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ABSTRACT 

This thesis extends previously developed self-tuning adaptive control algorithms 

to be applied to a scenario where multiple vehicles autonomously form a communication 

chain which maximizes the bandwidth of a wireless sensor network. In the simulated 

scenario, multiple unmanned aerial vehicles are guided to positions that optimize 

communication links between multiple ground antennas.  Guidance is provided by a self-

tuning extremum controller, which uses adaptive techniques to autonomously guide a 

vehicle to the optimal location with respect to a cost function in an uncertain and noisy 

environment. In the case of high-bandwidth communication, this optimal location is the 

point where signal-to-noise ratio is maximized between two antennas. Using UAVs as 

relay nodes, an optimized communication chain allows for greater communication range 

and bandwidth across a network. Control system models are developed and tested using 

computer and hardware-in-the-loop simulations, which will be validated with a flight test 

at a future date.  
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I. INTRODUCTION 

A. MOTIVATION 

Wireless networking for high bandwidth communication currently has 

applications such as surveillance, wide-area sensing, environmental monitoring, search 

and rescue, and communication relay. Algorithms that optimize a network using teams of 

distributed robots are an emerging technology and a popular area of research. The 

challenge of controlling multiple vehicles falls on implementing these algorithms in real-

time using distributed autonomous control. 

This thesis extends previously developed, self-tuning, adaptive control algorithms 

to be applied to a scenario where multiple vehicles autonomously form a communication 

chain that maximizes the bandwidth of a wireless sensor network. In a simulated 

scenario, multiple unmanned aerial vehicles are guided to positions that optimize the 

communication links between multiple ground antennas. The advantage of using UAVs 

as distributed relay nodes include extended range, greater coverage area, and eliminating 

any line-of-sight requirement for communication between nodes. 

B. TACTICAL NETWORK TOPOLOGY (TNT) PROGRAM 

The TNT program is an exercise supported by the United States Special 

Operations Command (USSOCOM) and hosted by NPS quarterly at Camp Roberts, CA. 

The goal of this program is to explore viable applications of emerging technologies 

related to communications, vehicle control, and ad-hoc wireless mesh networks. Recent 

TNT flight tests from NPS Center for Autonomous Vehicle Research have focused on 

target identification and tracking, path following, and high-bandwidth communications. 

Flight tests are conducted at the Center of Interdisciplinary Remotely-Piloted Aircraft 

Studies (CIRPAS) facility located at McMillan Air Field in Camp Roberts, CA. 

C. THESIS OBJECTIVES 

At the NPS Center for autonomous vehicle Research, flight tests have been 

conducted using a single UAV as a relay node between two ground stations. The goal of 
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this thesis is to extend previously developed adaptive algorithms to be applied to a 

scenario where multiple UAVs autonomously form a communication chain optimizing 

the bandwidth of a wireless sensor network. Additional simulations are conducted to 

explore new applications of decentralized control related to high bandwidth 

communication and surveillance.  
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II. BACKGROUND 

A. WIRELESS COMMUNICATION NETWORKS 

A network consists of series of communication devices, such as computers, 

cellular phones, or portable radios that are able to send and receive messages. For local 

area networks these devices must either be hardwired to the network or communicate via 

a router connected to the network. This setup can only be used if the devices are in close 

proximity to wireless routers or are directly connected to the network through cables. 

New developments in the last decade have led to the development of wireless mesh 

networks. In a mesh network each node is able to communicate to every other node, and 

does not rely on a single source as in a local area network [7]. The network maintains 

signal strength by using a series of hops to transfer information, increasing the bandwidth 

of the network with each additional node. Thus, the total coverage area created by a 

wireless mesh network can potentially be as large as an entire city with enough devices 

[8]. In a mesh network, information can be easily re-routed to account for nodes that are 

added or removed, which creates robustness to node failure [6]. Wireless mesh networks 

use IEEE 802.11 a, b, and c wireless protocols, which are compatible with most wireless 

devices in use today.  

A wireless sensor network consists of a series of sensor devices that are able to 

send and receive data with the other nodes via a wireless mesh network. Wireless sensor 

networks have become popular in oceanography and environmental survey fields because 

they allow a team of vehicles to autonomously collect data over a large area [6]. In the 

military, wireless sensor networks are used for surveillance and communication relay. 

The robustness to loss of a single node in wireless sensor network allows for a team of 

mobile sensors to continue a mission even if several sensors are lost [8].  

An Ad-hoc wireless mesh network consists of several mobile wireless devices 

with links that automatically adjust for the motion of the nodes [7]. With each node able 

to communicate with every other node, an ad-hoc network can find the most efficient 

 



path to route a message. In an intelligent ad-hoc network the nodes can reposition 

themselves autonomously in a configuration that optimizes the network for a desired 

mission. 

B. MODELING COMMUNICATION NETWORKS  

The link quality between two radio antennas can be affected by received signal 

power, sensor specifications and environmental factors [2]. For a receiving antenna to be 

able to detect and demodulate an incoming signal, the received power must be greater 

than the receiver’s sensitivity. If the received signal power is not greater than this 

minimum threshold value, link breakage could result [2]. The Link margin relates 

received signal strength and the minimum receiver threshold [2] 
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nsr seLink Margin = P R                                           (2.1) 

where  is the received power and rP sensR is the minimum received signal that will 

guarantee reliable operation in dB. 

The link between antennas also depends on the noise level of system devices and 

environment. The desired position of an antenna is a location where the received signal is 

maximized and noise is minimized. Received signal power and noise power are related 

by the signal-to-noise ratio (SNR) [2]. 

  
SNR 

Received Signal Power

Noise Power                                        (2.2)
 

The total throughput of a communication link will be optimal when its channel 

capacity is maximized. The Shannon-Hartley theorem relates channel capacity (C, bits 

per second) to bandwidth (W, Hz) and SNR [2]. 

C W log
2

1 SNR                                              (2.3) 
 

Since SNR and channel capacity are directly proportional, the channel capacity of 

a link will be maximized when SNR is at its peak value. 



1. Free-space Radiowave Transmission 

The received power, rP , of an antenna for line-of-sight communication can be 

determined by the Friis free space transmission Equation [2]. 

 

2

2 24
t t r

r

PG G
P

D




       (2.4) 

where tP is the transmitted power,  is the transmitter gain,  is the receiver gain, tG rG   is 

the wavelength in meters, and  is the separation distance between transmitter and 

receiver in meters. This equation computes the free space path loss between two antennas 

with no obstructions in the path between them. The antenna gain represents antenna 

directivity and efficiency, while the inverse distance square of separation distance 

accounts for the spherical wave front spreading [9]. Expressed in dB, the transmission 

equation becomes [2]. 

D

 

r t t r PathP P G G L                                                       (2.5)  
 

with line-of-sight path loss is represented by [2] 

 

  
L

path
dB   P

r
 P

t
 32.4  20log( f )[ MHz] 20log(d )[km]

                  (2.6) 
 

where f is the signal frequency in MHz and d is the separation distance in km. 

From the Friis transmission equation, the SNR of the receiver can be determined [2]. 

 

SNR[dB]  P
r
 NL                                  (2.7) 

                              

where NL is the system noise level in dB. 
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2. Antenna Pattern Losses 

In addition to the line-of-sight path loss, losses also result from the orientation of 

the antennas relative to each other. In a spherical coordinate system, the radiation pattern 

of an antenna is determined by measuring the electric field intensity of a sphere at a fixed 

radius [2]. The electric field intensity is represented by the antenna gain, which will vary 

with elevation and position about the antenna’s azimuth depending on the polarization 

and specifications of the antenna. Attenuation due to antenna gain patterns can be 

accounted for in the free-space equation by determining the orientation of the sending 

and receiving antennas with respect to each other. The free space equation becomes [2] 

 r t t r PathP dB P G G L L     AP                                        
(2.8) 

 
 

with the term APL  accounting for the gain pattern losses. Figure 1 illustrates the gain 

pattern for a 2.2 dB omni-directional antenna, which can be attached to a small UAV. 

 

 

Figure 1.   Gain Pattern for 2.2 dB Omni Directional Antenna. From [2]. 

C. CONTROL FOR HIGH BANDWIDTH COMMUNICATION 

In adaptive control, the goal is to drive the set point of a dynamic system to an 

optimal one by finding the extremum, a local maximum or minimum, of an objective 

function [4]. For optimal communication, a network of vehicles can autonomously 

position themselves to maximize link quality by finding the extremum of an SNR cost 
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function. Numerical gradient descent techniques can be used to find this extremum 

provided that the cost function is defined mathematically. However, for an unknown and 

noisy environment, it is not possible to mathematically model SNR with a continuous 

cost function [1]. Additionally, numerical gradient estimation can be computationally 

intensive and difficult to implement in real time. The control algorithm used in this thesis 

combines an extremum seeking gradient estimation scheme with a traditional gradient 

ascent controller [1]. The advantages of this controller are that it does not require a model 

of the objective function and avoids costly Jacobian and Hessian matrix calculations in 

the gradient estimation step [8]. The simplicity of this controller makes it ideal for use 

with a network of vehicles that do not have a large amount of onboard computational 

power. 

1. Extremum Seeking Gradient Estimation 

Extremum Seeking control has been researched since the 1950s and has proved to 

be a useful and efficient adaptive control method. In the 1990s, extremum seeking saw 

resurgence as researchers found it particularly useful for real time optimization [4]. In 

2000, Krstic and Wang provided stability proofs for extremum control, which led to its 

widespread use in adaptive control applications such as formation flight, bioreactor 

operation, engine mapping, and beam matching in particle accelerators [4]. Extremum 

seeking can be particularly useful for nonlinear systems with a local minimum or 

maximum with respect to which the system can be optimized [8]. The most common 

extremum seeking method involves perturbation, or injecting a sinusoidal signal into the 

plant to generate a gradient estimate. An extremum seeking flow chart is shown in Figure 

2. 



̂ J

 J y
J



 ˆ d
J

dt   



̂
J

*

*J

k

S

 

Figure 2.    Extremum Seeking Control Architecture. From [1] 

 

For an adjustable parameter   , the output of the plant, y , is defined as [1] 

y  J                                                          (2.9) 

where  J  is a performance function with an extremum value at *  . To estimate 

the gradient of the objective function, a sinusoidal signal is injected into the plant to 

perturb J  about its current heading value ̂ . The output of the plant becomes [1] 

y  J ̂  a sin t  J ̂  a
J

 ̂

sin t
                            (2.10)  

 

after applying a high pass filter, s

s  h
, the DC offset, J ̂ , is eliminated and the plant 

output signal becomes [1] 

yHP  a
J

  ̂

sint

                                          (2.11) 

 

Injecting a second sinusoidal signal demodulates the into a high and low frequency 

components [1] 

hpy
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 
1

2
a
J

  ̂


1

2
a
J

  ̂

cos2t

                              (2.12) 

 



applying a low pass filter, l

s  l
, gives the gradient estimate [1] 

yLP 
1

2
a
J

  ̂                                             (2.13) 

 

Assuming the objective function is quadratic in nature, the cost is defined as [1] 

J   J  *  1

2
J  *  ̂   * 2

                               (2.14) 
 

where the gradient about ̂  is [1] 

J̂ 
J

  ̂

 J   * 
                                    (2.15)  

This gradient estimate can be used by a steepest ascent controller to guide a vehicle to the 

peak of an objective function. Extremum seeking gradient estimation is advantageous for 

real time applications where complex gradient calculations are not feasible. Additionally, 

an extremum seeking gradient estimator does not require a continuous objective function 

model, which makes it ideal for unknown and noisy environments. 

2. Signal to Noise Ratio Estimation 

In an uncertain and cluttered environment, actual SNR measurements obtained 

from sensors are noisy and have a low sample rate (1 Hz). To improve these sensor 

measurements, the SNR cost function can be modeled using an artificial potential field of 

the predicted SNR [2]. If the locations of the ground antennas are known, the SNR of 

each link can be modeled with the free space transmission equations to create a 

continuous SNR map. Although this model does not account for effects of scattering, 

reflection, refraction and extraneous environmental noise, it provides a reasonable 

estimate to compare to actual SNR measurements [2]. Additionally the scale of the SNR 

potential field allows the user to accurately tune the extremum seeking parameters of the 

controller to guarantee stability. 
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Figure 3.   SNR map of 2 Ground Antennas. From [2]. 

 
 
 

 

Figure 4.   Single Node 2-D SNR Distribution. From [2]. 
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III. PREVIOUS WORK 

MATLAB Simulink 6.5 by Mathworks is used to develop and test self-tuning 

extremum control algorithms. Additionally, the Aerspace blockset by Aerosim and 

Stateflow visual coding software by Mathworks are incorporated into the Simulink block 

diagrams. 

A. UAV DYNAMIC MODEL 

To simulate the dynamics of a small aircraft, a 6 degree of freedom vehicle model 

from the Aerosim blockset was incorporated into a closed loop Simulink model. The 

inputs to the model are commanded velocity, bank angle, and altitude. The control input 

is bank angle with constant altitude and velocity commands. Using an approximation of 

bank angle dynamics, the commanded bank angle is determined from heading rate output 

of the extremum controller [2].  

1tan cmdV

g

   
  





                                                        (3.1) 

where V is the forward velocity of the vehicle, cmd is the commanded heading rate, and 

g is acceleration due to gravity. The outputs of the dynamic model are heading, roll angle, 

and position in a local tangent plane coordinate frame. 

B. SNR MODEL 

In [2], a model was developed to determine the SNR of a link between a ground 

node and UAV by calculating the path and antenna pattern losses. The input variables to 

the model are the UAV flight trajectory and the location of the ground node, both in local 

tangent plane coordinates. The output of the model is the SNR of the link, which is the 

input for the extremum seeking gradient estimation algorithm [2]. 
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1. Path Loss Model 

Equation 2.8 develops the calculation of SNR between a ground node and a UAV using 

the Friis free space transmission equation. 

SNRPath dB  Pt  Gt  Gr  LPath  NL  

   32.4 20 log [ ] 20 log ( ) [ ]PathL f MHz d t km    

f = frequency (2400 MHz) 

            2 2

node node noded t x t x y t y z t z km     
2

 

Pt
 = transmitter power (28 dBm) 

Gt
 = transmitter antenna gain (9 dB) 

Gr
 = receiver antenna gain (3 dB) 

NL  = system noise level (-95 dBm) 

The specified gains and noise level are characteristic of the data sheets for the actual 

antennas used to create communication links during flight tests. 

2. Antenna Pattern Loss Model 

The antenna pattern loss for the link between ground antenna and UAV can be 

modeled using the antenna gain patterns provided from the antenna manufacturers. To 

determine antenna pattern loss, the incident angle for each antenna must be calculated 

using ray tracing. 

Puav,LTP 

x t 
y t 
z t 



















         and       

                         (3.2)

 Pnode,LTP 

xnode

ynode

znode

















the incident angle is defined as 
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    
     

1

2 2
tan node

node node

z t z
t

x t x y t y
 

                                            (3.3)
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Figure 5.   Line-of Sight Path Loss Vector. From [2]. 

The banking motion of the UAV affects the angle of the onboard antenna and 

introduces noise to the total SNR measurement. The bank angle has the effect of 

decreasing or increasing the angle of arrival depending on its heading with respect to the 

ground node. SNR will be most sensitive to bank angle when the UAV travels on a path 

perpendicular to the ground node. Conversely, bank angle will have no effect on SNR 

when the UAV is flying directly toward or away from the ground node [2].  

 

 

Figure 6.   Bank Angle Effect. From [2]. 
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This bank angle effect is modeled using a sine function to determine the influence of 

bank on the arrival angle based on the UAV’s heading [2]. 

Bank Angle Effect =  sin                                       (3.4) 

where  is the UAV roll angle,   is the bearing to the sending antenna, and   is UAV 

heading. The input into the antenna gain pattern chart is the arrival angle, which is the 

difference between the incident angle and the bank angle [2]. 

Arrival Angle =  t  Bank Angle Effect                              (3.5) 

The antenna pattern loss is then determined from a look-up table modeled after antenna 

manufacturer data [2]. 

C. SELF-TUNING EXTREMUM CONTROLLER 

1. Gradient Ascent 

With heading rate as the control input to the UAV dynamic model, the goal of the 

controller is to command the UAV to fly in a direction that ascends the gradient of the 

cost function. Using traditional gradient ascent numerical techniques, the desired heading 

is determined [1] 

 k1   k   kJ                                                  (3.6) 

where  k
is the step length and J is the gradient obtained using extremum seeking 

perturbation methods. To obtain the control input of the dynamic model, heading rate 

equation needs to be differentiated [1] 

d t 
dt

  t  d

dt
J 

                                                 (3.7)
 

If the objective function is assumed to be quadratic, it will be of the form [1] 

J ̂ t   J * 

2

̂ t   * 2  w t 
                                   (3.8) 

The output of the extremum-seeking controller will be the gradient estimate for the 

current heading [1] 
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J̂ t  
J ̂ t  
̂ t 

  ̂ t  * 
                                  (3.9)

 

To employ the gradient descent algorithm from Equation 3.7, the gradient estimate needs 

to be differentiated [1]. 

     ˆ tJ t
t   
 

                                              (3.10)
 

Inserting this solution into Equation 3.7 results in a heading rate command for the 

steepest descent of the cost function [1]. 


 com t   d t 

dt
  t  d

dt
J  

   t t                                         (3.11) 

Instead of commanding a heading pointing directly at the extremum point, it is more 

desirable for the UAV to gradually converge to a steady state heading rate value [1]. 

   cmd ss t t     
                                        (3.12) 

This controller will command the UAV to find where the gradient is minimized and circle 

about that point. 
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Figure 7.   Extremum Controller Convergence. From [9]. 
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2. Convergence 

For steepest ascent controller to provide smooth fast convergence, it is necessary 

to determine an optimal time step scale factor,  t   [1]. Bounds on this step length value 

are specified by a set of criteria known as the Armijo-Wolfe conditions. These conditions 

limit the gradient ascent rate if the step length is too small and command the UAV to fly 

a straight line if the step length is too large. The value for alpha is chosen such that [1] 

Jk1  Jk1  Jk                                                 (3.13) 

 k1    k ,    where 
0   1,      if Jk1   th

 1,         else Jk1   th





                         (3.14)

 

3. SNR Cost Function 

The object of the self-tuning extremum controller is to command a heading rate 

that climbs the gradient of an SNR cost function to the desired objective. For a case 

where the link between a single ground node and UAV is optimized, the cost function 

will be J  SNR , with SNR designated as the figure of merit for the link [1]. In a 

scenario where multiple communication links are optimized, a distributed cost function 

must be used. This cost function will combine the SNR values for the links in such a way 

that the UAV is able to maximize the throughput of the network. It is important to note 

that the end-to-end throughput of a series of nodes will be limited by the link with the 

lowest SNR value [2]. Thus the objective of the controller is to drive the SNR of all 

communication links to the same value. At the optimal point, all links will have the same 

SNR value, and that SNR will be at a maximum. To force the SNR of all links to the 

same value, the UAV ascends the gradient of the link with the smallest SNR value.  

Using the defined cost function, the extremum controller regulates vehicle states 

using a search sequence that minimizes the performance output. The extremum control 

problem is interpreted as [3] 

  1min ( ) subject to ,
k

k k k k k
x D

J 
x x f x u    (3.15) 
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For optimizing the combined SNR of a UAV with links to two ground nodes, the cost 

function is chosen to be [2] 

Jtotal  min J1, J2 

       = k log
1

J1


1

J2





       (3.16) 

J1  and  are the SNR value of the communication links with ground tower 1 and 2, 

respectively and 

J2

  is a shaping parameter used to adjust the slope of the gradient close to 

the gradient peak. The control objective is to find an optimal control input such that the 

gradient terms between UAVs and communication nodes are nearly zero as shown in 

Equation 3.17 [3]. 

 1, 2,
( )

 Find lim[ ( ) ( ) ] 0
uav

uav uavtu t
J t J t


       (3.17) 

where 1, ( )uavJ t

2,uav

 is the gradient of the relative SNR signal between the node 1 and the 

UAV, and ( )J t is the gradient of the relative SNR signal between the node 2 and the 

UAV . 

D. INITIAL FLIGHT TEST 

The flight test in reference [1] used a self-tuning extremum controller to find a 

theoretical SNR peak between two ground antennas. The extremum controller used a 

model-based approach to find the location of the anticipated SNR peak. During the flight 

actual SNR readings were taken and were shown to be within a reasonable range of the 

SNR model.  
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Figure 8.   UAV Flight Trajectory. From [2]. 

 

Figure 9.   SNR for Link with Ground Station 1. From [2]. 
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Figure 10.   SNR of Link with Ground Station 2. From [2]. 

E. MULTIPLE GROUND NODE SIMULATION 

 

Figure 11.   Multiple Ground Node Link Structure 

Extending the confirmed flight test case to include many ground nodes does not 

require any modification of the extremum controller. In the simulated scenario, a single 

UAV repositions itself to find the optimal communication relay point to five ground 

antennas.  The SNR cost function for this scenario becomes 
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Jtotal  min J1, J2 , J3, J4 , J5 

       = k log
1

J1


1

J2


1

J3


1

J4


1

J5





     (3.16)

 

 

Figure 12.   Multiple Node Simulated UAV Trajectory with SNR Estimates 

 

Figure 13.   Multiple Node Simulated SNR Values 
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This simulation demonstrates that a mobile relay node can be used to optimize the 

SNR of an arbitrary number of received signals. As opposed to extending the end–to-end 

throughput of a communication chain, the relay node in this scenario optimizes network 

coverage for a series of spaced out nodes. An application where this setup would be 

useful is when a series of ground users need to communicate, but have no line-of-sight 

contact with other users. 
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IV. DECENTRALIZED EXTREMUM CONTROL OF MULTIPLE 
UAVS 

A. DISTRIBUTED CONTROL OF AUTONOMOUS SYSTEMS 

A distributed system consists of a series of independent subsystems that cooperate 

to perform a task. Decentralized, or distributed control refers to the manner in which 

members of a multi-agent system communicate with and react to the dynamics of other 

members in order to accomplish a specified mission [7]. This command structure occurs 

in flocks of birds and schools of fish, where independent members collaborate to achieve 

a common goal by reacting to movements of their neighbors [6]. Centralized control, the 

opposite of distributed, suggests a single, universal controller responsible for planning 

and assigning movement for each component of a system. With a distributed control 

system, autonomous agents are capable of sensing, acting, and communicating such that 

minimal direction is provided from a centralized command station [8]. Advantages of 

distributed control include the ability of the group to adapt to unknown and dynamic 

environments and robustness to fault of a single member [3]. 

 

Figure 14.   Distributed Control Architecture. From [3]. 
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For decentralized control of multiple UAVs with general N nodes, it is necessary 

to define relative cost functions between the nodes and UAVs (UAV to ground node and 

UAV to UAV) for inputs to each extremum controller. Suppose there are two 

communication nodes (i, j) with two UAVs (l,m) in a linear network such that a node can 

send data to next neighbor node.  Then, two relative cost functions are defined by [3] 
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,   (3.17) , , , , , , , ,( ), ( ), ( )i l i l i l l m l m l m m j m j m jJ SNR J SNR J SNR   p  p  p

where ,i lJ is the SNR between the i ground node and UAV l , which is a function of the 

relative position vector between them. Then, the cost function for the vehicle is 

calculated by [3] 

,i lp l

 

 , ,

, ,

 min ,

1 1
log

l i l l m

l
i l l m

J J J

J J




  
 

  (3.18) 

Similarly, the cost function for the vehicle is obtained by m

 

 , ,

, ,

 min ,

1 1
log

m l m m j

m
l m m j

J J J

J J




 
  

            (3.19) 

The relative cost functions ( lJ , mJ ) are used as inputs for the extremum controller for 

each vehicle [3] 

 , ,lim[ ( ) ( ) ] 0l m m jt
J t J t


    (3.20) 

Where 1, ( )uavJ t

2,uav

 is the gradient of the relative SNR signal between the node 1 and the 

UAV, and ( )J t is the gradient of the relative SNR signal between the node 2 and the 

UAV . The control objective is to find optimal control inputs such that the gradient terms 

between UAVs and communication nodes become equal as shown in Equation (34) [3]. 



For a mission involving multiple unmanned vehicles, decentralized control 

implies that each member determines its movement using an onboard controller. This 

controller typically can react to the position and orientation of other members in addition 

to onboard sensor measurements. In a wireless sensor network, each vehicle could 

potentially share sensor information with other members such that the vehicles reposition 

themselves to perform a mission more efficiently. Although there are varying degrees of 

decentralized control, the goal is to increase autonomy in a network of vehicles so that 

coordinated tasks can be performed with minimal user oversight. A decentralized control 

structure would be particularly useful for optimizing communication in military wireless 

networks in that users would be able to focus on a mission while allowing autonomous 

vehicles to maintain a communication network. 

B. DISTRIBUTED EXTREMUM CONTROL FLIGHT SETUP 

In a scenario where a multiple UAVs collaborate to form a communication chain, 

decentralized control allows for each vehicle to find the optimal location for 

communication relay using an onboard self-tuning extremum controller. The UAVs in the 

communication chain will position themselves in a link structure assigned by the ground 

control station. In the simulated scenario, two UAVs form a communication chain 

between two ground nodes by finding the location where the SNR of all links is at the 

same optimal value. The decentralized link structure of a scenario where two UAVs form 

a communication chain is shown in Error! Reference source not found.. 

 

Figure 15.   Multiple UAV Link Structure 
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With sufficient onboard processing power, each UAV would ideally be able to 

calculate the SNR of each received signal using measurements and relay this information 

directly to other UAVs. However, for an experimental flight test, the SNR data 

processing step cannot be conducted onboard using the available hardware. In the flight 

test configuration, the SNR data of each link is processed at the ground control station 

and sent back to each UAV where trajectory is determined by an onboard extremum 

controller. Although this setup requires a greater amount of computation by the ground 

control station, it simulates a scenario where multiple UAVs are guided using only 

received SNR data. The control structure of the simulated scenario is shown in Error! 

Reference source not found.. 

 

 

Figure 16.   Distributed Control Architecture 

The SNR measurements sent from the ground station may either be model based, actual 

measurements, or a hybrid estimate using a filtered combination of the two. The actual 

SNR measurements can be used to update the model-based estimates to obtain a more 

accurate continuous SNR map. 
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1. Distributed Cost Function for Multiple UAV Control 

In the two UAV case, two separate, yet dependent, cost functions are needed to 

create an optimal communication chain. 

        UAV 1 Cost Function                   UAV 2 Cost Function 

JUAV1  min J1, J12 

         = 
1

J1


1

J12







                      

JUAV 2  min J2 , J12 

         = 
1

J2


1

J12





                          (4.1)

 

 

Figure 17.   Distributed Cost Function for 2 UAV Communication Chain 
 

The two UAVs climb the gradient toward a final position where are driven 

to an equal SNR and the gradient of each cost function is zero.  

J1, J2 ,  and J12

2. SNR Modeling of Link Between UAVs 

In the original SNR model, all links were modeled to reflect communication 

between a ground antenna and a UAV. In the multiple UAV case, the SNR model is 

altered to reflect communication between two UAVs. The antenna gains are decreased to 

reflect the less powerful antennas onboard the UAVs. Additionally the bank angle effect 

in the antenna pattern loss is modified to take into account the banking motion of both 

UAVs. 

Bank Angle Effect = 1 2 sin 1  2                                (4.2) 

where   is roll angle and  is heading in radians. 
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Figure 18.   Decentralized Extremum Control Schematic. From [1]. 

C. INITIAL GUIDANCE 

Initial simulations of the decentralized control setup previously described 

exhibited slow convergence to the final optimal positions when the initial offset distance 

was large. For distributed SNR optimization using multiple UAVs as relay nodes, the 

SNR map is dynamic since the vehicles are moving relative to each other. For a dynamic 

SNR map, the two UAVs will only be able to converge to the gradient peaks when the 

gradient is slowly changing. Since SNR between the UAVs is mostly a function of 

separation distance, for convergence the relative distance between the aircraft must 

slowly change. If the UAVs are initialized far from the optimal point and each other, the 

gradient ascent algorithm becomes unstable due to the rapidly changing SNR gradient.  

To decrease convergence time of the decentralized extremum control scheme, 

initial guidance is required to position the UAVs relatively close to the optimal 

communication point. Two decentralized guidance methods were explored to accomplish 

this task. 
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1. Virtual Node Guidance 

The first method used for initial guidance utilizes an artificial node placed at the 

midpoint of the two ground antennas. The artificial SNR measurement is calculated using 

the free-space SNR model between a UAV and ground antenna. This allows for the same 

extremum controller to be used and simulates a fixed node case.  

 

 

Figure 19.   Virtual Node Guidance Link Structure 

 

With this configuration the SNR measurement from each respective ground node could 

be combined with the artificial SNR using a distributed cost function [1]. 

JUAV1,artificial  min J1, Jartificial1 
         = 

1

J1


1

Jartificial1











 

JUAV 2,artificial  min J2 , Jartificial 2 
         = 

1

J2


1

Jartificial 2











 (4.3)

 

To conduct a completely autonomous mission using extremum control and 

multiple control modes, the user must design robust switching criteria. Once both UAVs 

have minimized the gradient of the artificial guidance cost function, guidance is shifted to 

decentralized extremum control using the link between the UAVs. Convergence for 

virtual node guidance is defined when [1] 

29 
 



JUAV1  J1  J1,artificial  1  

and  JUAV 2  J2  J2,artificial  1
     (4.4)

 

2. Direct Artificial Potential Guidance 

An alternative to the virtual tower approach is to directly specify a single artificial 

potential function for each UAV along the line connecting the towers. The extremum 

gradient ascent controller will allow each UAV to converge to the peak of its respective 

potential function. Advantages of this method are that the same extremum controller 

parameters do not change and that the UAVs will always converge to the specified point 

regardless of starting position. The drawback of this method is that it involves a less 

decentralized approach since the user must specify the points to which the UAVs will be 

guided. Convergence for single node artificial potential guidance is defined when [9] 

Ex ss    
      (4.5) 

where   Ex is the extremum controller heading rate command,   ss is the desired steady-

state heading rate, and is a margin chosen to determine convergence. 

The ideal location of the artificial potential function is on the line connecting the 

two ground antennas. A best guess at the location of the optimal loitering position can be 

made using the line-of-sight SNR model. Error! Reference source not found. shows the 

combined potential for UAV1 with links to ground node 1 and UAV 2. Figure 20 shows 

the SNR cost function along the straight line path between ground node 1 and UAV 2, 

assuming the second UAV 2 is stationary and located at x=1000 m.  
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Figure 20.   SNR Map for UAV1 with Links to Ground Node 1 and UAV 2 

 

Figure 21.   SNR Potential Function Along Straight Path Between Nodes 

The ideal cost plot shows the combined potential function along this path has a maximum 

when both  and are equal. The point where this maximum occurs is the 

predicted optimal loitering location where an artificial potential function should be placed 

for initial guidance. In an actual flight experiment, once the UAVs have converged to the 

artificial peaks, guidance will be shifted to decentralized extremum control to guide the 

UAVs to the actual optimal loitering location.  

1SNR 12SNR
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D. DECENTRALIZED EXTRUMUM CONTROL FOR TWO UAVS 

1. Convergence Control 

For convergence during distributed extremum control mode the following criteria 

must be met for convergence [1]. 

JUAV1  J1  J12 1 

and         JUAV 2  J2  J12 1     (4.6) 

After these conditions are met the UAV positions will be near optimal and the control 

mode will switch to formation control. 

E. LOITERING FORMATION CONTROL 

Once the optimal point for communication relay has been reached, the UAVs fly 

in a coordinated formation that minimizes the SNR oscillations of the communication 

link between the UAVs. The final loitering path will be a circular orbit over the optimal 

point with the 2 UAVs flying in a synchronized pattern  

1. Optimal Loitering Formation 

The predicted SNR value of the link between the UAVs is determined by two 

variables: the separation distance between the aircraft and the difference in the roll angle 

between the two aircraft. The goal for an optimal loitering formation is to maintain a 

constant separation distance and maintain a constant roll angle. To achieve this result, the 

UAVs should fly an orbit in the same direction with their orbits synchronized in phase.  
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Figure 22.   Formation Synchronization Parameters 

To confirm that this case provides optimal link quality, four different 

synchronization patterns were simulated. Each case tested different synchronized phase 

spacing for orbits in the same direction. In the four simulations the follower aircraft 

synchronized its orbit in-phase, 90oahead, 90obehind, and 180o  out of phase with the 

lead aircraft. 

 

Figure 23.   SNR of Phase Spacing Configurations for Loitering Formation 
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These simulations show that in-phase motion of an orbit in the same direction provides 

the greatest stability with small variations in SNR. 

2. Synchronization Method 1 – Logic Controller 

The first method developed to guide the UAVs to a synchronized formation was 

using a logic controller that adjusts the circular orbit size for each aircraft. The 

coordinated logic controller used in this simulation was developed with Stateflow, a state 

machine compatible with Simulink. With block diagrams, Stateflow executes logic in 

real-time and allows the programmer to observe when the system shifts from one state to 

the next. The logic-controller synchronizes the phasing of the UAVs by commanding one 

aircraft to fly a larger or smaller orbit that will result in in-phase motion.  

Once the control is switched to loitering mode, one UAV is considered the leader 

and the other the follower. The lead aircraft continues to fly at a fixed radius above its 

optimal loitering position. The logic controller commands the follower aircraft to fly a 

circular orbit that will synchronize its orbit with that of the leader. To take into account 

uncertainty, the follower recalculates a new compensating loop every time its heading 

crosses 0 degrees. Once the follower has completed the loop it will arrive at 0 degrees 

approximately the same time as the leader. Shown below is a flight path of the follower 

aircraft in loitering mode. 

 

Figure 24.   Synchronization Flight Path of Follower Aircraft 
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Once a desired loitering radius is picked, the steady state heading rate command is 

given to the lead aircraft. 


 

Vcom

r0       (4.7)
 

where V  is the commanded forward velocity and  is the desired loitering radius. com r0

When the follower UAV crosses zero degrees, the heading difference between the UAVs 

is determined and used to calculate the new constant radius that the follower must fly to 

synchronize with the leader. Adding the heading difference to the desired steady state 

circumference determines the circumference of the new circle that the follower must fly.  

snew  2r0  r0    2rnew      (4.8) 

for  1  0,    
   2 if   2  

  2  2 if   2  





      (4.9)

 

If UAV 1 is behind the leader it will fly a smaller circle to catch up to UAV 2. If it is 

ahead, UAV 1 will fly a larger circle to allow UAV 2 to catch up. 

rnew  r0 
r0  

2      (4.10)
 



 new 
V

rnew


V

r0 
r0  

2




      (4.11) 

The advantages of using this logic controller are fast convergence to a synchronized 

formation and little drifting from the desired loitering location. The drawbacks are that 

the controller is not robust to external disturbances and requires an accurate vehicle 

model.  For distributed formation keeping, it is more desirable to use feedback to account 

for modeling discrepancies. 
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3. Synchronization Method 2 – Phase Controller 

An alternate method of synchronizing the UAV orbits is through a feedback phase 

controller. Using a method derived from a Kuramoto model for synchronizing harmonic 

oscillators, the phase error for the two UAV formation is defined as [6] 

   , 2 1 2sincmd UAV ss K            (4.12) 

where K is a feedback gain from a classical PID controller. The feedback controller 

drives the phase error to zero and results in a synchronized formation with both UAVs 

flying at heading rate of   ss . However, using only phase error for feedback control 

results in a final loitering orbit offset from the optimal loitering location. To correct for 

this position shift a second feedback controller is used to drive the center of the current 

orbit to the location of the optimal loitering point.  

 Once UAVs converge on their respective loitering points and shift from gradient 

ascent to loiter mode, the optimal position is calculated for each UAV by finding the 

center of the orbit. 

  
 coscenter UAV

ss

V
X X 


 

   
 

 

 sincenter UAV
ss

V
Y Y 


 

  
 

    (4.13)
 

The center of the current orbit is calculated using position, heading, and heading rate 

measurements. 

  
 coscenter UAV

UAV

V
X X 


 

   
 

    
 

 sincenter UAV
UAV

V
Y Y 


 

  
      (4.14)
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The distance between the current orbit center and the desired orbit center gives the offset 

error, r , which is input into a PID controller. 



,center UAV centerr X X   
                                                   (4.15)

, 2cmd UAV ss K r                                                        (4.16) 

Combining these two controllers gives the desired heading command 

  w K r, 2 1 1 1 2 2 2sincmd UAV ss w K                                     (4.17)

where  and are weighting factors such that  w1 w2

37 
 

w1  w2  1                                                          (4.18)

This controller simultaneously synchronizes the follower aircraft with the leader while 

maintaining an orbit over the optimal relay poin

 

t.  

 

Figure 25.   Follower Flight Path with Phase Feedback Control 



F. MULTIPLE UAV SIMULATION 

The following simulation combines the decentralized control techniques described 

above to guide two UAVs to the optimal relay locations to form a communication chain. 

This simulation has three modes shown in the flow chart below. 

 

Figure 26.   Control Mode Flowchart 

Initial guidance is provided via the virtual node method and a phase feedback controller 

synchronizes the UAVs at the final stage. 

 

Table 1.   Simulation Parameters 

Position Ground Tower 1 (East, North, Up) (0, 0, 5) m 

Position Ground Tower 2 (East, North, Up) (-1972,2356,5) m 

Ground Antenna Gain 14 dB 

UAV Antenna Gain 6 dB 

Transmitter Power 28 dBm 

Noise Level -95 dB 

Frequency 2400 MHz 
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Figure 27.   Multiple UAV Simulated Flight Trajectory with SNR Estimates 

This simulation shows the simulated UAVs converging at the optimal 

communication relay points and synchronizing their orbits.  The final loitering locations 

are at points nearly on the line connecting the two ground towers, which provides near 

optimal SNR values for all links in the communication chain. 
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Figure 28.   SNR Values for Multiple UAV Simulation 

The plot of SNR shows that the SNR values of links are driven to the same optimal value 

just above 36 dB. The synchronization at the final stage eliminates SNR oscillations in 

the link between the UAVs.  
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V. FUTURE APPLICATIONS 

A. MULTIPLE UAV RELAY TO MULTIPLE NODES 

It has already been demonstrated that UAV relay nodes can be used to optimize 

the coverage of a network for multiple ground users spread out over a large area. To 

improve network coverage, multiple UAVs can be used cooperatively as relay nodes. 

Using multiple UAVs cooperatively allows the relay nodes to adapt to the positions of the 

ground users more quickly and extend the range of a network. In the simulated case, four 

ground nodes were spaced out in a square pattern and two UAVs were used to optimize 

SNR across the network. Each UAV was linked to two of the ground nodes and the other 

UAV. The distributed cost function of each UAV in this case becomes 

JUAV1  min J1, J2 , Jbetween 

         = 
1

J1


1

J2


1

Jbetween







         

JUAV1  min J1, J2 , Jbetween 

         = 
1

J1


1

J2


1

Jbetween





               (5.1) 

where are the SNR values of the link with each ground node and  

is the SNR value of the link between the UAVs.  The UAVs were initially placed in the 

close to the middle of the square tower pattern and are guided their respective optimal 

loitering locations. Once converged, the UAVs synchronize their orbits using the phase 

feedback controller previously described. 

J1, J2 , J3, and J4 Jbetween
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Figure 29.   Vehicle Trajectory for 2 UAV and 4 Ground Node Simulation 

 

Figure 30.   SNR Values for 2 UAV and 4 Ground Node Simulation 

42 
 



In this simulation, the final SNR value was a lower value than in the previous 

cases due to the larger separation distance between nodes. 

B. TARGET TRACKING AND SURVEILLANCE 

In addition to optimizing a mesh network, self-tuning extremum control can also 

be used for target tracking and surveillance applications.  The goal of using an extremum 

controller, as opposed to a waypoint or path following controller, is to provide a 

distributed navigation scheme. Designating several targets as artificial potential functions 

modeled as ground antennas, a single UAV can navigate to a target, conduct surveillance, 

and continue to the next target. Using only extremum control causes the UAV to fly a 

path that overshoots the target, which would be undesirable for navigation. To correct for 

this overshoot, a Line-of-sight controller can be combined with the extremum controller. 

The LOS control can come from a vision based navigation system or coordinates 

designated by a ground station. Assuming the coordinates of the target are known, the 

desired heading angle, d , can be calculated using the vehicles current position. In the 

simulated scenario, a single UAV is commanded to track a series of targets, which in this 

case are modeled as ground antennas from the previous simulations. The UAV is guided 

to each target with a combined line-of-sight and extremum controller, loiters above the 

target, and continues on to the next target.  
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Figure 31.   Vehicle Trajectory for Extremum Target Tracking Simulation 
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VI. CONCLUSIONS AND FUTURE WORK 

A. CONCLUSIONS 

This thesis extended previously developed self-tuning extremum control 

techniques developed for communication relay to be used with multiple relay nodes in a 

distributed wireless sensor network. Simulations confirmed the feasibility of 

implementing this scenario in real time and achieving optimal results. Additionally 

decentralized control techniques were applied to scenarios involving network coverage 

control, target tracking and surveillance. 

B. FUTURE WORK 

Future work in using decentralized extremum control will focus on experimental 

implementation of the developed control algorithms. The simulations created in this 

thesis will be verified with a flight test at a future date using two UAVs and two ground 

nodes to form a communication chain. Research is currently being conducted at NPS to 

explore the possibility of using soaring gliders to extend the endurance of a mission. 

These gliders could potentially be used as relay nodes with an extremum controller and 

optimize communication over a wireless sensor network for a longer time periods. 

 

Figure 32.   NPS Soaring Glider. From [2]. 
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APPENDIX: SIMULINK DIAGRAMS 

 

Figure 33.   Multiple UAV Simulation Block Diagram 
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Figure 34.   Stateflow Control Mode Switching Logic 

 

 

Figure 35.   Phase Synchronization Controller 

 

48 
 



 

Figure 36.   Phase Synchronization Phase and Orbit Center Error Calculations 

 

A. ORBIT CENTER ERROR CALCULATION SCRIPT 

function[r_tilda,c,d]=  
 
fcn(heading1,psi_dot1,a,b,pos1_x,pos1_y,v_cmd,psi_dot_ss) 
  
% calculate radial distance of current orbit center to desired orbit 
center 
  
% Using center point of orbit, heading is CW/0 North 
 
c=pos1_x+(0.3654*v_cmd/psi_dot1)*cos(heading1); 
d=pos1_y-(0.3654*v_cmd/psi_dot1)*sin(heading1); 
r_tilda=sqrt((c-a)^2+(d-b)^2); 
  
end 
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