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1. INTRODUCTION 

A variety of new three-dimensional models of the Earth's seismic velocity structure have 
been generated in the last decade, using more sophisticated numerical techniques and an ever 
increasing amount of high quality data. Some of these velocity models are designed to illuminate 
the dynamic structure of the Earth's internal mechanics, while others are primarily used for their 
predictive qualities in various seismic wavefield phenomena. For example, accurate travel-time 
predictions for regional seismic phases are essential for locating seismic events with the accuracy 
needed for nuclear monitoring decisions. The events of interest to monitoring seismologists are 
those at lower magnitudes, which will more than likely only be recorded on a sparse network of 
stations at regional distances less than approximately 20°. Under these conditions, systematic 
biases caused by inadequately modeled Earth structures cause errors in the estimation of travel 
times and amplitudes of seismic phases. More accurate and reliable estimates of these quantities 
(especially in aseismic regions) have great potential to improve nuclear monitoring efforts to 
detect, locate and discriminate regional events. Travel times calculated through a three-
dimensional (3D) Earth model have the best chance of achieving acceptable prediction errors, if 
the model is constrained by sufficient data. Previous work has shown that incorporating 
predictions from 3D models significantly improves the location of regional events. For instance, 
Ritzwoller et al. (2003) demonstrated that a shear-wave model developed from broadband 
surface-wave measurements could be used to improve the predictions of Pn and P travel times, 
and subsequent regional event locations, using a thermoelastic conversion from shear to 
compressional velocities. Flanagan et al. (2007) also demonstrated regional location 
improvement using an a priori model of Western Eurasia and North Africa (WENA 1.0; 
Pasyanos et al., 2004). 

The difficulty of converting an S velocity model to a P veloicty model, or vice versa, in order 
to get a complete seismic velocity model, has been a persistent problem that has hampered 
previous efforts to develop regional crust and upper mantle models. In some instances, empirical 
scaling relations (e.g. Poisson's ratio) are assumed for the crust and upper mantle, and the S 
model is then converted to a P model. However, in regions with sedimentary basins or 
anomalous mantle structures, the assumed relationship may be wrong, leading to errors in the 
velocity model derived from the conversion. In other cases, additional geophysical data sets, 
such as receiver functions or gravity, can be used to complement the results derived from surface 
waves (e.g. Ammon et al., 1990; Julia et al., 2000). A significant drawback for these efforts can 
be the discrepancy between the resolution or spatial coverage of the various data sets. At the 
global teleseismic scale, several researchers have utilized body-wave travel times and surface-
wave dispersion measurements (among other data) jointly to produce P and S models of the 
Earth's mantle (e.g., Su and Dziewonski, 1997; Masters et al., 2000; Antolik et al., 2003). 
However, a joint inversion approach for detailed regional crust and upper-mantle P and S 
velocity models has not yet been attempted. 

With this motivation, we have developed a self-consistent 3D P and S velocity model of the 
crust and upper mantle in a large region of central and southern Asia. The new model is the 
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result of a nonlinear, joint body-wave/surface-wave inversion method applied to Pn travel times 
and Rayleigh group-velocity measurements. The body- and surface-wave data used in the 
inversion were specifically chosen for their complementary sensitivity to the velocity structures 
at crust and upper mantle depths. Consistency between the P and S velocities is achieved by 
imposing bounds on Poisson's ratio and by invoking a regularization constraint that correlates 
variations in P and S velocity from an initial model. We report on the application of the new 
inversion technique to data observed in the broad region shown in Figure 1. This region, 
extending from 0-60° N and 30-120° E, covers some of the most tectonically complex areas on 
Earth. The inversion model extends from the surface to approximately 300 km beneath the 
surface. 

To evaluate the usefulness of the new model for locating small regional events we have 
performed several validation exercises using a set of earthquakes and explosions with well-
known epicentral locations. These tests include travel-time predictions and relocations of 
ground-truth events in the study area using both P and S regional phase arrivals. Our validation 
results indicate that in many cases our 3D model achieves excellent travel-time prediction and 
epicentral accuracy. 

 
Figure 1: A topographic map of the study region, which encompasses most of central and 

southern Asia and portions of the Middle East. Dashed black lines indicate major plate boundaries, 
and labels denote some major tectonic features mentioned in the text. The thick white dashed line 
outlines the area covered by the new inversion model. 
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2. MODELING AND INVERSION METHODS  

2.1 Model Parameterization 

A complete 3D model for our purposes comprises five 3D parameter functions: α (P 
velocity), β (S velocity), ρ (density), Qα and Qβ (quality factors for P and S velocity). We 
represent these as a latitude/longitude grid of vertical profiles, all sharing a common 
parameterization with respect to depth. Namely, the crust at each latitude/longitude point is 
divided into six, vertically homogeneous layers corresponding to those of the CRUST2.0 model 
(Laske et al., 2001): water overlying two sediment layers (soft and hard sediments) overlying 
three igneous/metamorphic layers (upper, middle and lower crust). The thicknesses of the crustal 
layers are allowed to vary between profiles. The upper mantle is represented vertically by 
piecewise linear parameter functions sampled at 17 nodes distributed between the Moho 
discontinuity and a depth of 410 km. The parameters are discontinuous across the Moho. 

2.2 Forward Modeling 

The forward problem in our inversion methods requires prediction of first-arriving body-
wave travel times and frequency-dependent surface-wave group delays in a three-dimensional 
(3D) Earth model. We calculate body-wave travel times with the finite-difference method of 
Podvin and Lecomte (1991) as implemented by Lomax et al. (2000). We extended the Podvin-
Lecomte (P-L) software with algorithms for mapping Earth models in spherical coordinates to 
flat-Earth, Cartesian models, and for generating the partial derivatives (sensitivities) of the 
calculated travel times with respect to the P-wave velocity model parameters. 

Our method for modeling group delays assumes that the phase delay of a Rayleigh wave at a 
fixed frequency ߱ is a line integral of a local phase velocity along a path connecting the source 
and receiver locations. Denoting the local phase-velocity function, or map, as c(θ,φ;ω), the 
propagation path as Γω, and phase delay as tph(ω), we have  

௣௛ሺ߱ሻݐ  ൌ ׬  ୻ഘ

ௗ௦
௖ሺఏ,ம;ఠሻ

, (1) 

 where ݏ is the distance along the path. This equation assumes there is no static phase attributable 
to source excitation or receiver effects. Previous workers in surface-wave tomography have 
generally taken Γω to be the great-circle arc connecting the source and receiver (e.g. Woodhouse 
and Dziewonski, 1984). Bukchin et al. (2006) have proposed that a better approximation, that 
accounts for the focusing effects due to lateral variations in local phase velocity, is achieved with 
Γఠ taken as the geometrical ray (Fermat path) through the phase-velocity map, although the 
authors stress that the effects of strong lateral variations can only be accurately modeled with a 
numerical wave-equation or mode-coupling approach. Our modeling technique adopts the 
Fermat approach, implemented with a 2D version of the Podvin-Lecomte finite-difference 
method to obtain Γω. 

The group delay between a source and receiver is defined as  

୥௥ሺ߱ሻݐ  ൌ ௗ
ௗఠ

ሺ߱ ݐ୮௛ሺ߱ሻሻ. (2) 
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We can apply Equation (2) to equation (1) – ignoring the dependence of Γఠ on ߱ since ݐ୮௛ሺ߱ሻ is 
stationary with respect to path perturbations---and obtain  

୥௥ሺ߱ሻݐ  ൌ ׬  Γഘ

ௗ௦
௨ሺఏ,ம;ఠሻ

. (3) 

where ݑሺߠ, Ԅ; ߱ሻ is the group-velocity map at frequency ߱, given by  

 ଵ
௨ሺఏ,ம;ఠሻ

ൌ ௗ
ௗఠ

ሺ ఠ
௖ሺఏ,ம;ఠሻ

ሻ. (4) 

We obtain the phase-velocity and group-velocity maps for a 3D Earth model with point-wise 
dispersion calculations in 1D Earth models (Herrmann, 2002). That is, for a fixed geographic 
location ሺߠ, Ԅሻ, ܿሺߠ, Ԅ; ߱ሻ and ݑሺߠ, Ԅ; ߱ሻ are calculated from the spherically symmetric Earth 
model whose depth-dependent velocities and density are given by the vertical profile at ሺߠ, Ԅሻ: 
,ߠሺߙ Ԅ,  ሻ, etc. Implicit in these calculations are an earth-flattening transformation that correctsݖ
for the Earth's sphericity and corrections for anelasticity using the relationships developed by Liu 
et al. (1976) and Yu and Mitchell (1979).  

2.3 Joint Inversion Approach 

Our inversion procedure iteratively updates an initial, or prior, model with the objective of 
fitting both P-wave travel-time and Rayleigh-wave group-delay observations, subject to 
smoothness and other constraints on the model parameters. The prior model is a composite 3D 
model consisting of CRUST2.0 for the crust and the 1-D AK135 reference model (Kennett et al., 
1995) for the mantle. The CRUST2.0 Pn and Sn velocities were ignored in favor of the AK135 
velocities (ߙ ൌ 8.04 km/s, ߚ ൌ 4.48 km/s at the top of the mantle). However, the CRUST2.0 
variable Moho depth was retained and accommodated by vertical compression or extension of 
the AK135 mantle thickness to a depth of 210 km. 

The free parameters in the inversion include the velocities, ߙ and ߚ, for three crustal layers 
(upper, middle, lower crust) and 16 of the 17 vertical nodes in the upper mantle; the parameters 
at 410 km are held fixed to AK135 values. Additionally, we vary the Moho depth, or crustal 
thickness, as an explicit unknown parameter function (of latitude and longitude). As in the 
construction of the prior model, changes to Moho depth are implemented as a proportional 
extension or compression of the crustal layers and upper mantle nodal depths. The inversion 
allows changes to density, ߩ, by linking them directly to changes in ߙ through a version of 
Birch's Law (Birch, 1961). We do not allow ܳఈ and ܳఉ to change from their initial values. 

We can thus formulate our inversion method with four vectors of unknown model 
parameters. We let vectors ܉ and ܊ contain the layer or nodal values of the P-wave and S-wave 
velocity functions, ߙሺߠ, Ԅ, ,ߠሺߚ ሻ andݖ Ԅ,  contain the corresponding ܚ ሻ, respectively, and letݖ
values of the 3D density function, ߩሺߠ, Ԅ,  contains nodal values of the ,ܐ ,ሻ. The fourth vectorݖ
crustal thickness function, which we denote ܪୡ௥ሺߠ, Ԅሻ. The data vectors involved in the problem 
are ܜ, containing observed P-wave travel times for various source-receiver paths; and ܏, 
containing observed group delays for various paths and frequencies. We express the joint inverse 
problem in terms of these vectors as  
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܏  ൌ ,܉௚ሺܨ ,܊ ,ܚ ሻܐ ൅  ௚ (5)܍

ܜ  ൌ ,܉௧ሺܨ ሻܐ ൅  ௧, (6)܍

where ܨ௚ and ܨ௧ are nonlinear forward modeling functions, and ܍௚ and ܍௧ are error vectors. 
While not shown, it is understood that ܨ௚ also depends on the fixed parameters ܳఈ and ܳఉ. 
Equations (5) and (6) are coupled through the dependence of ܏ and ܜ on common parameters, ܉ 
and ܐ. 

2.4 Factoring the Surface-Wave Inverse Problem 

We decompose the surface-wave inverse problem in Equation (5) to mirror the two-stage 
procedure we use in forward modeling group delays, described in Section 1.2. Let the vectors ܝ 
and ܋, respectively, contain values of the local group-velocity and phase-velocity maps at the 
nodes of our geographic grid and at the observation frequencies. The first stage in calculating 
group delays for a model ሺ܉, ,܊ ,ܚ  ܷ ሻ---dispersion calculations in 1D media---defines functionsܐ
and ܥ, such that  

܋  ൌ ,܉ሺܥ ,܊ ,ܚ  ሻ (7)ܐ

ܝ  ൌ ܷሺ܉, ,܊ ,ܚ  ሻ. (8)ܐ

The second stage – integrating group-velocity maps along Fermat paths found by 2D raytracing 
through phase-velocity maps – defines a function ܪ௚, such that  

,܉௚ሺܨ  ,܊ ,ܚ ሻܐ ൌ ,ܝ௚ሺܪ  ሻ. (9)܋

The dependence of ܪ௚ on ܝ arises from the integrand of Equation (3), while the dependence on ܋ 
is from the integration path. Equations (7) – (9) allow us to factor the nonlinear inverse problem 
of Equation (5) as  

܏  ൌ ,ܝ௚ሺܪ ሻ܋ ൅  ௚ (10)܍

܋  ൌ ,܉ሺܥ ,܊ ,ܚ ሻܐ ൅  ௖ (11)܍

ܝ  ൌ ܷሺ܉, ,܊ ,ܚ ሻܐ ൅  ௨, (12)܍

where, strictly, ܍௨ ൌ ௖܍ ൌ 0. 

While our notation does not show it, it is important to point out that, as a consequence of our 
forward modeling assumptions, each of Equations (10) – (12) actually embodies a set of 
decoupled problems. Equation (10) defines one inverse problem for each frequency ߱ since there 
is no cross-frequency dependence of group delays on group-velocity maps. Equations (11) and 
(12) decouple geographically since, by assumption, the local phase and group velocities at a 
latitude/longitude point ሺߠ, Ԅሻ depend only on the 1D velocity and density profiles associated 
with that point. 
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2.5 Linearization 

One step of our iterative inversion procedure solves linear approximations to the surface-
wave and body-wave inverse problems with certain parameter dependences ignored in order to 
decouple the problems. Let ሺ܉୰௘௙, ,୰௘௙܊ ,୰௘௙ܚ  .୰௘௙ሻ denote the parameters of a reference modelܐ
Starting with the body-wave problem, we linearize Equation (6) as  

ܜ  ൌ ,୰௘௙܉௧ሺܨ ୰௘௙ሻܐ ൅ ܉௧ሺۯ െ ୰௘௙ሻ܉ ൅  ௧, (13)܍

where ۯ௧ is the Jacobian matrix (partial derivative matrix) of ܨ௧ with respect to ܉, evaluated at 
the reference model. In this case, we ignore the dependence on crustal thickness ܐ, assumed to 
be fixed at its reference value. 

Linearizing (10) at the reference model we get  

܏  ൌ ,୰௘௙ܝ௚ሺܪ ୰௘௙ሻ܋ ൅ ۰௚ሺܝ െ ୰௘௙ሻܝ ൅  ௚ (14)܍

where  

୰௘௙ܝ  ൌ ܷሺ܉୰௘௙, ,୰௘௙܊ ,୰௘௙ܚ  ୰௘௙ሻ (15)ܐ

୰௘௙܋  ൌ ,୰௘௙܉ሺܥ ,୰௘௙܊ ,୰௘௙ܚ  ୰௘௙ሻ. (16)ܐ

The Jacobian of ܪ௚ with respect to ܝ, shown as ۰௚, contains 2D raypath sensitivities, analogous 
to the 3D raypath sensitivities for body-wave travel times that comprise ۯ௧. The Jacobian of ܪ௚ 
with respect to ܋ is zero since the Fermat raypaths are stationary with respect to perturbations in 
 ୰௘௙. For this reason, we do not consider the linearization of Equation (11). Linearizing܋ from ܋
(12) yields  

ܝ  ൌ ܷሺ܉୰௘௙, ,୰௘௙܊ ,୰௘௙ܚ ሻܐ ൅ ۰௨ሺܐሻሺ܊ െ ୰௘௙ሻ܊ ൅  ௨. (17)܍

Here we ignore the dependence of ܷ on ܉ and ܚ, but retain its nonlinear dependence on ܐ. The 
Jacobian matrix ۰௨ሺܐሻ is derived from the group-velocity partial derivatives implied by surface-
wave theory in 1D media (Harkrider and Anderson, 1966; Harkrider, 1968). 

Under the same assumptions, we can also linearize Equation (5), the unfactored surface-wave 
inverse problem, to obtain  

܏  ൌ ,୰௘௙܉௚ሺܨ ,୰௘௙܊ ,୰௘௙ܚ ሻܐ ൅ ܊ሻሺܐ௚ሺۯ െ ୰௘௙ሻ܊ ൅  ௚. (18)܍

Applying the chain rule to the composite function ܨ௚ ൌ ,௚ሺܷܪ   ሻ, we find thatܥ

ሻܐ௚ሺۯ  ൌ ۰௚۰௨ሺܐሻ. (19) 

We are quick to point out that ignoring certain parameter sensitivities will clearly lead to 
suboptimal solutions of the linearized inverse problems. What is not clear is whether, or how, 
doing so affects our final solution to the nonlinear joint problem obtained by the iterative 
updating scheme we use. We note, however, that the sensitivities we ignore are relatively small 
so that Equations (13) – (18) do retain most of the information about the unknown parameters: 
on ߙ from the P-wave data and on ߚ and ܪୡ௥ from the Rayleigh-wave data. Moreover, all 



7 
 

dependencies of data on parameters are accounted for in the final solution since nonlinear 
forward modeling is performed after each round of reference model updating. 

The three linearized inverse problems – Equations (13), (14) and (17) – can be written 
collectively as  

܌  ൌ ሻܕ୪௜௡ሺܨ ൅  (20) ,܍

where ܌ is a data vector, ܕ is a model vector, and ܍ is an error vector. The function ܨ୪௜௡ is the 
linearization of a nonlinear function ܨ at a reference model, i.e.  

ሻܕ୪௜௡ሺܨ  ൌ ୰௘௙ሻܕሺܨ ൅ ܕሺۯ െ  ୰௘௙ሻ. (21)ܕ

We allow Equation (20) to stand for the decoupled versions of Equations (14) and (17). Thus, 
there is one instance of (20) for each frequency in the surface-wave data set, as well as one for 
each geographic point in the group-velocity maps. Therefore, in all instances, the model vector 
 denotes spatial position and is ܠ ሻ, whereܠbecomes a sampled version of a model function, ݉ሺ ܕ
variously 3D position ሺߠ, Ԅ, ,ߠሻ, 2D position ሺݖ Ԅሻ or 1D position ݖ. Table 1 identifies the data 
vector and model function for each of the linearized inverse problems we solve. Note that the 
model function is taken to be slowness in the body-wave and surface-wave tomographic 
problems, while it is velocity in the dispersion inverse problem. 

Table 1: Data and Model Associations for Linearized Inverse Problems 

Equation Data Vector (d) Model Function 

13 P-wave travel time vs. 
source-receiver path m(θ, φ, z) = α-1 (θ, φ, z) 

14 Rayleigh-wave group delay 
vs. path (fixed ω) m(θ, φ, z) = u-1 (θ, φ; ω) 

17 Group velocity vs. ω (fixed 
θ, φ) m(z) = β(θ, φ, z) 

 

2.6 Updating Procedure 

Our iterative inversion procedure starts with the reference model (܉୰௘௙, etc.) set to the initial 
model (܉୮௥௜, etc.). Each step of the iteration solves the linearized inverse problems of Equations 
(14), (17) and (13) in sequence, using the solutions to update the reference model. Specifically, 
we  

i. Solve (14) to obtain the solution ܝ෥.  
ii. Solve (17), with ܝ ൌ ሚ܊ ෥, to obtainܝ  and ܐሚ . Then set 

୰௘௙ܐ  ൌ ሚܐ   
୰௘௙܊  ൌ ሚ܊   

iii. Solve (13) to obtain ܉෤. Then set  
୰௘௙܉  ൌ  ෤܉
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୰௘௙ܚ  ൌ ୮௥௜ܚ ൅ 0.3 ሺ܉୰௘௙ െ  ୮௥௜ሻ܉
୰௘௙܋  ൌ ,୰௘௙܉൫ܥ ,୰௘௙܊ ,୰௘௙ܚ  ୰௘௙൯ܐ
୰௘௙ܝ   ൌ ܷሺ܉୰௘௙, ,୰௘௙܊ ,୰௘௙ܚ  ୰௘௙ሻܐ

Step (i) is done frequency-by-frequency and Step (ii) is done point-wise geographically. After 
iterating this sequence several times, we take the latest reference model to be the solution of the 
nonlinear joint inverse problem. 

Even though we do not solve the linearized inverse problems simultaneously, the 
regularization technique and constraints we apply to the solutions end up coupling the solutions 
for ܉ and ܊, as we explain later. 

2.7 Bayesian Inversion Method 

We adopt a Bayesian approach (e.g. Tarantola, 2005) to solving each instance of Equation 
(20). We describe the approach first in the absence of parameter bounds, which we discuss later. 

We assume that ܍ and ܕ are each Gaussian random variables, uncorrelated with each other, 
with prior means zero and ܕ୮௥௜, respectively, and with prior variance matrices ܄௘ and ۱௠, 
respectively. We take the solution of Equation (20) to be the maximum a posteriori (MAP) 
estimator of ܕ, which minimizes the objective function given by  

 Ψሺܕሻ ൌ ሺ܌ െ ௘܄ሻሻ்ܕ୪௜௡ሺܨ
ିଵሺ܌ െ ሻሻܕ୪௜௡ሺܨ ൅ ሺܕ െ ୮௥௜ሻ்۱௠ܕ

ିଵሺܕ െ  ୮௥௜ሻ. (22)ܕ

We base ۱௠ on geostatistical concepts (e.g. Deutsch and Journel, 1998), parameterizing it in 
terms of the second-order spatial statistics of the Gaussian random function ݉ሺܠሻ. We specify 
these statistics in terms of a variance function, ߪ௠

ଶ ሺܠሻ, and a correlation kernel, ܥ଴ሺܠ,  Ԣሻ, suchܠ
that, for any two points ܠ and ܠԢ,  

 Cݒ݋ ሾ݉ሺܠሻ, ݉ሺܠԢሻሿ ൌ ,ܠ଴ሺܥ Ԣሻܠ௠ሺߪ ሻܠ௠ሺߪ  Ԣሻ. (23)ܠ

We require ܥ଴ሺܠ, ሻܠ ൌ 1. Letting the matrix ۱଴ be a discretized version of ܥ଴ሺܠ,  Ԣሻ, and lettingܠ
઱௠ be a diagonal matrix containing samples of ߪ௠ሺܠሻ on its diagonal, we can write a discrete 
version of Equation (23) as  

 E ൣሺܕ െ ܕ୮௥௜ሻሺܕ െ ୮௥௜ሻ்൧ܕ ؠ ۱௠ ൌ ઱௠۱଴઱௠ (24) 

where Eሾ ሿ denotes the mathematical expectation operator on random variables. 

We choose the kernel ܥ଴ሺܠ, ܠ ,Ԣሻ to be a decaying function of the spatial separationܠ െ  ,Ԣܠ
with the decay rate controlled by a specified correlation length in each direction. This is 
achieved by letting ܥ଴ be the Green's function of a differential operator ܦ଴ – i.e. 

,ܠ଴ሺܥ ଴ܦ  Ԣሻܠ ൌ ܠሺߜ െ  Ԣሻ (25)ܠ

– with ܦ଴ defined as  

଴ܦ  ൌ ଵ
௄భୢୣ୲઩ሺܠሻ

 ቂܫ െ ଵ
௄మ

׏ ڄ ઩ଶሺܠሻ ڄ ቃ׏
ℓ
. (26) 
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Here, ܫ denotes the identity operator;  is the gradient operator on the appropriate spatial domain 
(depth, geographic position, or 3D position); and ܭଵ, ܭଶ and  are constants which depend on the 
dimensionality of the spatial domain (see Table 2). The correlation tensor, ઩, is allowed to vary 
with position but we restrict its structure to be (in the case of three dimensions)  

 ઩ሺܠሻ ൌ ௭ܖ௭ܖ ሻݖ௭ሺߣ ൅ ఏܖఏܖ௛ ሺߣ ൅  மሻ, (27)ܖமܖ

where ܖ௭, etc. are unit vectors in a spherical coordinate system, and where ߣ௭ and ߣ௛, 
respectively, are correlation lengths in the vertical and horizontal directions. 

Table 2: Constants for Regularization Operator in a Whole-Space  

Dimension of x ℓ Κ1 Κ2 

1 1 2 1 
2 2 2π 2 
3 2 8π 1 

In the 3D inversion for ߙ (Equation (13)) and in the 1D inversions for ߚ (Equation (17)), we 
associate ܦ଴ with Neumann boundary conditions (zero normal gradient) at the Earth's surface 
and from each side of the Moho discontinuity. The Moho condition leads to the de-correlation of 
݉ሺܠሻ between the crust and upper mantle, i.e. ܥ଴ሺܠ, Ԣሻܠ ൌ 0 when ܠ and ܠԢ are on different sides 
of the Moho. Table 3 lists the values of the geostatistical parameters we used in each of the three 
linearized inversions. 

Numerically, we implement the geostatistical approach by constructing a finite-difference 
matrix, ۲଴, that approximates the differential operator ܦ଴. Given ۱଴ ൌ ۲଴

ିଵ and Equation (24), 
the objective function in Equation (22) can be written explicitly in terms of ۲଴ as  

Ψሺܕሻ ൌ ሺ܌ െ ௘܄ሻሻ்ܕ୪௜௡ሺܨ
ିଵሺ܌ െ ሻሻܕ୪௜௡ሺܨ ൅ ሺܕ െ ୮௥௜ሻ்઱௠ܕ

ିଵ۲଴઱௠
ିଵሺܕ െ  ୮௥௜ሻ. (28)ܕ

The numerical algorithms we use to minimize  will be mentioned later. 

Table 3: Geostatistical Parameters Used in Inversions 

Model Parameter α-1 
(slowness) 

β 
(velocity)

u-1 

(slowness) 

Equation in Text 13 17 14 
Std. Dev. (σm) ― ― 3% 
     Crust 3% 3% ― 
     Upper Mantle 2% 2% ― 
Horiz. correlation length (λh) 350 km ― 350 km 
Vertical correlation length (λz)     
     Crust 0.5 Hcr 0.5 Hcr ― 
     Upper Mantle 70 km 70 km ― 
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2.8 Crustal Thickness Inversion 

The linearized surface-wave inverse problem, Equation (17), differs from the other two 
problems in that it treats the crustal thickness vector, ܐ, as a free parameter. The objective 
function for this problem can be written as  

 Ψሺ܊; ሻܐ ൌ ሺܝ െ ܷ୪௜௡ሺ܊; ௘܄ሻሻ்ܐ
ିଵሺܝ െ ܷ୪௜௡ሺ܊;  ሻሻܐ

  ൅ሺ܊ െ ୮௥௜ሻ்઱௕܊
ିଵ۲଴઱௕

ିଵሺ܊ െ  ୮௥௜ሻ. (29)܊

Letting the minimum of  with respect to ܊, with ܐ fixed, be achieved at ܊ ൌ ሚ܊ ሺܐሻ, we can 
write an objective function for ܐ as  

 Ψ෩ሺܐሻ ൌ Ψሺ܊ሚ ሺܐሻሻ. (30) 

We take the solution for ܐ to be the value minimizing Ψ෩ . Since the inverse problem decouples 
geographically, the minimization is performed separately for each ሺߠ, Ԅሻ in our model grid, 
yielding ܪ෩ୡ௥ሺߠ, Ԅሻ for each point. Numerically, we find the solution with a grid search over 
crustal thickness values spanning a range of ±2.5% from the current reference value. 

It is worth noting that each trial crustal thickness in a grid search for ܪୡ௥ሺߠ, Ԅሻ entails 
forward modeling calculations for group velocities at all the observed frequencies, including the 
computation of shear-wave sensitivities, as well as the inversion calculations required to obtain 
the solution shear-wave profile, ߚ෨ሺߠ, Ԅ,  ሻ. In other words, allowing crustal thickness to be anݖ
inversion parameter comes at a high computational price. 

2.9 Factored vs. Unfactored Surface-Wave Inversion 

Appendix A shows that appropriate choices of prior model means and prior error and model 
variances make the solution of a nonlinear inverse problem, and of a factored version of that 
problem, the same within a linear approximation. The equivalence is exact for linearized 
problems. The requirement for prior means is easily met; the prior mean of ܝ in solving Equation 
(14) is  

୮௥௜ܝ  ൌ ܷሺ܉୰௘௙, ,୮௥௜܊ ,୰௘௙ܚ  ୰௘௙ሻ. (31)ܐ

However, the required choice of error and model variances in the factored problems is 
complicated and difficult to implement. In particular, the variance of the error vector ܍௨ in 
Equation (17) would have to be set to the posterior variance of ܝ in Equation (14), which is a 
non-diagonal matrix and, in any case, difficult to compute. Additionally, it is not practical to 
select prior model variances in the factor problems that equate to a desirable prior variance on ܊ 
in the composite problem, e.g. one implied by a 3D geostatistical treatment of ܊ analogous to 
that assumed for ܉ in the body-wave inversion. 

Nonetheless, the geostatistical assumptions we did use for ܝ and ܊ in the factor problems 
attempted to achieve parity with our 3D geostatistical treatment of ܉ in the travel-time 
tomography problem. As discussed above and summarized in Table 3, we used a 2D correlation 
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kernel for ܝ and a 1D correlation kernel for ܊ that shared the variances and correlation lengths of 
the 3D correlation kernel assumed for ܉. 

2.10 Velocity Correlation 

In a Bayesian inversion methodology it is straightforward to make the a priori assumption 
that the P and S model velocities are correlated. Considering both ߙ and ߚ as functions of 3D 
position, we can express this as  

 Cݒ݋ ሾߙሺܠሻ, Ԣሻሿܠሺߙ ൌ ,ܠ଴ሺܥ Ԣሻܠఈሺߪ ሻܠఈሺߪ  Ԣሻ (32)ܠ

 Cݒ݋ ሾߚሺܠሻ, Ԣሻሿܠሺߚ ൌ ,ܠ଴ሺܥ Ԣሻܠఉሺߪ ሻܠఉሺߪ  Ԣሻ (33)ܠ

 Cݒ݋ ሾߙሺܠሻ, Ԣሻሿܠሺߚ ൌ ,ܠ଴ሺܥ Ԣሻܠఉሺߪ ሻܠఈሺߪ ሻܠሺݎ  Ԣሻ, (34)ܠ

where ܥ଴ሺܠ,  ሻܠሺݎ Ԣሻ specifies the spatial correlation structure of each velocity function, andܠ
specifies the correlation coefficient between velocities at each spatial point. Separating the 
spatial correlation and velocity correlation in this way requires that  

,ܠ଴ሺܥ ሻܠሺݎ  Ԣሻܠ ൌ ,ܠ଴ሺܥ Ԣሻܠሺݎ  Ԣሻ, (35)ܠ

which forces ݎ to be piece-wise constant, differing between points ܠ and ܠԢ only when 
,ܠ଴ሺܥ Ԣሻܠ ൌ 0. 

A simultaneous inversion for ߙ and ߚ can incorporate Equations (32) – (34) in an appropriate 
objective function of ܉ and ܊. Appendix B shows that the same assumptions can be used in each 
step of our sequential approach with an appropriate modification of the individual objective 
functions for each inversion. The modifications are particularly simple under the restriction that  

ሻܠఈሺߪ/ሻܠ୮௥௜ሺߙ  ൌ  ሻ, (36)ܠఉሺߪ/ሻܠ୮௥௜ሺߚ

i.e. the prior means and standard deviations of ߙ and ߚ are in the same ratio everywhere. Then, 
for example, in solving Equation (13), the objective function to be minimized would be Equation 
(28) with ܕ ൌ   ୮௥௜ and ઱௠ set as discretized versions ofܕ and ܉

 ݉୮௥௜ሺܠሻ ൌ ሾ1 െ ሻܠ୮௥௜ሺߙ ሻሿܠሺݎ ൅ ሻܠሻ ఈ౦ೝ೔ሺܠሺݎ
ఉ౦ೝ೔ሺܠሻ

 ሻ (37)ܠ୰௘௙ሺߚ 

ሻܠ௠ሺߪ  ൌ ሾ1 െ  ሻ. (38)ܠఈሺߪ ሻଶሿଵ/ଶܠሺݎ

 Similar expressions determine the mean and standard deviation of ܊ used in solving Equation 
(17). 

2.11 Parameter Bounds 

We constrain the solutions of Equations (13) and (17) to be within prior upper and lower 
bounds on ߚ ,ߙ and Poisson's ratio ߥ, requiring  

,ߠ୫௜௡ሺߙ  Ԅ, ሻݖ ൑ ,ߠሺߙ Ԅ, ሻݖ ൑ ,ߠ୫௔௫ሺߙ Ԅ,  ሻ (39)ݖ

,ߠ୫௜௡ሺߚ  Ԅ, ሻݖ ൑ ,ߠሺߚ Ԅ, ሻݖ ൑ ,ߠ୫௔௫ሺߚ Ԅ,  ሻ (40)ݖ
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,ߠ୫௜௡ሺߥ  Ԅ, ሻݖ ൑ ,ߠሺߥ Ԅ, ሻݖ ൑ ,ߠ୫௔௫ሺߥ Ԅ,  ሻ. (41)ݖ

 In general, the constraints at each point ሺߠ, Ԅ,  ሻ define a six-sided region of admissibleݖ
points in ߚ-ߙ space, as illustrated in Figure 2. However, the bounds in the separate inversion for 
each velocity comprise a simple velocity interval, derived by using reference values of the other 
velocity to translate the bounds on Poisson's ratio. That is, we augment Equation (20), which 
represents each of the linearized inverse problems we solve, with the constraint  

 ݉୫௜௡ሺܠሻ ൑ ݉ሺܠሻ ൑ ݉୫௔௫ሺܠሻ. (42) 

 

  
Figure 2: The default bounds for the upper mantle lid on P velocity (ࢻ), S velocity (ࢼ) and 

Poisson's ratio (ࣇ) are displayed in ࢼ-ࢻ space. The region shaded green contains velocity pairs 
satisfying the constraints. The horizontal black line displays the interval of admissible P velocities 
that results when the S velocity is held to a reference value indicated by the black circle. 

For the P-wave travel-time problem, for example, we have (for each ܠ)  

 ݉୫௜௡ ൌ max ൜ ߙ୫௜௡ , ୰௘௙ ටߚ ଵିఔౣ೔೙
ଵ/ଶିఔౣ೔೙

 ൠ (43) 

 ݉୫௔௫ ൌ min ൜ ߙ୫௔௫ , ୰௘௙ ටߚ ଵିఔౣೌೣ
ଵ/ଶିఔౣೌೣ

 ൠ. (44) 

This conditional constraint is illustrated in Figure 2 by the horizontal black line spanning the 
green region of admissible velocities. 

We developed spatially variable velocity and Poisson's ratio bounds in a two-step analysis. 
The first step established default bounds, independent of latitude and longitude, for each crustal 
layer and as a function of depth in the upper mantle. These values, listed in Table 4, reflect a 
modest variation from the AK135 model (in the upper mantle) and from typical values from 
continental regions in CRUST2.0 (in the crust). The second step found the largest and smallest 
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velocities in CRUST2.0 as a function of tectonic regime. Worldwide, there are 26 such regimes 
(e.g. “Platform”, “Continental Shelf'”). The velocity bounds at each point in the model were 
expanded to accommodate these extrema, for the appropriate regime, with an additional 0.05 
km/s buffer. 

Table 4: Default Parameter Bounds 

α (km/s) β (km/s) ν 
Depth min max min max min max 

Upper Crust 5.50 6.20 3.00 3.45 0.23 0.34 
Middle Crust 6.10 6.80 3.35 3.80 0.24 0.33 
Lower Crust 6.70 7.40 3.70 4.10 0.25 0.32 

zmoho 7.75 8.30 4.30 4.65 0.26 0.31 
z ≈ 120 7.80 8.35 4.35 4.70 0.26 0.31 
z = 210 8.05 8.55 4.40 4.70 0.26 0.31 
z = 410  8.75 9.25 4.65 5.00 0.26 0.31 

 

To minimize Ψሺܕሻ in Equation (28) subject to the constraint (42), we generate ݉ሺܠሻ from 
an unconstrained function, ݍሺܠሻ, with the following transformation:  

 ݉ሺܠሻ ൌ ݉୮௥௜ሺܠሻ ൅ Δ݉ሺܠሻ eݎ  ݂ ቄ√గ
ଶ

 ఙ೘ሺܠሻ
୼௠ሺܠሻ

ሻቅܠሺݍ  ؠ  ሻሻ, (45)ܠሺݍሺܯ

where  

 Δ݉ሺܠሻ ൌ  ቊ
 ݉୫ୟ୶ሺܠሻ െ ݉୮௥௜ሺܠሻ, ሻܠሺݍ ݂݅ ൒ 0;
 ݉୫௜௡ሺܠሻ െ ݉୮௥௜ሺܠሻ, ሻܠሺݍ ݂݅ ൏ 0. (46) 

It is easily shown that as the bounds become wide compared to ߪ௠ሺܠሻ (|Δ݉ሺܠሻ| ب   ሻ), thenܠሺߪ

 ݉ሺܠሻ ՜ ݉୮௥௜ሺܠሻ ൅  ሻ. (47)ܠሺݍ ሻܠ௠ሺߪ

The linear inverse problem of Equation (20), in terms of ݍሺܠሻ, becomes the nonlinear 
problem  

܌  ൌ ሻሻܙሺܯ୪௜௡ሺܨ ൅  (48) ,܍

where the vector ܙ is a sampled version of the function ݍሺܠሻ. However, we do not simply 
substitute Equation (45) into (28) to obtain an objective function for ܙ. Instead, we assume ܙ to 
be a zero-mean random variable with unit variance and the same spatial correlation kernel as ܕ:  

,ሻܠሺݍሾ ݒ݋ܥ  Ԣሻሿܠሺݍ ൌ ,ܠ଴ሺܥ  Ԣሻ (49)ܠ

 or  

 ۱௤ ൌ ۱଴. (50) 
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 Figure 3: Velocity bounds have the effect of modifying a Gaussian prior probability 

distribution on P velocity (green line) to a non-Gaussian distribution (red line). 

Assuming ݍሺܠሻ to be Gaussian has the effect of making ݉ሺܠሻ non-Gaussian, with a probability 
density function that peaks at ݉୮௥௜ሺܠሻ and is coerced to zero at the bounds, illustrated in Figure 
3. However, in the limit of wide bounds, Equation (47), ܕ approaches Gaussian with mean ܕ୮௥௜ 
and the variance matrix ۱௠ given in (24). 

The objective function for ܙ becomes  

 Ψ௤ሺܙሻ ൌ ሺ܌ െ ௘܄ሻሻሻ்ܙሺܯ୪௜௡ሺܨ
ିଵሺ܌ െ ሻሻሻܙሺܯ୪௜௡ሺܨ ൅  (51) .ܙ۲଴்ܙ

The numerical algorithm we used for minimizing Ψ௤ is different for the three linearized inverse 
problems we solve. In the group-velocity and travel-time tomography problems (Equations (13) 
and (14)), we perform the minimization of Ψ௤ with the nonlinear conjugate gradients algorithm 
described by Rodi and Mackie (2001). In the surface-wave dispersion inverse problem (Equation 
(17)) we use a Gauss-Newton technique with iterative reweighting. 

3. APPLICATION TO DATA 

In our study we made use of observed travel times from regional P waves and frequency-
dependent Rayleigh-wave group delays at short to intermediate distances to determine the crust 
and upper-mantle seismic structure at depth ranges between the surface and approximately 300 
km depth. In the following sections we provide details about the data sets we utilized and the 
parameterization of the inversion model. 



15 
 

3.1 Travel-Time Observations 

 Our primary source of P-wave travel times was a subset of the International Seismic Centre 
(ISC) catalog, processed according to the methodology developed by Engdahl, van der Hilst and 
Buland (EHB; Engdahl et al., 1998). We extracted arrivals from the years 1982 – 2004 having 
event and station locations within a latitude and longitude box defined as 0-60° N and 30-120° E 
and event depths between 0 and 200 km. We included only first-arriving phases denoted Pg, Pb 
or Pn and which were defining phases for the EHB locations. We did not relocate the events as 
part of this study, and therefore filtered the events carefully to ensure small epicentral 
mislocations. In particular, we required the secondary azimuth gap, defined as the largest 
azimuthal gap closed by a single station, for a given event to be less than or equal to 130° 
(Bondár et al., 2004b) and the number of teleseismic arrivals to be at least 15. In addition to this 
set of data we added EHB bulletin picks over the Tibetan Plateau and southwestern China using 
data from temporary arrays (Li et al., 2006). The data set satisfying our criteria comprised 
167,384 arrivals from 7,681 events and 944 stations.  

We compressed this data set by forming summary events on a regular grid having 0.5-degree 
spacing in latitude and longitude and containing 13 nodes in depth between 0 and 200 km, with 
the depth spacing per node increasing from 5 to 20 km. For each summary-event node and each 
station/phase type, a summary travel-time residual (relative to the AK135 Earth model) was 
formed by averaging the individual residuals for the events near that node. Following this 
compression, stations containing fewer than 25 arrivals were dropped from the data set. The use 
of summary events acknowledges the redundant sensitivity of individual data to the Earth model 
(which is on a 1-degree grid) and, combined with the station-dropping rule, reduces the ray-
tracing requirements for the inversion substantially. 

The final database used in the body-wave tomography contained 104,065 arrivals for 3,689 
summary events and 603 stations. The data spanned epicentral distances to 18.7 degrees, and the 
travel-time residuals (relative to AK135) ranged from -9.8 to 9.9 s with a root-mean-square 
(RMS) error of 2.6 s. 

3.2 Group-Velocity Dispersion Measurements 

 The surface-wave dispersion database primarily consists of measurements donated by 
Ritzwoller and Levshin (1998) and the Lawrence Livermore National Laboratory. Different 
portions of the database have been used in the derivation of recent models (Ritzwoller et al., 
2002; Shapiro and Ritzwoller, 2002; Pasyanos, 2005). Some measurements in the database were 
also made by the Weston Geophysical research staff using the Ritzwoller and Levshin (1998) 
procedures for measuring group velocities. To eliminate potential outliers in the combined data 
set, we performed a period-by-period grooming of the data, in which we retained a group 
velocity measurement if it was within two standard deviations of the mean group velocity for 
that period. This exercise resulted in a database of 98,889 fundamental-mode Rayleigh group 
velocity picks from 3,993 events, 172 stations and 23 periods: T = 10-16, 18, 20, 25, 30, 35, 40, 
45, 50, 60, 70, 80, 90, 100, 120, 125 and 150 seconds. The surface-wave database is 
nonuniformly distributed across the various periods and in paths lengths. The distribution of the 
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group velocity data is shown in Figure 4 as a function of period and path length. The data are 
dominated by path lengths between 5 and 35 degrees periods below 100 seconds. Using the 
accepted relation that surface waves can resolve velocity changes down to approximately 1/3 of 
their wavelength, the shear-wave portion of our model should be well constrained to over 200 
km. 

 
Figure 4: The distribution of the group velocity database as a function of period and station-to-

event epicentral distance. (a) The number of group velocity measurements (paths) at the discrete 
periods in the database; (b) the number of paths at distance ranges between 0 - 90°, in 5° bins. 

In Figure 5 we show examples of the spatial coverage of our data sets. To generate these 
maps we used our extended version of the P-L algorithms to calculate sensitivities of the body-
wave travel times (right column) and frequency-dependent surface-wave delay times (left 
column) in our data set, calculated with our final inversion model. We then summed up a 
measure of 'hits' in the model with respect in specific depth intervals or at specific periods at 
each geographic point in a 0.5 x 0.5 degree grid in latitude and longitude. Figure 5 demonstrates 
that the data sets we used to constrain the inversion model provide excellent coverage of our 
study region. 
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Figure 5: Examples of data sensitivity distribution, expressed as log10(hits) for the surface- 

and body-wave data sets used in the joint inversion. Left column: Maps of the Rayleigh-wave 
group-delay sensitivity hits at 20s, 60s, and 150s; Right Column: Maps of the summary-event P-
wave sensitivity coverage at depths just beneath the Moho Lid, at approximately 100 km, and 210 
km. 
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To quantify the importance of applying a 2-D Fermat approach to the forward modeling of 
the group delays in our surface-wave data set, we calculated a measure of 'path wander' for a 
given source-receiver pair as the maximum deviation from the curved ray path to the great-circle 
path (Ritzwoller et al., 2002). This quantity is somewhat tricky to define in a finite-difference ray 
tracing approach since a raypath is only implicitly defined by a sensitivity distribution that has a 
finite width determined by such factors as the source-receiver distance and the degree of 
heterogeneity in the phase-velocity map for a given frequency. To prevent overestimating the 
maximum deflection along a given path, we calculated the path wander from sensitivities above 
a threshold chosen to isolate the equivalent geometrical ray between an event and station. Using 
this formulation we found the maximum lateral deviation from a great-circle path (a straight line 
between the station and the event in a Cartesian grid) for all the arrivals in our group velocity 
database through the predicted phase-velocity maps calculated with the final inversion model. 

 
Figure 6: Depiction of mean lateral path wander as a function of path-length range (vertical 

axis) and period (horizontal axis). For each group delay in the database, the maximum lateral 
deflection of the Fermat path from the great-circle path, normalized as a percentage of the source-
receiver distances, was computed and assigned to a 200-km path-length bin. The mean (normalized) 
deviation for each bin, as a function of period, is displayed in gray scale. Darker blocks indicate 
significant path wander, which occurs primarily at shorter periods and longer path lengths. White 
blocks indicate that a particular bin either had limited measurements or low lateral deviation.  

In Figure 6 we show the summary results of these calculations, which are plotted in matrix 
form, after they have been grouped as a function of period (horizontal axis) and 200-km-wide 
path-length bins (vertical axis). The results are presented as the mean absolute deviation, 
normalized to be a percentage of the total path length, among all the paths in a given 
distance/period bin. A white colored block indicates either no measurements existed or there was 
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insignificant lateral deviation. The figure demonstrates that there are patches of significant path 
wander, mainly for measurements made at shorter periods (up to perhaps 40 seconds) and longer 
path lengths. At longer periods the predicted phase-velocity maps do not exhibit large lateral 
variation, which is the primary factor that deviates rays from a great-circle path. At shorter path 
lengths, the positions of the event and station are the most important factors, since if they sample 
regions with intervening strong lateral variability the ray path will deviate significantly. These 
regions of strong lateral variability exist in our model region, but their effect is somewhat 
masked in Figure 6 when we combine the results from many paths into a single mean value at a 
given period. Overall, the results indicate that only certain regions of our model (e.g. the 
Himalayan front) require the Fermat approach, but we use it everywhere, since there is a small  
computational price exacted by using the same algorithm for both body- and surface-wave data. 

4. RESULTS OF JOINT INVERSION 

 We applied the nonlinear joint inversion method presented earlier in Section 2 to the data set 
described in Section 3 to construct a new compressional and shear velocity model, which we 
have dubbed the JWM model (for Joint Weston/ MIT). The new model comprises a set of P and 
S velocity profiles on a 1° x 1° grid that is well resolved within a latitude and longitude box of 
(10° - 50° N, 40° - 110° E). In the following sections we highlight some of the features in the 
new model, particularly in the upper mantle where the sensitivity of the data sets is the highest. 

4.1 Velocity Heterogeneities 

 In Figure 7 we show the P and S velocity variations with respect to the AK135 model for the 
new JWM model at three depths in the upper mantle: 90, 150 and 210 km. Some features of note 
in the new model include:  

• Crustal thickening beneath the major orogenic zones in the region, including the Hindu 
Kush, Tibetan Plateau and Altai.  

• The presence of a high-velocity lithospheric root to the south of the Himalayan front.  
• Stronger lows in the crust and uppermost mantle shear velocities under the Tibetan 

Plateau than in the compressional velocities.  
• Signatures of the sedimentary basin structures across the region (e.g. Tarim, Ordos) 

persisting into the uppermost mantle.  

We show additional slices of the JWM model at 30 km intervals starting at 30 km depth in 
Appendix C. 



20 
 

 
Figure 7: Compressional (left) and shear (right) velocity structure in the upper mantle of the 

JWM inversion model (horizontal slices at 90 km, 150 km and 210 km depths). The velocities are 
displayed in percent deviation from the AK135 model. 
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In Figure 8 we show two vertical, or depth, slices through the JWM model along great-circle 
paths. On the left is a longitudinal slice (at 55°E) across the Saudi Arabian Peninsula to the north 
across southern Iran and into southern Turkmenistan. One notable feature in this slice is the low 
velocity area with respect to the background model beneath central Iran, which may have 
implications for the active subduction processes occurring beneath the Eurasian continental 
collision zone. The slice on the right at 85°E cuts across the Himalayan Front, from northeastern 
India into central China. Here the P and S velocity models both show the Himalayan front and 
the thick lithospheric root beneath the Tibetan Plateau. We find that the Poisson's ratio in the 
lower crust of the Plateau is strongly elevated, which agrees with some previous studies in the 
region (e.g. Owens and Zandt, 1997). However, in contrast with some travel-time based studies 
(e.g. Chang et al., 2008), we find velocity highs in the uppermost mantle across larger portions 
of the Tibetan Plateau. 

 
Figure 8: Depth slices along two great-circle paths (see inset maps for path AB) in the JWM 

inversion model, including P velocity (top), S velocity (middle) and Poisson's ratio (bottom). Note 
that a different color scale is used for crust (left scale) and upper mantle (right scale) velocities. 
Some prominent tectonic features are marked by vertical black lines on the top of each cross-
section. 



22 
 

4.2 Resolution Tests 

In this section we show the results of performing some tests using a checkerboard pattern to 
assess which features of the new model are real and which might be potential artifacts. 
Checkerboard tests are well known to have limitations (Nolet et al., 1999; Leveque et al., 1993), 
and in our case they are only diagnostic of how the coupled inversion behaves in the linearized 
sense. The input model for our checkerboard experiments consisted of a lateral pattern of 
alternating positive and negative velocity perturbations centered on 5° x 5° squares. We 
perturbed the crustal layers by ±3% and the upper mantle layers by ±2% in both P and S 
velocity. The checkerboard pattern also varied with depth, varying in the same direction across 
the three crustal layers, and then alternating at a five-node interval (approximately every 100 km) 
in the upper mantle down to 410 km. We defined a checkerboard model by overlaying this 
pattern onto our model determined after the fifth iteration of the nonlinear inversion. First-order 
data perturbations induced by the checkerbooard pattern were added to the observed data. We 
then performed five additional linearized inversion steps with the perturbed data, holding the 
raypath sensitivities to the values calculated with the fifth-iteration model. The resolution test 
was completed by comparing the resulting inversion model to that obtained with the unperturbed 
data. The top plots in Figure 9 show the recovered P and S checkerboard pattern as a depth slice 
at 90 km. The bottom of this figure shows the profiles of the fifth-iteration, perturbed 
checkerboard and recovered pattern velocities at the geographic point (30° N, 60° E). Both 
inversions, with and without the checkerboard-induced data perturbations, used the same 
regularization scheme, velocity bounds, and variance parameters. Additional results for the 
checkerboard resolution test are provided as depth-horizon, or map-view, slices in Appendix C.  



23 
 

 
Figure 9: Selected results from a checkerboard resolution test. Top: slices of the recovered 

checkerboard pattern at 90 km. Bottom: the P and S velocity profiles at the geographic point (30° 
N, 60° E) for the fifth iteration, target checkerboard and recovered checkerboard models. 

4.3 Model Correlations 

In Figure 10 we examine features of the JWM model across the study region. Figure 10a 
shows the RMS amplitude change in the compressional and shear velocities with respect to the 
initial model as a function of depth, averaged over the regional box defined by (10 – 50°N,  40 – 
110° E). The crust between the surface and approximately 50 km exhibits the most change from 
the initial model (CRUST2.0 over an AK135 upper mantle). This is primarily due to significantly 
higher P velocities in the lower crust across the Tibetan Plateau and much lower P and S 
velocities in the entire crust along the orogenic belts crossing Iran and Pakistan, near the northern 
edge of the Caspian Sea, and along the eastern edge of the Indian plate. In some areas the 
changes can range as high as ±12% for P and ±14% for S from the values in the CRUST2.0 
model, even in places where the crustal thickness did not change significantly over the course of 
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the inversion. Peak variations from the initial model in the upper mantle reach ±3.6% for P and 
±4.8% for S velocities.  

 
Figure 10. Features of JWM across the study region. (a) RMS amplitude (in percent) of the 

changes to the initial model for the compressional and shear wave velocities, averaged over the 
study region; and (b) the correlation coefficient between compressional and shear velocity as a 
function of depth within the regional limits of the new JWM model. 

The compressional and shear velocities are strongly correlated in the crust and upper mantle, 
which is an expected consequence of the constraints that we implemented in the joint inversion. 
Figure 10c shows the mean correlation coefficient as a function of depth for the JWM model. We 
calculate the correlation coefficient across the defined model region using the traditional linear 
correlation formula 

௞ݎ   ൌ ௡ ∑ ఈೖ ఉೖ ି∑ ఈೖ ∑ ఉೖ 

ට௡ ∑ ఈೖ
మ

 ି ሺ∑ ఈೖ ሻ
మට௡ ∑ ఉೖ

మି ሺ∑ ఉೖ ሻ
మ
,     (51) 

where k is a specific depth and the sum is over the set of latitudes and longitudes in the model 
region. The results in Figure 10c indicate a strong positive correlation between the P and S 
velocities at most depths. The weakest correlation occurs in the uppermost mantle, where the 
correlation between P and S drops close to 0.5. The depths between approximately 70 and 120 
km are generally where both body and surface wave data sets have high sensitivity. To take 
advantage of this, our inversion constraints in the upper mantle regions allowed changes in the P 
and S velocities that were less well correlated with one another. 
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4.3 Data Variance Reduction 

In Figure 11 and Table 5 we demonstrate the improved fit to the data sets achieved by the 
new JWM inversion model. Figure 11 shows histograms of the residuals for the travel-time and 
group-delay data used in the inversion. In both cases the joint inversion removed the mean in the 
data and lowered the variance around the mean. The improved data fit produced by the inversion 
is more dramatic for the travel-time data, and illustrates the inherent noisiness of the group-
velocity data.  

 

 
Figure 11. Distribution of the time residuals for the P-wave travel-time data (left) and 

Rayleigh-wave group delays (right) for the initial (blue lines) and final JWM (red lines) inversion 
models.  

The data fit results are presented in another fashion in Table 5, which lists the values of the 
root-mean-square (RMS) error measured for the P-wave travel times and Rayleigh-wave group 
delays with respect to the new JWM model. For comparison purposes we also include the fits to 
the initial and AK135 models. The variance reduction from these models is a measure of the 
success of our inversion method; in addition, the variance reduction compared to AK135 reveals 
how well we constructed our prior model. Table 5 illustrates that the JWM inversion model 
significantly lowers the data variance for the travel-time and group velocity data sets with respect 
to the other models. For example, the percent variance reduction with respect to the initial model 
is 51% for the P-wave travel times and 26% for the Rayleigh-wave group delays.  

When we utilize subsets of the data in the calculation of the RMS error values, we reveal 
some interesting features in the fits of the various models. The variance reduction for the far-
regional travel times is significantly higher (57%) than for the near-regional (41%), which 
reflects the more significant changes to the upper mantle velocities that are due to the increased 
sensitivity to the velocity structure at those depths in our data.  

The group delays show considerable variance reduction with respect to both the initial and 
AK135 models, especially at shorter periods (T ≤ 80s). The AK135 model has an especially poor 
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fit to the group-delay data at periods between 25 – 45 seconds, which reflects the lack of a 
reasonable crustal structure in our study region and the likely presence of noise in the group-
velocity data at those periods. Our prior model corrects this bias even before we perform the 
inversion; however, the JWM model produces even better fits to the group velocity data 
compared to the initial model across the entire band of periods, especially at the short periods in 
our data set (T <= 20s).  

Table 5: RMS error of the data sets with respect to the AK135, initial and final inversion 
models; various subsets of the data are also shown. 

Data Set RMS Error 
AK135 (s) 

RMS Error 
Starting 

Model (s) 

RMS Error 
JWM (s) 

P Travel Times all distances 2.50 2.87 2.02 
∆ = 0 - 12° 2.27 2.43 1.86 
∆ = 12 - ~18.6° 2.81 3.42 2.24 
      

Group Delays all periods (T) 60.0 35.2 30.2 
T = 10 - 20 s 46.9 37.5 28.2 
T = 25 - 45 s 82.2 37.6 36.2 
T = 50 - 80 s 45.7 28.8 24.1 
T = 90 - 150 s 28.3 27.8 24.7 

 

5. DISCUSSION AND CONCLUSIONS  

5.1 Tests for Predictive Capability 

 As we noted in the introduction, a primary objective of the study was to improve the quality 
of event locations using data from the region covered by our 3D model. We have employed two 
techniques to assess the improvement in location performance of the JWM crust/upper mantle 
velocity model. First, we have assessed the ability of JWM to predict regional travel-time 
observations for a set of ground-truth (GT) events. Our GT database of explosions and shallow 
earthquakes was derived from several sources, including the EHB bulletin, the Group2 Reference 
Event List (REL; Bondár et al., 2004a) and a small supplemental list developed for an IASPEI 
location workshop (Engdahl, 2006). In Figure 12 we show the events in our GT database that are 
within the resolved boundaries of the JWM model (10-50 N, 40-110 E). The GT database 
contains high-quality epicenters, but the Group2 events do not include a large number of regional 
P and S observations. Therefore, we cross-referenced the Group2 REL events to the EHB 
bulletin (Engdahl et al., 1998) to retrieve a larger set of regional observations. This filtering 
exercise produced a validation dataset of 183 explosions and 225 earthquakes, with 7,795 Pg, Pb, 
or Pn first arrivals and 2,252 Sg, Sb, or Sn arrivals observed at stations in the box (0-60 N, 30-
120 E). The great-circle paths of the P and S GT observations are shown on the right side of 
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Figure 12. The region of the inversion model that is sampled by the GT data raypaths is limited, 
which illustrates the difficulty of validating a model in this manner. 

 

 
Figure 12: Ground-truth epicenters (GT0-GT7) in the resolved regions of the JWM model. 

Left: explosions (red stars) and earthquakes (blue squares) within our region; top right: great-
circle raypaths for the EHB P observations associated with events in the GT dataset; and bottom 
right: great-circle S raypaths.  

We then predict the travel times of our regional GT observations through both the AK135 
and JWM models using our 3D finite-difference technique (Podvin and Lecomte, 1991) and 
determine residuals with respect to the GT observed data. We note that the travel-time residuals 
for the AK135 model were computed using the same finite-difference approach as for the JWM 
model, to minimize numerical effects that could influence the comparisons. In Figure 13 we 
show the results of this exercise, using residual density plots in which we binned and averaged 
the residuals as a function of station-to-event epicentral distance. The residuals were binned at 
0.25° in epicentral distance and 0.5 seconds in time. The top two subplots in Figure 13 show the 
binned residuals relative to the AK135 model for the GT P (left column) and S (right column) 
travel-time data, while the bottom subplots show the results of the same calculation for the JWM 
model. We also overlaid the estimated residual median and spread  at 1° increments in distance 
(blue dots and vertical lines, respectively). The specific bin counts are shown in the color scale at 
the bottom of each column; these were chosen to help emphasize the tails of the residual 
distributions. 
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The results for the P data clearly indicate the improved fit produced by the JWM model 
across all epicentral distances. The AK135 model is in general too fast at the shorter distances 
and too slow at the longer distances. The spread values in the residual plots also indicate that 
there are likely some arrivals in the groomed GT database that have been incorrectly included, 
especially at crossover distances between Pg and Pn, or between Pn and P.  

The GT S data appear to suffer more significantly from the presence of bad picks in the 
arrival bulletin, especially at distances greater than approximately 8°. At the shorter distances it 
is clear, however, that the JWM model produces a better fit to the GT data. The scatter of the S 
GT data is not unexpected since regional S arrivals are often difficult to identify and pick, being 
often downweighted in location procedures as a result. We did not perform a rigorous outlier 
analysis of the GT S data, mainly because there is not enough of them in our ground-truth 
database. We relied instead on a simple hard cutoff of ±10 seconds as a criterion for rejecting 
outlier residuals. This issue needs to be addressed in future efforts, since the GT S data are a 
valuable model validation resource.  

 

 
Figure 13: GT travel-time residuals binned as a function of epicentral distance for the AK135 

(top) and JWM (bottom) models. Residual densities are binned at 0.25° intervals in distance and 
0.5s in time. The bin hit counts are shown in the color scale at the bottom of each column, and the 
median and corresponding spread at 1° intervals are shown as blue circles and vertical lines. 
Subplots on the left show the P residuals, and subplots on the right show the S residuals.  

In a second validation test we relocated a subset of events in our GT database to test the 
epicentral location accuracy of the JWM model. To eliminate some of the effects that network 
geometry can have on the solutions, we filtered the GT data to include only those events whose 
regional station distribution within our model has a secondary azimuthal gap less than 180°. 
Secondary azimuth gap (the largest azimuth gap when a single station of the network is 
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removed) is a good proxy for the quality of the network coverage (Bondár et al., 2004b). We also 
removed stations that were within 2.5° of the event. This filtering reduced the testing data set to a 
list of 18 explosions and 112 earthquakes within our region, with 7,111 regional P-wave arrivals 
and 1,935 regional S-wave arrivals. Figure 14 shows the locations of our relocation events, 
color-coded according to the secondary azimuth gap of the regional arrivals. 

 

 
Figure 14: Map of events (112 earthquakes, 18 explosions) from our GT database that meet 

regional network criteria for the epicenter relocation exercise. The events are color-coded by their 
regional secondary azimuth gap. Several clusters of events are labeled by location.  

We used the Grid-search Multiple-Event Location (GMEL) algorithm (Rodi, 2006) to 
relocate the events shown in Figure 14 with subsets of the regional arrival bulletin. The GT 
relocation experiments were done with the event depths fixed to their reported bulletin values 
and origin times allowed to vary. The arrival-time errors were set to 1.0 s for P and 2.0 s for S 
observations. Figure 15 directly compares the epicenter mislocations achieved using AK135 
versus JWM travel-time predictions. Events that fall above the black unity line indicate that the 
JWM model relocates an event closer to the published GT value. In Figure 15a the results show 
that, for event locations based on P arrivals alone, JWM performs better than AK135 for all of 
the explosions and most of the earthquakes. We also performed relocations including both P and 
S arrivals, and the results in Figure 15b show that JWM still outperforms the AK135 model, 
although not as decisively as when only P arrivals are used. It is clear that adding the S arrivals 
has a slightly more harmful effect on the locations for JWM than for AK135. However, we note 
that JWM produces smaller mislocations overall. 
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Figure 15: Epicenter mislocations resulting with the AK135 versus JWM models for the set of 

events (red stars: explosions; blue squares: earthquakes) shown in Figure 14. Events that fall in the 
gray shaded region above the black unity line in each plot indicate 'wins' for the JWM model. (a) 
Relocation results using regional P arrivals; (b) Relocation results using regional P and S arrivals.  

5.2 Model Uncertainty 

 A final task in our project was to find techniques that can be used to calculate the uncertainty 
of the new JWM model. The Bayesian framework on which our joint inversion method is based 
provides a formal framework for model uncertainty, whereby model uncertainty is characterized 
by the posterior probability distribution on model parameters inferred from the prior distributions 
on the parameters and on data errors. A number of factors make it difficult to implement this 
framework in a complete way. First, for large, nonlinear inverse problems in general, it is only 
practical to calculate posterior parameter distributions under the approximation of linearization. 
In addition, our particular choice of algorithms presents further roadblocks to a complete 
calculation, even for the linearized problem. In particular, in solving the body-wave and surface-
wave linearized problems sequentially, rather than simultaneously, we preclude a full Bayesian 
uncertainty analysis for the joint body-wave/surface-wave inverse problem. Moreover, our 
factoring of the surface-wave problem stymies a full Bayesian uncertainty analysis of that 
problem, even considered alone. For these reasons, our uncertainty analysis as of this writing is 
restricted to the linearized body-wave travel-time tomography problem, without consideration of 
the information the surface-wave data may provide about P velocity or of the potential trade-offs 
among P velocity, S velocity and crustal thickness. 

As described in Section 2.7, our application of the Bayesian framework employs a 
geostatistical parameterization of the prior model variance, involving a correlation kernel 
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0 ( , )C ′x x  to specify the correlation coefficient between the model function – in this case P 
velocity – at any two spatial points x and .′x  The correlation kernel is parameterized in terms of 
correlation lengths in the horizontal and vertical directions. In addition, a function σm(x) specifies 
the prior standard deviation (root variance) of the model function at each position. The Bayesian 
methodology for linear inverse problems straightforwardly defines posterior versions of these 
same quantities: 0 ( , )posC ′x x  and σpos

m(x). As part of our linear inversion algorithms, we 
developed numerical techniques for computing the prior and posterior variance of the model 
function and a “slice” of the prior and posterior correlation kernels for a particular fiducial points 
x0, e.g. C0(x, x0) as a function of x. 

Figures 16 and 17 show examples of model correlation slices for various fiducial points, 
computed for the JWM P-wave velocity inversion model. In Figure 16 we show prior (top and 
posterior (middle) correlation slices for two fiducial point near the center of our study region 
(30° N, 75° E) at depths 60 km and 120 km. Note the de-correlation between the crust and upper 
mantle  velocity  in  the  prior  slice,  which  is  an  intentional  feature  discussed in  Section  2.7.  

 
Figure 16: Vertical cross-sections through prior (top) and posterior (middle) correlation slices 

for the JWM P-wave model. Slices are shown for two fiducial points in the middle of the study 
region (30° N, 75° E) at depths of 60 km (left) and 120 km (right). Maps at the bottom of the 
subplots show the selected cross-sections as the AB lines. The number label "Std. Dev." is the model 
standard deviation at the fiducial point.  

The posterior correlation slice includes the information from travel-time data, leading to a 
reduction in model variance and in the correlation lengths implied by the correlation decay from 
the fiducial point. Strikingly, some posterior correlations are negative, especially between crust 
and mantle velocities (e.g. the left/middle plot). 
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In contrast to Figure 16, the correlation slices in Figure 17 correspond to fiducial points near 
the easternmost side of our study region (15° N, 105° E) and (45° N, 105° E) at 120 km depth. In 
these cases the prior and posterior correlations and standard deviations are more similar to each 
other because there is a dearth of travel-time data to constrain the model at these points. 

 

Figure 17: More examples of vertical cross-sections through prior (top) and posterior (middle) 
correlation slices for the JWM P-wave model. Slices are shown for two fiducial points (15° N, 105° 
E) and (45° N, 105° E) on the eastern edge of the study region at 120 km depth.  Plotting 
conventions are the same as in Figure 16. 

5.3 Summary 

 In this study we have demonstrated the application of a nonlinear joint inversion of body-
wave travel times and surface-wave group velocities to data from a broad region in south-central 
Asia. The forward modeling incorporated in our inversion utilizes fully 3D ray tracing for the 
body-wave travel times, and a two-step procedure for the surface-wave dispersion data that 
includes 1-D dispersion modeling at a geographic point followed by 2-D ray tracing in the phase 
velocity maps. We numerically solved the inverse problem using a set of iterated inversion steps. 
Consistency between the P and S velocities was achieved by imposing bounds on Poisson's ratio 
and by invoking a regularization constraint that correlates variations in P and S velocity from an 
initial model. The resulting inversion model shows good agreement with the persistent features 
seen in previous seismic velocity models produced from separate body- or surface-wave data 
sets, as well as some intriguing differences between the compressional and shear wave structure. 
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Our primary goal in developing the new inversion approach and the JWM model was to 
improve regional seismic event location capability in a strongly heterogeneous crust and upper 
mantle. We have tested the JWM model for its predictive capabilities using data from a large 
database of ground-truth events, which were held out from the joint inversion. The tests include 
the relocation of the ground-truth events, using data sets of Pn-only and Pn/Sn arrivals, and the 
direct comparison of predicted Pn and Sn travel times to the ground-truth observations. Both 
types of tests indicate that our 3D inversion model has much better predictive capability than 
either a 1-D global model or our initial model, which comprised a 3D crustal structure overlying 
a 1-D mantle. Our S velocity model performed reasonably well in predicting Sn times, even 
though such data were not included in our joint inversion.  
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8. APPENDIX A: Factored Inversion 

We consider an inverse problem for ܕ of the form  

܌  ൌ ሻሻܕሺܩሺܨ ൅  (A1) ,܍

where ܌ is a data vector, ܕ is a model vector, ܍ is an error vector, and ܨ and ܩ are nonlinear 
transformations whose composition is the forward model for the problem. We take the solution 
of (A1) to be the model minimizing the objective function  

 Ψሺܕሻ ൌ ሺ܌ െ ܌ሺ܅ሻሻሻ்ܕሺܩሺܨ െ ሻሻሻܕሺܩሺܨ ൅ ሺܕ െ ܕ଴ሻ்۲ሺܕ െ  ଴ሻ. (A2)ܕ

In the context of stochastic inversion, ܕ଴ is the prior mean of ۲ ,ܕ is the inverse of the prior 
covariance operator of ܕ, and ܅ is the inverse of the prior covariance operator of ܍. 

Define the objective functions  

 Ψଵሺܝሻ ൌ ሺ܌ െ ܌ሺ܅ሻሻ்ܝሺܨ െ ሻሻܝሺܨ ൅ ሺܝ െ ܝ଴ሻሻ்۲ଵሺܕሺܩ െ  ଴ሻሻ (A3)ܕሺܩ

 Ψଶሺܕሻ ൌ ሺܝ െ ܝଶሺ܅ሻሻ்ܕሺܩ െ ሻሻܕሺܩ ൅ ሺܕ െ ܕ଴ሻ்۲ଶሺܕ െ  ଴ሻ. (A4)ܕ

We will show that, under linear approximations to ܨ and ܩ and for suitable choices of the 
operators ۲ଵ, ۲ଶ and ܅ଶ, the vector ܕ minimizing Ψଶ, where ܝ minimizes Ψଵ, is the same 
vector that minimizes  in (A2). This in effect factors the inverse problem of Equation (A1) into 
two inverse problems having forward transformations ܨ and ܩ, respectively:  

܌  ൌ ሻܝሺܨ ൅  ଵ (A5)܍

ܝ  ൌ ሻܕሺܩ ൅  ଶ. (A6)܍

We see that ܝ acts as the model vector in the first problem and the data vector in the second. 

We start by expressing the composite inverse problem as the stationarity condition obtained 
by equating the gradient of  to zero:  

 ۲ሺܕ െ ଴ሻܕ ൌ ܌ሺ܅்ۯ۰் െ  ሻሻሻ, (A7)ܕሺܩሺܨ

where the linear transformation ۯ is the Jacobian of ܨ evaluated at ܩሺܕሻ, and ۰ is the Jacobian 
of ܩ evaluated at ܕ. The stationarity conditions for the factor problems are similarly given by  

 ۲ଵሺܝ െ ଴ሻሻܕሺܩ ൌ ܌ሺ܅்ۯ െ  ሻሻ (A8)ܝሺܨ

 ۲ଶሺܕ െ ଴ሻܕ ൌ ܝଶሺ܅۰் െ  ሻሻ. (A9)ܕሺܩ

Presuming that the same value of ܕ satisfies Equations (A9) and (A7), as it is our objective to 
prove, the Jacobian of ܩ in each equation is the same, allowing us to denote both as ۰. However, 
the value of ܝ satisfying (A8) is not necessarily ܩሺܕሻ, in which case the Jacobian of ܨ, shown as 
 henceforth with its linear ܨ in both equations, may differ. Therefore, we will replace ۯ
approximation, such that  

ሻܝሺܨ  ൎ ሻሻܕሺܩሺܨ ൅ ܝሺۯ െ  ሻሻሻ, (A10)ܕሺܩሺܨ
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where, as in Equation (A7), ۯ is the Jacobian of ܨ evaluated at ܩሺܕሻ. Using (A10), the 
stationarity condition for the first factor inverse problem becomes  

 ۲ଵሺܝ െ ଴ሻሻܕሺܩ ൌ ܌ሺ܅்ۯ െ ሻሻܕሺܩሺܨ െ ܝۯ ൅  ሻ. (A11)ܕሺܩۯ

Equation (A11) is solved by  

ܝ  ൌ ଴ሻܕሺܩ ൅ ሺۯ܅்ۯ ൅ ۲ଵሻିଵ 

܌ሺ܅்ۯ   െ ሻሻܕሺܩሺܨ ൅ ሻܕሺܩۯ െ  ଴ሻሻ (A12)ܕሺܩۯ

which implies  

ܝ  െ ሻܕሺܩ ൌ ሺۯ܅்ۯ ൅ ۲ଵሻିଵ 

        ሾ۲ଵሺܩሺܕ଴ሻ െ ሻሻܕሺܩ ൅ ܌ሺ܅்ۯ െ  ሻሻሻሿ. (A13)ܕሺܩሺܨ

Substituting this into (A9) yields  

 ۲ଶሺܕ െ ଴ሻܕ ൌ ۯ܅்ۯଶሺ܅۰் ൅ ۲ଵሻିଵ 

        ሾ۲ଵሺܩሺܕ଴ሻ െ ሻሻܕሺܩ ൅ ܌ሺ܅்ۯ െ  ሻሻሻሿ. (A14)ܕሺܩሺܨ

Now let  

ଶ܅  ൌ ۯ܅்ۯ ൅ ۲ଵ. (A15) 

Equation (A14) becomes  

 ۲ଶሺܕ െ ଴ሻܕ ൌ ۰்۲ଵሺܩሺܕ଴ሻ െ ሻሻܕሺܩ ൅ ܌ሺ܅்ۯ۰் െ  ሻሻሻ. (A16)ܕሺܩሺܨ

 

Up to this point we have not needed to approximate the function ܩ, but now we do. 
Linearizing about ܕ, let  

଴ሻܕሺܩ  ൎ ሻܕሺܩ ൅ ۰ሺܕ଴ െ  ሻ. (A17)ܕ

Applying this in the first term of Equation (A16), we get  

 ۲ଶሺܕ െ ଴ሻܕ ൌ ۰்۲ଵ۰ሺܕ଴ െ ሻܕ ൅ ܌ሺ܅்ۯ۰் െ  ሻሻሻ. (A18)ܕሺܩሺܨ

This becomes Equation (A7), the stationarity condition for the composite inverse problem, by 
setting  

 ۲ ൌ ۰்۲ଵ۰ ൅ ۲ଶ. (A19) 

The equivalence of the composite inverse problem and factor inverse problems occurs when 
 ଶ, ۲ଵ and ۲ଶ are chosen in accordance with (A15) and (A19). Equation (A15) sets the prior܅
covariance operator of ܍ଶ in the second factor problem to the posterior covariance of ܝ resulting 
from the first inverse problem. Equation (A19) relates the prior model covariances of the 
composite and factor problems. 
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9. APPENDIX B: Conditional Inversion 

We consider an objective function for a nonlinear inverse problem for parameter vectors ܉ 
and ܊, given by  

 Ψሺ܉, ሻ܊ ൌ ሺܜ െ ܜ௧ሺ܅ሻሻ்܉௧ሺܨ െ ሻሻ܉௧ሺܨ ൅ ሺ܏ െ ܏௚ሺ܅ሻሻ்܊௚ሺܨ െ  ሻሻ܊௚ሺܨ

         ൅ሺ܉ െ ܉଴ሻ்۲௔௔ሺ܉ െ ଴ሻ܉ ൅ ሺ܉ െ ܊଴ሻ்۲௔௕ሺ܉ െ  ଴ሻ܊

         ൅ሺ܊ െ ܉଴ሻ்۲௕௔ሺ܊ െ ଴ሻ܉ ൅ ሺ܊ െ ܊଴ሻ்۲௕௕ሺ܊ െ  ଴ሻ. (B1)܊

The vectors ܉଴ and ܊଴ play the role of prior means of ܉ and ܊, respectively. Denoting  

 ۲ ൌ ቀ۲ೌೌ   ۲ೌ್
۲್ೌ   ۲್್

ቁ, (B2) 

۲ିଵ plays the role of a variance/covariance matrix on ܉ and ܊. We will show that the conditional 
minimum of  with respect to ܉, holding ܊ fixed, also minimizes the objective function  

 Ψכሺ܉ሻ ൌ ሺܜ െ ܜ௧ሺ܅ሻሻ்܉௧ሺܨ െ ሻሻ܉௧ሺܨ ൅ ሺ܉ െ ଴܉
כ ሻ்۲௔௔

כ ሺ܉ െ ଴܉
כ ሻ (B3) 

for appropriate choices of ܉଴
כ  and ۲௔௔

כ . 

While this can be shown in general, we will restrict attention to a parameter 
variance/covariance matrix of the form  

 ۲ିଵ ൌ ൬઱௔ ૙
૙ ઱௕

൰  ൬ ۱଴ ۱଴܀
۱଴܀ ۱଴

൰
 
൬઱௔ ૙

૙ ઱௕
൰ , (B4) 

where ઱௔ and ઱௕ are diagonal matrices containing the standard deviations of the components of 
 is a diagonal matrix of ܀ and ;܊ and ܉ respectively; ۱଴ is a correlation matrix for both ,܊ and ܉
correlation coefficients between ܉ and ܊. We require that ܀ and ۱଴ commute:  

۱଴܀  ൌ ۱଴܀. (B5) 

Further, we restrict ઱௔ and ઱௕ as indicated in Equation (B9) below. Given (B4), we have  

 ൬۲௔௔ ۲௔௕
۲௕௔ ۲௕௕

൰ ൌ ଵି܁ ቆ
઱௔

ିଵ 0
0 ઱௕

ିଵቇ ൬  ۲଴ െ۲܀଴
െ۲܀଴ ۲଴

൰ ቆ
઱௔

ିଵ 0
0 ઱௕

ିଵቇ (B6) 

where ۲଴ ൌ ۱଴
ିଵ and ܁ ൌ ۷ െ  each commute ܁ and ܀ ଶ. Note that Equation (B5) ensures that܀

with ۲଴ (as they do with ઱௔ and ઱௕). 

To find ܽ଴
כ  and ۲௔௔

כ , we start by writing the stationarity condition implied by setting the 
gradient of  with respect to ܉ to zero:  

 ۲௔௔ሺ܉ െ ଴ሻ܉ ൅ ۲௔௕ሺ܊ െ ଴ሻ܊ ൌ ௧ۯ
ܜ௧ሺ܅் െ  ሻሻ. (B7)܉௧ሺܨ

The conditional minimum of , for any fixed ܊, is achieved by solving (B7) for ܉. Equation 
(B6) allows us to write  

 ۲௔௔ሺ܉ െ ଴ሻ܉ ൅ ۲௔௕ሺ܊ െ ଴ሻ܊ ൌ ଵ઱௔ି܁
ିଵ۲଴ሾ઱௔

ିଵሺ܉ െ ଴ሻ܉ െ ઱௕܀
ିଵሺ܊ െ  ଴ሻሿ. (B8)܊

Assume the parameter standard deviations and prior means are in a common ratio:  
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 ઱௔
ିଵ܉଴ ൌ ઱௕

ିଵ܊଴. (B9) 

Then  

 ۲௔௔ሺ܉ െ ଴ሻ܉ ൅ ۲௔௕ሺ܊ െ ଴ሻ܊ ൌ ۲௔௔
כ ሺ܉ െ ଴܉

כ ሻ (B10) 

where  

଴܉ 
כ ൌ ሺ۷ െ ଴܉ሻ܀ ൅ ઱௔઱௕܀

ିଵ܊ (B11) 

 ۲௔௔
כ ൌ ଵ઱௔ି܁

ିଵ۲଴઱௔
ିଵ ൌ  ଵ۲௔௔. (B12)ି܁

Plugging (B10) into the stationarity condition, (B7), gives  

 ۲௔௔
כ ሺ܉ െ ଴܉

כ ሻ ൌ ௧ۯ
ܜ௧ሺ܅் െ  ሻሻ, (B13)܉௧ሺܨ

which is the stationarity condition associated with the objective function Ψכ in Equation (B3). 

Equation (B11) states that ܉଴
כ  is a weighted average of ܉଴ and the scaled version of ܊ given 

by ઱௔઱௕
ିଵ܊. The relative weighting of the two vectors is determined by the correlation-

coefficient matrix ܀, with ܀ ൌ 0 (no correlation between ܉ and ܊) resulting in ܉଴
כ ൌ  ଴, as one܉

should expect. Equation (B12) states that ۲௔௔
כ  is ۲௔௔ inflated by ି܁ଵ, where ܁ ൌ ۷ when ܀ ൌ 0. 
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10. APPENDIX C: Additional Inversion Results 

In the next four figures we show the map view slices of the JWM model at 30-km intervals, 
starting at 30 km below the surface. The results are provided in percent deviation from the 
AK135 model. 
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Figure C1. Map view slices of the JWM model in percent deviation with respect to AK135 at 30 

km, 60 km, and 90 km depth. P velocities are shown on the left and S velocities on the right. 
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Figure C2. Map view slices of the JWM model in percent deviation with respect to AK135 at 

120 km, 150 km, and 180 km depth. P velocities are shown on the left and S velocities on the right. 
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Figure C3. Map view slices of the JWM model in percent deviation with respect to AK135 at 

210 km, 240 km, and 270 km depth. P velocities are shown on the left and S velocities on the right. 
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Figure C4. Map view slices of the JWM model in percent deviation with respect to AK135 at 

300 km depth. P velocities are shown on the left and S velocities on the right. 

Next we show the results of the checkerboard test, again by plotting map view slices of the 
retrieved checkerboard model at 30-km intervals, starting at 30 km below the surface. The results 
are provided in percent deviation from the final JWM model velocities. 
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Figure C5. Map view slices of the recovered P (left) and S (right) checkerboard models at 

depths of 30 km, 60 km, and 90 km.  
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Figure C6. Map view slices of the recovered P (left) and S (right) checkerboard models at 

depths of 120 km, 150 km and 180 km.  
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Figure C7. Map view slices of the recovered P (left) and S (right) checkerboard models at a 

depth of 210 km, 240 km and 270 km.  
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Figure C8. Map view slices of the recovered P (left) and S (right) checkerboard models at 

depths of 300 km.  

 




