be found by substituting the above matrix element into

Fermi’s golden rule summing over the final states f and g. Inserting 7 and ¢ back into the

h2k2 h2k2 n2k? n*k:
Z‘ (f.gV|i, j‘ { o + E, o —(Ei+ o j—(Eﬁ o H

27 € Ay (9))
T h [ngj Z| m;” ” |5(k +Ky =K —k;)O(Er; + By — Eri —Ey))

equations

(11.B.31)
where Er is total energy, i.e., the subband edge plus the in-plane kinetic energy.

Converting the final states summations to integrals in k-space
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4
We*_e— e . A J‘d k d k Ajfg(q“ 5(k +k —k k )
h2e* A (27)° (27)? q,
X5(E” +Erg —Eri - Er) (111.B.32)
2
A ()
327r3h8 '[d k%, szn oot Ky -k —k;)o(Ers + Erg —Er; —Ey))

Integrating over all the states of the j index electron and including Fermi-Dirac functions

to take into account the occupancy distributions

AiJfg(qll _
v =g ” Tt Gl feo,o 06)]feo, ()

xO(Ky +Kg =K =K)I(Er s +Er g~ Eri —Ey))

jdkdkdk

(11.B.33)
Grouping the occupancy distribution functions into one term Fjs, and evaluating the d2kg
integral to get rid of the momentum delta function

2
e Ayt (q”)
W =W.[d2kfd2kj’gq—” Fiy
21,2 2),2 20,2 21,2
x 8| E, W s vE 4] kg —Ei—h kK _g " a
2m ®  2m 2m ' 2m
4 2
;T e [dk e (%) ijgd[kf+k§—k2 k242" (E, +E, ~E —E, )}
7°he? q, h?
2
Aye (G))
—dkdk T RS KE 4k -k K+ = (B, + B, — E — |
167[3h3 ZI q“ ifg f g h ( )

(111.B.34)
This equation gives the scattering rate of an electron with momentum vector k; averaged
over the other initial particle states k;. Since ky can be written in terms of the other three

momentum vectors, the only unknown is ki and this can be determined as follows by

using relative momentum vectors’®>
k, =k, —k, (111.B.35)
Ky, =k, K, (111.B.36)
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In this scheme, we look to replace the integration over d’k; with an integral over dzkfg.

The following can now be written for ks

ki =k; +k; -k, =k; +k; -k —k; :%(ki +k;—Kg) (111.B.37)
Since ki is the only one of the two relative vectors that is a function of ks

dk, , =—%dkfgvxl (111.8.38)
K, =—%dkfg,X2 (111.B.39)
and thus®*®**

d2k, =dk,  dk, , =(—%dkfgyxij[—%dkfgyxzj=%d2kfg (111.B.40)

as originally shown in the given reference.® Now d*ks = dékrydkrg, Where & is defined in
Figure 111.B.2, using notation similar to the given reference.”®

It is often reasonable to approximate that the occupancy of the final states f and g
are small, and ignore state blocking. This effectively means that Fjq ~ frp, j(k;) since fepj
= fepg ~ 0. Including state blocking decreases the scattering rate only if the densities in
the final states are appreciable. In order to solve for qy, the law of cosines is used as

follows
k2 . =kZ+k?—-2kk.cos(z—a
sum ij l2 12 1] ( 1) (|||B41)
= ki +kj +2kk; cos(a,)
kZ,i =K: +k2 -2k k, cos(z -
‘ f2 . rkq oSz =) (111.B.42)
=ki +kg +2kk, cos(B)
and
ki =k’ +kj —2kk; cos(e) (111.B.43)
ki = ki +kg =2k ¢k, cos(p) (111.B.44)
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Figure 111.B.2. Momentum vectors used in the calculation of the electron-electron
scattering rate.

Summing equations (111.B.41) and (I11.B.43) and summing equations (111.B.42) and
(111.B.44)

k2, i+ kij? =2k’ + 2ka (111.B.45)
kfumij Jrkfg = 2k? +2kg2 (111.B.46)
Substituting equations (111.B.44) and (111.B.45) to get rid of ki i
k2 = k2 +2(k? + k2 - k2 —k?) (111.B.47)
The energy delta function yields conservation of energy.

h°k? h°k? 2k 2 h’k’?
PR Y-S S (111.B.48)

2m 2m 2m 2m

2m

kf+k§—kiz—kf=h—2(Ei+Ej—Ef—Eg) (111.B.49)

Substituting equation (111.B.49) into (111.B.47)
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4m(

k2 =kZ+—(E, +E, ~E, —E,)=kZ +k’ (111.B.50)

using the usual definition k3 = 4m/A*(Ei+E;—E; —E,). Recall from the definitions of g, kij,

and kyg, We may write

k., —k

qﬁ\'ﬁ*ﬂ%@ (111.B.51)
Now from the law of cosines
(20,)* =k; + k& —2k; k,, cos@ (111.B.52)

Substituting kg from equation (111.B.50) into equation (111.B.52) gives
(20,)* = 2k +kZ —2k; (ki +kZ cosd (111.B.53)
Performing the dkiy part of the dzkfg = déksdksg integration and using equation (I11.B.47)

gets rid of the delta function and gives qj, which is a function of ki, and 6. Thus, the d&

part of this integration remains.

2
1 Ay (@) 2m
W 4WId k0K, Jf;“ ! ijgé(karkgz—kf—ka (e, +E,~E -, )]
2
A (ay)
6472’3713 ZI o k J;“ L

(111.B.54)
Now d’k; = deskjdk;, where o is the angle between k; and k; (the integral is performed

along k;; with angle o).

Aijfg (a,) i =

dddo k dk
I q

o (111.B.55)

W=
ee 647[37%32

The upper limit of integration for k; can be taken to be the top of the well barrier.

I(jmax = \/il_T(Vbarrier - E]) (l”BSG)

Equation (111.B.55) is an expression for calculating the electron-electron scattering rate.

2. Screening

The formulation so far has assumed that there are only the two initial electrons
and they scatter due to the Coulomb force between them. That is, it has been assumed
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that there are no other electrons (free carriers) present. In reality, there will be carrier
concentrations in the subbands. These free carriers respond under the influence of the
electrostatic field. This will have the effect of reducing the force between the initial
electrons and reduce the scattering rate due to this screening.

One screening model, is the static single subband screening model, where the
dielectric function is modified to take the screening into account. This was first derived
by the given reference® and later used by others.?® This model can be included by taking

¢ inside the scattering integral, and replacing it with &= g&c, where

=142 T, ()A() (11.8.57)
Y

&

and the polarization factor ignoring collision broadening at T = 0 K is

2
[, (. T =0K) = 1-U(q, - 2K, ). [1-| ZKe (111.B.58)
7h q
where U(q—2Kg) is a unit step function that when q; > 2K is equal to 1, and otherwise 0.
At any temperature T, under the assumption of noninteracting polarizability, the

polarization factor becomes®’

2 (g, T=0K
0 4k T coshz[ F_ ]
2kg T (111.B.59)
1 E,
=I[1;(q,T=0 K)E{H tanh(ZkBT ﬂ

where kg is Boltzman’s constant and Kg is the Fermi wave vector defined as

KF=/27;”i (111.B.60)

with the valley degeneracy factor g = 1 for GaAs, which gives the number of equivalent

energy bands.
As an example of how screening affects electron-electron scattering, consider the
1100 scattering process for an infinite GaAs well 40 nm in length (Figure I11.B.3). The

rates are calculated for subband populations of 1x10™ and 1x10* cm™ at T = 300 K,
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unscreened and including screening. As expected, the scattering rate increases as the
subband population increases. The screening effect becomes significant for large sheet

densities. Sheet densities on the order of 10" cm™ are two orders of magnitude larger

than typically used in QCLs.

x10" x 10
25 3
Without Screening Without Screening
Screened Screened
2
‘_ﬂ"'\ ‘_ﬂ"'\ 2
'O 'O
2 15 \ n=1x10"" cm? 2 n=1x10"2 em?
2 2 \
2 | S~
1 \ ]
05 : - : 0.1 I ———
0 200 400 600 800 0 200 400 600 800
E,, +E B (meV)
n

E.+E, (meV)
1 k“

Figure 111.B.3. Electron-electron scattering rate as a function of total energy at T = 300 K,
with and without including screening, for subband populations of (a) 1x10'° and (b)

1x10* cm™.

3. Mean Scattering Rate
The electron-electron scattering rate calculated so far, is for the i indexed electron

at a given energy averaged over the j indexed electron initial state distribution. Since
there is a distribution of carriers in the initial state, the mean scattering rate averaged over

the Fermi-Dirac distribution of carriers in the initial state can be found as follows

deEE W  f_ . (k
W,i, _ ki e —e,i FD,|( |) _ I’TZ'I Ek_W,i,_fFDi(ki) (l”BGl)
e —e”,mean J'dEki fFD,i(ki) 7h n, i e”,i ,

[

since

n, = [dE, feo (K )% (111.B.62)
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4. Antiparallel and Parallel Spins

In this section, taking into account spin and state blocking will be discussed.
Starting with equation (111.B.33), the solution can be found by defining angles between
the momentum vectors different than what was used earlier.®® Including screening, the

equation can be written as

__ ¢ Ao (@)
e e 3271'3h82 e [1 fFDf(k )][1 fFD g(k )]fFD 1(k )

xS(k, +K, —k, —K,)(Ey; +Er, —Er, —Ep))

2 2 2
Jdk,d’k,d’, (111.B.63)

Integrating over the dzkg to get rid of the momentum delta function and using d2k,- =

daikjdk;, the equation becomes

Ay (a)
. d’k, de kdk == I - f k)|[L-f kK ) |fep (K.
e —e 3272'371 _[ ” . [ FDf( )][ FD, g( )] FDJ( ) (“IB64)
x §(ET,f + ET,g B - ET,j)
From the usual conservation of energy and momentum we have the following
h°k? h°k? 2 h’k?
f ! +—2=E + nk, +E +— (111.B.65)
2m 2m 2m
k, =K; +k; -k (111.B.66)

Now defining the angles for the momentum vectors as follows (Figure 111.B.4)

Figure 111.B.4. Momentum vectors used in the calculation of the electron-electron
scattering rate, for the case when state blocking is included.

ké can be solved for by squaring the conservation of momentum equation
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k2 =(k, +k, =k, )-(k, +k, —k/)

(111.B.67)
=k +k7 +kf —2kk cos(y) + 2kk; cos(a,) — 2k k; cos(y — )
Substituting equation (111.B.67) into equation (I11.B.65)
2K 2 hzk2 hok? 2
Ei+hk'+E.+ L=E +——+E + L
2m ' 2m 2m 2m (111.B.68)
x[k? + K2 + k2 = 2Kk, cos(y) + 2kik, cos(e) — 2k k, cos(y — )]
The resulting quadratic can be solved to find ks
S
. . [k, cos(y) +k; cos(a, - 7)f — 4k K, cos(a,)| ?
k, ==k, cos(y) + =k cos(e, — i (111.B.69)
T () 2 (e —7) ‘:4m(E+E _E, Eg)}

From Figure 111.B.4 the following equations for kq and q”2 are found, where angle yis the

angle between k; and ks

1

K, = [k, +K; cos(a,) —k, cos()f + K, sin(a,) —k, sin(»)} | (111.B.70)
g, =k’ +k? —2k,k, cos(y) (111.B.71)
These equations are in a form so that state blocking can be included. Now to take into
account spin, consider the case where the electrons have equal probability of having

parallel and antiparallel spins. Including the exchange effect discussed earlier, it is seen

that the following substitutions must be made to equation (111.B.64)

A @) 1A (@) A @] Ay () Ay (@) 1E72)
0j€sc (q” ‘ 0/ (q||) ‘ ‘q“gsc (q|| ) ‘ q||q|Igsc (q||)€sc (Q|’|)

where

o =k +k; — 2k k, cos(a, - 7) (11.B.73)

and angle y—«; is between k; and k. This agrees with that in the given reference.®®

C. IMPURITY  SCATTERING AND INTERFACE ROUGHNESS
SCATTERING

In this section, two additional scattering mechanisms, impurity scattering and

interface roughness scattering, will be discussed. Beginning with impurity scattering,
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ionized impurities within a semiconductor lattice and its distributed charges, can cause
scattering due to the Coulombic interaction. The corresponding matrix element may be

written as

(Vi) =(F] )

a !
- ?J‘d X||d X dX3Wf (X5) y; (%) —| o

ejx - x||
(111.C.1)

This matrix element can be simplified for scattering from an ionized impurity at x3 = x3,
in a similar manner as was done with the electron-electron scattering case, inserting # and

¢ back into the equation this becomes

< f [V|I> - ' (X (%) gl
e A (111.C.2)
__& A
25Aq” a
where
A (@) = [y O () e @ e

and qy = Ak = |ki—k{ = k7 +ki—2kk, cosd. The scattering rate can be found by
substituting the above matrix element into Fermi’s golden rule, summing over the final

states

2 a2 hzkz thiZ
Wimpurity :%ZKf [\/||>‘ §|:Ef + 2mf —(Ei + o j:|

_ 2z ’ |A1f(Q)|
= h[ngJ Z‘ q””‘a(ETf ;)

where Er is total energy, i.e., the subband edge plus the in-plane kinetic energy.

(111.C.4)

Converting the final states summation to an integral in k-space, this becomes
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27" A (@)
Winpurity = ras? A (22) J‘ d2k, ‘ fq“ I ‘ 5(Er, —E;,)

_ 2 | A (q”) B
=3 ngId K, Ta S(Er, —E;) (111.C.5)
m3 42 jdzk A‘jf (q||) |: kig n ZT (Ef _ EI):|
" 45 A q, h

Performing the dk; part of the d’k; = dékdk; integration gets rid of the delta function and
the following is found

A (a)
Winouriey = SﬂflsngJ‘ % fq“ I %

(111.C.6)

To apply this for the case of doping over a distribution, where a sheet charge is dxsnsp(x53)

at x3 = x3, the final expression for computing scattering due to ionized impurities becomes

A (q”)‘

W.

|mpurity 8ﬂh3 2 J.dX nSD(XS)J.dQ

(11.C.7)

Monolayer fluctuations are often formed at heterostructure interfaces. Scattering
can occur from these imperfect growth surfaces, where these variations in the barrier
thicknesses gives way to variations in the energy levels and wavefunctions of the
subbands. Assuming that the roughness height A(x) at the in-plane position has a

correlation function of 8%

! A2 A2 22 —3/2
<A(Xl|)A(Xl|)> = = A (14_ . 2 J (“ICS)

where the A is the roughness and A is the correlation length, the matrix element is given
by

(FIV]i) = Jd™ R (e (1n.c.9)
with
Frn =Vow s (%)y; (X,) (111.C.10)

Substituting the matrix element into Fermi’s golden rule and summing over the final

states we find
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2 i
Winterface roughness = %ZK f [\/|I>‘25(ET,f - ET,i)
-3/2

E:)

27 .
= 7N0 Y (Xo)l//i

2
ZEAZAZ(].-I- g A

2EINNE, a2’ % H2K?
= X, ) ol E; + -| E +—
h rvo Wf( o)W| ) f 2m i 2m
AN e 2m
* 2 2
=‘§g‘NJWWXJWi jda<dk[1+ , j 5(& —k, +7?45f—EJ

(1n.c.11)
Performing the dk: part of the d’; = dékdk; integration gets rid of the delta function and

the following is arrived at (noting the parallel subscript has been dropped)
242 -3/2
@+q;J (111.C.12)

This is the scattering rate due to interface roughness using an exponential autocovariance

MA?A? .
Winterface roughness — ero Vs (Xo)Wi

function. A roughness a/2, where a is the lattice parameter, with a correlation length of 5
nm was used in some of the simulations that will be discussed later.

1. Mean Scattering Rate

Because there is a distribution of carrier energies in the initial state, the mean
scattering rate is again calculated by averaging over the Fermi-Dirac distribution of
carriers in the initial state.

IdEkW{.mpurut } FD. [1 fFDf(k )]

interface roughness

W, = 2 (111.C.13)
impurity, mean

interface roughness |’ dEk fFDi ki

i )

D. RADIATIVE TRANSITION

The optical transition occurs when an electron releases a photon and transitions
from the upper to lower lasing state. As will be shown, spontaneous emission lifetimes
are on the order of microseconds, while other rates previously discussed such as phonon
rates can have lifetimes on the order of picoseconds. Thus, state lifetimes are not

determined from spontaneous emission rates. This section will discuss the optical
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transition and the very important parameter the gain. It will conclude by discussing some
fundamental parameters found by approximate rate equation analysis.
The potential for the radiative transition can be found by starting with the

nonrelativistic electromagnetic Lagrangian,®> and then finding the Hamiltonian in the

usual way H =>"p,¢, —Lgy .
2

H=t (0 -2qA.pra?At)iqo~P 1go-da.p (11.D.1)
2m 2m m

The Hamiltonian is now in the form of H = H,+V. Substituting for the electron charge, qc

= —Je|, the interaction is given by"

€
V radiative :EA'p (11.D.2)

The equations for the E and B fields in terms of the scalar and vector potentials (® and
A) can be written as a second rank antisymmetric field strength tensor F** = 3“A'—5"A*.%
These equations automatically satisfy Maxwell’s homogeneous equations, and the
inhomogeneous equations are 0,F“"=J". The scalar and vector potentials are not
uniquely determined because the following change A, — A,+0,A(X,t) has no affect on
the fields E and B since &“A"-0"A* = 0"A"-0"A". Therefore, one such gauge
transformation we are free to choose is the Lorentz gauge 0, A" =0, which Maxwell’s
equations simplify to one equation LA = J*. Without sources J = 0, and the equation for
the vector potential becomes

O°A

2

ViA -

0 (111.D.3)
which has a solution of
A=A cos(q-X—wt)é = %[e“qx-wﬂ rei@xa]s (111.D.4)

Since @ is included in H,, E and H are solved effectively with @ = 0.

E- —% — _oAsin(q- X— ) (11.D.5)
H=£VxA:—isin(q-x—a)t)qxé (1.D.6)
H 1

The Poynting vector can now be found from these fields
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S=ExH= A’sm (q-x-—wt)q (1m.D.7)
U

and the average Poynting vector is (noting @ = v-q)

_loA _ACQ
<s>_2 P q 20 v (111.D.8)

Inserting 7 and ¢ back into the equations, the average energy density found from equation

(11.D.8) is equal to Nza/V, where V is the volume

S 2,42
<Ev>=<—>=—A"q - Mo (I11.D.9)
% 2u \Y/
from which AZ can be solved for
2 _ 27N (111.D.10)
Vew

Substituting this into equation (111.D.4), the vector potential becomes

=1 2PN [ax-on | gritax-an g (111.D.11)
2\Vew

This can now be substituted into equation (I11.D.2), the expression for the radiative
potential. This is valid for absorption, and the following change N — N+1 must be made
for the emission case, to account for spontaneous and stimulated emission. In terms of
ladder operators, the interaction potential for the radiative transition becomes (dropping
the harmonic part and promoting the momentum term to the quantum mechanical

operator)

V. giative = m"ZVga)[a e +a e 'qx]é p= m‘/ZVga)[a +a7q]e'q e-p (111.D.12)

Emission Rate

To find the 2D spontaneous emission rate, equation (I111.D.12) is substituted into

Fermi’s golden rule keeping the emission term.

2 .
Wradiative,e = _”ZK f [Vradiative||>‘2§(Ef - Ei - ha))
(111.D.13)

= G)Z‘ flale™ € pi ‘5(E ~E, —ho)
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Using the electric dipole approximation, e 9% ~ 1

W (N +1) Z\e (f]p[i) 5(E, ~ E - n0) (11.D.14)

radiative,e —

Vma)

Setting N ~ 0 which is permissible for low intensity light, that is spontaneous emission

occurs without any photons in the cavity (to stimulate emission)
spon = z‘e |p||>‘25(Ef - Ei _ha)) (“|D15)

Summing over the polarizations and final states (including all final photon states for
spontaneous emission into all modes), and converting the k-space summation into an
integral

ﬂe2

Wsp°”:ng w (27 ) hzz-[d p‘e Flpl ‘5(E ~E-ho) (I.D.16)

Note that d’p = d¢'pdp = dg'%wlV?d(hw)

eA

Wspon =T 2 2. J-d¢

a2
eV &-(flpli) 6(E; —E, —ho)

(11.D.17)

43L3m AL M’ vh S (f |p|

To simplify the bracket, for the moment we switch to the Heisenberg picture, where the
operators ¢(x) = g(x,t) = e'@(x)e ™™ and dx/dt = 1/(in)[x,H] = p/m.”® Substituting this
commutator into the bracket

<f|p|i>=i%<f|[H,x]|i> (11.D.18)

Noting that the momentum operator is a constant of motion, i.e., p(t) = p(0), switching

back to the Schrodinger picture we find
(f|p|i) =i <f|Hx xH|i) _|—( —E, ) fxi) (111.D.19)

and defining @ = (Ei—Ex)/A (which will give a minus sign)
(f|p|i)=—ima( f |x]i) (111.D.20)
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Substituting this into equation (I111.D.17) and evaluating the summation for the 2D case,
noting the polarization sum does not affect anything for the 2D case since the integration

is only in terms of d¢' (i.e., not d9)

Woon :— ZZjd¢‘e f|x|
48"3 pol

, (111.D.21)

=@ zﬂ\é.u i
del,v‘h

The final expression for the spontaneous emission into all modes becomes (noting
envelope wavefunctions are assumed)
m%m=2&%2th4>\ (111.D.22)
The 3D emission rate can be found in a similar method as for the 2D case, except when
performing the polarization sum for the 3D case the square of the bracket term reduces to

KF [X|i)|?sin6
Mwm=;w (i) (111.D.23)

As can be seen, there is a difference between the 2D and 3D emission cases (noting both
are single electron scattering rates). A quick computation reveals spontaneous emission
rates are on the order of microseconds, and thus as previously mentioned, do not affect
state lifetimes.

2. Gain

The net transitions from the upper to lower lasing state, lead to an induced power
= hiw (N;W21—N1W15) = io (ANXWo1), where W, = W, are the stimulated emission and
absorption rates respectively. This amplifies the propagating electromagnetic waves
intensity as dl/dx = gainxl. The optical gain of the medium can be found, starting with
equation (111.D.14) by keeping the stimulated emission term. Defining the photon flux
lohoton @S the number of photons per unit area and time, substituting for the momentum
operator and noting lgnoton/V = (Number of photons)/V (where v is the speed of light in the
medium and V is the volume), the stimulated emission rate (a positive quantity) assuming

single mode becomes
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222 2
7e°h Iphoton

Win = —
mew V

stim

S(E, —E, — o) (111.D.24)

(F1

The gain is defined as (humber of transitions per unit volume and time)/(emitted photon

flux) = W/LA/Iphoton = W/LAIpnoton. NOting that the population inversion is AngpLA number

of electrons, the expression for gain becomes

2

222 |
gain = 7S shotn An3DLA‘<f 910 S(E, ~E, - ho)
m-evew LAI dx
- ph°t°“2 (111.D.25)
eh d,.
= mz—(c’\/a)An?’D <f |&||> §(Ef — Ei —hCC))

Taking into account a finite line width, the delta function can be replaced with the
Lorentzian®

E(hw) =+ F\QVHM /2 . (111.D.26)
7 (AE - hw)’ + (FWHM /2)

where FWHM is the full width half maximum. The maximum gain occurs when AE = /i@,
and the Lorentzian is then equal to 2/(z FWHM). Substituting this in place of the delta

function, the expression for peak gain becomes

2

(111.D.27)

. 2e’h*Ang, d
peak gain _—‘<f |dx i)

2e*hAn 2
M’V oFWHM = v 0 X

" mevFWHM

In Heaviside-Lorentz units &v = NingexC (While in rationalized mksA units &v = &MNingexC).
This expression can be used for estimating the threshold population inversion, when the
threshold gain is found from the waveguide resonator analysis. While having a large
oscillator strength = 27/mei(fld/dx|i)]® = 2mealA|(f{x|i%* is favorable, so is having a long
upper state lifetime to maintain the 3D population inversion Ansp, as can be seen from the
equation for peak gain. These are often competing characteristics.

3. Rate Equations

As we have seen, scattering rates are density and temperature dependent. Even to
compute the mean rates, requires knowing the densities and electron temperatures of the
states, which can only be determined by analyzing the full structure. Thus, rate equations
are not well suited for analyzing full structures. Nevertheless, some important

fundamentals can be found from an approximate rate equation analysis. The rate
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equations for a three level system, in terms of 3D volumetric densities, for the optical
mode and state populations are

dn n,—n)r'vn nI n
photon — ( 2 1) photon + 2 _ photon (I | | D28)
dt Z-spon single mode Tspon all modes Z-photon
dn J  (np—-n)Vn n n
d_2:77_L_ 2 1 photon _ 2 _ (“ID29)
t |e| Tspon single mode z-spon all modes Z-2
dn J n, —n)Vn n n, n
—t=(1-7n) GV e Dy Dy (111.D.30)
dt |e| L Tspon single mode Z-spon all modes 7 2]

where the upper and lower lasting states are indexed by 2 and 1 respectively. The
notation used iS Nphoton 1S the 3D photon population mode density, zpon single mode 1S the
spontaneous emission into the single lasing mode, zpon all modes IS the spontaneous
emission into all modes (noting 1/7spon ail modes = Nmodes 1/ Zspon single mode and the total
stimulated emission rate 1/zim = VNphoton 1/Zspon single mode)s Zphoton = V(om+ ) 1S the
photon cavity lifetime, z, = vay, is the mirror escape time, N is the number of sections, V
= LA is the volume of one section, V. is the effective volume of the cavity, I' = NV/V, is
the confinement factor, # is the injection efficiency, and J = I/A is the 2D current
density. At steady state With z << zpon ail modes (SINCE 71 << Tgpon all modes) these

equations become

n,—n)I'vn nI n
0 _ ( 2 1) photon + 2 . photon (“|D31)
Z-spon single mode Z-spon all modes Z-photon
J n, —n)Vn n
0:77__ ( 2 1) photon _ 2 (I“D32)
|e| L z-spon single mode 7
J n, —n)Vvn n. n
0=(1-7) +( 2 =)V Nt +-2 1L (111.D.33)
|e| L z-spon single mode 1'2 z-1

Above threshold, lots of photons are present in the cavity and Vngnotwon IS large,
and the second term on the right hand side of equation (I11.D.31) can be ignored.
(n,-n)rv._ 1
T

(11.D.34)

T

spon single mode photon
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From equations (111.D.32) and (111.D.33), the 3D population inversion Anzp = (n,—n;) can
be found. Substituting this back into equation (111.D.34), the photon density is determined
to be

T oonrni
M photon :%T(I o Ith) (|||D35)

where the internal quantum efficiency is*

n, = (111.D.36)
T, + 72(1—1]
Tn
and the threshold current satisfying equation (111.D.34) is
elL ,
"= A| | z-sponiltli;;emode 1 (|||D37)
T oton T
Phet 7772( —lj—(l—ﬂ)fl
T

The power emitted by the laser can be found from P = %@V Nghoton/ 7m, SUbStituting for
Nphotons Zm, and I’

a ho
. T N—(I -1 111.D.38
|am+aw |e| ( th) ( )

The first three terms in equation (111.D.38) grouped together, is the differential quantum

P=n

efficiency, which is the number of photons emitted per electron. The internal quantum
efficiency (defined above at some biases) shows the output power is reduced by an
imperfect (less than unity) injection efficiency » and a finite lower lasing state lifetime
7.

Below threshold, stimulated emission can be ignored because there are few
photons within the cavity, Vnphoon = 0. Solving for n, from the equation (111.D.32) and for
n; from the equation (111.D.33), a relation for the population inversion is found, noting
that n, = n(J/|e|L) =. Writing this in terms of the 2D population inversion

AN =z | 1= | (=) 22, (111.D.39)
el T &
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This equation allows for estimation of the threshold current. This simply shows it is
necessary to have r; < 7; for a population inversion, that it is desirable to have a perfect
injection efficiency n» = 1 and a long upper state lifetime. Improving any of these
parameters would serve to improve the population inversion. Because rate equations are
not well suited for analyzing the electron transport in QC structures, in the next section, it

will be discussed how Monte Carlo simulations can be used to model these structures.
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IV. MONTE CARLO SIMULATION

Since the lifetimes of the eectronic states within QC structures are not constant,
rate equations are not well suited for analyzing complete structures because they would
be nonlinear. Thus, one approach that is more suited for this type of transport analysisis
that based on Monte Carlo simulations. This approach does not rely on any assumptions
about the electron distributions and can handle density and temperature dependent
scattering mechanisms. By analyzing the complete structure, subband populations and
electron distributions for all energy states can be determined. Quantities such as current
density (which is measurable) and other quantities such as gain can be found. This is
important because while having a large oscillator strength is favorable, so is having a
long upper state lifetime to maintain the 3D population inversion Ansp, as can be seen
from the equation for pesk gain = 2e*4*Ansp/m’eveFWHM|(fld/dx]i)? (equation

(111.D.27)). These are often competing characteristics.

A. ELECTRON TRANSPORT IN QC STRUCTURES

As has been discussed, the electron transport in entire QC structures is not suited
for rate equation analysis, and the large number of scattering rates that must be computed
would further complicate attempting to use such an approach. From the transport analysis
of QC structures, we ultimately seek to find the populations and electron distributions of
all states in the structure. The time evolution of the electron distribution functions is

described by
df
d',;ﬂ = kZ[Skymkﬂ fk'ﬂ’(l_ fkﬂ)_ Sk fkﬂ(l_ fie )] (IV.AL)

where S is the total scattering rate (sum of all mechanisms). The Monte Carlo method,
applied to analyzing the electron transport in QC structures, consists of tracing a
sufficient number of electrons throughout the structure over time, such that the results
will be a good representation of the electron ensemble within the device. It relies on the
use of random number generation, to appropriately choose from the probability

distributions encountered in this type of a simulation. There are several equivalent ways
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to formulate this technique.®® In what follows, it will be discussed how we chose to
implement this technique.

B. MONTE CARLO METHOD

In general, the motion of a charged particle is due to the presence of fields,
electric and magnetic, and scattering events. The time durations between scattering
events, the scattering times, historically has been called the free flight times. During its
time evolution, the electrons subband and momentum change, and so does the total
scattering rate for all mechanisms. Consequently, the free flight times will change too. In
order to be able to trace electrons throughout a structure, we must develop a method for
stochastically generating these flight times. For example, consider the simple case of an
electron moving under the influence of an applied electric field in the x; direction, the k;
component changes as ki=Kj =o—|€e|/%|E1|t, while the other momentum vector components
remain unchanged. At the end of a free flight, the electrons momentum and energy are
updated, and the electron is then scattering into its next state.

In QC structures, an electron is characterized by its subband and components of
the in-plane momentum vector k. Because the wavefunctions already contain the effects
of the applied electric field, there is no need to include the momentum component that is
in the growth direction. Next it will be discussed how to stochastically generate these free
flight times for the special case when the scattering rate is constant. As will be shown,
this formulation is still applicable to the more practical case where the scattering rate
changes over the simulation time, as will be necessary for modeling the electrons within a
QC structure.

1. Flight Times

Considering the scattering rate out of a subband to be constant I';= 1/t, an
electrons probability to undergo a scattering event in aduration dt isI'odt, and dn =
—I'ondt. This simple equation can be solved to find how the population changes with time.
n(t) =n(0)e™" (IV.B.1)
The probability that the electron will scatter between t and t+dt, depends on the number

of electrons in the subband and the scattering rate. This relation may be written as
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dtP(t) = dtT e " (IV.B.2)

where P is a random number from 0 to 1. Using the direct continuous technique®’ to
stochastically generate the flight times, from equation (1V.B.2)

r= j dtP(t) (IV.B.3)

where r is a random number between 0 and 1. The solution for this equation is

Fo e g (IV.B.4)
from which the flight time t; = —1/ I'oIn(1-r) is solve for. Since r is a number between 0
and 1, so is (1-r), and it is equivalent to write

t, = —riln(r) (IV.B.5)

0
This expression allows us to stochastically generate the flight times for a constant total
scattering rate.

As discussed earlier, the scattering rates will not be constant. Nevertheless, this
formulation is still applicable to the case where the total scattering rate changes over the
simulation time. To deal with this, we will use a clever technique formulated in the given

references,

called self scattering. Self scattering is the difference between the constant
scattering rate and the actual rate. The actual scattering rate is not constant and will
depend on, for instance, the scattering mechanism, in-plane momentum vector k, subband
of the initial electronic state, electron densities, and temperatures.

[, =Ty +T'(K) (IV.B.6)

The reason for the inclusion of this self term, is that it simplifies the calculations that
follow by allowing us to treat the scattering rate as being constant. The self term will
eventually be removed, so that it will have no affect on the final results of the simulation.
For this technique to work, I, must always be chosen greater than the maximum actual
scattering rate I'(k). The penalty paid, is that at the end of every free flight time, it must
be checked to see if an actual scattering event or a fictitious self scattering event
occurred. If a fictitious self scattering event occurred, no real scattering event occurred

and the electrons momentum is updated and a new flight time is generated. If on the other
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hand it is determined that a real scattering event occurred, the electrons energy and
momentum are updated and it is then scattered into its new state, where its energy and
momentum are updated for this new state. This process of checking to see if a real
scattering or self scattering event occurred, can generate a considerable amount of
oversampling (self scattering events). Despite the oversampling that occurs due to the
inclusion of the self term, it is much better than the alternative which would require
changing equation (1V.B.2) to following integral equation (which is in the exponent).%

t
~[arrk.t)

dtP(t) = dtr'(k,t)e ° (IV.B.7)
This equation is not suited for efficient repeated numerical calculations, and for this
reason the self scattering technique is used instead.

To use equation (IV.B.5) to generate the flight times, along with the self
scattering technique, I', must be found for the simulation. There are different ways to
implement this, we choose to use the maximum rates defined below, summing over all

mechanisms (denoted by m) the maximum scattering rates I'max, m

Ty => T (IV.B.8)

where

T = Max,iy max,k [ (k)] (IV.B.9)
f

for our initial mapping scheme in the selection process that will follow. This will thereby

100 that will also have to be

introduce an additional self term in the selection process,
removed using a straight forward rejection technique. This provides a convenient way of
implementing simulations with a large number of scattering rates, with the alternative
method being to choose the maximum rate as a function of k value. This method of

finding I, is illustrated graphically in Figure IV.B.1.
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Figure 1V.B.1. Graphical illustration for finding I',, for the Monte Carlo method.

2. Selection Process

Now that I, can be found and the flight times can be generated, we must proceed
with the selection process that determines the scattering mechanism (or if a self scattering
event occurred), the final state, and final energy and momentum of the followed electron.
Single electron scattering mechanisms are all handled very similarly, and electron-
electron scattering is a special case requiring more parameters to be determined. It will
first be describe how the selection process works for the single electron scattering cases,
and then for the electron-electron scattering case. Beginning with a new free flight, a
random number ro is generated between O and I';and mapped onto the different
97,101

maximum scattering mechanisms rates, using the following bin walling procedure,

where the mechanism m = x is selected if

LN

) 1—‘max,m,i < r0 <zrmax,m,i (lVBlO)
m=0

0

3
I

If no self scattering occurs and mechanism m = x is selected, the final subband state f =y
is chosen by generating another random number r; between 0 and I'max m=x i and mapping

as follows

LN

Yy

y
1ﬂmax,m,i—»f < rl <Zrmax,m,i—>f (lVBll)
f=0

f=0
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Once the mechanism and final state subband have been determined, the final momentum
vector ks = ki(cosé&xi+ sinéxz) must be found. As an example, the magnitude k; is easily
found from the conservation of energy Er; = Er¢ or for LO-phonon scattering Er; =
ErtELo, Where Er = E,+A%?/2m. The angle 6 can be found by using another Monte
Carlo technique. First the angle is randomly chosen from a uniform distribution between
0 and 27z The self term is removed using a rejection technique, which is an iterative
scheme keeping the choice if

r< ? (IV.B.12)

max
and otherwise rejecting it. P(6) is found from the corresponding scattering mechanism
equations by

K

P(e):jdeK

(IV.B.13)

where K is the kernel inside the scattering rate integral. This selection process and how it

unfolds is graphically illustrated in Figure 1V.B.2.

A A )
r, 4 Self scattering Dinax, m=x, i Self scattering
) rn
- 1—‘max, m=N"'-1, i —> 1—‘max, m=x, i—»N"-1
Self scattering
—> —>
Ciot(K)
l—‘max, m=1,i 1—‘max, m=x, i—1
0 Fma><, m=0, i 0 Fmax, m=x, i—0
Select scattering Select final subband f Find k
mechanism m

Figure IVV.B.2. Graphical illustration of the Monte Carlo selection process.

For electron-electron scattering, many more additional terms must be found. The
subband i, ki and & of the initial followed electron (three parameters) are known, and

these three parameters for the second or parent electron to scatter with must be found, as
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well as for the two final state electrons. In our implementation, this is done by bin walling
in a similar fashion as discussed earlier, to find the ijfg process (a mapping look up
scheme is used). A parent electron is then randomly chosen from the other electrons
within subband j of the ensemble, which determines j, k;, and 4. Since f and g are known,
only four parameters remain to be found (ks, &, kg, and &;). Only one of these really needs
to be found though, as the others are dependant by the conservation of energy and
momentum. We chose & randomly from a uniform distribution between 0 and 27, then
using equations from section I11.B (equations (111.B.69) et cetera), the other three
parameters can be found. The self term can be removed by solving for g, from equations
(111.B.52) or (111.B.71), and using the rejection technique of equation (IV.B.13).

C. IMPLEMENTATION

A flow chart describing the Monte Carlo simulation is shown in Figure IV.C.1.
The algorithm consists of calculating the scattering rates and the main Monte Carlo
selection process previously described. Because a QC structure is periodic and charge is
conserved, when an electron with in-plane wavevector K is scattered into another section,
an electron is introduced with the same k vector into an equivalent state in the section
being modeled. Typically, the center section of a three section structure is modeled.
Initially the electrons are distributed thermally at the lattice temperature according to
Fermi-Dirac statistics, in one or more energy levels. In theory, the scattering rates need to
be recalculated every time an electron scatters to a new state. However, in practical
implementation of this algorithm, the scattering rates need only be calculated after an
evolved time step duration At, and this duration of time is chosen such that the scattering
rates do not change too much. For example, a At ~ 0.1 psec might be needed for quickly
changed transient times. So in practice, each electron in the ensemble is traced for a time
step duration At, then the scattering rates are recalculated based on the new subband
populations and electron distributions. In this way, the scattering rates are consistently
solved for using the correct subband distributions, as the time evolution of the ensemble
unfolds. This allows for state blocking to be taken into account, and ensures that density

and temperature dependant scattering rates are correctly modeled. The number of
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particles must be chosen enough for accurate calculation, and typically ~ 10* is adequate
for most simulations. Note that it is not that important how many electrons or the sheet
density each particle represents, only that there are enough for accurately statistically

modeling the ensemble within the structure.

Calculate
wavefunctions & <
band structure

v

Calculate scattering
rates

Initialize electron
distributions
(initial iteration only)

[ v
Select electron <
from ensemble

v

Evolve for flight |4
time t;

Ensemble * No No
loop Self

Scattering event | Scattering | End of time | Yes | Lastelectron ?

selection 7| step At?
yy

Real Yes

Scattering

y

Update energy
\ & momentum

v

Steady state ?

¢ Yes

Output results,
electron densities
& temperatures

Figure IV.C.1. A flow chart for the Monte Carlo simulation of QC structures.
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Because the scattering rate calculations are the time consuming part of the
simulation, we choose to calculate and store the rates before each time duration. That
way, the rates are only calculated once for each time step duration. The Monte Carlo
algorithm is continued until it is determined that state populations have reached steady
state and are not changing. This is done by making sure the variance of the populations is
below some minimum acceptable value. Once steady state is reached, the electron
densities and temperatures are output, and other parameters such as various scattering
rate lifetimes, current density, and gain are easily found (all scattering events are stored).
As an example of a typical simulation, shown in Figure IV.C.2 is a Monte Carlo
simulation of QC structure D619F10E which has six energy levels within one section (the
details of this structure will be discussed later), where all electrons were initially
distributed in state 2 at the lattice temperature of T = 25 K.

& %
£ 3 | E,
DO | i Ez
‘_D II LY | | E3
= | ‘ E
c ' *
S 2| E,
s ||
2 ||
g |\
-c meﬂ—
=
©
Q i T A
g —_— T i
=
w
6 8 10

Simulation Time (psec)

Figure 1V.C.2. Monte Carlo simulation of structure D619F10E at a bias of 53.6
mV/section, with all electrons initially distributed in state 2. Inset: Two sections of the

structure are shown, with one section outlined.

Under the transport picture described by this type of Monte Carlo simulation,
where the scattering between electronic states is determined by the spatial wavefunctions
solved via Schrddinger’s equation, coherence effects are not taken into account. For

example the peak current through a thickened barrier is not affected, only its transmission
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sharpness decreases, and this is not accurate. This implies that the scattering is not a fully
coherent process and scattering between weakly coupled states with a small anticrossing
is mostly a noncoherent process, due to dephasing scattering that effectively interrupts or
scrambles the phase coherence. No phenomenological dephasing parameter is introduced
in our simulations. This can sometimes lead to optimistic results as well as an
overestimation of the scattering between states with a small anticrossing, and hence an
overestimation of the current density when aligned with weakly coupled parasitic current
channels. The scattering between more than one section is taken into account in step well
structures because of the nature of the step well QC structure (which potentially can
further lead to an overestimation of the scattering between weakly coupled states). The
scattering mechanisms that are included are LO-phonon, electron-electron, impurity, and
interface roughness scattering. These scattering rates are calculated via Fermi’s golden
rule. All rates from these simulations are net rates and include backscattering. State
blocking and screening are also included in the simulations. Next we discuss waveguide

structures commonly used in QCLs for the confinement of emitted photons.
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V. WAVEGUIDE AND RESONATOR

QCL devices are fabricated by growing N repeated sections for the active region,
and then processing the wafer sample into a waveguide to form the laser resonator. In
these sections, waveguide parameters of interest and the two common types of waveguide
structures, surface plasmon and metal-metal waveguides, are discussed. A third structure,

a metal-patterned substrate waveguide was also investigated.

A. QCL RESONATORS
The waveguide and resonator are important, because the losses essentially set the
threshold condition. At threshold, the gain equals the losses. The threshold gain can be

found by considering a one round trip inside the resonator as follows

—2a,L i
Ioe oy RORlezrxgame =

0

. 1 1 a,+a (V.1)
gain,, = F(_Zln(RORl) + awj = w

where |, is the initial intensity, am = —1/2LIN(RgR;) is the mirror loss, o is the waveguide
loss, L is the length of the resonator, and R is the intensity reflectivity at a facet. The
approximation that the mode gain = I'xgain has been used. The confinement factor T, is
defined as the ratio of the guided energy inside the active region to the total energy of the

wave

Re{ _[d ’XS - ﬁ}
= active region
Re{ [d?xs- ﬁ}
all space

where S = ExH".
Since the waveguide mode is attenuated, the propagation constant is complex

(V.2)

L= F+if", noting that sy, = 24", In terms of the electric field and considering the case
where the field facet reflectivity r = rpe'? is the same for both facets, the following can

be written
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e P rle!¥el it =1 (V.3)
In general, it is seen from the phase terms that the Fabry-Perot resonance condition is
found L = nz—¢. By ignoring ¢, which is often done for optical systems, at resonance
the usual condition is found L = nAg/2. Next, the types of waveguides used for QCLs will

be discussed.

B. SURFACE PLASMON AND METAL-METAL WAVEGUIDES

Two types of optical confinement structures for THz QCLs have been used, the
semi-insulating (SI) surface plasmon and the metal-metal waveguides.***1%1% A third
type of waveguide similar to the metal-metal waveguide, the metal-patterned substrate
waveguide, was also analyzed (Figure V.B.1).

(@) (b) (©)

Figure V.B.1. QCL waveguides, the (a) surface plasmon, (b) metal-metal, and (c) metal-
patterned substrate waveguides.

The surface plasmon waveguide (Figure V.B.1(a)) consists of a metallic top and
two side contacts, and a thin n+ doped semiconductor layer or plasma layer (where the
real part of the permittivity is negative) sandwiched between the active region and the Sl
GaAs substrate. Gaps are present between the sides of the active region and the metallic
lateral contacts. This type of structure is easier to fabricate than the metal-metal
waveguide since it does not require substrate removal and wafer bonding. Since the fields

extend substantially below and outside the active region, the confinement factor is less
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than that of the metal-metal waveguides. However, the advantage can be improved output
coupling for higher power applications.™

The metal-metal waveguide consists of two metallic layers above and below the
active region (Figure V.B.1(b)) which is above a n+ GaAs substrate. The fields of the
mode are usually well confined with often a near unity confinement factor, which can
lead to lower threshold gains. The waveguide width may often be made smaller, than the
surface plasmon waveguide counterpart, with acceptable performance. This can allow for
reduction in the device area. The metal-metal waveguide is also better suited for higher
operating temperatures.’® The disadvantage is that the output coupling is worse due to the
high reflectivity of the subwavelength rectangular aperture, and the radiated beam pattern
is much more fan shaped. At THz frequencies, we are in a waveguide region in which the
Fresnel reflection coefficient is not valid to use for the reflectivity for the metal-metal
waveguide. The high reflectivity is an advantage in the sense that a high reflectivity (HR)
coating on one facet end is rarely needed with this type of waveguide. Although perhaps
difficult to fabricate, others have shown improved output power in metal-metal
waveguides by micromachining a matching horn antenna on the facet end.'®® Both the
surface plasmon and metal-metal configurations use surface plasmons attached to the
contact layers.

The waveguide losses and reflectivities for the waveguides, are found using finite
element method (FEM) solvers.'®®®” The Drude model® is used to determine the

material parameters, in which the complex permittivity can be found from

N,pe°

where |e| is the charge of the electron, m is the effective mass of the electron, and w is the

s(w)=¢,+1 (V.4)

frequency. In our simulation model, the active region was nominally taken as GaAs and
€p Was set to 12.4 corresponding to the T = 0 K value. The relaxation times z, were set to
0.1 ps for the n+ layers, 0.5 ps for the active region, and 0.06 ps for the metallic gold
layers.'®®*% For the active region a background carrier concentration of 2x10™ cm™ was

assumed, and a concentration of 5x10% cm™ was used for the metallic gold layers. The
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plasma and contact layers concentrations vary by design, and are listed in those particular
sections. From Ampére’s law v xH = J+dD/dt = cE-i@wD and equation (V.4), it is seen
the complex permittivity can alternatively be entered as a real valued permittivity g, and a
complex conductivity o = nspe?z/m(1—iwr). Additionally, it can also be entered as a real
valued effective permittivity €' and a real valued effective conductivity we™ since v xH =
we"E-w €'E, noting that €' can be a positive or negative value. By considering o in the
high frequency limit, the plasma frequency may be defined as @y, = (nape/esm )2, Since

Ck — (a)z_a)pZ)l/Z

it is seen that when @ < a, K is purely imaginary and waves incident on
the plasma are reflected and waves inside fall of exponentially with distance, thus the
medium behaves more like a “metal.” For @ > @, transmission occurs and the medium
has more of a lossy “dielectric” characteristic.

A waveguide similar to the metal-metal waveguide, the metal-patterned substrate
waveguide, was also briefly investigated (Figure V.B.1(c)). The idea was if MBE growth
of the active region could be accomplished on top of a patterned substrate, this could
avoid having to wafer bond while at the same time keep a structure capable of
maintaining a high confinement factor. It was ultimately determined that the defects
introduced by the growth process over the patterned substrate, would likely be
unacceptable for high quality MBE growth. Nevertheless, the results of the analysis will
be briefly mentioned, as similar type of 3D analysis could be useful for mode suppression
waveguides. In such a waveguide, a metallic layer would be deposited on the top surface
of the active region, and the pattern would also have to be dense enough to keep the
modes confined while also not substantially increasing the waveguide loss. Our analysis
showed for the guides we modeled, compared to metal-metal waveguides, that the
confinement factor was affected little by square patterns from 1 by 5 #m (1 xm thick
strips with 5 zm spacing between the strips) to 2 by 2 um, but the waveguide loss was
increased for the less dense patterns. It was also shown for a 2 by 2 um pattern
waveguide, that the waveguide loss could be made lower using a n+ substrate (as

opposed to a Sl substrate with a thin n+ layer) for frequencies beyond about 2.5 to 5 THz.
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VI. THz LO-PHONON QC STRUCTURES

Two different LO-phonon approaches were investigated, the new step well QC

sed,*™3 and a conventional square well design. Approximate rate

structures we propo
equation analysis was initially performed on the step well structures, and the structures
were analyzed using Monte Carlo simulations. The analysis indicated the injector of one
of the step well structures could further be improved, and simulations on a modified
structure showed a more uniform gain over a range of biases. Simulations were aso
performed on a high power square well LO-phonon design. Our analysis was compared

to experimental measurements, and found to be in reasonable agreement.

A. STEP WELL QC STRUCTURES

Even though it is possible to arrange the energy levels in a step well such that the
radiative transition and LO-phonon transition are within the same step well, this does not
mean it will necessarily be useful for a laser application. For the device to lase, a
population inversion must be kept for sufficient gain to overcome the losses. While
intrawell radiative transitions can have large overlap of the electron wavefunctions that
yield large oscillator strengths, there can be a trade-off between the oscillator strength
and upper state lifetime, as the scattering from the upper radiative state to the lower state
is usually increased with increasing oscillator strength in three-level LO-phonon
structures. This increase in oscillator strength is one of the reasons for studying these step
well structures, as increasing the oscillator strength can increase the gain and hence the
output power of a device. As will be shown, the section length will remain about the
same as other LO-phonon designs.

Initially, an approximate rate equation analysis was performed on the step well
structure shown previously in Figure 11.B.1(b).****! The scattering rates (W», and Wio)
must be calculated for the step quantum well structures in order to estimate whether a
population inversion is likely between states 2 and 1. The simplest rate equation analysis

allows us to write the population of the middle state 1 (n;) as
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dn,
dt

where n; is the population of state 2. The necessary and intuitive condition at steady state

=n,W,, —nW,, (VILAL)

for a population inversion to exist (n, > n;) is Wip > Wy, (in terms of corresponding
lifetimes 7o < 73). In general, the scattering rates are a combination of all possible
scattering mechanisms, i.e., electron-phonon, electron-electron, impurity, and interface
roughness scattering. In this approximate rate equation analysis, we estimate the
scattering rates by taking into account the LO-phonon and electron-electron scattering
rates. As will be seen later from our Monte Carlo analysis, the electron temperatures can
be ~ 50 to 100 K or higher than the lattice temperature. For the rate calculations that
follow, the lattice temperature will be taken to be 25 K and the electron temperature to be
100 K.

Figure VI.A.1 shows the mean LO-phonon scattering rates for the 4.3 THz step
quantum well previously shown in Figure I11.B.1(b) (and shown again inset), calculated
for initial state populations from 1x10° to 1x10™ cm™ for Tiatice = 25 K and Tejectron = 100
K. All of the scattering rates are essentially constant and independent across the
populations computed. As expected, the 2 to 1 transition has the smallest mean scattering
rate and hence the longest lifetime, because the energy spacing of 17.9 meV between
states 2 and 1 is below the LO-phonon energy spacing of about 36 meV. Only the
electrons with sufficiently high in-plane kinetic energy (~ 36—-17.9 meV = 18.1 meV or
higher) can participate in the scattering process, while others are forbidden. The
maximum scattering rate, which occurs when the electron has just enough in-plane
energy such that the energy difference is exactly at the resonant LO-phonon energy % o,
is also shown in Figure VI.A.1. It can be seen that the mean scattering rates for the 1 to 0
transition are faster than the 2 to 1 transition, and are even faster than the 2 to 1
maximum rate. Also included is the parasitic mean scattering rate for the 2 to O transition.
This parasitic lifetime is 1.8 picoseconds (psec), which is relatively short. These
scattering rates show that the mean lifetimes are such that »; = 5.6 psec > 7 = 0.37
psec. This indicates that the LO-phonon rates are favorable for keeping a population
inversion. Of course, the population inversion is affected by all scattering mechanisms,
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not just by the electron-phonon scattering rates. Next we will calculate the electron-
electron scattering rates and see how incorporating these rates may affect the population

inversion analysis.
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Figure VI.A.1. Mean LO-phonon scattering rates for the 4.3 THz step quantum well
(shown inset) as a function of initial state populations for Tyagice = 25 K and Tejectron = 100
K (solid lines). For the 2 to 1 transition the maximum scattering rate (which is not an
averaged rate) is also shown (dashed line). The lifetimes are listed (reciprocals of the
essentially constant scattering rates).

The electron-electron scattering rates were calculated for the same 4.3 THz
structure as for the LO-phonon analysis using Teectron = 100 K for initial state populations
of 1x10° to 1x10™ cm™. Figure VI.A.2 shows the electron-electron scattering rates for
the 2 to 1 and 1 to O transitions that pertain to the simplified rate equation analysis
already discussed. It is seen that the dominant scattering rate is the 2010 process. Unlike
the earlier LO-phonon analysis, the electron-electron scattering rates are not constant but
rather as expected, increases with carrier concentration. The next highest scattering rates
are for the 2221 process, and the lowest scattering rates are for the 1110 process. The
total electron-electron scattering rates are the sum of the above processes, taking into
account the number of electrons that change energy levels. Figure VI.A.3(a) shows the
total electron-electron scattering rates for the 2 to 1 and the 1 to O transitions, based on

the processes for the simplified rate equation analysis. It is clear that the 2 to 1 scattering
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rates are higher than the 1 to 0 scattering rates for all the initial carrier populations. Thus
the lifetimes are such that the electron-electron scattering process by itself is not
favorable for the purpose of keeping a population inversion.

Although our analysis so far has been in the framework of the simplified rate
equation analysis and has considered only processes within that framework, it is worth
mentioning that in general a system with N number of energy levels will have 4" electro-
electron scattering processes. Some of these processes do not directly by themselves
affect subband populations, i.e., intrasubband iiii scattering rates where no net change
occurs in the number of electrons in the subband. To see what the scattering rates are for
some of the additional processes, computed in Figure VI.A.3(b) are the mean electron-
electron scattering rates for the additional 2110, 2210, and 2220 scattering processes. It is
seen that of these three, the 2110 process is dominant and involves a net change of losing
one electron from state 2 and gaining one electron in state 0, a process by which 2 — 1
and 1 — 0. The scattering rate due to this process is around an order of magnitude less
than those considered earlier.

14

121

2111

- 1000
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Figure VI.A.2. Mean electron-electron scattering rates for the 4.3 THz step quantum well
as a function of initial state populations for Teecron = 100 K. The various scattering
processes for the 2 to 1 and the 1 to O transitions for the simplified rate equation analysis
are shown.
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Figure VI.A.3. Scattering rates for the 4.3 THz step quantum well for Tgjectron = 100 K. (@)
The total electron-electron scattering rates for the 2 to 1 and the 1 to O transitions, based
on the processes for the simplified rate equation analysis, as a function of initial state
populations. (b) The mean electron-electron scattering rates as a function of initial state
populations for Teectron = 100 K, for some additional scattering processes for the 2 to 1
transition that are not within the framework of the simplified rate equation analysis.

The analysis indicates that the electron-phonon scattering rates are around an
order of magnitude larger than the electron-electron scattering rates. The scattering rate
analysis of the biased step quantum well indicates that this type of structure is likely
capable of keeping a population inversion for the temperatures and range of carrier
concentrations considered.

In order to be used in a QC structure, the step quantum well must have an injector
section to feed the next section of the cascade. One potential implementation is illustrated
in Figure VI.A.4 where one section is outlined.*® The double barrier injector section was
designed to maintain the upper state lifetime, while allowing the electrons in the lower
states to resonantly tunnel to the upper state of the next adjacent section. The conduction
band profile was solved by using a self consistent solution to Schrdodinger’s and Poisson’s
equations. The step well has been shaped to spatially separate the upper state and lower
states as much as possible, in an effort to reduce scattering between those states. The
radiative transition takes place between states 4 and 3, where E43 = 16.6 meV (4 THz or 4

~ 75 um). The LO-phonon assisted transition takes place from state 3 to the lower triplet
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states (2, 1, 0), since Ez; = 36.6 meV which is near Zw_o. Scattering between the triplet
states (2, 1, 0) and injection into the next adjacent sections upper state is to take place.
The step well has been arranged so that state 4 is above the step and state 3 below the
highest point, in an effort to spatially separate the wavefunctions for efficient injection to
the upper state 4 and for reducing the parasitic injection to state 3. Thus, the step barrier
helps to reduce unwanted injection into the middle state, which is a problem with other

square well LO-phonon structures.

Ot W &

:>\ ||'|

=

Figure VI.A.4. Conduction band profile of a proposed step well QC structure found using
a self consistent solution to Schrédinger’s and Poisson’s equations. The step well and
resonant tunneling double barriers of one section are outlined. Beginning with the left
injector, the Al Ga;_xAs layers compositions are 0.143/0.035/0/0.143/0/0.143/0 and
thicknesses in nm are 4.3/20.9/13.5/1.7/9.6/2.5/7.6, with E43 = 16.6 meV (4 THz) and E3;
= 36.6 meV. The applied field is 9.5 kV/cm. The 9.6 nm well is doped 2.9x10™ cm™,
which corresponds to a sheet density of 2.8x10%° cm™.

The mean electron-phonon scattering lifetimes for this structure are
321,00 = 0.4 psec, for the upper to lower states scattering 7,10 = 1.4 psec, and
3 =7.9 psec. Again, because these are intrawell transitions, the scattering rates
computed are relatively fast. The radiative transition is also an intrawell transition, and
the overlap of the wavefunctions is reasonably good, which gives an oscillator strength of
about 1.34. This oscillator strength is higher than the highest reported LO-phonon
designs®’ (~ 40% increase), and the section length is about the same, i.e., about half that

of typical bound to continuum designs.
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To get an approximate estimate of what might be expected for this type of
structure, we can estimate from the gain equation (equation (111.D.27)) the population
inversion. If we assume a total loss of ~ 40 cm™ (which is reasonable for surface plasmon
waveguides) and assume a FWHM ~ 4 meV, the estimated 2D population at threshold is
~ 2.5x10° cm™ This is within the carrier densities used in our analysis. The current
density can be estimated from Anyp ~ (J/e)7a(1-7/ w3 ) and is calculated to be J ~ 760
Alem™,

It was concerned that the triplet of lower states spacing was too close to the
radiative energy spacing and could provide a means for unwanted absorption. Further,
more energy separation was wanted between the lower states and an unused state in the
next adjacent section. For this reason, it was decided to focus on single well injector
designs. There were a number of different step well structures that were considered, some
of which are shown in Figure VI.A.5.2*2 Other structures (not shown), that resonantly
tunneled the middle and lower states, step well designs without all three energy levels in
the same well, and some structures that would also have required growth with more than
two Al compositions in an AlGa;_xAs heterostructure, were considered as well. Due to
the difficulty in growing a sample of repeated sections with more than two Al
compositions in most MBE chambers, structures requiring only two Al compositions

were favored.
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Figure VI.A.5. Some of the step well QC structures considered, (a) one step, one well
injector, (b) two step, one well injector, and (c) one step, two well injector.
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By using a single well injector, the anticrossing between the lower ground states
can be kept much smaller than the optical transition energy spacing (as there will only be
a doublet of states), thereby reducing the possibility of absorption. Initially a single step
well and one well injector (Figure VI.A.5(a)) structure was analyzed. To avoid a potential
parasitic current channel (from alignment with an unwanted energy state in the next
adjacent section), the injector well was narrowed so that the only energy state from the
well was that of the lowest ground state. This increased the sub-picosecond LO-phonon
lifetime of the middle state to ~ 1 psec which was too slow. Rather use a wider injector
well to keep the sub-picosecond LO-phonon scattering lifetime and also introduce a
second state from the well which could potentially produce a parasitic current channel, it
was chosen to utilize a two step well and one well injector as shown in Figure VI.A.5(b)
(where the two steps are of equal Al composition). This structure, QC structure
D619F10D, will be discussed in the next subsection. The disadvantage, however, is that it
introduces two additional growth layers (7 growth layers as compared to only 5 growth
layers for a single step well one well injector design). Nevertheless, even with a two
equal Al composition step well, this structure is quite simple having only two wells.
Albeit the first being a step well. It also has only one additional layer compared to the
simplest square well LO-phonon QC structure.*® Note that in principle, a step well QC
structure does not need an injector well (in which it would be a one well design).

1. Structure D619F10D

The conduction band profile for QC structure D619F10D is shown in Figure
VI.A.6. Electrons are injected into the upper state 3 and the radiative transition occurs
between state 3 and middle state 2, where Ez; = 15.1 meV (~ 3.6 THz or A ~ 82 um). The
LO-phonon assisted transition takes place from the middle state 2 to the lower doublet
states (1, 0), since E» = 37.2 meV which is near Za 0. This ensures fast depopulation of
state 2 via LO-phonon scattering, with a mean scattering rate 100 = 0.68 psec (0.44
psec band edge). The anticrossing between states 2 and 5' is relatively small due to the
thick collector and injector barriers, and therefore should not be a primary path of
scattering out of state 2. Though any electrons that transition from state 2 to 5 would

serve to help the population inversion, and state 5' is near the resonant LO-phonon energy
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spacing to upper state 3'. Injection from the lower doublet states (1, 0) is to take place
into the next adjacent sections upper state 3', and the injector anticrossing Eoz ~ 1 meV.
The step well has been arranged so that state 3 is above the step and the state 2 below the
highest point so as to provide spatial separation at the injector barrier for improved

injection.

bll: & tn

Figure VI.A.6. Conduction band profile of structure D619F10D found using a self
consistent solution to Schrodinger’s and Poisson’s equations. The step well and resonant
tunneling well of one section are outlined. Beginning with the left injector, the
AlGa;_xAs layers compositions are 0.16/0.05/0/0.05/0/0.16/0 and thicknesses in nm are
4.8/27.9/1.8/2/6.3/4.1/6.8, with Ez; = 15.1 meV (3.6 THz) and E,; = 37.2 meV. The
applied field is 10.5 kV/cm. The center 2 nm of the 6.8 nm well is doped to a sheet
density of 3.4x10™ cm™.

Since the transitions are intrawell in nature, the LO-phonon scattering is relatively fast.
The radiative transition is also intrawell, and the overlap of the wavefunctions is
reasonably good, giving an oscillator strength of ~ 1.03 at 9.9 kV/cm (53.2 mV/section).
In order to determine the threshold gain required for lasing, two different
commonly used waveguide structures, the surface plasmon and metal-metal waveguides
were considered. The threshold gain was determined for both surface plasmon and metal-
metal waveguide resonator configurations at the operating frequency.'*® The analysis was
performed assuming an active region thickness of ~ 10 #m (which corresponds to N ~
185 sections) and a guide width of 200 zm. This is because the threshold gain is worse

(higher) for smaller width ridges. The threshold gain = (am*aw)/I’, Where o is the
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mirror loss and «, is the waveguide loss. The waveguide losses and reflectivities for the
metal-metal waveguide were found using finite element method (FEM) solvers.’®1% The
Drude model was used to determine the material parameters, and a background carrier
concentration of 2x10™ cm™ was assumed. Due to the difficulty in accurately modeling
the waveguide with N thinly doped active region section layers, the doping in these thin
layers was neglected. Thus, the actual waveguide losses may be higher.

Considering the surface plasmon waveguide first, the side contacts spacing was
set at 50 nm to keep the mode from coupling to avoid higher waveguide loss. The top
contact plasma layer was 60 nm thick and doped at 5x10*® cm™. To determine a suitable
lower plasma layer thickness, the threshold gain was computed as a function of lower
plasma layer thickness for doping concentrations of 1x10*® to 3x10" ¢cm™. The mirror
losses have been computed for resonator lengths of 1 and 2.5 mm with one facet of the
waveguide assumed to have a HR coating. Figure VI.A.7 shows that for the lowest
threshold gain over the range of mirror losses considered (resonator lengths of 1 and 2.5
mm), the optimal lower plasma layer is one doped ~ 2x10* to 3x10'® cm™ at a thickness
of 400 to 500 nm.

100
v — n,= 3)(10'8, a = 58
\-\ —8—n =3%10" & =23
< 80@ \ —e—n_=210"a =538 |
£ \ —e— n_=210" 4 =23
3 a0 (0
c 60f —4——n,, =1x10" a =58| |
© ————n, =110"% & =23
(_l) 30 i
o
o 1]
2 40
[}
s
F—
=
= 20}

0 L
200 400 600 800
Plasma Layer Thickness (nm)

Figure VI.A.7. Threshold gain for a 200 xm ridge, 10 um thick surface plasmon
waveguide, as a function of lower plasma layer thickness for different doping
concentrations (cm™>) and mirror losses (cm™).
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The cross-section 2D mode intensity and 1D profile mode intensity are shown in
Figure VI.A.8 for a lower plasma thicknesses of tyasma = 500 nm, doped at 3x10™ cm™.
The confinement factor is I' = 0.28 and the waveguide loss is &, = 3.3 cm™ for this

waveguide.
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Figure VI.A.8. 200 xm ridge, 10 zm thick surface plasmon waveguide with tpjasma = 500
nm doped at 3x10"® cm™, (a) cross-section 2D mode intensity, (b) 1D profile mode
intensity.

Next, the threshold gain was computed for a metal-metal waveguide, where the
top and lower contact plasma layers were 60 nm thick (10 and 50 nm layers doped at
5x10" and 5x10" cm™3, with the lower contact also having a 3.5 nm LTG GaAs layer).
For the metal-metal waveguides, we assume both facets are uncoated. We find the
threshold gain to be 7.7 and 5.7 cm™ for mirror losses corresponding to resonator lengths
of 1 and 2.5 mm respectively. The attenuation was calculated to be a, = 4.3 cm™ with a
confinement factor I" ~ 1. This near unity confinement factor is seen as evident from the
cross-section 2D mode intensity graphed in Figure VI.A.9. Optimal guide parameters for
a surface plasmon waveguide depend on having a relatively thick lower contact layer
compared to the upper contact layer, while for a metal-metal guide both contact layers
should be relatively thin to minimize waveguide loss. Because an etch-stop layer can be
used for processing both surface plasmon and metal-metal waveguides from the same

sample, a sample that has an optimal lower plasma layer thickness for a surface plasmon
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waveguide will not be optimal for a metal-metal waveguide. As an example, the
threshold gain was computed for a metal-metal waveguide with a top contact layer 60 nm
thick doped at 5x10*® cm™, and for lower plasma thicknesses of tyjasma = 150 and 500 nm
doped at 3x10'® cm™ (and found to change very little for guide widths from 100 to 200
um). The threshold gain was calculated to be only 8.5 cm™ for tolasma = 150 nm and
increased to 18.2 cm™ for tolasma = 500 nm (both with a resonator length of 1 mm). The
thinner plasma layer thickness of 150 nm can be seen to result in an improvement for the
metal-metal waveguide. Although the threshold gain is higher for a surface plasmon
waveguide, the output coupling factor am/(amta) can be smaller for some surface
plasmon waveguides which is better for high power applications, i.e., since the output

power = Y2 o/ (am* aw)NR o /16| (1-1w) from a single facet of an uncoated device.

Figure VI.LA.9. 200 u#m ridge, 10 um thick metal-metal waveguide, cross-section 2D
mode intensity.

a. MBE Growth and Fabrication

The sample was grown by MBE using IQE foundry service, with N = 185
sections, where the top and lower contact plasma layers were 60 nm thick (10 and 50 nm
layers doped at 5x10*° and 5x10*® cm™, with the to be lower contact also having a 3.5
nm LTG GaAs layer). The sample was processed by the National Research Council
(NRC) (Canada) into metal-metal waveguides of 100 and 200 xm wide, and 1 mm
resonator lengths, with both facets uncoated (Figure VI.A.10). The fabricated devices
showed an unusually high impedance (> 1 k) at room temperature, compared to typical
QCLs of about 10 Q. This likely indicates that there was either a growth problem, such as
a high p-type background concentration during MBE growth (which depleted the electron
concentration in the active region), or non-ohmic contacts generated during the
processing. Initial electroluminescence measurements were made at T = 10 K (using a
CTI Cryogenics Model 22 closed cycle He cryostat and a Nexus 870 FT-IR ESP Nicolet
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spectrometer), and no light out was detected. Measurements on the sample showed little
current through the device near the injector anticrossing (at ~10.6 V, ~ 300 mA, which
corresponds to 150 A/cm?), as illustrated in Figure VI.A.11 for a 200 zm wide device.
The 1-V characteristics were measured on both the 100 and 200 #m wide samples out to
about ~ 5 A, without the device going into NDR. Because the contact resistance was so
high and no light was detected, there was either a growth or contact processing error with

this sample.

(b)

Figure VI.A.10. Sample D619F10D. (a) Top view of the metal-metal waveguides,
showing bond wires to the 100 and 200 x#m wide by 1 mm long waveguides. (b) Cross-
section of one of the 100 xm wide waveguides.
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We are currently investigating the cause of the high impedance to determine the origin
which will help us refine the growth and fabrication processes. Tests are being
performed, using secondary ion mass spectrometry (SIMS) at NRC, to determine if
correct doping concentrations were maintained in the sample growth. No conclusion on
the feasibility of this device can be drawn from these measurements, as clearly there was

a fabrication problem.
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Figure VI.A.11. The measured I-V curve of sample D619F10D, for a 200 zm wide by 1
mm long metal-metal waveguide device.

b. Monte Carlo Simulation

A Monte Carlo simulation of QC structure D619F10D was performed, to
model the electron ensemble. As previously discussed, the scattering between more than
one section is taken into account because of the nature of the step well QC structure
(which potentially can further lead to an overestimation of the scattering between weakly
coupled states). The scattering mechanisms that were included are LO-phonon, electron-
electron, impurity, and interface roughness scattering. The scattering rates were
calculated via Fermi’s golden rule. All rates from these simulations are net rates and
include backscattering. State blocking and screening are also included in the simulations.
The Monte Carlo simulations of the step well QC structure were performed with Tiatice =

25 K. Shown in Figure VI.A.12 is the calculated current density and gain (assuming a 4.1
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meV FWHM) over the high gain bias region. The calculated gain is higher over much of
this region than the threshold gains computed earlier for the waveguide resonator
configurations analyzed. However, just beyond 50 mV/section a dip in the gain curve is
observed. It was felt that a more uniform gain could be realized, by modifying the

structure slightly to improve the injection efficiency.
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Figure VI.A.12. Results of the Monte Carlo simulation of structure D619F10D, with and
without including interface roughness scattering. (a) Current density as a function of
applied electric field bias. (b) Gain as a function of bias.

2. Structure D619F10E

The dip in the gain curve seen from the Monte Carlo simulation of QC structure
D619F10D, was likely a result of inefficient scattering into the upper state at those biases.
In order to correct for this, a second structure was designed and analyzed, structure
D619F10E where the injector well was thinned slightly and the collector well thickness
increased slightly. With these changes, it was anticipated a more uniform gain over these
biases could be achieved. The conduction band profile for the step well QC structure is
shown in Figure VI.A.13.M Electrons are injected into the upper state 3 and the radiative
transition occurs between state 3 and middle state 2, where E3; = 15.2 meV (~ 3.7 THz or

A~ 82 um). The LO-phonon assisted transition takes place from the middle state 2 to the

lower doublet states (1, 0), since Ez; = 37.9 meV which is near Zmo (~ 36 meV in
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GaAs). This ensures fast depopulation of state 2 via LO-phonon scattering, with a
scattering rate lifetime n_,10 ~ 0.5 psec (band edge) for this structure. Again, the
anticrossing between states 2 and 5' is relatively small (less than ~ 0.5 meV) due to the
thick collector and injector barriers, and therefore should not be a primary path of
scattering out of state 2. Though any electrons that transition from state 2 to 5 would
serve to help the population inversion, and state 5' is near the resonant LO-phonon energy
spacing to upper state 3'. Injection from the lower doublet states (1, 0) is to take place
into the next adjacent sections upper state 3', and the injector anticrossing has been
slightly increased to Eoz ~ 1.2 meV. The step well has been arranged so that state 3 is
above the step and the state 2 below the highest point so as to provide spatial separation

at the injector barrier for improved injection.

Figure VI.A.13. Conduction band profile of structure D619F10E found using a self
consistent solution to Schrodinger’s and Poisson’s equations, shown at an applied electric
field of 10.4 kV/cm (56.3 mV/section). The step well and resonant tunneling well of one
section are outlined. Beginning with the left injector, the AlyGa;_xAs layers compositions
are 0.16/0.05/0/0.05/0/0.16/0 and thicknesses in nm are 4.6/27.9/1.8/2/6.3/4.7/6.8, with
Es, = 15.2 meV (~ 3.7 THz) and E»; = 37.9 meV. The center 2 nm of the 6.8 nm well is

doped to a sheet density of 3.4x10™ cm™.

Since the transitions are intrawell in nature, the LO-phonon scattering is relatively fast.

The radiative transition is also intrawell, and the overlap of the wavefunctions is

reasonably good, giving an oscillator strength of ~ 0.94 at 9.9 kV/cm (53.6 mV/section).
The Monte Carlo method was used to model the electron ensemble of QC

structure D619F10E, in the same manner as for the previous structure analyzed."* The
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Monte Carlo simulations of the step well QC structure in Figure VI.A.13 were performed
with Tiatice = 25 K. Table VI.A.I lists the subband populations and electron temperatures

found at an applied electric field of 53.6 mV/section.

n N2p (><:|.09 cm‘z) Tetectron (K)
0 16.1 131
1 10.1 132
2 1.53 155
3 6.22 127

Table VI.A.l. Populations of the subbands (E,) and electron temperatures found from the
Monte Carlo simulation of structure D619F10E, at an applied electric field of 53.6
mV/section, with Tagice = 25 K.

The current density, gain, and population densities and the electron temperatures for the
upper (E3) and middle (E,) states are shown in Figure VI.A.14 over a range of applied
electric field biases. The results are shown with and without including interface
roughness scattering. Others have shown reasonable agreement with experimental
findings by not including interface roughness scattering in their simulations,*** and that
agrees with our simulations of other square well structures. In these simulations interface
roughness scattering was found to increase somewhat the current density and electron
temperatures, and also slightly decreases the medium gain. The current density as a
function of applied bias follows about what is expected, with the exception of the points
between ~ 45 to 50 mV/section. This is where some scattering to parasitic current
channels takes place. These high values are likely due to an overestimation of the
scattering to the weakly coupled states. A small bump in the curve at ~ 38.4 mV/section
is observed, where this is near the anticrossing between states 0 and 2'. The step serves to
also minimize scattering between states 0 and 2" at this intermediate bias.
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Figure VI.A.14. Results of the Monte Carlo simulation of structure D619F10E, with and
without including interface roughness scattering. (a) Current density as a function of
applied electric field bias. (b) Gain as a function of bias. (c) The population densities and
(d) electron temperatures for the upper (E3) and middle (E;) subbands as a function of
bias.

A peak gain of 86.9 cm™ is found (assuming a FWHM = 4.1 meV) and the gain is
~ 70 cm™* or higher across much of the high gain bias region. This is due to the vertical
transitions of the optical and LO-phonon transitions, as well as the high injection
efficiency from the step. The vertical optical transition allows for a relatively high
oscillator strength and fast LO-phonon scattering helps keep the middle state 2 depleted.
Due to the step, injection loss to the middle state 2' is relatively small. The injection
efficiency is found to be ~ 89%, defined here to be from the lower doublet states (0, 1)
to the upper state 3. The lifetime of the middle state due to LO-phonon scattering is
found to be n_u0 = 0.88 psec, with the ratio of 7310/ @0 from LO-phonon
scattering varying from about 2.1 to greater than 3 across biases in the high gain region.
The calculated gain is seen to be higher than the calculated threshold gains for both the

surface plasmon and metal-metal waveguides analyzed earlier.
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B. SQUARE WELL LO-PHONON QC STRUCTURE

As previously discussed, only square quantum well structures have been used in
QCL designs. The highest power QCL, reported in the given reference,' utilized a four
square well LO-phonon structure and operated at ~ 4.4 THz. This device represents a
relatively optimized design in terms of the structure, wavelength of operation, and
waveguide, to achieve a peak power of ~ 250 mW in a ~ 200 #m wide by ~ 1.2 mm long
surface plasmon waveguide configuration. There were N = 183 sections grown, and the
lower plasma layer was 400 nm doped at 3x10™cm™. As with all conventional square
well LO-phonon designs, it contained the usual first three square wells, and a fourth
injector well similar to the first LO-phonon THz QCL. The third well is used to
resonantly tunnel the lower lasing state and also arrange for a lower ground state.
Because of this, as with other LO-phonon square well designs, there is a doublet of states
at the lower lasing state. This structure will next be described in detail, and we will model
it using our Monte Carlo code to compare the simulation results to the experimentally
measured results.

1. 4.4 THz Structure

The conduction band profile for the 4.4 THz QC structure is shown in Figure
VI.B.1. Electrons are injected into the upper state 4 and the radiative transition occurs
between state 4 and state 3. The design was intended to emit near 4.7 THz, but was
experimentally found closer to ~ 4.4 THz (. ~ 68 wum). The LO-phonon assisted
transition primarily takes place from state 2 (as well as from state 3) to the lower doublet
states (1, 0), since E; is near Zia o (~ 36 meV in GaAs). States 3 and 2 are intended to be
coupled for fast scattering between those states. This ensures fast depopulation of the
lower lasing state via LO-phonon scattering. Injection from the lower doublet states (1, 0)
is to take place into the next adjacent sections upper state 4'. This shorter wavelength of
operation and hence larger radiative energy separation of the upper and lower lasing

states, along with good coupling at the injector, aids in improved injection.
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Figure VI.B.1. Conduction band profile of the 4.4 THz structure, shown at an applied
electric field of 11.5 kV/cm (62.4 mV/section), with one section outlined. Beginning with

the left injector, the Al,Ga;_xAs layers compositions are 0.15/0/0.15/0/0.15/0/0.15/0 and
thicknesses in nm are 4.8/8.2/1.7/6.8/4.0/16.4/3.4/9.0. The 16.4 nm well is doped to a
sheet density of 3.1x10* cm™.

The Monte Carlo simulations of the 4.4 THz QC structure were performed with
Tiatiice = 25 K. The current density and gain are shown in Figure VI1.B.2 over the high gain
bias region of the device. The results are shown with and without including interface
roughness scattering, for roughness of a/2 (same as previously used for the step well
structures analysis) and a/4. In these simulations, reasonable agreement is shown with the
interpolated measured values™ for the current density at most biases, with the largest
difference being an overestimation occurring ~ 68 mV/section which is just beyond the
injector anticrossing and near the E,g anticrossing. This overestimation is likely due to
not including coherent effects of dephasing. As with the previous step well structure
analyzed, the effects of interface roughness scattering were found to increase somewhat
the current density, and also slightly decrease the medium gain. It is seen that assuming a
roughness of a/2 overestimates the current density, and that using a roughness of a/4 is
almost negligible compared to simulations without including interface roughness
scattering. Although one monolayer (ML) is sometimes listed as a/2, this really depends
on how it is defined. A GaAs unit cell consists of two Ga layers and two Al layers.

During growth, it is possible to monitor the Ga and As layers separately. If each of these
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layers is defined as one monolayer, then there are four monolayers and 1 ML = a/4 by
definition. On the other hand, if one defines one Ga layer plus one As layer as one

monolayer, then there are two monolayers and 1 ML = a/2 by definition. The gain is also
calculated, and the device yields high gain.
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Figure VI1.B.2. Results of the Monte Carlo simulation of the 4.4 THz structure, with and
without including interface roughness scattering. (a) Current density as a function of
applied electric field bias. (b) Gain as a function of bias.

This analysis indicates that interface roughness scattering effects are only
appreciable for roughness greater than ~ 1 ML, and that overestimation in the current
density may occur assuming a roughness of a/2. The results presented earlier for the step
well structure, which included interface roughness scattering assuming a roughness of
al2, are likely to be overestimating the current density of the structure. While interface
roughness can vary from sample to sample, this analysis shows the importance of
maintaining correct tolerances during growth. Because our analysis shows reasonable
agreement with the experimentally measured current densities, it indicates that our Monte
Carlo analysis of the step well structures should have similar accuracy.
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VIlI. CONCLUSIONS AND DISCUSSION

This research focused on modeling electron transport properties of THz LO-
phonon QC structures, including the design and analysis of new step well QC structures.
From the Monte Carlo simulations, it was found that step well structures are capable of
high gains and oscillator strengths, high injection efficiencies, with comparable
characteristics to other square well designs, but do have increased scattering from the
upper state to the lower sates. The peak gain of ~ 87 cm™ found in these simulations of a
step well QC structure, is higher than the peak gain of ~ 73 cm™ reported for a simulated
LO-phonon square well design, which also showed similar overestimation of the current
density from their Monte Carlo simulations.”* The current density near the injector
anticrossing was higher in these step well QC structure results and some of the electron
temperatures were slightly higher as well. This overestimation of the current density was
likely due to not taking into account coherence effects.

Perhaps one of the most important results from these simulations on the step well
QC structures, showed high injection efficiencies are possible using a step well injector.
Though the injection efficiency was much higher than typical for square well LO-phonon
designs with similar oscillator strengths (~ 1.6 times higher), the current density was still
high due to scattering from the upper to lower states. It may be possible to utilize a step
well injector to improve injection efficiency, even if the step is not used to arrange all
three energy states within the same well. Utilizing a step well injector with resonant
tunneling, could yield the benefits of both good injection efficiency and improved upper
to lower state lifetime. Our analysis is the first to suggest using more than one potential
height, using two or more Al compositions, in a QCL active region structure.

The step well structure that was grown and processed, failed experimentally.
Because of the large contact resistance and the low current through the device at the
injector anticrossing, it was determined this was due to a growth or contact fabrication
problem. Therefore, it was not possible to conclude the practical feasibility of such
structures. Testing is being conducted to determine the source of the fabrication problem.
The step well design remains a promising approach that differs from the two successful
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approaches that have previously been used (miniband and square well LO-phonon).
Because the middle state (upper phonon or lower lasing state) is a single energy state,
contrasting to previous LO-phonon based QCL designs that have doublet states, for long
wavelength lasers this could be important because it eliminates the possibility for
unwanted THz absorption that could otherwise occur between those doublet states.

The Monte Carlo simulations performed on a high power conventional square
well LO-phonon design, showed reasonable agreement with experimentally measured
results. This indicated that our simulations of the step well structures, was likely of
similar accuracy. It was also found that interface roughness scattering becomes
significant for roughness greater than approximately one monolayer, and including
interface roughness scattering in simulations can lead to an overestimation of the current
density in the device, depending on the roughness height chosen. This illustrates the
importance of maintaining tight growth tolerances for QC structures.

Although a high oscillator strength can lead to high gain, provided the upper state
lifetime can be maintained, optimum temperature devices may be realized using lower
oscillator strength structures. It should be pointed out that the best temperature
performing devices are due to their higher frequency of operation, and none across the
THz frequency range perform much better than T ~ Ejagiaiive’ks = halks.>™® A longer
wavelength device might operate at a lower temperature, but with respect to E agiative/Ks be
the same or better than a shorter wavelength device of higher operating temperature.
Even in step well structures, it is possible to make the radiative transition more diagonal
by utilizing an additional well prior to the step, and also by not arranging all three energy
levels within the same well.

The overestimation between weakly coupled states that occurs in the Monte Carlo
simulations, can be dealt with either by including dephasing in a density matrix Monte
Carlo simulation or by using nonequilibrium Green’s functions. The nonequilibrium
Green’s function technique is more intuitive from a quantum view point, and has several
advantages. It can be used to include dephasing, many-body effects, and allow for
spectral estimation.**>*'® This technique is useful in many other areas of condensed

matter physics as well. We are continuing to research these techniques and structures
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discussed, and are also looking to include the effects of other parameters such as

temperature in our analysis.
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