Award Number: W81XWH-07-1-0053

TITLE: Interactions Between IGFBP-3 and Nuclear Receptors in Prostate Cancer Apoptosis

PRINCIPAL INVESTIGATOR: Kuk-Wha Lee, M.D., Ph.D.

CONTRACTING ORGANIZATION: Mattel Children’s Hospital at UCLA
Los Angeles, CA, 90095

REPORT DATE: January 2009

TYPE OF REPORT: Annual

PREPARED FOR: U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for Public Release;
Distribution Unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.
Interactions Between IGFBP-3 and Nuclear Receptors in Prostate Cancer Apoptosis

Email: kukwhalee@mednet.ucla.edu

Mattel Children’s Hospital
Los Angeles, CA, 90095

U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

Approved for Public Release; Distribution Unlimited

IGFBP-3 is a potent inducer of apoptosis in both androgen-dependent and androgen-independent prostate cancer lines. When the nuclear receptor RXRalpha was described as an unexpected intracellular binding partner for IGFBP-3 and effects on DNA transcription were demonstrated, rapid effects of IGFBP-3 on programmed cell death (apoptosis) still could not be explained. These rapid effects on apoptosis were clarified when I hypothesized that IGFBP-3 was a biological signal for Nur77 nuclear receptor translocation to the mitochondria where an apoptotic cascade is initiated. We proposed to determine scientifically the protein regions in each of these important cell death molecules that essential for apoptotic action and demonstrate this observation with mouse models. Our data so far reveal a nuclear export sequence in IGFBP-3. Mutation of this sequence impairs its apoptotic activity. Utilizing the IGFBP-3 KO mouse, we show that IGFBP-3’s critical role in castration-induced apoptosis. Mating studies are underway to determine the effects of genetically deleting Nur77 and IGFBP-3 in the ontogeny of prostate cancer.

IGFBP-3, apoptosis, prostate cancer, nuclear receptors
Table of Contents

Introduction……………………………………………………………………………………..5

Body……………………………………………………………………………………………6-11

Key Research Accomplishments…………………………………………………………11

Reportable Outcomes……………………………………………………………………12-13

Conclusions…………………………………………………………………………………14

References…………………………………………………………………………………15

Appendices…………………………………………………………………………………NA
**Introduction**

Prostate Cancer (CaP) continues to be the most frequently occurring malignancy (aside from skin cancers), found in American men. IGFBP-3 is a potent inducer of apoptosis in both androgen-dependent and androgen-independent prostate cancer lines. When the nuclear receptor RXRalpha was described as an unexpected intracellular binding partner for IGFBP-3 and effects on DNA transcription were demonstrated, rapid effects of IGFBP-3 on programmed cell death (apoptosis) still could not be explained. These rapid effects on apoptosis were clarified when it hypothesized that IGFBP-3 was a biological signal for Nur77 nuclear receptor translocation to the mitochondria where an apoptotic cascade is initiated. This project will determine scientifically the protein regions in each of these important cell death molecules that essential for apoptotic action and demonstrate this observation with mouse models. The innovative aspects of this grant include: (1) Characterization of a novel interface (i.e. mitochondrial localization) of nuclear receptor / IGFBP superfamilies in the initiation of tumor programmed cell death; (2) Development of pre-clinical mouse models of prostate cancer that can be used to assess therapies that exploit the IGFBP-3:Nur77:RXR cell death pathway; and (3) provide a compelling rationale for Phase I studies of IGFBP-3 (or small molecule mimetics of this pathway) in men with prostate cancer.
Task 1. Characterize IGFBP-3 protein-protein interactions and mitochondrial targeting in vitro and demonstrate that they are essential for IGFBP-3 induced apoptosis.

a. Confirm IGFBP-3/RXR/Nur77 ternary complex formation via protein-protein interaction studies. (Months 1-6)

We have established association as published in our Carcinogenesis paper last year and referenced in last year’s progress report.

b. Validate a putative nuclear export sequence (NES) in IGFBP-3. (Months 7-9).

Nuclear localization of IGFBP-3 is a well-described phenomenon and has been demonstrated in a variety of cellular models. IGFBP-3 possesses a consensus bipartite nuclear localization sequence, and nuclear transport is facilitated by importin-β factor. We have begun to characterize the intracellular trafficking of IGFBP-3 and its relation to biological function and have recently published mechanisms that are involved in the re-uptake after secretion of IGFBP-3. After internalization by endocytic pathways, IGFBP-3 is first targeted to the nucleus (Figure 1A). 500 ng of rhIGFBP-3 was added to 22RV1 CaP cells for 15 minutes, subcellular fractions were isolated and immunoprecipitated with goat polyclonal anti-IGFBP-3. Immunoprecipitation of treated cell lysate with control IgG is also shown on the right. Proteins were resolved by SDS-PAGE and IGFBP-3 was identified by immunoblotting with mouse monoclonal anti-IGFBP-3. Within 15 minutes of addition of IGFBP-3, we conclude that the initial destination of IGFBP-3 is the nucleus. To expand the time course and explore the IGF-independent intracellular trafficking of IGFBP-3, we utilized IGF receptor-negative (R–) embryonic fibroblast cells (MEFs) derived from an IGF-1R knock-out mouse. These cells have been shown previously to neither bind nor respond to IGFs. R- MEFs were pulsed with 500 ng of IGFBP-3 and subcellular localization was followed over a 180 minute time course (Figure 1B). To demonstrate the purity of the nuclear fraction, expression of mitochondria-specific protein Hsp60 and nuclear-specific protein poly(ADP-ribosyl) polymerase (PARP) is shown. Again, the primary destination of IGFBP-3 in 15 minutes is the nucleus, after which levels in the cytoplasm begin to increase, consistent with an active export mechanism.

Fig. 1. IGFBP-3 enters the nucleus rapidly and subsequently is exported to the cytoplasm. (A) 22RV1 CaP cells treated with IGFBP-3 for 15 minutes, and subcellular fractions were immunoprecipitated and immunoblotted with IGFBP-3. (B) Time Course of IGFBP-3 subcellular localization in R- MEF cells, Hsp60 and PARP were used to assess purity of the subcellular fractions.
c. Delineate the mitochondrial targeting sequence (MTS) in IGFBP-3. (Months 7-9). A highly conserved NES and a mitochondrial targeting sequence (MTS) lies within the C-terminal and N-terminal domain of IGFBP-3, respectively.

Because of the preliminary data in Figure 1 showing the shuttling of IGFBP-3 from the nucleus to the cytoplasm, we examined the IGFBP-3 primary amino acid sequence to determine whether it contains a leucine-rich sequence of conserved spacing and hydrophobicity which fits the criteria established for an NES. We observed that the C-terminal residues between amino acids 190 and 201 conform to this motif, as indicated by their similarity to other known NESs such as HIV REV and p53 (Figure 2). In addition, alignment of this sequence across other members of the IGFBP family is shown. This sequence is highly conserved in widely divergent species. In addition to its role as a nuclear transcription factor, p53 has a confirmed pro-apoptogenic role at the mitochondria. This putative sequence suggests extra-nuclear trafficking of IGFBP-3 and the possibility of a mitochondrial function for IGFBP-3.

To further support mitochondrial localization of IGFBP-3, we analyzed IGFBP-3’s AA sequence with MitoProt (http://psort.ims.u-tokyo.ac.jp/form.html). This calculates the N-terminal protein region that can support a Mitochondrial Targeting Sequence and the cleavage site. The mitochondrial localization of IGFBP-3 is based on hydrophobicity of its leader sequence. This program predicts import into the mitochondrial matrix and cleavage between AA 13 and 14.

We constructed a mutant NES IGFBP-3:FLAG (C-terminal) fusion consisting of leucine to alanine conversions at residues 197 and 200, since analogous mutations in other NES-containing proteins have been reported to prevent nuclear export. Wild-type or mutant NES:FLAG constructs were cloned in expression vectors; verified by sequencing; and transiently transfected to assess subcellular localization. In addition, the ΔMTS mutant was generated by deletion of the MTS between AA 27 and 40 with preservation of the signal peptide.

| p53 | MERELNEALELK | 351 |
| HIV rev | LP-PLEELTLD | 84 |
| BP-3 | MEDTL-NHLKFL | 227 |
| BP-5 | MEASL-QELKAS | 206 |
| BP-4 | LHRAEL-EILAS | 188 |
| BP-2 | LDQVL-ERISTM | 244 |
| BP-6 | LDSVL-QQTE | 177 |
| BP-1 | SGEEI-SKFLP | 204 |

Figure 2. A Nuclear Export Sequence (NES) in IGFBP-3. This region was identified in the C-terminal region of IGFBP-3 between AA 217 and 228 due to similarity to established NES in regions of conserved spacing and hydrophobicity in p53 and HIV rev proteins. Analogous regions of other members of the IGFBP family are shown in descending order of similarity. Hydrophobic AAs are highlighted in BOLD.
Western immunoblotting revealed that anti-IGFBP-3 antibody recognized the mutant NES as well as the ΔMTS protein (Fig 3A). Fractionation of transfected 22RV1 prostate cancer cells into nuclear and cytoplasmic fractions revealed that whereas WT IGFBP-3 had equal distribution between nuclear and cytoplasmic fractions after 48 hours transfection, BP-3 NES mutant shows increased amounts in nuclear versus cytoplasmic fractions compared to WT IGFBP-3 (Fig 3B). Immunoblotting with DNA PKC and Hsp60 were used to assess purity of the nuclear and cytoplasmic fractions respectively. No significant change in subcellular distribution as assessed by these fractionation methods was noted in the ΔMTS IGFBP-3 mutant.

Analysis by indirect immunofluorescent confocal microscopy correlated with subcellular subfractionation for IGFBP-3 localization with known mitochondria/ER markers (Fig 3C). No known proteolytic sites or N - glycosylation sites in BP-3 are being affected in the ΔMTS mutant.

**Association of IGFBP-3 with Mitochondria and Endoplasmic Reticulum in vitro.** In an attempt to obtain more detailed information on IGFBP-3 subcellular protein localization of endogenous IGFBP-3 in 22RV1 prostate cancer cells, we turned to subcellular fractionation via a protocol that combines differential and Percoll gradient centrifugations as this is the preferred method for higher purity fractions [24]. The internal membranes were segregated into mitochondria (Fig 4A, Lane 1), mitochondria-associated membrane (MAM; Lane 2), endoplasmic reticulum (ER; Lane 3), and a pellet from the MAM fraction that was collected at low g centrifugation, representing an intermediate zone between mitochondria and MAM fraction (Lane 4). The MAM fraction, a subdomain of the ER, which consists of membrane tubules that provide direct physical contact between the ER and mitochondria, was fractionated to high purity. The presence of IGFBP-3 in the various membrane fractions was assessed by immunoblotting. The relative purity of the fractions was assessed by the presence of specific marker antibodies (Hsp60 – mitochondria; PDI – ER, ACSL4 – MAM). Under baseline conditions in vitro IGFBP-3 localizes to the mitochondria (Lane 1), and is even more abundantly represented in the ER and MAM membrane fractions.

Figure 3. Subcellular localization of IGFBP-3 mutants (A) Recognition of mutant IGFBP-3 by IGFBP-3 antibody. (B) mNES BP-3 accumulates in the nucleus. 22RV1 cells were transfected with WT and mutant IGFBP-3 expression vectors, and fractionated into cytoplasmic and nuclear fractions 48 hours after transfection. BP-3 NES mutant shows increased amounts in nuclear versus cytoplasmic fractions compared to WT IGFBP-3. No known proteolytic sites or N-glycosylation sites in BP-3 are being affected in the ΔMTS mutant. C – cytoplasmic fraction; N – nuclear fraction (C) Immunofluorescence of transfected WT and mutant IGFBP-3 in 22RV1 prostate cancer cells. Green - anti-FLAG (IGFBP-3), blue - DAPI (nuclear staining).
Bcl-2 expression is detected in all membrane fractions as well as has been previously described. RXRα was detected most prominently in the mitochondria fraction, as well as a faint presence in the MAM. RXRα presence in Lane 4 likely represents mitochondria in this transitional layer. In addition, another binding partner of IGFBP-3, Nur77 was also identified in the MAM and ER, with faint presence in the mitochondrial fraction. Mitochondrial localization of RXRα and Nur77 has been described previously. Immunofluorescence studies revealed co-localization of endogenous IGFBP-3 with Mitotracker and PDI, an ER marker, consistent with the subcellular fractionation studies (Fig 4B).

**d. Assess the effects of mutant IGFBP-3 (NES and MTS) on apoptosis. (Months 9-12)**

We have begun to assess the effects of the NES and MTS mutants on apoptosis and show that mutation prevents efficient apoptosis by IGFBP-3. ([Fig. 1](#))

**Task 2. Define the role of the IGFBP-3/RXR/Nur77 apoptotic pathway in vivo in the TRAMP mouse model.**

**a.** We will age the Nur77 KO and IGFBP-3 KO mice to determine if and when these mice develop prostatic pre-neoplastic lesions. (Months 1-18)

We have established cohorts and are currently aging them.

**b.** Examine the role of IGFBP-3 in apoptosis induced by androgen withdrawal by castration of TRAMP and IGFBP-3 KO:TRAMP mice

i. Develop IGFBP-3 KO:TRAMP cross and assess mouse aging and tumor chronomics. (Months 1-24). Total 100 mice.

We are currently breeding these mice and genotyping. After some initial problems with mouse mating, we are happy to report that after moving to a new location the mice have resumed breeding.

ii. Examine subcellular localization of RXR, IGFBP-3, and Nur77 utilizing in situ immunohistochemistry and immunoblot post cellular fractionation in...
tumors before and after castration (25 mice/group; 13 castration and 12 “sham” castration) at 12 weeks of age (Total 75 mice). Animals to be sacrificed after 6h (2 mice/group) and then every 24h for 4 days. (months 1-6)

iii. Evaluate apoptosis utilizing TUNEL staining and evaluate protein subcellular distribution of IGFBP-3, RXR, and Nur77 by Western blotting. (Months 6-12) (Fig. 5).

WT mice showed a dramatic, 6-fold increase in the number of TUNEL-positive nuclei at 48 hours post castration. However, IGFBP-3 KO mice prostates failed to show any significant increase in TUNEL staining at 48 hours. By 72 hours TUNEL staining returned to near baseline levels in WT mice and remained near baseline levels in IGFBP-3 KO mice. Serum IGFBP-3 levels were undetectable in the KO mouse and remained unchanged in WT mice post castration. p53 has been shown to be required for prostatic apoptosis, and we have now shown that IGFBP-3, which is activated downstream of p53, is also required for this process. In summary, this is the first description of an in vivo role for IGFBP-3 in physiological cell death and indicates that IGFBP-3 is critical for prostatic apoptosis, a fact with potential therapeutic implications in prostate cancer.

c. Study the in vivo effects of IGFBP-3 replacement treatment in the IGFBP-3 KO:TRAMP model of prostate cancer. This will commence at a later date after the cross has been established.

i. Comparison of response to a 4-week course of IGFBP-3 treatment in the TRAMP and TRAMP/IGFBP-3 KO mice on tumor size and histology. (Months 24-30) 7 mice/group total 28 mice (including controls).

ii. Evaluation of tumor apoptosis by TUNEL staining and proliferation by PCNA staining. (Months 24-30)
iii. Perform immunohistochemistry for subcellular localization of IGFBP-3, Nur77, and RXR as well as subcellular fractionation and immunoblotting for IGFBP-3, RXR, and Nur77. (Months 30-36)

**Key Research Accomplishments**

- Defined a Nuclear Export Sequence in IGFBP-3
- Created NES / MTS mutants of IGFBP-3
- Established Mitochondria and Endoplasmic Reticulum Localization of IGFBP-3 in vitro
- Demonstrated Mitochondrial Localization of Recombinant Administered IGFBP-3 to prostate cancer xenografts in vivo.
- Assessed Mutant Effects on IGFBP-3 induced apoptosis
- Castrated IGFBP-3 KO and WT mice
- Demonstrated that IGFBP-3 is essential for androgen deprivation-induced apoptosis
- Continued IGFBP-3 KO:TRAMP mice mating
Reportable Outcomes

Manuscripts Submitted

Manuscripts in Preparation
2. Yamada PM, Mehta HH, Paharkova-Vatchkova V, Lee A, Lee KW. Endoplasmic Reticulum Interactions with Grp78 via a BH3-only domain in IGFBP-3 impair insulin-stimulated glucose transport in 3T3L1-adipocytes.

Poster Presentations


**Oral Presentations**

Conclusions

Thus, we conclude that IGFBP-3 is a potent apoptosis inducer with potential implications in prostate cancer. IGFBP-3 induces apoptosis of both androgen-dependent and –independent CaP in vitro, and this has recently been demonstrated in vivo. On a cell biology level, to my knowledge IGFBP-3 is the only molecule known with an endocrine (serum carrier for IGF), as well as an auto-/paracrine function (that can be IGF-independent) with nuclear and extranuclear functions. Therefore, the proposed work shifts the current thinking of IGFBP biology. We have begun to characterize how subcellular localization of IGFBP-3 effects apoptosis induction. In addition, we have for the first time implicated IGFBP-3 in physiologic apoptosis induced by androgen deprivation utilizing the IGFBP-3 KO mouse. Practically speaking, the mechanistic work proposed therein represents the foundation for a new therapeutic intervention in the treatment of men with prostate cancer. These experiments will provide a research-based rationale for clinical trials of IGFBP-3 and establish a role for such therapy in androgen-dependent and –independent prostate cancer. IGFBP-3 has recently undergone successful phase 1 studies in humans and is about to enter phase 2 studies in cancer patients. If successful, these expected findings will improve our understanding of this emerging prostate cancer therapy and facilitate further clinical development in men with prostate cancer.
References


CURRICULUM VITAE

Name and Address  Kuk-Wha Lee MD PhD FAAP
11780 Pecan Way
Loma Linda, CA  92354
Ph:  (909) 799-1510
E-mail:  kukwhalee@mednet.ucla.edu

Present Position  Assistant Professor, Pediatric Endocrinology
Training Program Director
Mattel Children’s Hospital at UCLA
David Geffen School of Medicine at UCLA
10833 Le Conte Ave., MDCC 22-315
Los Angeles, CA 90095
Ph:  (310) 825-6244
FAX: (310) 206-5843
July 2004-present

Personal

Date of Birth  September 11, 1968
Place of Birth  Seoul, Korea
Citizenship  USA
Marital Status  Married
Spouse  Daniel J. Won, MD
Dependent  Timothy  DOB 5/94
           Mitchell  DOB 10/96

Religion  Seventh-Day Adventist

Education

B.S. Chemistry  Southwestern Adventist College
Keene, TX
May 1988
Minors:  Biology, Physics, Mathematics
**Note:** PhD/MD via Medical Scientist Training Program 1988-1996

Ph.D. Microbiology  
Loma Linda University  
Loma Linda, CA  
March 1995

Thesis title  
“Transcriptional regulation of insulin-like growth factor binding protein-4 (IGFBP-4) by protein kinase A and protein kinase C regulatory mechanisms in human bone cells”

M.D.  
Loma Linda University School of Medicine  
Loma Linda, CA  
May 1996

Residency  
Pediatrics  
Loma Linda University Children’s Hospital  
July 1997-June 2000

Fellowship  
Pediatric Endocrinology  
Mattel Children’s Hospital at UCLA  
July 2000-June 2003

Previous Position  
Clinical Instructor, Pediatric Endocrinology  
Mattel Children’s Hospital at UCLA  
July 2002-June 2004

Board  
American Board of Pediatrics  
October 2000

Subboard  
Pediatric Endocrinology  
August 2005

Current Position  
Assistant Professor in Residence  
July 2004  
Training Program Director  
August 2007

Research Experience  
**Synthesis and NMR analysis of Lithium organometallic compounds**  
Karen Hansen, Ph.D.  
North Texas State University  
June 1985-August 1985
Molecular Genetics of $hsdR$ and $hsdM$ Restriction-Modification systems in *E.coli K12*

Junichi Ryu, Ph.D.
Loma Linda University
June 1986-August 1986

Sequencing the mHA gene (Bacterial Chemotaxis)

Barry Taylor, Ph.D.
Loma Linda University
June 1987-December 1988

Transcriptional Regulation of the human Insulin-like growth factor binding protein (IGFBP-4) gene

Donna D. Strong
Division of Mineral Metabolism
Jerry Pettis VA Medical Center
Loma Linda, CA
June 1989-March 1996

Functional Interactions Between RXR, Nur77, and IGFBP-3 in the Regulation of Cellular Growth and Apoptosis in human carcinoma

Pinchas Cohen, MD
Pediatric Endocrinology
Mattel Children’s Hosp at UCLA
Los Angeles, CA
July 2000-June 2003

Examination

NBME, Part I June 1991
USMLE, Part II March 1996
USMLE, Part III December 1997
American Board of Pediatrics October 2000
American Board of Pediatrics Subboard Endocrinology August 2005

Medical License

California A065975

Honors

Magna cum laude
Who’s Who in American Colleges and Univ.
Minority Fellowship in Chemical Res, NTSU
Summer Fellowship in Biomed Research, LLU  
Medical Scientist Training Prog Scholarship  
UCLA Department of Pediatrics Res Award

Current Funding

Giannini Foundation Fellow  
2001-2003

UCLA CHCRC-K12 Award  
2004-2006

UCLA/UCSD DERC P & F  
2004-2005

UCLA Stein-Oppenheimer Endowment Award  
2004-2005

Lawson Wilkins Pediatric Endocrine Society  
Genentech Clinical Scholar  
2004-2006

Leadership

American Medical Student Association  
President, Loma Linda Chapter (1990-1991)

Memberships

American Academy of Pediatrics  
Amer. Assoc. for the Advancement of Science  
Endocrine Society  
Lawson Wilkins Pediatric Endocrine Society  
American Diabetes Association  
Society for Pediatric Research

Honors and Awards

1986   Minority Summer Fellowship in Chemical Research, NTSU  
1987   Summer Fellowship in Biomedical Research, LLU  
1988   Magna cum laude  
1989   Who’s who in American Colleges and Universities  
1990   Medical Scientist Training Program Scholarship  
1992   American Medical Student Association, President  
2001   Giannini Family (Bank of America) Foundation Fellow  
2003   UCLA Department of Pediatrics Fellows Award for Basic Research  
2004   Stein-Oppenheimer Award
<table>
<thead>
<tr>
<th>Year</th>
<th>Award Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2004</td>
<td>LWPES/Genentech Clinical Scholar</td>
</tr>
<tr>
<td>2005</td>
<td>UCLA / UCSD DERC Developmental Award</td>
</tr>
<tr>
<td>2006</td>
<td>UCLA Prostate Cancer SPORE Career Development Award</td>
</tr>
<tr>
<td>2007</td>
<td>Phase One Foundation Clinical Scientist Development Award</td>
</tr>
</tbody>
</table>
Publications (peer reviewed)


**Manuscripts Submitted**


**Manuscripts in Preparation**


4. Yamada PM, Mehta HH, Paharkova-Vatchkova V, Lee A, **Lee KW**. Endoplasmic Reticulum Interactions with Grp78 via a BH3-only domain in IGFBP-3 impair insulin-stimulated glucose transport in 3T3L1-adipocytes.

**Book Chapters**


**Oral Presentations**


Won, D.J., Lee, K.-W., Sherwin, T. An alternate technique to close neurosurgical incisions using octylcyanoacrylate adhesive. The section on Pediatric Neurological Surgery of AANS/CNS. Atlanta, GA. December 1999.


**Poster presentations**


