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Abstract 
 

Current Air Force operations are dictated by the mission, with planning and 

requirements for these missions detailed in an Air Tasking Order (ATO).  An analogous 

document exists for the communications (link) requirements in the Communications 

Tasking Order (CTO).  Unfortunately, the CTO has very little networking focus, meaning 

the network requirements and plans are not adequately specified or tied into the mission.  

This means network performance often suffers.  One approach currently being pursued to 

address this issue is the Network Tasking Order (NTO), which identifies these network 

requirements and plans, allowing a commander to manage his battlespace in a manner 

that incorporates mission and network requirements.  Unfortunately, while the ATO and 

NTO provide important data for the commander, using it for management requires 

manual intervention by network and mission operators, causing inefficiencies due to  

delayed response or inconsistent problem resolution.  Particularly for autonomous 

weapon systems such as unmanned aerial vehicles (UAVs), an improved approach would 

be to automate this management.  One way to accomplish this would be to incorporate 

the NTO and ATO data into cognitive network framework.  Since cognitive networks 

have already been proposed as a way of intelligently adapting to end-to-end network 

goals, extending the cognitive process to incorporate global mission goals is a natural 

extension.  This paper describes a simple cognitive network process designed to solve the 

multi-objective optimization problem of balancing both network and mission goals. 

This process consists of two components: a multi-move look-ahead component, in 

which the future outcome of decisions are estimated, and a subsumption decision making 
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architecture (from the field of behavior based robotic control), in which these decision-

outcome pairs are selected so that they co-optimize the dual goals.  To test this process, it 

was applied to a sample Air Force mission scenario consisting of an UAV surveillance 

mission within a delay tolerant network (DTN) topology.  This scenario used a team of 

UAVs (operating as a team but each running the cognitive process independently) to 

balance the mission goal of maintaining maximum overall UAV time-on-target and the 

network goal of minimizing the packet end-to-end delays experienced in the DTN.  In 

this scenario, the cognitive process could control three possible parameters of the UAV 

operation: the current orbit of the UAV, whether to hold or forward packets, and, if 

forwarding packets, what UAV to forward the packets to.  The future outcomes of each 

of these decisions was evaluated by the subsumption process to determine which set of 

actions best optimized both the mission and network goals in the long term. 

The performance of the cognitive process under this scenario was evaluated thru 

simulation by comparing it against a baseline, non-cognitive DTN approach.  Two 

scenarios were investigated: optimizing just the network goal and balancing both the 

network and mission goals.  The results indicated that the pseudo-cognitive approach  

improved the mission goal of increasing the average percent loiter time by approximately 

6 and 6.75 percent and the network goal of end-to-end delay approximately 48.6 and 52 

percent over the baseline DTN and look-ahead approaches for the associated workloads 

of 1 and 2 percent of total image opportunities.   
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USING A MULTIOBJECTIVE APPROACH TO BALANCE MISSION AND 
NETWORK GOALS WITHIN A DELAY TOLERANT NETWORK TOPOLOGY 

I. Introduction 
 
 

The mission of the United States Air Force is to “fly, fight and win ... in air, space 

and cyberspace.”  To achieve this domain supremacy, the Air Tasking Order (ATO) and 

Communications Tasking Order (CTO) are used to specify the requirements necessary to 

support these vital missions.  The ATO and CTO identify mission plans, involved units, 

desired aircraft and forces, communication requirements, as well as the details regarding 

the particular targets of interest [1].   

To elaborate further, the ATO highlights specific aspects related to the mission 

(such as flight paths, call signs, targets, controlling agencies), as well as general mission 

instructions.  In contrast, the CTO addresses the communication aspects related to the 

allocation of the useable electromagnetic spectrum to the various units in the Area of 

Responsibility (AOR), prescribes networks and provides contact information for each 

network manager.  The CTO also lists the various data links, describes their capacity, 

itemizes maintenance actions, and provides commanders with up-to-the-minute 

availability and downtime visibility [1]. 

With the evolution of the cyberspace domain and net-centric warfare, computer 

networks have come to the forefront in the communications realm.  As a result, the 

network architecture (links and components) have been included within the CTO, but the 

actual desired performance objectives have been neglected.  Unfortunately, neither the 

ATO nor CTO adequately describe the requirements for the network performance.  As a 
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result, the network succumbs to the priority of the mission goals dictated in the ATO and 

the overall network performance suffers.   

Recent efforts have initiated the development of a network tasking order (NTO)     

[1, 2] to specify these desired performance objectives in an attempt to directly control 

these attributes and provide the commander a way to manually fine tune the computer 

network to better align its objectives with the mission objectives.  However, this would 

still require continuous oversight and intervention by the commander and therefore would 

not produce an optimal approach.  Creating an autonomous dynamic ability to adjust the 

mission and network parameters would greatly benefit the Air Force and will be the focus 

of this endeavor.   

1.1 Background 

 
The main premise of the NTO is to identify the communication assets/nodes and 

capabilities within the battlespace in such a way as to create an interconnected picture of 

the network topology.  This information could then be used to determine and/or exploit 

potential routing opportunities to improve network performance.  This aspect could prove 

to be extremely beneficial within Air Force missions since routes are typically predictable 

as they are based upon a priori knowledge [2].   

Of particular interest are small unmanned aerial vehicle (UAV) missions 

conducted in urban or sparsely connected environments.  Current operations abroad   

(i.e., Iraq, Afghanistan) have proven that these assets are extremely useful since they can 

provide soldiers the ability to gain situational awareness without endangering lives 

unnecessarily.  Typical operations are over-the-hill reconnaissance and convoy-following 
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tasks.  Essentially these units are very portable (e.g., can weigh pounds), launched by 

hand, and can be controlled via a small ground station and receive images via a laptop or 

personnel electronic device [3].   This can prove useful in the military context of dynamic 

environments with little or no infrastructure.   

Additionally, UAVs can be utilized to extend communication, either through 

multihop ad-hoc networks or via a delay tolerant network (DTN) construct.  A DTN is 

one in which the link for the next hop or relay node is disrupted or delayed for a finite 

period of time.  This topology configuration does not conform to typical routing protocols 

(because there is no end-to-end path).  This deficiency is typically overcome by either 

moving a node into communication range or by using a data ferry to carry information 

within communication range of the intended destination.  However, since this is an 

eventual delivery approach for data transfer, long delays are typically incurred.  This 

situation could be extremely detrimental in military operations where information is 

typically time sensitive and failure to respond can be catastrophic. 

1.2 Research Problem 

 
In current Air Force operations, mission goals dominate network goals thus 

causing network inefficiencies.  This is due partly to the exclusion of network parameters 

within the mission planning process.  As was described earlier in Section 1, this is 

because neither the ATO nor CTO adequately capture these parameters.  Development of 

an NTO will aid in closing this gap but will not eliminate the need for administrator or 

commander intervention for direct resolution. 
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An approach is needed to address these deficiencies dynamically within the 

context of a common framework in an effort to achieve optimal performance by 

balancing mission and network objectives without intervention. Research into an 

effective scheme or methodology is needed to accomplish this requirement.  

1.3 Approach 

 
This thesis presents a novel approach to address the aforementioned suboptimal 

network performance issues.  This methodology builds upon concepts of the NTO, 

behavior based robotics, multi-objective optimization, and cognitive networks.  

This work was based upon an Air Force UAV surveillance mission using a DTN 

topology.  A pseudo-cognitive approach was demonstrated by using a team of UAVs that 

autonomously attempted to balance the mission and network goals by employing a 

subsumption multi-objective optimization (MOO) architecture within the Unified 

Behavioral Framework (UBF) [4] controller construct.  The mission goal in this case was 

to maximize the average percent loiter time over targets of interest whereas the network 

goal was to minimize the end-to-end delay of the network traffic.   

This work builds upon the applicability of the NTO, implementation of cognitive 

networks, and use of multi-objective optimization within DTN environments.  The 

objective of this thesis is to incorporate aspects of an NTO within a pseudo-cognitive 

approach in an attempt to balance the mission and network goals to achieve an overall 

improved network performance.   For the purposes of this work, pseudo-cognitive implies 

that all cognitive aspects are incorporated with the exclusion of the learning aspect.   
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Since UAVs are not readily available for this research, this problem was assumed 

to be comparable to a ground based, mobile robotics problem and was modeled as such.  

This assumption was made because mobility patterns dominate the overall network 

performance and robotic movement can be made similar to UAV orbits (with the 

exception of fewer degrees of freedom).  As such, approaches from robotics were used to 

form the basis of the framework and methodology used in creating the solution.  

Behavior based robot control was used as a means to implement the overall framework.   

Since the Unified Behavioral Framework (UBF) was an example of this, it was 

used as a basis to form the overall framework.  This framework was then incorporated 

with a subsumption multi-objective approach in an effort to capitalize on its simplicity, 

ease of implementation, and reactive nature.  This approach has been used in the past for 

behavior-based robotic control methods for control of autonomous robot agents.  This 

was used in an attempt to overcome the delay shortcomings of the DTN.  This approach 

will attempt this while also attempting to maximize surveillance time over target.   

The ideas presented in this thesis were tested using a discrete event MATLAB 

simulation that was created to implement, test and perform validation.  The validation 

aspect was accomplished using the MATLAB debugger and overall structure construct to 

ensure movements were synchronized correctly and the results were consistent.   

1.4 Scope 

 
 The scope of this thesis examined the system performance impact as a result of 

the inclusion of ATO, CTO, and NTO requirements within a pseudo-cognitive approach 

used to manage data routing and orbit selection in a DTN topology.   
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The design of the MATLAB discrete event simulation was a full factorial design 

with three DTN configurations which are tested under two workloads (5 and 10 

images/min).  The configurations were a baseline DTN, multi-step look-ahead DTN 

(pseudo-cognitive), and multi-step look-ahead with MOO.  The approaches were 

distinguished by increasing levels of cognition.  The metrics observed consisted of the 

average percent loiter time, number of images transmitted and received, and end-to-end 

delay.  There were 25 iterations per experiment to achieve a 95 percent confidence 

interval.  This resulted in 150 simulated trials. 
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II. Background and Literature Review 
 

2.1 Introduction 

 This chapter provides basic definitions and an overview of research regarding the 

associated concepts related to the major aspects of this thesis.  The areas of NTO, Small 

Scale UAVs, Mobile Ad Hoc Networks (MANETs), delay tolerant networks (DTNs), 

cognitive networks, multi-objective optimization techniques, and robot control principles 

will be discussed.   

2.2 Network Tasking Order 

 With the advancements in technology and increased emphasis on computer 

network availability and capacity, net-centric operations and pursuit of the Global 

Information Grid (GIG) have come to the forefront in modern warfare.  Department of 

Defense Directive 8000.01 [5] and Air Force Joint Vision 2020 [6] highlight the tenets of 

net-centric warfare (NCW) and layout the roadmap for military operations within this 

Information Age.  Of primary importance is the fact that “interconnectedness” will 

become a necessary global requirement and the need for information will continue to 

dictate all aspects of the mission.  Terms like shared situational awareness, information 

advantage, and information superiority have become mainstays within current policies. 

 As a result of this emphasis, network availability has become a critical part of 

daily operations within the military.  This has in turn led to the realization that cyberspace 

is a distinct domain that must be incorporated within the mission planning process.  If 

neglected, inefficiencies and vulnerabilities to attack leave the military ill prepared to 

conduct the task at hand.    
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As alluded to in the introduction, the NTO concept is a way to capture and 

document these critical requirements in such a way that this additional information can be 

used to enhance the mission planning process.  Along with the ATO and CTO, the 

complete picture is then conveyed to the mission planners and combatant commanders.  

This allows network aspects to be considered which normally would not.  It makes 

network performance improvement possible by providing a means to consider trade offs 

which may currently be neglected.  For example, if the mission is the only consideration 

during planning (with all resources are allocated to mission accomplishment) then the 

mission objective by defacto will dominate the network objectives and network 

performance can suffer.   

This concept is not entirely new but it has received more attention recently.  

Stookey introduces the idea of a notional battlespace in which communication assets that 

could be used to route dynamic traffic are clearly identified.  Also, the expected position 

and movement of these assets are captured, identifying potential connectedness and 

thereby allowing predictions of where links can or will be established. This can greatly 

enhance routing protocols and allow opportunistic connections that otherwise couldn’t be 

identified.  Lastly, he emphasized how understanding the overall communication needs 

could provide better resolution and more efficient use of theater bandwidth [1].  

Pecarina interpreted the purpose of an NTO as providing the commander the 

ability to allocate bandwidth and link availability by strategically positioning 

communication resources within a theater of operations by assigning weights to differing 

priorities.  This would in turn provide the commander the ability to dominate cyberspace 

and hold information superiority over the enemy [7].   
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Compton presented a slightly different approach, stating that the NTO should be 

structured similar format to the ATO and include each mission type (i.e. type of network 

traffic expected), node configuration and capabilities (i.e. a relay, router, etc…), and the 

priority of traffic flows.  Also, he highlighted that the additional information could 

identify single points of failure, gaps in connectivity, or possible bottlenecks [2].    

2.3 Small Scale UAVs 

In 2007, the Department of Defense released a report titled “The United States 

Department of Defense Unmanned Systems Roadmap for 2007-2032 [8]”.  This 

extensive report described in detail the DoDs desire to aggressively pursue the 

development and deployment of unmanned systems.  Within the plan all aspects of 

unmanned systems were described with emphasis on creating a “sophisticated unmanned 

force to entail vehicles of the three domains of air, land, and sea [8].  The report went on 

to highlight the top DoD priorities within specific battlefield applications for UAVs 

within military.  These applications comprised of the areas of reconnaissance and 

surveillance, target identification/designation, counter mine warfare, and chemical, 

biological, radiological, nuclear, explosive (CBRNE) reconnaissance [8].  Specifically, 

within the reconnaissance/surveillance and target identification/designation areas, the 

main focus was regarding the abilities to maintain covertness, positive identification of 

enemy targets, and reducing latency and precision of GPS guided weapons.   

Emerging technologies and development challenges were also highlighted within 

the report.  Autonomy and cognition were among the top concerns.  Autonomy referred 

to a UAV possessing the ability to make autonomous decisions for either collision 

avoidance or collaborative/cooperative communication between multiple vehicles for 
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object sensing and surveillance.  Cognition is the capability of an unmanned system to 

extend human perception and action capabilities, with perception being a way to enhance 

understanding, reasoning, and decision making in a mission environment and action 

instilled within computer algorithms used to systematically solve problems, in a thought  

invoking decision making process.  These are a few of the key concepts that are 

highlighted within this thesis and will be explored in more detail later in this chapter. 

Of particular interest within this document was the area regarding small scale 

UAVs.  Small scale UAVs are defined as having a gross takeoff weight of less than 55 

pounds.  The ceiling altitude can reach up to 15,000 ft and the operating range is up to 40 

nautical miles.  This is the type of UAV that the scenario will be depicting.   

 

 

Figure 1. Types of Small Scale UAVs [8] 
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Figure 2. Small Scale UAVs [9-11] 

 
 
 

In addition to military application, UAVs are used throughout government and 

civilian sectors.  Applications range from law enforcement, to wildlife management, and 

environmental studies.  However, since the operating environment is not in as strict 

control as the military airspace there are many regulatory issues (FAA issues) relating to 

controlled airspace and how to best manage these assets within the airspace, namely 

safety of flight and air traffic control issues. 

Frew and Brown [12] went on to highlight the aforementioned regulatory issues 

and also address issues with networking small scale UAV systems.  In particular they 

emphasized how operational requirements dictate network requirements.  In the Air 

Force, this is analogous to mission requirements leading to networking requirements.  

They went on to state how these demands can then in turn directly affect network 

connectivity data delivery and service discovery [12].   Additionally, they state that a 

delay tolerant mobile ad hoc network architecture offers the best option in terms of 
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flexibility, reliability, robustness, and performance compared to other network 

possibilities.  This type of network configuration provides the opportunity to exploit 

controlled mobility to improve performance when the network becomes fractured [12].   

 Many universities are currently conducting research regarding UAV systems    

[13-15].  Their works focus mainly on control system implementations incorporating 

autonomous actions, but none appear to incorporate a cognitive aspect used to balance 

multiple objectives as is the focus of this work.  There are however, some examples that 

have contributed to forming the ideas within this thesis. 

Of interest, the University of Colorado created the Ad-hoc UAV Ground Network 

(AUGNet) in an effort to study the performance of airborne mobile ad-hoc networks.  

This experimental platform was comprised of both UAVs and ground nodes.  

Communication paths were created from UAV to UAV, UAV to ground node, or UAV to 

UAV via a ground node used as a relay.  The protocol used was the Dynamic Source 

Routing (DSR) ad hoc protocol.  This is an on demand routing protocol which means it 

creates a route when there is a packet to send.  As a result of experimentation, it was 

determined that the significant factors affecting the network performance were the path 

link (number of hops), quality of the link, whether the nodes were fixed or mobile, and 

whether a UAV was used for routing information.  Tests were conducted to measure the 

network performance (throughput, connectivity, and congestion).  Their results identified 

that adding an airborne mobile node (i.e. the UAV) within the network doubled the 

communication range of the baseline ground to ground nodes and also increased the 

throughput (with greater than two hops between nodes) but with a higher variance 

(possibly due to node maneuvering) [12]. 
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This work formed the basis for Brown and Frew’s future effort on the 

Heterogeneous Unmanned Aircraft System (HUAS) [16].  The HUAS was created to 

study airborne communication networks and specifically multivehicle control.  Within 

their work they focused on the design of an intelligent flight management system for 

UAVs.  This system was designed to provide operator control of system parameters while 

allowing the vehicle to make autonomous mission level decisions based on network 

metrics.  It essentially augmented the AUGNet framework with their advanced 

communication, command, and control system creating an intelligent node.   

This intelligent node combined network metrics, vehicle status, and mission 

parameters to perform data-centric tasks while remaining within mission parameters 

specified by an operator.  Messages were disseminated via a broadcast to all nodes to 

avoid the complexity associated with addressing requirements.  The temperature and ping 

packet parameter levels were established via the 802.11 ad-hoc link by the operator and 

when a condition was encountered (meaning a parameter was met), the vehicle 

autonomously made a decision to return to base.  This construct demonstrated that high 

level decisions could be made (i.e. using a combination of parameters) based upon 

network metrics (ping packet parameter) and specified operating conditions [16].  

However, this work is distinctly different from this thesis in two ways.  First, it doesn’t 

attempt to maintain a threshold level (maintain a constant level) it just meets a designated 

level which triggers a conditioned response.  Secondly, it doesn’t pursue competing 

objectives which requires a multi-objective process.   
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2.4 Mobile Ad Hoc Networks 

 In wireless networks, communication is conducted via RF links between wireless 

hosts typically tied into the overall network infrastructure at the network edge (but not 

always) via a wireless access point (base station) [17].  These wireless hosts can be 

laptops, PDAs, phones, or even desktop computers and must be within range of an access 

point to receive a signal and establish/maintain a connection.  Wireless communication 

poses distinct challenges different than conventional wired computer networks in the 

form of path loss due to decreased signal strength, interference from other sources, and 

multi-path propagation which occurs from additional signal information as a result from a 

reflection from the ground or other objects thus causing the received signal to differ from 

the one sent [17].         

An Ad-Hoc Network is basically a wireless network that can be quickly 

established as an autonomous network operating either in isolation or as a “stub network” 

that connects to a fixed network [17].  This type of wireless network lacks infrastructure 

(e.g., there is no need for a base station) and therefore has to have each host provide the 

necessary services required for routing, address assignment, DNS-like name translation 

and more [17].  This creates a way to quickly establish a wireless network by rapidly 

configuring links without the need for infrastructure planning, reducing time and cost. 

Mobile Ad Hoc networks (MANETs) add movement to the wireless network 

topology which results in additional complexities, however it appeals to a broad new 

audience of applications.  MANETs are of particular interest for military and disaster 

response applications since they address the concept of battlefield survivability.  This 

concept pertains to a computer network’s ability to avoid single points of failure 
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(decentralized distribution with redundancy), ability to operate independent of existing 

communications infrastructure, rapidly deployable, self organizing, and uses multi-hop 

packet routing for communication to users who are not within line-of-site.  Overall this 

type of network provides a mobile, deployable, wireless, multi-hop network [17].   

Therefore, MANETs are characterized by their ability to multi-hop for 

communication, possess a dynamic topology, are bandwidth constrained, contain variable 

capacity links based on each unique node that enters the network, are energy-constrained, 

have limited physical security, scalability, self-organizing capabilities, and the ability to 

communicate and move at the same time.  Since these networks are distributed (with no 

centralized control point), they require completely distributed algorithms that have each 

node potentially a router.   

In general, in a computer network routing must be done efficiently and therefore 

the optimal route must be determined.  There are two standard algorithms used to 

determine this “best” path—distance vector and link state.  The distance vector algorithm 

uses the Bellman Ford algorithm to determine the shortest distance paths based on the 

information received from its neighboring nodes.  This method requires each node in the 

network to build and maintain a routing table containing the distance between itself and 

all possible destination nodes.  The link state algorithm uses the Dijkstra algorithm to 

calculate the cost to take a particular path.  This process entails each node (router) 

construct a link state packet consisting of the names of and cost for each of its neighbors, 

disperse the packet by flooding to all nodes in the network, then use the received 

information from all nodes (global information) to build and maintain a routing table for 

the entire network [18].   
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In general, there are routing protocols to specify how routers communicate with 

each other and how they use the above mentioned algorithms (or slight variations) to 

determine the best path to reach the intended destination.  In Ad Hoc wireless networks, 

there are several protocols that have been developed and these are shown in Figure 3.  

However, the focus of this effort is dependent on a routing protocol based on using a 

routing information update mechanism.  The three approaches regarding this are the 

proactive, reactive, or hybrid [18].    

 

Figure 3. Routing Protocols for Ad Hoc Networks [19] 

 
Proactive protocols establish the route paths in advance and then maintain and 

update routing tables (Table-driven) as the network dynamically changes.  Reactive 

protocols establish routes as needed and only maintain the route while needed.  These 

routes must be discovered since they are not known in advance.  Hybrid protocols are a 

combination of the proactive and reactive protocols.  They are proactive within a 

geographic area and reactive if the packet must travel outside of the defined area [18].  

Therefore, use of a protocol is dependent on the intended application since there are 

tradeoffs that must be considered in each case.  For example, if the delay required for 
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route discovery is not acceptable, a proactive protocol should be used whereas if one 

wanted to only maintain the information regarding the active routes a reactive protocol 

should be used [18].   

2.5 Delay Tolerant Network 

In normal computer network operations, connectivity is established between 

nodes within and possibly across communication regions.  This can be accomplished by 

either wired or wireless means to create the interconnected grid required for 

communications and data delivery.  Within this architecture, internet protocols have been 

used to accomplish networking and data transfer tasks, particularly Transmission 

Communication Protocol (TCP).  However, TCP requires an end-to-end connection to 

exist long enough to verify the connection (send an acknowledgement and receive 

confirmation), send the data, then receive a confirmation that the data was sent.  In order 

to accomplish this task the connection must exist for a defined set of time.  This time has 

been called “time-to-live” [17,19] and is established in the packet header of the packet to 

be sent.  Therefore, if there are disruptions or the delay exceeds the packet “time-to-live”, 

the protocol will not work.  As a result, a new architecture has been designed to handle 

these situations when they exist, a delay tolerant network (DTN) framework [19].   

A DTN is a type of computer network that consists of geographically separated 

communication regions that are characterized by long delays and intermittent disruptions.  

The framework was first designed for an interplanetary internet communication system to 

conduct deep space exploration and was recently captured within RFC 4838 by the 

Internet Engineering Task Force (IETF) [20,23].  This foundation has now led to many 

practical applications that were not possible before. 
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Figure 4. Comparison between different communication link connections 

 
Here is a simplified example to highlight the main points.  Imagine living in a 

rural area and have a written a letter that needs to be delivered to a friend that lives down 

the road (geographically separated regions).  A decision was made to send it to them by 

giving it to a neighbor along the path within a limited distance (transmission range) and 

then they give to the next neighbor and so on until the letter reaches the friend (store-and-

forward approach).  However, it is undesirable to wait too long for the letter to get to 

them and as such do not want confirmation at each transfer to the next person.  Instead 

the person who is transferring the message is held accountable to ensure it was sent.  Any 

number of disruptions could occur along the route, preventing the transfer of the letter 

between subsequent neighbors.   

A particularly long delay could result if a next neighbor in the path is never home 

causing the sender to hold on to the letter for an extended period of time.  One possible 

solution to this problem would be to have the waiting neighbor act as a data “ferry” 

driving past this neighbor to the next in order to bypass a missing neighbor, delivering the 

letter to the next neighbor in line.  The data ferry would be limited in distance it could 

travel and who it could contact along the way.  This can be further complicated if each 
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neighbor is only home for a scheduled timeframe and therefore causing the delivery to be 

hit or miss.  In this scenario, neighbor schedules would need to be known in advance in 

order to correctly sequence the transfer.   

This analogy capture a scenario in which an end-to-end path for data delivery may 

or may not exist at any given time.  This is a typical DTN configuration and illustrates 

why TCP would fail given this situation – without an static end-to-end path, ACK 

messages would never be delivered.  To overcome this limitation, data delivery is reliant 

upon a data ferry for data delivery.  As in the  analogy, a data ferry is used to extend the 

transmission range by physically moving closer to the destination.  However, since the 

intermediate and final destination node locations vary in time and variations in 

propagation delays and end-to-end paths, routing can be very difficult.  Intermediary 

nodes are used for storage until the next hop or destination is within range for 

transmission.  This type of routing is based on an eventual delivery approach in which 

connections can be in stored (queued) which in turn can result in long delays [21].  This 

problem is the focus of much research in the DTN field.      

2.5.1 DTN vs MANET 

 As was described above, DTNs have unique aspects that are both similar and 

dissimilar from MANETs.  As is similar to a MANET, in a DTN network normal 

computer networking conventions do not hold.  Node connections are time varying and 

the network topology changes dynamically.  However, within MANETs routing protocols 

aim at establishing end-to-end paths between communicating nodes and thus support the 

end-to-end semantics of existing transports and applications [22].  In contrast, DTN 

schemes imply asynchronous store and forward communication.  
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2.5.2 DTN Architecture 

 RFCs 4838 [24] and 5050 [25] detail the DTN architecture and bundle protocol 

specification respectively.  These RFCs were created by the Internet Research Task Force 

(IRTF) [26] in an effort to standardize protocol specifications for development but not to 

act as an overall internet standard. 

 The DTN architecture was originally designed for interplanetary communications 

in which long delays are encountered.  This was in an effort to provide internet type 

services for deep space exploration.  This framework addresses concerns with 

occasionally connected or disrupted network connections (scheduled or nonscheduled). 

 A “bundle layer” [24] is required to run as a layer above the transport layer in 

which information is passed to endpoints or nodes.  This layer is used for persistent 

storage that is needed for the store and forward approach that is employed.  This is a 

critical requirement since long queuing is needed to store the message until a contact 

becomes available.  These contacts may be persistent, on-demand, intermittently 

opportunistic, intermittently scheduled, or intermittently predictive.  Persistent is always 

available and on-demand is as required remaining persistent until terminated.  The 

intermittent connections are more typical of a DTN in which the connection is only 

available at intermittent times.   

 Custody transfers are used as a means for reliable data transfers.  This is done to 

ensure a message has been successfully transferred to the next hop in the routing path.  

The node transferring the message performs a custody transfer in which the node 

receiving the message now accepts responsibility to ensure the data reaches its desired 
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destination. The messages are encapsulated in “bundles” and use endpoint identifiers to 

identify the source and destination. 

2.5.3 Bundle Protocol 

The bundle protocol was designed for implementation within the DTN 

architecture to act as an overlay network to run on top of the current Internet Protocol 

(IP) to account for deficiencies with connectivity.  This protocol is considered an overlay 

network store-and-forward protocol [23].  The packets used in normal IP are formed into 

bundles with the necessary control information to bridge the gap between the application 

and TCP layers of the OSI model.   

 

Figure 5. Overlay Network Approach: Bundle Protocol [19] 

 
The bundles possess the required packet format to support end-to-end messaging 

within the bundle layer (instead of the transport layer) to account for the deficiencies of 

the TCP protocol.   Several research groups have developed simulations of the DTN 

implementation by incorporating the bundle protocol.    However, since this work only 

needs to capture the impact mobility of nodes on end-to-end delay, only certain aspects of 

the bundle protocol are required.  The aspects concerned with data security and are 

ignored at this time since they do not directly relate to the focus of this research. 
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2.5.4 Routing Protocols 

 Given the unique aspects regarding the DTN framework, routing protocols are 

crucial to node discovery and data delivery.  As this is a hot topic of research, there are 

many protocols being constructed to meet the needs of the given application.  The 

protocols focus on the different types of contacts involved and are classified as either 

forward or replication based.  The types of contacts vary from scheduled or predictable to 

intermittent or opportunistic [26, 27].  For example, scheduled or predictable would 

describe a bus schedule and the way the buses move according to a schedule in a 

predictable way allowing their location to be known at any given time.  Whereas 

intermittent or opportunistic contacts are new unexpected contacts that are within in 

transmission range and they can be used in an advantageous way for routing data.  

Current research is focused on replication based approaches and therefore they are the 

most common.  Epidemic, ProPHET, MaxProp, Spray and Wait, and RAPID will be 

discussed [27-31].   

Epidemic routing uses a flood-based approach in which nodes within 

communication regions continuously replicate and transmit messages when new contacts 

are met.  The messages then spread to other regions through adjacent nodes until the 

desired destination is reached.  This approach is typically used as a baseline for 

comparison with other approaches being developed [27, 28].   

The PRoPHET protocol relies upon the history of encounters and transitivity by 

using probability to determine the end-to-end paths.  This protocol exploits the non-

randomness of real-world encounters by maintaining a set of probabilities for successful 

delivery to known destinations in the DTN (called delivery predictabilities).  Replications 
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of messages occur during opportunistic encounters if the noted that does not have the 

message appears to have a better chance of delivering it [29].   

RAPID uses a utility function to optimize based on the expected contribution of 

each packet toward a given metric.  The overall protocol is composed of the four steps of 

initialization, direct delivery, replication, and termination.  Initialization is used to 

exchanges metadata is to estimate the overall packet utilities.  Next, direct delivery of 

packets destined for immediate neighbors are transmitted.  Then, packets are replicated 

based on the marginal utility.  Finally, the protocol ends when contacts break or all 

packets have been replicated [30]. 

In MaxProp, when new contacts are discovered, messages are compared and if 

messages do not exist in one of the contacts they are attempted to be replicated and 

forwarded by the contact possessing them.  So when two nodes meet, they exchange their 

estimated node-meeting likelihood vectors and shortest path is calculated using weight 

factors to determine the path cost.  Then these costs are calculated over all possible paths 

to the desired destination.  This cost approach creates and maintains an ordered-queue.  

This intelligent queue management approach is based on the destination of each message 

and the estimated likelihood of a future transitive path to that destination.  Also, decisions 

are made as to which messages are transmitted first and which should be dropped first.  

This algorithm was developed, tested through simulation on traces from the 

UMassDieselNet testbed and then compared against four other routing protocols.  The 

findings show that MaxProp outperforms the tested algorithms by delivering more 

packets to the destination while maintaining the smallest latency [31].   
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Spray and wait uses both replication and forward based routing in an attempt to 

benefit from each approach.  This method achieves resource efficiency by controlling 

flooding by setting a strict upper bound on the number of copies per message allowed in 

the network.  Once disseminated, the copies spread through the network looking for the 

destination.  If it is reached, the search is over, if not, the process is repeated [28].     

The aforementioned routing methods are just a few of the most commonly used 

within the DTN network topology framework.  This thesis used some of the principles 

from an opportunistic, per hop routing approach.  However, the approach used here is 

distinctly different.  A novel cost rank matrix function approach was used with an 

ordered-queue to determine the most opportunistic route to take to find the end-to-end 

path.  This will be discussed in detail in Chapter 3. 

2.6 Cognitive Networks 

By definition, “a cognitive network has a cognitive process that can perceive 

current network conditions, and then plan, decide and act on those conditions.  The 

network can learn from these adaptations and use them to make future decisions, all 

while taking into account the end-to-end goals [32]”.  This added cognitive ability 

provides the network a forward-looking, instead of reactive observation, that allows 

problems to be addressed before they can occur.  In general, taking this proactive 

approach enables preventive conflict resolution which helps maintain a stable operating 

environment.  The difficulty with employing this technique comes from being able to 

identify which proactive measures to take.  In this construct, this would be based upon 

ability to comprehend past outcomes and assimilate an appropriate response for future 
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actions.  This in effect would require the network to learn what an appropriate response 

would be given the particular situation. 

One possible approach could be to use the end-to-end goals within a network 

wide knowledge scope.  This would give the cognitive entity the ability to see all of the 

available options and make an educated decision.  In most implementations, especially in 

a dynamic network, this is not possible, and a “best guess” estimate is used (based upon 

what information is available).  In the cognitive network implementation used in this 

research, pseudo-cognition is used. pseudo-cognition determines the next action based 

upon: 

1) a pre-defined look-ahead window of knowledge and 

2) currently available metrics.  

Pseudo-cognition does not fully include the learning aspect of a cognitive network since 

past decisions are not evaluated for effectiveness.  Only the NTO and ATO documents 

are used as a repository of knowledge, and are not updated as the mission progresses.  It 

could be considered that the currently available metric used in this research, average 

percent time loiter,incorporates past decisions, so it a form of feedback. In general, this 

process can best be represented in Boyd’s Observe, Orient, Decide, and Act (OODA) 

loop for decision making [32]. 
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Figure 6. Boyd's OODA Loop 

 
The environment block in Figure 6  is the network being monitored.  The OODA 

loop behavior is accomplished by using network metrics and along with NTO and ATO 

knowledge as input to the decision making process (observe) and providing output in the 

form of a set of actions (act).  As is evident in the diagram, the OODA loop requires 

feedback to be effective.  Essentially, network conditions are observed, as a result the 

end-to-end goals drive the behavior of the system and the individual elements can either 

use this information for decisions separately or cooperatively.   

2.7 Multi-Objective Optimization 

Multi-objective optimization is a systematic technique used to find a solution to a 

problem with multiple possibly competing objectives.  Typically, tradeoffs are made to 

find sets of acceptable solutions within a boundary limit, and of the solutions within the 

boundary, one is chosen.  There are many methods for finding the optimal solution sets 

including stochastic, linear programming, goal programming, and game theory 

approaches.  The most common are genetic and evolutionary based [33].  They use a set 
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of candidate solutions which are modified by selection and variation and as a process 

they iteratively mutate or evolve towards a converging region [33, 34].   

In general terms, a problem requires each objective being considered to have an 

objective function created that represents the particular task or goal that needs to be 

achieved.  With this objective, there usually are various constraints that have to be 

considered.  Multi-objective optimization (MOO) is a technique used to take possibly 

competing objectives, their constraints, and their possible decision and solution spaces 

and find a set of acceptable solutions common to both (called the pareto front) [33, 34].  

The pareto front is the boundary line where the optimal solutions lie. Figure 7 shows the 

MOO tradeoff used for this research.  

 

Figure 7. Example of Multi-Objective Optimization 

 
Work in this area has focused primarily on static or dynamic problems addressed 

by post processing methods, meaning the analysis is conducted on data after the fact and 

an optimal solution is chosen.  These approaches will not work in dynamic environments 

where decisions have to be made quickly.  It is worth noting progress has been made in 

this regard by works from Goh [35], Liu [36], and Zheng [37].  However, due to time 

constraints and complexity with implementation, determining how to apply this work to 
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the research problem will be reserved for future work.  As a best first effort in this regard, 

this thesis will address an Air Force scenario that requires real-time response to dynamic 

network conditions.  To address this dynamic problem, multi-objective techniques are 

garnered from robotic control theory; subsumption in particular, will be used to balance 

the competing objectives of the mission and network goals. 

2.8 Robot Control Principles 

Robot control can be defined as the ability to control movement based upon what 

is conditions are sensed in the environment.  For example, this could mean if an obstacle 

is in a robot’s path, the robot must possess the ability to sense it and then the control 

mechanism should determine a plan of action and then execute the plan in order to avoid 

collision.  This is the essence of the “sense plan act” control approach [38].  Sense a 

circumstance, plan a response, and then execute the planned response.   

 

Figure 8. Sense-Plan-Act Diagram  

 

Currently, there are four main approaches within the field of robot control: 

deliberative, reactive, hybrid, and behavior based [39, 40].  The control approaches range 

in complexity and response time from deliberative to reactive.  Deliberative control 

means to use all available knowledge (internal representation of the world) to extensively 

plan for an event and try to anticipate and account for all possible responses within the 
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realm of possibility.  This can be very complex and computationally intensive as it 

requires complete and accurate knowledge about the environment in order to create a true 

world model from which to base its decisions.  

 Reactive control on the other hand, “tightly couples sensing to action” [41].  This 

makes the control very responsive relying upon rule based encodings to make decisions.  

This in turn is less computationally intensive and does not depend on an accurate model. 

  A third approach is the hybrid approach, which is a cross between deliberative 

and reactive.  This is typically encapsulated within a three layer architecture with each 

layer addressing a certain component of the other approaches [38].  The lower layer is 

tied to the reactive control processes.  These are typically the essential safety aspects of 

control (collision avoidance, reverse path) and therefore must be handled with a quick 

response time.  The deliberative aspect focuses on the higher level planning of long term 

goals.  The middle layer interfaces the upper and lower layers in an effort to sequentially 

implement the decisions of the other layers [38, 41].  This architecture was originally 

developed to follow the sense plan act approach while taking advantage of having all 

aspects included in the design.   

An alternative to this hybrid approach is behavior based control.  Behavior based 

control decomposes a task into modular components called behaviors.  These “behaviors” 

run in parallel to one another and provide an object oriented approach as the structure can 

be easily changed by swapping out the modules for different intended response.  

Therefore this construct has the ability to run a hybrid approach capture all aspects of 

both the deliberative and reactive components [39].  Since all behaviors can run 

concurrently, sensor data must be acquired by all involved and decisions must be based 
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upon a time of prioritized order in order to be executed in a synchronized way.  The 

prioritized order in which actions are chosen is called action selection.  There are two 

main categories regarding action selection: arbitration and command fusion.  If two or 

more behaviors desire control at the same time, conflict resolution must be addressed 

with a behavior arbitration scheme.  Arbitration is a formal way of choosing an action 

from a set of actions and then relaying it to the actuator to be executed.    

 There are many different forms of arbitration: fixed priority, command fusion, 

and several others which all have been used in one way or another with some form of 

success.  The decision of which to choose is dependent on the particular application.  The 

difficulty comes with implementing them, since they have to be software coded to adapt 

to the desired scenario.  Command fusion deals with a voting based arbitration scheme in 

which the individual behavior cast votes based upon their likelihood to successfully 

complete their task.  The votes are then fused to form an overall composite vote which 

must be interpreted to decide which action to implement.  Rosenblatt, demonstrated this 

technique in the Distributed Architecture for Mobile Navigation architecture [42].  

2.8.1 Subsumption 

One of the most influential approaches in regards to behavior based robot control 

was proposed by Brooks in 1985, the subsumption architecture [43].  At the time he 

proposed it, this approach was a dramatic shift in the common view towards robot control 

techniques.  It stemmed around the idea of decomposing the problem into a parallel 

structure of “task-achieving behaviors” instead of the normal sense-plan-act approach 

(where control flows sequentially) [43]. 
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Figure 9. Traditional decomposition of mobile robot control system into  

                              functional modules [43] 

 

 

Figure 10. Decomposition of a mobile robot control system based on 

                                   task-achieving behaviors [43] 

 

This allowed behaviors to run concurrently in distinct layers with each layer 

working to achieve its particular goal.  He also introduced the idea of “levels of 

competency” [43].  This concept revolved around the idea that increasingly more 

complex layers of the control system could easily be added to the existing architecture.  

Each time a new layer was added, the layer beneath it was a subset, this in turn built in a 

prioritized hierarchy.  If the situation warranted it, this enabled upper layers to dominate 

the lower levels during operation.  Coordination between layers was achieved when 

complex actions (i.e. higher layers) subsume or overrode less-complex behaviors (i.e. low 

level behaviors inhibit the higher layers).  This hierarchy is maintained as a competitive 

architecture that uses rule based encodings and priority based arbitration. 
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This approach has been used in robotic control systems to achieve multi-objective 

optimization benefits [4].  In one work of particular interest [44], Burns used 

subsumption within controllers of mobile nodes in a DTN framework to act as intelligent 

intermediary hops to relay data.  This resulted in increased network performance by 

creating new paths for data routing that didn’t previously exist.  This thesis will build 

upon this concept by allowing the nodes themselves to make autonomous decisions to 

improve not only network performance but also mission performance. 

2.8.2 Unified Behavior Framework 

The Unified Behavior Framework as presented by Woolley [4] will be discussed 

in detail as it is the foundation of the simulation used to represent the DTN scenario for 

this thesis.  This controller will be incorporated in to a three level architecture so the 

desirable aspects of the reactive and deliberative elements can be used.  This behavior 

based controller implementation provides the flexibility through modularity and code 

reuse.  Also, the advantage of using a common interface that is able to observe the 

environmental conditions and dynamically swap behavior packages at runtime, enables 

the application of a particular behavior when it is most effective [4].  The sequencing for 

this implementation of the architecture is shown below in Figure 11. 

 

Figure 11. Sequence diagram of a controller using its behavior [4] 
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“First, the state is updated (updateState()) to represent the current conditions, then 

the behavior is asked to generate a recommended action (genAction(state)) then the 

proposed action is given the authority to issue commands directly to the motors 

(execute(robot))” [4].  The construct of the sequencing for this thesis will be explained 

later in Chapter 3.  Next, the class diagram is shown for the UBF in Figure 12. 

 

Figure 12. Class diagram for the Unified Behavior Framework [4] 

 
Note that each behavior is modular and that if both behaviors (A and B) submit 

conflicting requests they can be formed into a composite behavior by the composite and 

arbiter nodes.  Within this thesis, this construct is followed closely in which the  

genOrbitchange( ) and genData_routing( ) behaviors can also be fused into a composite 

behavior and both actions are executed in such a way that both the network and mission 

objectives are maximized.   

 

Figure 13. Composite Node Behavior [4] 
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2.9 Summary  

 This chapter presented the fundamental concepts and recent research in the areas 

of MANETs, DTNs, cognitive networks, multi-objective optimization, and subsumption.  

This introductory information should give the reader a familiarity needed to understand 

the concepts presented in the remainder of this document. 
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III. Methodology 

3.1 Introduction 

 This chapter presents the methodology used to evaluate the proposed pseudo-

cognitive multi-objective optimization approach and its effectiveness in balancing the 

mission and network goals within a given Air Force UAV surveillance mission scenario.  

First, the background, problem definition, and associated goals and hypothesis are 

discussed.  Next, the approach will detail aspects regarding the given scenario and the 

overall UBF and software simulation structure.  System boundaries and its services are 

then described followed by a detailed description of the performance metrics, parameters, 

factors, and workload.  The experimental design and evaluation technique are then 

thoroughly discussed.  Finally, a summary is presented to highlight some important 

aspects of the methodology 

3.2 Background 
 

As discussed within the literature review, there has been recent interest in the 

possibility of incorporating multi-objective optimization within a DTN topology.  Burns 

[44] attempted to improve network performance by incorporating autonomous robots as  

intermediaries to data ferry the information to the destination.  The approach within this 

thesis differs from the one Burns proposed, due to the fact that in this case the UAVs can 

change the actual DTN topology by making autonomous decisions and changing their 

orbit path in order to improve network performance. 

The objectives or goals for this scenario are both mission and network related.  

The mission goal is to maximize the average percent loiter time over target and send the 

priority based images to HQ with the high priority images being sent as near real time as 
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possible.  Since this configuration is delay tolerant it must incorporate a store and 

forward approach by using UAV to UAV communication.  The network goal is to 

minimize the end-to-end delay.   

Subsumption is the approach incorporated to balance the multiple competing 

objectives.  Recall that this architecture is a hierarchical structure based upon robotic 

control principles.  This is implemented under the UBF construct and uses an arbiter to 

choose the required action among the recommendations from the individual behaviors.  

In this thesis, the behaviors evaluated are considered high level behaviors with the orbit 

change behavior taking precedence over the data routing behavior.  The basic behaviors 

of the “zeroth level of competence” [43] used for primary robot motion control are 

assumed to exist and run underneath the higher layers.  However, for this work they will 

not be evaluated or included in the overall effort. 

Finally, the results for this effort will be gained by conducting the given 

implementation within simulated MATLAB environment.  This will be discussed in great 

detail in the following sections.  

3.3 Problem Definition 

3.3.1 Hypothesis 

As a result of mission goals dominating network goals, inefficiencies within the 

network can arise which in turn impact the overall effectiveness of the system.  This can 

induce large queues, long delays, and even packet loss within the network.  This work is 

based on the Surveyor SRV-1 robotic platform as this will be eventually be used to 

experimentally examine the interactions within this DTN topology scenario.  The 

findings of this effort are used to compare and contrast the impact between mission and 
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network goals.  Cognition is incorporated into the system using a robotic control MOO 

algorithm subsumption approach to balance these two goals to achieve a more optimal 

solution. 

This evaluation occurs within a particular scenario, using a pseudo-cognitive 

approach within a delay tolerant network configuration of autonomous robots (simulating 

UAVs).  The goal is to choose the best orbit and routing actions to balance mission and 

network goals.  The hypothesis is that the network will perform more efficiently (reduce 

end-to-end delay) and the time over target will increase (increase the average percent 

loiter time) under the MOO robotic control algorithm.    

3.3.2 Approach 

The scenario consists of a stealthy ISR mission conducted by a forward 

deployed special forces unit.  Covertness during the mission is essential, therefore the 

unit will deploy small lightweight UAVs (similar to those shown in Figure 2) to conduct 

the surveillance.   

If targets of interest are identified, images are taken and relayed to headquarters 

(HQ) to provide as near real time status as possible so command and control decisions are 

made promptly.   

Since the targets monitored are out of direct communication range of the HQ, a 

DTN configuration is employed using a UAV as a data ferry to carry the information 

within transmission range.  Also, note that since this is a network configuration and data 

routing is of interest, the term of UAV and node will be used interchangeably throughout 

this document. 



38 38 

Pseudo-cognition is added to the overall schema by incorporating aspects of an 

NTO within the deliberative layer of a three layer framework construct. This DTN 

configuration uses the UBF [4] for the controller and is then characterized by its 

effectiveness in balancing the mission and network goals.   

Figure 14 depicts the three layer robot control architecture that could be used to 

implement this simulation on a real robotic platform such as the Surveyor SRV-1.  The 

figure contains all requisites: a deliberator, a sequencer, and a controller.  Although this 

thesis is primarily focused on the controller aspect, it could be executed within an overall 

three layer architecture, similar in concept as Pecarina [7] executed his HANC agent 

controller.  As such, the NTO will be considered to be executed in the deliberator where 

the planning of the architecture exists.  For this effort, the implicit function of the NTO 

(aspect of reducing end-to-end delay) was inherent and incorporated within the 

MATLAB code.   

 

 

Figure 14. Three Layer Architecture 
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Figure 15. DTN Simulation Program 

 
Figure 15 highlights the functions of the DTN MATLAB simulation program.  In 

particular it highlights the significant groupings associated with the functions that 

encompass the entire program.  Note that this structure is similar to Woolley’s UBF 

controller [4] in (Figure 16) that the leaf behaviors are independent and they use an 

arbiter to form composite behavior where needed.   

 

Figure 16. Program Implementation Comparison [4] 
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The simplicity of the design of the DTN simulation program is inherent in the 

logical structured flow.  All aspects required to perform the necessary functions of the 

simulated DTN network are included.  The functionality to generate separate orbit and 

data change decision trees, orbit timers to keep track of the current state and orbit, packet 

generating and queuing aspect to manage data flow, arbitration where needed, and a 

metric section to keep track of mission and network performance.  Decision trees are 

structures used to create a hierarchal logical flow diagram that lists all possible options 

for a given condition.  Within the context of this thesis, decision trees will be constructed 

and used to enumerate the possible options when making an orbit change and/or data 

routing decision.   

3.4 System boundaries 

The system under test is a delay tolerant network configuration that consists of 

two elliptical surveillance patterns (orbits) to observe three (3) targets of interest, four (4) 

UAVs, and the data destination (HQ).  This is depicted below in Figure 17. 

 

Figure 17. Delay Tolerant Network Configuration for SOCOM Mission 
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The orbits for the scenario have pre-defined fixed paths.  Within the simulation 

each orbit has a dedicated number of “anchor points” where decisions are referenced.  

These two primary orbits have 150 and 90 reference points respectively.  Based on the 

velocity of the UAV, it takes ≈ 1 second/anchor point.  This equates to ≈ 2.5 minutes and 

1.5 minutes to travel these complete orbit paths.  Also, the distance between anchor 

points was broken down into 10 time steps to define a 6 inch time step as a way to 

approximate a straight line path on an orbit for experimental considerations.  This 

resulted in 100msec (1sec/10) time steps in which the UAV must move.  These discrete 

time steps were then used as the time window for which images could be detected and 

transmitted to make this a realistic environment for the Surveyor platform.  This 100 

msec window is used for calculating routes, deciding which route to take, and sending the 

image.  Communications with each node was restricted by transmission power.  This is 

defined in the simulation so the UAVs in orbit 1 can communicate with each other but 

not with the UAV in orbit 2 unless they are within the communication region portion of 

their orbit.  Communication region refers to the region in which the distance between 

orbits is such that the transmission distance allows for UAV to UAV contact orbit to 

orbit.  This is shown below in Figure 18.  In this case, UAV1 could communicate with 

UAV4.   
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Figure 18. Orbit 1 to Orbit 2 Communication Regions 

 

Within this scenario, the targets of interest remain stationary.  Although when 

detected they can have a higher and lower priority of relevant information (i.e. aggressive 

posturing).  Image detection and priority will be randomly generated.  The component 

under test (CUT) is the “pseudo-cognition” (MOO implementation) within the overall 

network configuration.  The CUT is shown below in Figure 19.  

 

Figure 19. Component under test 
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The inputs for the CUT are the control messages, number of messages, message 

priority, path distances (i.e. RSSI levels and the sonar signals as represented in the 

simulation).  The outputs for the CUT are the pseudo-cognitive robot decisions, a 

network type decision (routing algorithm) and/or mission type decision (orbit path 

change).  In this component, the pseudo-cognitive aspect is implemented within the 

subsumption MOO approach.  The essence is captured with an algorithm within the 

corresponding implementation hierarchy.  This allows use of a fixed priority arbiter to 

make action selections based upon the inputs from the associated behaviors.  The 

associated behaviors are the orbit change and data routing behaviors.  Each behavior is 

focused on achieving one of the overall goals (either reducing end-to-end delay or 

increasing the average percent loiter time).  These behaviors are analogous to objective 

functions under normal MOO terminology in that given a particular scenario and network 

state, each behavior (objective function) has their own optimum solutions in a solution 

space.  This algorithm provides a way to converge on a list of acceptable solutions and 

then selects solutions that improve both. 

Figure 20 illustrates the optional orbit paths and the UAV direction along the orbit 

(dashed line) that may be taken in effort to optimize the particular goal (mission or 

network) and improve overall system performance.  The optional orbit is either chosen to 

either increase the average percent loiter time over a specific target or in attempt to 

decrease end-to-end delay.  For example, if UAV2 takes Orbit #3 instead of staying on 

Orbit#1 UAV2 will have more opportunity to take images of Target #1 than if staying on 

Orbit#1.  This will in turn increase the overall average percent loiter time since this is a 
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ratio of image opportunities versus total simulation time steps.  This will be discussed in 

additional detail in Section 3.6. 

 

Figure 20. Optional orbits for the pseudo-cognitive MOO approach 

 

3.5 System Services 

The services this system provides is capturing and sending the detected image 

from a target to HQ within a delay tolerant configuration.  This service is directly related 

to the mission and network goals.   

3.6 Performance Metrics  

The metrics for both the simulation and future experiment are the end-to-end 

delay, throughput, and the average percent loiter time.  The end-to-end delay is measured 

as an overall delay (comprised of the low and high priority delays) of the entire system.  

The average overall delay is calculated as follows: 
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Equation 1. Overall Average End-to-End Delay 

 
Where tSource  is the time the image was captured, tHQ  is the time the image was 

received by the HQ queue, and t imageperEndtoEnd −−  is the delay for the image from 

source to destination.  Therefore, t AverageOverallEndtoEnd −−  is the total overall average 

end-to-end delay with N  being the total number of images captured. 

The throughput is measured as the amount of data (images/min) that is transferred 

across the network from each node separately and through the entire system as a whole.  

The average percent loiter time is a ratio of the sum of the number of images 

opportunities for each UAVs (K=3 in this  case), and the total number of simulation time 

steps multiplied by the number of UAVs .  In this representation, the answer is multiplied 

by 100 to convert the ratio into a percentage. 
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 Equation 2. Overall Average Percent Loiter Time 
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3.7 Parameters 

 System parameters are all items that can have an effect on system performance. 

The system parameters for the SUT are the area of operations, attenuation level (dB), 

transmission power, information priority level, orbits, number of UAVs, UAV positions, 

UAV speeds, and target locations, background traffic, and the MOO algorithm.  The 

listed parameters have a direct effect on the network topology since this is how the nodes 

are established and dictates whether they are able to communicate.  In a DTN network 

this aspect is extremely important since this determines if an intermediary node can be 

reached to ensure a relay to the end destination.   

The area of operations for the simulation was defined as a scaled map to be used 

for future experimentation with the Surveyor SRV-1 robotic platform.  The boundaries 

were fixed and defined as in Figure 21 as 270 sq feet.  A preliminary test was conducted 

with the robots to determine the overall footprint.  The background traffic of the 

experiment is fixed at zero and will not be considered.  The attenuation level is set to a 

fixed distance in the simulation (corresponds to a fixed distance in the experimentation 

that would be equivalent to using a -30dB attenuator) to limit the range of 

communications of the UAVs as depicted in Figure 21.      



47 47 

 

Figure 21. Communication Regions of Simulated Robots/UAVs 

3.8 Factors  

The factors of the system are the properties, which when changed, can impact the 

performance of the system.  These include both system parameters and the workload 

parameters.  The system and workload parameters for the SUT are further described, with 

the fixed experimental parameters factor/level table displayed in Table 1. 

Table 1. Factors and Levels 

Factors Level 1 Level 2 Level 3 
Workload 5 images/min 10 images/min N/A 

DTN Configuration Baseline Look-ahead approach Pseudo-cognitive MOO 

  

The orbit locations and distances, number of UAVs, and UAV speeds are 

considered secondary factors in this research since they will not be quantified or varied 
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directly.  The UAV locations are also secondary factors; however their movement is 

inherent in the design and will be performed as a direct result of the implementation of 

the primary factor.  In this case, the DTN configuration is the primary factor because it 

decides how these secondary factors are changed and thereby directly adjusting the 

overall network to meet mission and network goals.  The pseudo-cognitive MOO 

subsumption approach (as it departs from the baseline of a normal DTN) optimizes the 

current situation based on present inputs to directly affect the system performance and the 

overall end-to-end delay metric.  The workload is also considered a primary factor since, 

when varied it adjusts the demand on the system therefore impacting the end-to-end delay 

metric.  

 3.9 Workload 

 The workload for the simulation and experiment are based on high priority 

and low priority images to be sent to HQ via the DTN network.  The priority of the 

images is defined based on significance of action by the targets of interest under 

surveillance.  A high priority image is representative of a significant event occurring 

(change in posture of target is detected).  A low priority image is defined as something of 

interest but not as significant.  Within this experiment there will be no actual detection of 

the high and low priority events, however these events will be randomly generated using 

the MATLAB pseudorandom number generator which produces uniformly distributed 

values over the interval between 0 and 1.  Therefore, when triggered a detection is 

assumed to be successful and an image is taken by the UAV, and based on the given 

priority level is routed appropriately.  The size of the images is based on the resolution of 
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the camera board for the SRV-1 robot.  Each image captured by the camera is 

approximately a 320 x 240 bit  ≈ 5-10k bits/image.    

Therefore two levels of abstraction are done to get to our simulation setup.  First, 

we are assuming that the surveyor robots can represent UAVs.  This is assumed 

reasonable because we are mainly testing mobility patterns of a DTN network and their 

affect on the overall network.  Secondly, we are abstracting away the robots within a 

simulation environment.  This is a safe assumption since the size of the image isn’t 

critical in this setup.  For this treatment, each image is considered to be a set size with a 

packet being an entire image.  This is a safe assumption since we are really only 

interested in the mobility patterns.   

The priority and time stamp of the images is initially assigned deterministically by 

way of the RAND function within MATLAB and the current time step within the 

simulation.  Orbit location and the UAV responsible for the image detection are pre-

defined for simplicity of experimentation and simulation.  The workload level is 

generated based upon the available target region possibilities and the probability defined 

using the MATLAB RAND function.  The RAND function is based upon the Mersanne 

Twister pseudorandom number generating algorithm developed by Makoto Matsumoto 

and Takuji Nishimura in 1996/1997 [45].  Within the MATLAB simulation environment 

this generator returns a pseudorandom, scalar value drawn from a uniform distribution on 

the unit interval [45].  Therefore, the images are captured and have a priority assigned to 

them within the main control loop of the program.  The pseudocode for the image 

detection process is shown below in Figure 22. 
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Figure 22. Pseudocode for the Image Detection Process 

 
Note that the image detection process randomly generates both detection and 

priority.  By adjusting the threshold limit of the random number (from 0.99 to 0.98) this 

resulted in two distinct levels at ≈ 5 images/min and ≈ 10 images/min.  These were 

chosen to portray a significant demand on the system in order to accurately characterize 

the system response due to the specified utilization levels. 

The target regions are where images can be taken if the above conditions are met.  

The regions are defined based upon an observable distance limit (5 ft) from the anchor 

points on an associated orbit (1 or 3).  Figure 23 details the target regions with blue lines.  

The endpoint coordinates for each region are listed and therefore any anchor point 

encountered between the endpoints is also considered a possible image opportunity.  

Lastly, recall that between each anchor point are approximately ten time steps and 

therefore are considered image opportunities as well.  Table 2 identifies the average 
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percent loiter time for the given orbits shown in Figure 23.  Note that the average percent 

loiter time was calculated as described in section 3.6. 

      

 

Figure 23. Target Image Opportunity Regions 

 

Table 2. Number of orbit Image Opportunities and associated average percent loiter time 

 

3.10 Experimental Design  

For this experiment there were no real world data traces available to compare to 

regarding the effects of adding cognition as compared to a standard DTN 

implementation.  As such, several assumptions, simplifications, and preliminary 



52 52 

experiments were made in an effort to develop a viable compromise.  Of particular 

importance, the orbits and UAV positions are considered to be pre-defined in the ATO.  

Image generation workload was set to an approximately constant rate by way of a random 

number generator with a uniform distribution.  Constant rate refers to the approximate 

overall number of images taken per minute (5 and 10 images/min).  For the simulation 

this equates to 1 and 2 percent of the total image opportunities.  This in turn is 

approximately 160 and 320 images respectively.  

The experimental design was incremental thereby each phase built upon the next.  

The design consisted of three phases: 1) design and implement the simulation using a 

standard baseline DTN approach 2) design and implement the DTN look-ahead approach 

based upon results from the baseline approach 3) design and implement the pseudo-

cognitive process with the MOO algorithm using the look-ahead approach framework.  

Also, use any findings from the look-ahead approach to enhance the pseudo-cognitive 

approach.  Finally, use these three approaches to determine the impact as compared to the 

baseline DTN approach.     

In the first phase, the standard baseline DTN approach was designed and 

evaluated.  This first step embodies a reliable approach since this configuration renders 

the most predictable results which were validated analytically.  Within this approach the 

routing of data was accomplished within the 100 msec time window (this encompasses 

the calculation, decision, and routing of the image) between simulation time steps.  This 

dictates the first hop in the data path is based upon the current position of the other 

UAVs.  The decision process resulted in a simple decision tree based upon the current 
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positions of the other UAVs and HQ.  Figure 24 shows an example of the baseline DTN 

decision tree with UAV1 as the source making the decision.   

 

Figure 24. Example of a Decision Tree for the Baseline DTN Approach 

 

 

Figure 25. UAV to UAV Multi-hop Communication in the Baseline DTN Configuration 

 
Figure 25 illustrates an example of a possible scenario that could occur during the 

routing of images within the baseline DTN approach.  In this situation, a high priority 

image is taken at target 1 by UAV1 and sent wirelessly to the end destination (HQ) using 

a multi-hop approach.  The sequence of this scenario is indicated by the number in the 
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lower right corner of each frame (1-4).  In sequence 1, UAV1 detects the image then 

routes the image to UAV2 in sequence 2.  In sequence 3, UAV2 sends the image to 

UAV4 as they are both within the communication region between orbits 1 and 2.  Then 

finally, UAV4 relays the message to HQ where the image is queued and the end-to-end 

delay is calculated.  

In the second phase of design, the look-ahead approach built upon the baseline 

DTN approach.  The look-ahead approach refers to the number of anchor points and hops 

into the future the UAV basis its next decision upon.  The number of anchor points refers 

to the granularity of the hop size and hop means the next node the information is 

forwarded to.  Therefore, two parameters are defined here: 1) the granularity of the step 

size (number of anchor points) and 2) the number of hops in the data route.   

For this implementation these parameters are referred to as step_size and 

steps_look_ahead.  For clarification, within this approach all decisions are calculated and 

executed within the given 100 millisecond (msec) simulation time step.  Therefore, 

although the look-ahead calculation is in addition to the current position decision that was 

accomplished in the baseline DTN approach, it is still executed within the same 100 msec 

time window.  This results in the first decision (baseline approach) being calculated based 

upon on current positions and captured within the first level of a decision tree.  Then the 

look-ahead calculation is based upon the next hops (beyond the baseline level decision) 

next hop possibilities.  In turn, this requires an additional calculation to the first step of 

baseline DTN routing determination.  For example, if UAV2 has a packet that needs to be 

routed and the UAV is currently at [11.66;5.33] (x coordinate; y coordinate), and the 

baseline DTN decision was determined for UAV2 to store the packet, the next step within 
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the same simulation time step would be based upon the look-ahead approach.  In this 

example the granularity is set to step_size of 5 and steps_look_ahead of 1.  This is shown 

in Figure 26. 

  

Figure 26. Example of Look-ahead Approach step_ size = 5 and steps_look_ahead = 1 

 
This would result in a decision tree being created.  UAV2 would be the source at 

the top of the tree, with the baseline DTN decision as the option to store the message, 

chosen in the first level of the tree.  The other option choices would then be listed in the 

second level of the tree.  The example (Figure 27) with the UAVs and HQ listed as nodes 

(UAVs = 1-4, HQ = 5). 

 

Figure 27. Decision Tree look-ahead Approach  
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In the third phase, the results of the first and second phases were used to identify 

the significant factors for implementation.  This led to further refinement of the overall 

process.  The look-ahead approach framework was augmented with additional algorithms 

to incorporate the pseudo-cognitive MOO algorithm aspect.  The significant difference 

between the look-ahead and the MOO algorithm approaches was the latter incorporated 

pseudo-cognition to determine what decision would best improve the mission and 

network goals.  This process was enhanced with both the MOO algorithm and additional 

optional orbit choices.  The optional orbit choices were designated in such a way as to 

offer improvement for a particular goal.  In this case, orbit 3 was designed to improve 

loiter time and orbit 4 to reduce end-to-end delay.   

The MOO algorithm was designed to make decisions based upon the subsumption 

architecture approach.  In this case, the mission goal of orbit choices dominated (a level 

above) the network goal of data routing.     

 

 

Figure 28. Subsumption Approach Architecture [4, 43] 

 
As stated, the orbit change layer (behavior) dominates the data routing behavior therefore 

when an orbit change decision point is encountered, the orbit change behavior gets to 
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determine what option best satisfies its goals first.  In this design there are two orbit 

choices and therefore, two orbit change decision points (Figure 29). 

 

Figure 29. Diagram Labeling the Orbit Change Decision Points 

 

Figure 30. Pseudo-Cognitive MOO Algorithm Pseudo code 
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The pseudo code for the pseudo-cognitive MOO algorithm is shown in figure 30.  

The pseudo-cognitive approach is structured so the orbit change behavior only is active 

when an orbit change decision point is encountered.   

 

Figure 31. Example of MOO Algorithm Orbit Change Point Decision  

 

Once this occurs, a comparison is made between the loiter time threshold and the current 

running average of the system loiter time (global metric).  If the current loiter time is less 

than the threshold, the behavior layer subsumes or suppresses the output of the data 

routing layer temporarily, identifies which orbit path has the least cost (to increase loiter 

time), and sets the orbit change flag so an orbit change will occur on the next simulation 

time step.  The least cost is determined by taking the inverse of the overall average 

percent loiter time for the given orbit.  If the current loiter time is greater than or equal to 

the threshold, the orbit change behavior doesn’t know which orbit to choose.  This is 

where the cognitive aspect takes over.  Since the orbit change behavior doesn’t know 

which orbit choice is the best choice to meet the overall goals, the decisionMaker inhibits 
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the data routing layer output so the arbiter can use this information to enhance the overall 

decision.  If the data routing layer doesn’t have a decision tree generated (no image to 

send) there is no additional information that can be provide and therefore the decision by 

the orbit change behavior is to stay on the current orbit.   

However, if there is an image to send, a flag is triggered when the orbit change 

decision point is encountered, thus requiring the data routing decision tree to create a 

decision tree for each possible orbit.  The decisionMaker then sends all decision trees to 

the arbiter so arbitration can occur.   The arbiter identifies the lowest cost path between 

the data routing decision trees which relates directly to the orbit the UAV should take.  

The arbiter then sets the resulting decision tree for the orbit change behavior so this orbit 

change is taken on the next simulation step.  If there is a tie between costs between the 

decision trees, the arbiter chooses for the UAV to stay on its current orbit. 

In the following discussion, the MOO algorithm was discussed and under this 

implementation, when an image needs to be routed, the decision is based upon the 

information gleaned from knowing all participant’s positions a certain number of steps 

into the future.  This can be beneficial if additional information is obtained (i.e. possibly 

within the communication region or not).  This is highly likely in this case since this is a 

military operation and all events are scheduled and predictable.   

As a result of this systematic process, a full factorial design was used which 

consisted of testing two distinct workloads and three overall network configurations.  

This resulted in the need to conduct six (6) standard experiments to test all possible 

experimental combinations. 
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3.11 Evaluation Technique  

The primary evaluation technique chosen was simulation using MATLAB 

software.  Cognition was infused within the simulation in the DTN routing process and 

overall topology control.  This was done to investigate if the delay can be mitigated and if 

the mission could be accomplished without significant degradation to the overall network 

performance.  Since this process was defined pseudo-cognitive, it was similar to other 

cognitive network concepts.  This was incorporated by monitoring the current network 

conditions (with a UAV_state( ) structure), identifying shortcomings in the metrics, 

making decisions whether to route or store the image, and determine where to route the 

image.  The process then executed the decisions by choosing the next action, and 

evaluating the response of the resultant metrics.  This implementation is not true 

cognition but it encompasses all attributes with exception being in regards to the learning 

aspect.  This aspect of cognition was not implemented at this time but was left to future 

work.  This was chosen due the complexity involved with dynamic MOO and the 

significant overhead associated with it. 

3.11.1 Implementation Details 

Each of the configurations under test have unique aspects and assumptions that 

must be understood in order to gain an overall understanding in the underlying 

framework.  The assumptions are as follows:  

1) All orbits are pre-defined in the ATO and communication regions are defined 

in the NTO, therefore the topology is known at a given time and position; 

complete global knowledge.   
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2) Queuing and mobility delay are the significant delay factors and therefore 

transmission and processing delays are negligible.   

3) Image detection and priority assignment are binomial random processes.   

4) Image fragmentation and reliable data transfer will not be implemented for ease 

of simulation. 

  5) Within the initial stage, all nodes are considered reliable and available.   

 

The overall simulation that was created was comprised of MATLAB structures to  

represent the UAV state at any given time.  As such, each time step of the simulation 

stored the UAV status within an array of the structures.  This made it possible to access 

the UAV state for any prescribed time.  This proved invaluable for debugging, 

verification, and validation of the simulation.   

       

Figure 32. UAV State Structure 
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As shown above in Figure 32, the state information included fields regarding 

every aspect of the state for the UAV.  Of particular importance are the T_COUNT and i 

fields.  T_COUNT is the time index of the simulation.  This value was used to store and 

index the structure at every time instance in the simulation.  The i value refers to the 

UAV number that the state is reflecting.  Therefore at every time step within the 

simulation, a structure is created for every UAV and their states are stored within an array 

of structures.   

   

 
Figure 33. Example of the UAV_state structure 

 
Shown above is a condensed version of the UAV_state structure with some fields 

omitted for ease of explanation.  This example shows the details of how image routing is 

captured within the simulation.  Here is a quick synopsis of what happens.  An image is 

taken and stored in the uav_queue.  Then the current positions are received and distance 

between the source UAV and the other UAVs is calculated and stored in distance_mat.  

Next, the possible communication links are determined by identifying all nodes within 

communication range.  This is based upon the distances calculated and the possible 
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transmission range of the UAVs.  Next an initial decision tree is created and stored in the 

init_tree field (1 is a path; 0 is not).  The cost function is then accessed and the link cost 

is determined and stored in the cost field.  Finally, all cost values are evaluated and the 

lowest cost is chosen.  This next hop node is then identified in resultant decision tree in 

the tree_result field.  Then based upon the decision tree result the packet is either 

forwarded or stored. 

A novel cost function approach was developed in order to place emphasis on the 

best routing path for a given circumstance.  The cost function orders the choices as 

follows: direct to HQ (most desired), UAV4 (data ferry), and then the closest UAV to the 

communication region of contact of UAV4.  This was determined by creating a rank 

matrix with distance and direction as factors to determine which UAV was the next hop 

for the image.  Note in Figure 34 that the cost increases in A to D fashion.   

This means that if the current/next hop position (depends if using baseline, look-

ahead or MOO approach) of the UAV is at position A on the orbit, this is the beginning 

of the communication region to orbit 2 and therefore there is a higher likelihood that 

contact with UAV4 will be made therefore enabling a data transfer to orbit 2 and then 

eventually to the destination.  The lower the cost given by the rank matrix results in more 

likelihood of data transfer to orbit 2, therefore cost A is more beneficial than cost D.    
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Figure 34. Example of an Orbit 1 Cost Function 

 

Figure 35. Cost Function Orientations for all Orbits used 

 
Note that the cost function precedence is based upon the orientation of HQ.  If it 

was located in a different position, these preference vectors would need to be 

recalculated. 
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Figure 36. Decision Tree Process 

 
Figure 36 illustrates the sequence of calculations that occur when generating the 

overall decision trees.  The sequence goes from calculating the distances, generating the 

initial decision tree based upon distances less than the possible transmission distance, 

assigning cost values to initialized values within the decision tree, and finally choosing 

the lowest cost value and designating the routing choice in the resultant decision tree.  

This sequence is shown on Figure 36 as occurring in the order from 1 to 4.  Since this is a 

major aspect of the simulation, further elaboration is required.   

In reference to Figure 36, the distances between the current position vector and 

next possible position (possible routes) vector are calculated and stored in a distance 

vector in which index refers to the UAV#, the zero represents the source, and the other 

number is the distance from the source to the next UAV.  Based on this information an 

initial decision tree is constructed for the distances that are less than the defined 

maximum communication distance (max range).  In this case, the maximum range is 

defined as 24.5 and therefore UAV4 and HQ (index of 5) are not within communication 

range.  Next, the cost function is evaluated based on the current position for each element 

of the initial tree with a value of one (indicating a possible communication link).  The 
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resultant cost is stored in the cost vector.  Finally, the next hop is based on the lowest cost 

value and the image is routed accordingly. 

As was defined earlier, routing for the look-ahead approach enhances the 

decision-making process by providing additional insight based upon a defined number of 

time steps into the future.  This approach used the pre-defined orbit information to make 

an estimate of the next contact.  This was accomplished in an attempt to improve the 

routing process.  Additional layers are added to the decision tree for each step of look-

ahead.  The layers of the decision trees were stored within cells, for easy indexing and 

access. 

 

Figure 37. genDecisionTree Function 

This figure illustrates the genDataRoutingDecisionTree function.  This is how the 

decision tree is created.  Essentially, once a UAV has an image to send, the 

genDataRoutingDecisionTree function is called to generate a decision tree to determine 

the next hop to forward the image to.  Since the orbits and UAV transmission range are 
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pre-determined, the distances between nodes can be calculated, making a matrix of the 

estimated distances of possible routes. 

The time for the data transfers was based upon the step size (dt) for the 

simulation.  This was determined to be 100 msec to represent a data transfer of 

approximately 11 msec/packet.  In this construct, it is allowable to send one and receive 

two packets during a time step. 

All images captured were stored as packets and consisted of the following data 

fields: image priority, time created, current simulation time step, source, destination, next 

hop, target id, UAV position and the forward flag.  Note that the forward flag was created 

to prevent a packet being forwarded more than one time within a current time window. 

The packet attributes are highlighted in Figure 38.  These were based upon the 

fields within the “bundle” as depicted in a RFC 4838 DTN “bundle” construct [24]. 

 

Figure 38. Packet Format 

 
The queuing policy for the system was based upon an image priority, then time 

image created scheme.  This was done in an effort to ensure the high priority images in 

fact were higher priority. 

As was mentioned previously, applying standard multi-objective optimization 

methods to this application proved to be difficult because of the dynamic environment.  

Therefore, the subsumption architecture was used.  Subsumption has been used in robotic 

control systems to achieve multi-objective benefits [43].  As defined earlier, subsumption 
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is a layered approach, based on task decomposition where each layer works to achieve its 

particular goal.  Coordination between layers is achieved when complex actions (i.e. 

higher layers) subsume less-complex behaviors (i.e. low level behaviors inhibit the higher 

layers) [43].  It is a competitive architecture that uses rule based encodings and priority 

based arbitration based on hierarchical priority. 

 

Figure 39. Subsumption Architecture [4] 

This was implemented using the Unified Behavior Framework (UBF) [4].  Within 

this construct each task layer represented a leaf behavior.  In this case, orbit change and 

data routing are the behaviors.  The intention is that behavior selects the best option based 

on state information and sends the selection recommendation to the priority arbiter.  The 

priority arbiter then serves as a merging mechanism to construct the composite behavior 

which models subsumption [4]. 

 

 

Figure 40. Subsumption Tree 
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The subsumption process for this simulation was captured within the decision tree 

construct.  This is similar to the data routing process as described before with the 

exception that the orbit change cost is generated as the inverse of the average percent 

overall loiter time for each orbit choice.  Within this process, each behavior determines 

the best action based on a predefined threshold.  The overall composite behavior is then 

determined by the arbiter and executed.  As such, this condition will occur when the 

current average loiter time is greater than or equal to the loiter time threshold.  This 

occurs since the orbit change behavior doesn’t know which orbit would best improve the 

system performance.  This results in the arbiter creating a combination (composite 

behavior) of a UAV movement (orbit choice) and particular information route (routing 

choice).  This was achieved by combining the levels of the decision trees (baseline in 

addition to each successive step of look-ahead), into a composite decision tree.  Once this 

composite score was calculated for each orbit path, the lowest cost path was chosen. 

 

Figure 41. Example of an Overall Composite Behavior Diagram 
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In Figure 41 it can be observed that given a current loiter time of greater than or 

equal to 65 would result in uncertainty in the orbit change behavior.  This would require 

the data routing layer output to be inhibited by the decisionMaker.  This in turn would 

enable the arbiter to use arbitration between the two separate decision trees (Orbit A and 

Orbit B).  A composite data routing decision tree would be required for each orbit.  This 

could be a summation of several levels (baseline and each step look-ahead level).  Once 

the composite trees are created for each data routing decision tree, the one with the lowest 

overall cost is chosen (i.e. the one with the optimal route).  Since this refers to a particular 

orbit, this orbit is then chosen by setting the resultant tree to reflect the next orbit choice.  

Finally, the decisionImplementor executes the decision and the orbit change is chosen on 

the next simulation time step.  In this example, only one level is listed for the data routing 

decision trees so the lowest cost is 10 and since this corresponds to Orbit B, it is chosen 

to be the next orbit. 

3.11.2 Verification and Validation 

The validation strategy consists of validating the simulation model assumptions, 

input parameter values and distributions, and the output values and conclusions.  These 

were compared both to specifications of the SRV-1 mobile robotic platform and through 

use of the MATLAB simulation debugging tools with analytical comparison.  Statistical 

methods were used to confirm compare the simulation model and the measured data.  

The sample size was determined based on the method of comparing two 

alternatives.  In this case, a 95% confidence interval was achieved for the results by 

running each simulation for 25 iterations.  
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3.12 Summary 

This research examined the interactions between mission and network goals 

within a novel military scenario using both a standard and cognitive DTN topology.  A 

simplistic form of cognition using a multiobjective optimization algorithm was used 

within the system to balance these two goals and achieve an optimal solution to achieve 

both objectives.  The experimental design was full factorial using two (2) distinct 

workloads (5 images/min, 10 images/min) and three (3) network configurations (baseline 

DTN topology, intelligent DTN topology, and a DTN topology  with cognition) thus 

resulting in the need to perform six (6) experiments to test all possible combinations.  

However, to achieve the 95% confidence interval 25 iterations of each experiment was 

required thus requiring 150 total experiments.  The average loiter time and average end-

to-end delay were the metrics used to evaluate the overall performance of each 

experiment/simulation.  
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IV. Results and Analysis 
 

4.1 Introduction 

This chapter presents and analyzes the experimental results.  First, the methods 

used to validate the architecture models are discussed.  Next, the results of each 

individual performance metric are presented.  Finally, an overall analysis of the results is 

provided. 

4.2 Statistical Accuracy 

To determine results are an accurate reflection of the sample population the 

simulation was run until the transient period was encountered and defined.  This was 

estimated to occur when the average end-to-end delay was < 5% of the long term overall 

average.  This occurred at approximately 500 seconds.  This can be seen in Figure 42, 

which shows a single run of the baseline scenario.   
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Figure 42. Simulation Transient Period Estimation 
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This was done in an effort to determine a simulation run time that was long enough for 

the system to reach a steady state, in order to prevent transients skewing the data.   

 

Figure 43. Average Overall Loiter Time 

The average loiter time also converged after a period of time within the 

simulation.  This appeared to be based upon the periodic nature of the orbits and contacts 

that were present within the baseline DTN approach.  Figure 43 shows the average loiter 

time plot for both the baseline and look-ahead approaches since no orbit changes were 

introduced.  The average loiter time reached steady state when the average percent loiter 

time was < 3% of the overall long term average.  This occurred in approximately 500 

seconds maintaining a level of approximately 30 percent for the remainder of the 

simulation.   
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4.3 Results and Analysis of Performance Metrics 

This section interprets and analyzes the relevant data collected from the 

simulations. As a preliminary step, some initial analysis was done to get a feel for how 

the DTN network would operate under the given scenario.  First, analysis was conducted 

on how the network traffic metric would be affected (end-to-end delay incurred) if the 

intermediary node on orbit 2 was used only as a relay (100% communication availability 

to HQ) versus used as a data ferry with a restricted communication range to HQ (63% 

uptime on the communication link to HQ).  As a data ferry the communication would 

only be allowed for 57 anchor points of the available 90 on orbit 2.  This is shown in 

Figure 44.   

 

Figure 44. Communication Range to HQ Restricted to 63% Available 

 

The results of this analysis are shown in Figure 45 and Table 3 below.  As one would 

expect the delay was substantially longer for the data ferry.  Therefore, this typical 

performance characteristic of a DTN architecture held true. 



75 75 

 

Figure 45. Intermediary Hop as Relay versus a Data Ferry 

 

Table 3. End-to-End Delay comparison between a relay and a Data Ferry 

Configuration Mean Standard 
Deviation 

  95% Confidence Interval 
from to 

UAV as Data Ferry 57.76265 2.420495142 56.8138348 58.71146814 
UAV as Relay 38.69571 1.723287953 38.0201913 39.37122423 

     *Values listed are for the end-to-end delay mean and confidence interval in seconds 

 

 Next, the impact of communication link availability to the HQ from the 

intermediary node (UAV4) was assessed.  It was shown that the less time the 

communication link was accessible, more end-to-end delay was incurred due to the 

mobility required to ferry the information within communication range of the HQ 

. 
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Table 4. Impact Assessment of Intermediary Communication Link Availability on                                                                                        
the average end-to-end delay 

 
Percent 

Communication 
HQ 

Position Mean Standard 
Deviation 

  95% Confidence Interval 
from to 

100% X=55;Y=0 38.87955105 1.317813627 38.06277671 39.69632539 
73% X=61;Y=0 54.67759199 2.748700842 52.97396086 56.38122312 
63% X=62;Y=0 57.76265001 2.420495142 56.8138348 58.71146814 
53% X=63;Y=0 63.61902066 1.683491848 62.57560078 64.66244054 

*Values listed are for the end-to-end delay mean and confidence interval in seconds 

 

For testing purposes, the communication region from the data ferry to HQ was defined as 

63 percent available.  This value was chosen based upon the data from the impact 

assessment in Table 4.  Figure 46 displays the associated communication patterns for this 

setting. 

 

Figure 46. Orbit to Orbit Communication Patterns 

 

Figure 46 highlights the cyclic nature of the availability of the orbit to orbit 

communication links.  This is the time when the UAVs are within the communication 

ranges to either orbit 2 (UAV1 – UAV3) or orbit 1 (UAV4).  Note that when the 

communication regions overlap with the UAVs in orbit 1 (UAV1 – UAV3) and UAV4 in 
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orbit 2 (identified with dashed lines) a communication link is established and the UAVs 

are allowed to send data.  An example of this is when the simulation time is 86.1 seconds.  

The dashed line represents a communication link exists for UAV2.  This means that 

UAV2 and UAV4 can communicate from simulation time 86.1 to 99 seconds (129 time 

steps).   

The simulation time period chosen was set to 1,800 seconds and the distance 

between consecutive anchor points within the same orbit was 1 second.  This was chosen 

because it enabled twelve complete orbit passes on orbit 1 which provided time for the 

system to reach its steady state and sufficient time to characterize the system behavior.  

This in turn resulted in 18,000 simulation time steps (ten time steps between anchor 

points with each 100 msec) in which a potential image could be detected and routed to 

HQ. 

The workloads tested were 1 and 2 percent of the total possible image 

opportunities which was generated as described in Section 3.9.  This resulted in 

approximately 150 or 300 images (depending on workload) being generated for target 

observations on orbit 1 within the simulation time period.  Also, each simulation was 

conducted for 25 iterations to ensure statistical accuracy within a 95 percent confidence 

interval. 

 The baseline DTN approach was designed to test the performance of achieving 

the single objective of routing images to HQ.  The goal of the objective was to send the 

images as fast as possible using a greedy approach with the decision tree scheme that was 

previously mentioned.  This configuration was tested using the above settings and in turn 

resulted in an overall average loiter time of thirty seconds and an overall average end-to-
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end delay of 57.76 and 58.46 seconds for the corresponding workloads.  Since this 

approach didn’t introduce orbit changes, the UAV paths were repeated and the 

communication region passes were periodic and as a result the data throughput traffic and 

loiter time was consistent.  This approach characterized the system for comparison to the 

other two approaches under study.  

Table 5. DTN Baseline Approach Results 

  
   *Values the end-to-end delay are listed are in seconds and loiter time are listed as % 

 

Next, the look-ahead approach was incorporated within the baseline DTN 

approach.  This approach introduced extra computation in an effort to enhance the data 

routing decision.  Similar to the baseline DTN methodology, this approach also pursued 

the single objective of routing data as fast as possible to HQ.  This was tested with the 

same simulation parameters (comm. region 63%, T=1,800 seconds) and in the same way 

as the baseline DTN approach.  The steps_look_ahead parameter was set to two (with 

step size one being the current decision), and the step_size parameter was set to five and 

ten anchor points for testing purposes.  The steps_look_ahead of two, refers to 

calculating the current next hop (step 1 based upon the current positions of the UAVs) in 

the data path and the future next hop (step 2) after the current next hop.  The step_size is 
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used to determine the number of anchor points from the current position, the future next 

hop will be located.   This was described in Figure 26 with all routes determined and the 

decision made and the image transmitted to the current next hop within the current 100 

msec time window.  These results were statistically identical because the means were 

within each others confidence interval.  Also, since there were no orbit changes the 

average overall loiter time was the same as the baseline DTN approach.   

Table 6. Comparison between the DTN baseline and look-ahead approaches 

 
*Values listed are for the end-to-end delay mean and confidence interval in seconds 

 

In fact, the results for the 10 step_size granularity were slightly worse.  This was 

likely due to either the fact that some optimal routes were overlooked by taking such a 

long look (large amount of anchor points) into the future state or that not long enough 

look was taken.  This was somewhat anticipated due to the repeatability of the UAV 

behavior in the baseline and look-ahead approaches.   

The MOO approach was built upon the look-ahead approach with the addition of 

the subsumption architecture.  This construct enabled the pursuit of multiple objectives 

simultaneously in an effort to improve both.  The loiter time threshold parameter was the 

primary factor that directly influenced the ability to improve system performance. 
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 Within the MOO approach the communication time windows were significantly 

affected since UAVs now had the opportunity to take other optional orbits thereby 

impacting the predictability of the communication links.  Figures 47 and 48 illustrate the 

impact of a particular threshold value (in this case 36) on orbit selection and the resultant 

communication links. 

 
 

Figure 47. Depiction of UAV Orbit Selection during the Simulation Period 
 
 

 
Figure 47 shows the orbit selection for a sample run of the MOO scenario.  In this case, 

UAV1 was on orbit 1 for 44.1 seconds then switched to orbit 3 for the rest of the 

simulation period.  UAV2 was on orbit 1 for 244.1 seconds, then switched to orbit 4 

where it remained until simulation time of 344.3 seconds, then switched to orbit 1 until 

simulation time of 494.3 seconds, then switched to orbit 4 until a simulation time of 

794.8 seconds, then switched to orbit 1 until 944.9 seconds and then finally on orbit 4 for 

the remainder of the simulation period.  UAV3 was on orbit 1 for 94.1 seconds and then 

on orbit 3 for the remainder of the simulation period. 
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Figure 48. UAVs to Data Ferry Communication Links under the Moo approach with  
                      loiter time threshold of 36 
 

Figure 48 shows the time windows for a single run of the MOO scenario in which the 

UAVs could communicate with the data ferry in orbit 2.  For the given loiter time 

threshold of 36, this figure indicates which communication links exist with a particular 

UAV and on which orbit the UAV occupies.  From the figure it is clear that UAV1 can 

only send data within the first 15 seconds of the simulation time period, this is due to the 

fact it switches to and stays on orbit 3 and thus cannot communicate directly with the data 

ferry.  UAV2 switches between orbits 1 and 4 and has a varied communication pattern.  

UAV3 is never in the communication region when the data ferry (UAV4) is and 

therefore, never has a communication link.  As is evident in this figure, UAV2 relays 

almost every image to the data ferry.  As such, the delay is smaller than the baseline 

configuration because there is an increased amount of communication link opportunities 

with the data ferry (UAV4).  This is because orbit 4 was designed for this purpose and 

therefore if it is used, images are sent in less time than in the baseline DTN configuration.  

Figure 49 illustrates this point. 
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Figure 49. DTN Topology showing how optional orbits can impact the loiter time and 

                    end-to-end delay 

 

Since the loiter time threshold value directly impacted system performance, 

testing of the MOO algorithm was undertaken as an iterative process in which this value 

was systematically increased with each subsequent trial.  The testing started with an 

initial threshold value of 30 seconds and progressed until the baseline DTN average end-

to-end value of 57.76 seconds was exceeded.  The results of this process are listed within    

Table 7. 

Table 7. Results from the MOO Algorithm with a given Loiter Time Threshold value 

 



83 83 

Results from a Range of Threshold Values
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Figure 50. Initial Test to Determine Impact for a Range of Threshold Values 

 

Note that this was merely done to get a quick snapshot as to which would perform 

better.  Each threshold value was run for 5 iterations with the workload set at 1 percent.  

This was done to identify which threshold value would be run for 25 iterations for 

comparison with the baseline and look-ahead approach values.  As is evident from     

Table 7, the threshold value of 36 performed well in regards to achieving both the 

network goal of decreasing the end-to-end delay and the mission goal of increasing loiter 

time.  In this case, this resulted in a 51 percent decrease in end-to-end delay and 6.7 

percent increase in loiter time when compared to the baseline approach. 

Tables 8 and 9 list the final comparison of the average end-to-end delay and loiter 

time between the baseline, look-ahead and pseudo-cognitive MOO approaches.  As is 
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evident, the MOO approach performed vastly better than the other approaches.  This was 

mainly due to the autonomous decisions of the UAVs to obtain the additional image 

opportunities via orbit 3 and the additional communication links that were provided by 

orbit 4. 

 

Table 8. Comparison of the baseline, look-ahead, and pseudo-cognitive Moo approach 
Average End-to-End Delay Data 

 
    *Values listed are for the end-to-end delay mean and confidence interval in seconds 
 
 

Table 9. Comparison of the baseline, look-ahead, and pseudo-cognitive Moo approach 
Average Loiter Time 

 
*Values listed are the percentage time over target 
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Figure 51. This Multi-Objective Optimization illustrates the results based upon the Loiter 
Time threshold chosen. 

 
 
Figure 51 displays the results within a typical MOO graph highlighting the optimal path.  

This figure shows that the MOO algorithm results are near optimal and therefore are the 

best solution of the options tested.  This in turn emphasizes the approximate 48.6 and 52 

percent reduction in the end-to-end delay and an increase of 6 and 6.75 percent in the 

overall loiter time for the workloads of 1 and 2 percent that were tested. 

4.4 Overall Analysis 

Several conclusions can be drawn from the simulations conducted.  The transitive 

regions were considered during analysis which ensured data integrity and a credible 

analysis.  It was determined that the use of a data ferry induced delay within the overall 

end-to-end metric.  This is caused by the queuing delay incurred by the mobility required 
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to move within communication range to establish a link.  Also, it was concluded that the 

look-ahead approach alone did not improve the overall system end-to-end delay.  All data 

analyzed was assessed based upon its 95% confidence interval with no overlapping 

regions to ensure validity.  Lastly, the pseudo-cognitive subsumption approach greatly 

improved system performance. 

Additionally, as a result of this process, several trends were identified and the 

system was characterized.  First, as the average percent loiter time threshold was 

increased the UAVs in orbit 1 had to change to orbit 3 in order to achieve the desired 

threshold level.  Recall, that the purpose for this orbit was specifically to increase average 

percent loiter time.  This resulted in an increased time over target which in turn increased 

the amount of images taken.  This is evident in Table 9 as the values listed are larger than 

the baseline value of 16,200 opportunities.  However, as an effort to offset this increase, 

orbit 4 was designed as to improve end-to-end delay by providing more opportunity to 

establish a communication link with the data ferry.   

If orbit 4 was not chosen by one of the UAVs the end-to-end delay increased 

dramatically.  Also, if the threshold level was too large the UAVs spent all of their time 

on orbit 3 trying to achieve the higher threshold level.  This resulted in extremely large 

amounts of traffic between the UAVs in orbit 3 with messages transferring back and forth 

within the same orbit since these were the only communication paths within 

communication range.  

4.5 Summary  

 This chapter presented and analyzed the data collected from the simulations of the 

different approaches related to this novel military application.  First, validation of the 
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overall DTN implementation was made with some common sense analytical checks.  

Next, validation of the three models was conducted with the hypothesis amongst them 

affirmed.  As the testing confirmed, the pseudo-cognitive subsumption approach 

improved the mission goal by increasing the average percent loiter time between 6.00 and 

6.75 percent and the network goal of end-to-end delay between 48.6 and 52.0 percent 

over the baseline DTN and look-ahead approaches for the workloads of 1 and 2 percent 

respectively.  This result was proven statistically within a 95 percent confidence interval. 
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V. Conclusions and Recommendations 

5.1 Introduction 

 This chapter summarizes the overall conclusions of the research.  First the 

conclusions captured from the experimental results are presented.  Next, the significance 

of this research is presented.  Finally recommendations for possible areas of future work 

are described. 

5.2 Conclusions of Research 

 This thesis demonstrated how aspects of an NTO cold be incorporated within a 

pseudo-cognitive process used to simultaneously achieve conflicting mission and 

network goals within a DTN topology.  This was done in an effort to account for network 

performance objectives that often get neglected as a result of the dominance of mission 

goals within the Air Force planning process and creation of the ATO.  This work 

provided a novel approach in which to incorporate both the mission and network goals 

within a robust framework based upon behavior based robotic control principles.   The 

UBF controller architecture provided a means to foster the multi-objective optimization 

subsumption approach in an effort to allow UAVs to make autonomous dynamic 

decisions to adjust mission and network parameters to improve or balance both mission 

and network objectives.  Further this work provided a novel approach to improve network 

performance within a DTN topology.  Within the simulation, UAVs were able to 

dynamically adapt to changing network and mission conditions to best achieve pre-

defined goals within the ATO and NTO.  This work built upon studies within the areas of 

cognitive networks, multi-objective optimization, and behavior based robotic control 

principals.   
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5.3 Significance of Research 

 This thesis employed and proved novel concepts in which ATO and NTO 

parameters could be incorporated within a dynamic pseudo-cognitive multi-objective 

process to simultaneously balance and or improve mission and network goals.  This was 

indicated as the pseudo-cognitive approach achieved a significant improvement over the 

standard baseline and look-ahead approaches.  This resulted in an increase of 6 and 6.75 

percent in the average percent loiter time and a reduction of 52 percent in the end-to-end 

delay over the baseline DTN and look-ahead approaches for the workloads of 1 and 2 

percent respectively.  These findings and supporting documentation provides the 

foundation for future efforts within this area of study.  If realized, this could greatly 

enhance Air Force operational effectiveness by providing commanders and or senior 

leaders the ability to incorporate aspects of an NTO and ATO within autonomous UAV 

missions.  Hopefully this effort will spawn motivation and new areas of research within 

this topic of study.       

5.4 Recommendations for Future Research 

 Future research within this topic should focus on providing additional 

complexities to expand the MATLAB simulation to include incorporating additional orbit 

choices, additional UAVs, include UGVs (ground based nodes), and incorporate a node 

failure aspect.  The orbit choices should be chosen both arbitrarily and deliberately 

planned to investigate the responsiveness and adaptability of the UAVs within this 

construct.  Additional nodes (UAVs and UGVs) should be added to see if other optimal 

patterns or solutions exist.  This would provide a means in which to determine the 

scalability and flexibility of this framework.  Adding the learning aspect of cognition 
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would provide the architecture a feedback loop in which to base decisions on past actions 

instead of purely estimating future responses on present circumstance.  This approach 

would provide an optimal solution but may prove difficult given the complexity of 

managing this amount of sensory information and limited processing and storage 

constraints.  Lastly, this approach should be attempted experimentally through use of the 

Surveyor SRV-1 robotic platform.  This would provide an avenue to test significant 

factors that currently were not captured with the context of this simulation.  This would 

provide a means to test the pseudo-cognitive approach under real world conditions and 

allow for validation of its fundamental common sense principles.   

5.5 Summary  

 In summary, this research presented a novel approach to incorporate cognition by 

way of behavior based robotic control principles (subsumption) to balance mission and 

network goals within a DTN topology.  This provided commanders a framework to 

automate aspects of both an ATO and NTO while simultaneously improving both goals 

thus improving resource utilization and mission effectiveness.   
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